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ABSTRACT

Probabilistic Circuits (PCs) are a unified framework for tractable probabilistic
models that support efficient computation of various probabilistic queries (e.g.,
marginal probabilities). One key challenge is to scale PCs to model large and high-
dimensional real-world datasets: we observe that as the number of parameters in
PCs increases, their performance immediately plateaus. This phenomenon suggests
that the existing optimizers fail to exploit the full expressive power of large PCs. We
propose to overcome such bottleneck by latent variable distillation: we leverage
the less tractable but more expressive deep generative models to provide extra
supervision over the latent variables of PCs. Specifically, we extract information
from Transformer-based generative models to assign values to latent variables
of PCs, providing guidance to PC optimizers. Experiments on both image and
language modeling benchmarks (e.g., ImageNet and WikiText-2) show that latent
variable distillation substantially boosts the performance of large PCs compared to
their counterparts without latent variable distillation. In particular, on the image
modeling benchmarks, PCs achieve competitive performance against some of the
widely-used deep generative models, including variational autoencoders and flow-
based models, opening up new avenues for tractable generative modeling. Our
code can be found at https://github.com/UCLA-StarAI/LVD.

1 INTRODUCTION
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Figure 1: Latent variable (LV) distillation significantly boosts
PC performance on challenging image (ImageNet32) and
language (WikiText-2) modeling datasets. Lower is better.

The development of tractable proba-
bilistic models (TPMs) is an impor-
tant task in machine learning: they
allow various tractable probabilistic
inference (e.g., computing marginal
probabilities), enabling a wide range
of down-stream applications such as
lossless compression (Liu et al., 2022)
and constrained/conditional genera-
tion (Peharz et al., 2020a). Probabilis-
tic circuit (PC) (Choi et al., 2020) is a
unified framework for a wide range
of families of TPMs, examples in-
clude bounded tree-width graphical
models (Meila & Jordan, 2000), And-
Or search spaces (Marinescu & Dechter, 2005), hidden Markov models (Rabiner & Juang, 1986),
Probabilistic Sentential Decision Diagrams (Kisa et al., 2014) and sum-product networks (Poon &
Domingos, 2011). Yet, despite the tractability of PCs, scaling them up for generative modeling on
large and high-dimensional vision/language dataset has been a key challenge.

By leveraging the computation power of modern GPUs, recently developed PC learning frameworks
(Peharz et al., 2020a; Molina et al., 2019; Dang et al., 2021) have made it possible to train PCs with
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over 100M parameters (e.g., Correia et al. (2022)). Yet these computational breakthroughs are not
leading to the expected large-scale learning breakthroughs: as we scale up PCs, their performance
immediately plateaus (dashed curves in Fig. 1), even though their actual expressive power should
increase monotonically with respect to the number of parameters. Such a phenomenon suggests that
the existing optimizers fail to utilize the expressive power provided by large PCs. PCs can be viewed
as latent variable models with a deep hierarchy of latent variables. As we scale them up, size of their
latent space increases significantly, rendering the landscale of the marginal likelihood over observed
variables highly complex. We propose to ease this optimization bottleneck by latent variable
distillation (LVD): we provide extra supervision to PC optimizers by leveraging less-tractable yet
more expressive deep generative models to induce semantics-aware assignments to the latent variables
of PCs, in addition to the observed variables.

The LVD pipeline consists of two major components: (i) inducing assignments to a subset of (or all)
latent variables in a PC by information obtained from deep generative models and (ii) estimating PC
parameters given the latent variable assignments. For (i), we focus on a clustering-based approach
throughout this paper: we cluster training examples based on their neural embeddings and assign
the same values to latent variables for examples in the same cluster; yet, we note that there is no
constraint on how we should assign values to latent variables and the methodology may be engineered
depending on the nature of the dataset and the architecture of PC and deep generative model. For (ii),
to leverage the supervision provided by the latent variable assignments obtained in (i), instead of
directly optimizing the maximum-likelihood estimation objective for PC training, we estimate PC
parameters by optimizing the its lower-bound shown on the right-hand side:∑N

i=1
log p(x(i)) :=

∑N

i=1
log

∑
z
p(x(i), z) ≥

∑N

i=1
log p(x(i), z(i)), (1)

where {x(i)}Ni=1 is the training set and z(i) is the induced assignments to the latent variables for
x(i). After LVD, we continue to finetune PC on the training examples to optimize the actual MLE
objective, i.e.,

∑
i log p(x

(i)).

As shown in Figure 1, with LVD, PCs successfully escape the plateau: their performance improves
progressively as the number of parameters increases. Throughout the paper, we highlight two key
advantages of LVD: first, it makes much better use of the extra capacity provided by large PCs;
second, by leveraging the supervision from distilled LV assignments, we can significantly speed up
the training pipeline, opening up possibilities to further scale up PCs.

We start by presenting a simple example where we apply LVD on hidden Markov models to improve
their performance on language modeling benchmarks (Sec. 2). Then we introduce the basics for
PCs (Sec. 3.1) and present the general framework of LVD for PCs (Sec. 3.2). The general framework
is then elaborated in further details, focusing on techniques to speed up the training pipeline (Sec. 4).
In Section 5, we demonstrate how this general algorithm specializes to train patch-based PCs for
image modeling. Empirical results show that LVD outperforms SoTA TPM baselines by a large
margin on challenging image modeling tasks. Besides, PCs with LVD also achieve competitive
results against various widely-used deep generative models, including flow-based models (Kingma &
Dhariwal, 2018; Dinh et al., 2016) and variational autoencoders (Maaløe et al., 2019) (Sec. 6).

2 LATENT VARIABLE DISTILLATION FOR HIDDEN MARKOV MODEL

In this section, we consider the task of language modeling by hidden Markov models (HMM) as an
illustrating example for LVD. In particular, we demonstrate how we can use the BERT model (Devlin
et al., 2019) to induce semantics-aware assignments to the latent variables of HMMs. Experiments on
the WikiText-2 (Merity et al., 2016) dataset show that our approach effectively boosts the performance
of HMMs compared to their counterpart trained with only random initialization.

Dataset & Model. The WikiText-2 dataset consists of roughly 2 million tokens extracted from
Wikipedia, with a vocabulary size of 33278. Following prior works on autoregressive language
modeling (Radford et al., 2019), we fix the size of the context window to be 32: that is, the HMM
model will only be trained on subsequences of length 32 and whenever predicting the next token, the
model is only conditioned on the previous 31 tokens. In particular, we adopt a non-homogeneous
HMM model, that is, its transition and emission probabilities at each position share no parameters;
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(a) Graphical model represen-
tation of an HMM modeling
token sequences of length 32.
Xi are the observed variables
and Zi are the latent variables.

…

1 toy … given to the
2 day … sunny and warm
3 Alice … playing video games
4 night … cold and stormy
5 really … playing the piano
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     for suffixes                               
X30 X31 X32

⏟768 dimensional vectors⏟token sequences of length 32

(b) Pipeline for inferring values for one latent variable Z30. We feed token
sequences to the BERT model to obtain contextualized embeddings for their
suffixes X30X31X32; then we cluster all suffix embeddings into h clusters;
here h = 3 is the number of hidden states and the value for Z30 is set to the
cluster id. We repeat this procedure independently to infer values for all Zis.

Figure 2: Latent variable distillation pipeline for hidden Markov models.

Figure 2a) shows its representation as a graphical model, where Xis are the observed variables and
Zis are the latent variables. To facilitate training and evaluation, we pre-process the tokens from
WikiText-2 by concatenating them into one giant token sequence and collect all subsequences of
length 32 to construct the train, validation and test sets, respectively.

Latent Variable Distillation. Let D={x(i)}i be the training set; Figure 2 shows an example on
how to induce, for each training example x(i), its corresponding assignment to the latent variable Z30.
We first feed all training examples to the BERT model to compute the contextualized embeddings
for their suffixes X30X31X32. We cluster all suffix embeddings into h clusters by the K-means
algorithm (Lloyd, 1982), where h is the number of hidden states; then, we set Z30 to be the cluster id
of their corresponding suffixes, that is, suffixes in the same cluster get the same latent variable value:
the intuition is that if the BERT embeddings of some suffixes are close to each other then the suffixes
should be relatively similar, suggesting that they should be “generated” by the same hidden state.
We repeat this procedure for 32 times to infer the values for all Zis. Now we obtain an “augmented”
training set Daug = {(x(i), z(i))}i, where z(i) are the corresponding assignments to the latent vari-
ables Z; then, as suggested by Equation 1, we maximize the lower-bound

∑
i log p(x

(i), z(i)) for the
true MLE objective

∑
i log p(x

(i)). The parameters of the HMM that maximize
∑

i log p(x
(i), z(i)),

denoted by θ∗, can be solved in closed-form. Finally, using θ∗ as a starting point, we finetune the
HMM model via EM to maximize the true MLE objective

∑
i log p(x

(i)).

Experiments. We apply LVD to HMMs with a varying number of hidden states h = 128, 256, 512,
750, 1024 and 1250; for comparison, we also train HMMs with random initialization. Please refer
to Appx. C for details about training. The plot on the right of Figure 1 shows the test perplexity
of HMMs (w/ and w/o LVD) on WikiText-2: as the number of parameters in HMM increases, the
performance of the HMMs trained with random parameter initialization immediately plateaus, while
the performance of the HMMs trained with LVD progressively improves, suggesting that LVD
effectively exploits the express power of the larger models.

3 LATENT VARIABLE DISTILLATION FOR PROBABILISTIC CIRCUITS

The previous section uses HMM as a specific TPM to elaborate key steps in LVD. In order to
generalize LVD to broader TPMs, this section introduces Probabilistic Circuit (PC), which is a
unifying framework for a large collection of tractable probabilistic models.

3.1 PROBABILISTIC CIRCUITS: A GENERAL TPM FRAMEWORK

PCs (Choi et al., 2020) are an umbrella term for a large variety of TPMs. Their syntax and semantics
are defined as follows.

Definition 1 (Probabilistic Circuits). A PC p(X) that encodes a distribution over variables X is
defined by a parameterized directed acyclic computation graph (DAG) with a single root node nr.
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X X X

(a) Amixture of three Gaussians. (b) A PC that encodes the distribution. (c) An equivalent deterministic PC.

p1 p2 p3

0.35 0.5 0.15

X Z = 1 X Z = 2 X Z = 3
p1 p2 p3

0.50.35 0.15

Figure 3: A mixture-of-Gaussian distribution (a) and two PCs (b-c) that encode the distribution.

Every node in the DAG corresponds to a computational unit. Specifically, every leaf node is defined
by an input unit and every inner node n represents either a sum or product unit that receives inputs
from its children, termed in(n). Each PC unit n encodes a distribution pn:

pn(x) :=


fn(x) if n is an input unit,∑

c∈in(n) θc|n · pc(x) if n is a sum unit,∏
c∈in(n) pc(x) if n is a product unit,

(2)

where fn(x) is a univariate probability distribution (e.g., Gaussian, Categorical) defined on a variable
in X and θc|n is the parameter corresponds to edge (n, c). For every sum unit n, we assume all its
edge parameters {θc|n}c∈in(n) are non-negative and sum up to one. Intuitively, a product unit encodes
a factorized distribution over its inputs, and a sum unit models a weighted mixture of its children’s
distributions. A PC represents the distribution encoded by its root unit nr. We further assume w.l.o.g.
that PCs alternate between sum and product layers before reaching an input layer.

A key property that separates PCs from many other generative models is their tractability, i.e., the
ability to answer various queries exactly while efficiently. Such queries include common ones like
marginals and conditional probabilities as well as task-specific ones such as structured prediction
(Shao et al., 2022) and variational inference (Shih & Ermon, 2020). The tractability of PCs is governed
by structural constraints on their DAG structure. For example, smoothness and decomposability
together guarantee linear time (w.r.t. size of the PC) computation of arbitrary marginal probabilities.
Definition 2 (Smoothness and Decomposability). Define the (variable) scope ϕ(n) of a PC unit n as
the set of variables defined by all its descendent input units. A PC is smooth if for every sum unit
n, all its children have the same scope: ∀c1, c2∈ in(n), ϕ(c1)=ϕ(c2). A PC is decomposable if the
children of every product unit n have disjoint scopes: ∀c1, c2∈ in(n)(c1 ̸=c2), ϕ(c1) ∩ ϕ(c2)=∅.

3.2 MATERIALIZING AND DISTILLING LATENT VARIABLES IN PROBABILISTIC CIRCUITS

PCs can be viewed as latent variable models with discrete latent spaces (Peharz et al., 2016). Specifi-
cally, since a sum unit in a PC can be viewed as a mixture over its input distributions, it can also be
interpreted as a simple latent variable model

∑
z p(x|z)p(z), where z decides which input to choose

from and the summation enumerates over all inputs. Figure 3 shows such an example, where the sum
unit in Figure 3 (b) represents the mixture over Gaussians in Figure 3 (a).

In general, the latent space for large PCs is hierarchical and deeply nested; as we scale them up, we are
in effect scaling up the size/complexity of their latent spaces, making it difficult for optimizers to find
good local optima. To overcome such bottleneck, we generalize the idea presented in Section 2 and
propose latent variable distillation (LVD). The key intuition for LVD is to provide extra supervision
on the latent variables of PCs by leveraging existing deep generative models: given a PC p(X);
we view it as a latent variable model

∑
zp(X,Z = z) over some set of latents Z and assume that

for each training example x(i), a deep generative model can always induce some semantics-aware
assignment Z = z(i); then, instead of directly optimizing the MLE objective

∑
i log p(x

(i)), we can
optimize its lower-bound

∑
i log p(x

(i), z(i)), thus incorporating the guidance provided by the deep
generative model. The LVD pipeline consists of three major steps, elaborated in the following:

Step 1: Materializing Latent Variables. The first step of LVD is to materialize some/all la-
tent variables in PCs. By materializing latent variables, we can obtain a new PC representing
the joint distribution Pr(X,Z), where the latent variables Z are explicit and its marginal distribu-
tion Pr(X) corresponds to the original PC. Although we can assign every sum unit in a PC an
unique LV, the semantics of such materialized LVs depend heavily on PC structure and parameters,
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Algorithm 1 Materializing a LV in a PC

1: Input: A PC p(X) and a variable scope W for some sum unit in p(X)
2: Output: An augmented PC p defined over {X, Z}, where Z is the materialized LV corresponding to W
3: SW ← {n : n ∈ p s.t. n is a product unit and ϕ(n) = W} ▷ Created as an ordered set
4: for j = 1 to |SW| do
5: Let nj be the jth unit in SW

6: Add an input unit c over Zi with distribution pc(zi) =

{
1 zi = j,
0 otherwise as a new child of nj

n1 n2 n3

. . .
c1 c2 c3 c4

Z =1 Z =2 Z =3 Z =4

n1 n2 n3

. . .
c1 c2 c3 c4

Figure 4: Materializing LVs in a PC.

which makes it extremely hard to obtain super-
vision. Instead, we choose to materialize LVs
based on subsets of observed variables defined
by a PC. That is, each materialized LV corre-
sponds to all PC units with a particular variable
scope (cf. Def. 2). For example, we can mate-
rialize the latent variable Z, which corresponds
to the scope ϕ(ni) (∀i∈ [3]), to construct the PC
in Figure 3(c) that explicitly represents p(X,Z), whose marginal distribution p(X) corresponds to
the PC in Figure 3 (b). Algorithm 1 (Peharz et al., 2016) provides one general way to materialize
latent variables in PCs, where Figure 4 shows an example where the four product units c1, . . . , c4 are
augmented with input units Z=1, . . . , Z=4, respectively.

Continuing with our example in Figure 3, note that after materialization, the sum unit representing
p(X,Z) in Figure 3(c) is no longer a latent variable distribution: each assignment to X,Z uniquely
determines the input distribution to choose, where the other inputs give zero probability under this
assignment; we say that this sum unit is deterministic (Darwiche, 2003).
Definition 3 (Determinism). Define supp(n) as the set of complete assignments x∈val(X) such that
pn(x)>0. A sum unit n is deterministic if its children have disjoint supports: ∀c1, c2∈ in(n)(c1 ̸=
c2), supp(c1) ∩ supp(c2)=∅.

Determinism characterizes whether a sum unit introduces latent variables: by materializing some sum
units with the scope, we enforce them to become deterministic. Intuitively, more deterministic sum
units in PCs implies smaller latent spaces, which implies easier optimization; in fact, if all sum units
in a PC are deterministic then the MLE solution can be computed in closed-form (Kisa et al., 2014).
By materializing more latent variables, we make PCs “more deterministic”, pushing the optimization
procedure towards a closed-form estimation.

Step 2: Inducing Latent Variable Assignments. Latent variable materialization itself cannot
provide any extra supervision to the PC training pipeline; in addition, we also need to leverage some
existing deep generative models to induce semantics-aware assignments for the materialized latent
variables. Though there is no general guideline on how the assignments should be induced, we focus
on a clustering-based approach throughout this paper. Recall from Section 2, where we cluster the
suffix embeddings generated by the BERT model and for each training example, we assign the latents
the cluster id that its suffixes belong to. Similarly, for image modeling, in Section 5, we will show
how to induce latent variable assignments by clustering the embeddings for patches of images. The
main take-away is that the method for inducing latent variable assignments should be engineered
depending on the nature of the dataset and the architecture of PC and deep generative model.

Step 3: PC Parameter Learning. Given a PC p(X; θ) with parameters θ and a training set
D = {x(i)}; in Step 1, by materializing some set of latent variables Z, we obtain an augmented PC
paug(X,Z; θ) whose marginal distribution on X corresponds to p(X; θ); in Step 2, by leveraging
some deep generative model G, we obtain an augmented training set Daug = {(x(i), z(i))}. Note that
since paug and p share the same parameter space, we can optimize

∑N
i=1 log paug(x

(i), z(i); θ) as a
lower-bound for

∑N
i=1 log p(x

(i); θ):∑N

i=1
log p(x(i); θ) =

∑N

i=1
log

∑
z
paug(x

(i), z; θ) ≥
∑N

i=1
log paug(x

(i), z(i); θ);

we denote the parameters for paug after optimization by θ∗. Finally, we initialize p with θ∗ and
optimize the true MLE objective with respect to the original dataset D,

∑N
i=1 log p(x

(i); θ).
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Summary. Here we summarize the general pipeline for latent variable distillation. Assume that we
are given: a PC p(X; θ) over observed variables X with parameter θ, a training set D = {x(i)} and a
deep generative model G:

1. Construct a PC paug(X,Z; θ) by materializing a subset of latent variables Z in p(X; θ); note
that p and paug share the same parameter space.

2. Use G to induce semantics-aware latent variable assignments z(i) for each training exam-
ple x(i); denote the augmented dataset as Daug = {x(i), z(i)}.

3. Optimize the log-likelihood of paug w/ respect toDaug, i.e.,
∑

i log paug(x
(i), z(i); θ); denote

the parameters for paug after optimization as θ∗.
4. Initialize p(X, θ) with θ∗ and then optimize the log-likelihood of p w/ respect to the original

dataset D, i.e.,
∑

i log p(x
(i); θ).

4 EFFICIENT PARAMETER LEARNING

Another major obstacle for scaling up PCs is training efficiency. Specifically, despite recently
developed packages (Dang et al., 2021; Molina et al., 2019) and training pipelines (Peharz et al.,
2020a) that leverage the computation power of modern GPUs, training large PCs is still extremely
time-consuming. For example, in our experiments, training a PC with ∼500M parameters on CIFAR
(using existing optimizers) would take around one GPU day to converge. With the efficient parameter
learning algorithm detailed in the following, training such a PC takes around 10 GPU hours.

The most computationally expensive part in LVD is to optimize the MLE lower bound (Eq. 1)
with regard to the observed data and inferred LVs, which requires feeding all training samples
through the whole PC. By exploiting the additional conditional independence assumptions introduced
by the materialized LVs, we show that the computation cost of this optimization process can be
significantly reduced. To gain some intuition, consider applying LVD to the PC in Figure 3(c)
with materialized LV Z. For a sample x whose latent assignment z is 1, since the Gaussian dis-
tributions p2 and p3 are independent with this sample, we only need to feed it to the input unit
corresponds to p1 in order to estimate its parameters. To formalize this efficient LVD algorithm, we
start by introducing the conditional independence assumptions provided by the materialized LVs.

. . .

Z1 =1 Z1 =M1

. . .

Z2 =1 Z2 =M2

··· ···

Figure 5: Distribution decomposition of an
example PC with materialized LVs Z1, Z2.

Lemma 1. For a PC p(X), denote W as the scope
of some units in p. Assume the variable scope of
every PC unit is either a subset of W or disjoint
with W. Let Z be the LV corresponds to W created
by Algorithm 1. Then variables W are conditional
independent of X\W given Z.

Proof of the above lemma is provided in Appx. A.1.
Take Figure 4 as an example. Define the scope of
{ni}3i=1 and {ci}4i=1 as W and the corresponding
LV as Z; denote the scope of the full PC as X.
Lemma 1 implies that variables W and X\W are
conditional independent given Z.

We consider a simple yet effective strategy for ma-
terializing LVs: the set of observed variables X is partitioned into k disjoint subsets {Xi}ki=1;
then for each Xi, we use Algorithm 1 to construct a corresponding LV, termed Zi. As a di-
rect corollary of Lemma 1, the joint probability over X and Z can be decomposed as follows:
p(x, z)=p(z)

∏k
i=1p(xi|zi).

The key to speed up LVD is the observation that the MLE lower bound objective (Eq. 1) can be
factored into independent components following the decomposition of p(x, z):

LL(p,Daug) :=

N∑
l=1

log p(x(l), z(l)) =

N∑
l=1

k∑
i=1

log p(x
(l)
i |z

(l)
i ) +

N∑
l=1

log p(z(l)), (3)
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Encoder …

Latent features

Decoder

(a) Illustration of the Masked Autoencoder model.

Cluster #1

(b) Example of image patches belonging to the same cluster.

Cluster #2 Cluster #3 Cluster #4

Figure 6: Extracting LVs for image data. The MAE model (a) is used to extract categorical LVs
{Zi}ki=1 that correspond to image patches {Xi}ki=1, respectively. (b) provides example patches from
the training set that belong to four randomly chosen clusters of the LV Z1.

where Daug := {(x(l), z(l))}Nl=1 is the training set augmented with LV assignments. According to
Equation (3), optimize LL(p,Daug) is equivalent to performing MLE on the factorized distributions
separately. Specifically, we decompose the optimization process into the following independent steps:
(i) for each cluster i and category j, optimizing PC parameters w.r.t. the distribution p(Xi|Zi= j)
using the subset of training samples whose LV zi is assigned to category j, and (ii) optimizing
the sub-PC corresponds to p(z) using the set of all LV assignments. Consider the example PC
shown in Figure 5. The subset of PC surrounded by every blue box encodes the distribution labeled
on its edge. To maximize LL(p,Daug), we can separately train the sub-PCs correspond to the
decomposed distributions, respectively. Compared to feeding training samples to the whole PC, the
above procedure trains every latent-conditioned distribution p(Xi|Zi=j) using only samples that
have the corresponding LV assignment (i.e., zi=j), which significantly reduces computation cost.

Recall from Section 3.2 that in the LVD pipeline, after training the PC parameters by maximizing
LL(p,Daug), we still need to finetune the model on the original dataset D. However, this finetuning
step often suffers from slow convergence speed, which significantly slows down the learning process.
To mitigate this problem, we add an additional latent distribution training step where we only finetune
parameters correspond to p(Z). In this way, we only need to propagate training samples through the
sub-PCs correspond to the latent-conditioned distributions once. After this step converges, we move
on to finetune the whole model, which then takes much fewer epochs to converge.

5 EXTRACTING LATENT VARIABLES FOR IMAGE MODELING

This section discusses how to induce assignments to LVs using expressive generative models. While
the answer is specific to individual data types, we proposes preliminary answers of the question in the
context of image data. We highlight that there are many possible LV selection strategies and target
generative model; the following method is only an example that shows the effectiveness of LVD.

Motivated by recent advances of image-based deep generative models (Dosovitskiy et al., 2020; Liu
et al., 2021), we model images by two levels of hierarchy — the low-level models independently
encode distribution of every image patch, and the top-level model represents the correlation between
different patches. Formally, we define Xi as the variables in the ith M ×M patch of an H ×W
image (w.l.o.g. assume H and W are both divisible by M ). Therefore, the image X is divided into
k = H ·W/M2 subsets {Xi}ki=1. Every Zi is defined as the LV corresponds to patch Xi.

Recall that our goal is to obtain the assignment of {Zi}ki=1, each as a concise representation of
{Xi}ki=1, respectively. Despite various possible model choices, we choose to use Masked Autoen-
coders (MAEs) (He et al., 2022) as they produce good features for image patches. Specifically, as
shown in Figure 6(a), MAE consists of an encoder and a decoder. During training, a randomly se-
lected subset of patches are fed to the encoder to generate a latent representation for every patch. The
features are then fed to the decoder to reconstruct the full image. The simplest way to compute latent
features for every patch is to feed them into the encoder independently, and extract the corresponding
features. However, we find that it is beneficial to also input other patches as context. Specifically, we
first compute the latent features without context. We then compute the correlation between features of
all pair of patches and construct the Maximum Spanning Tree (MST) using the pairwise correlations.
Finally, to compute the feature of each patch Xi, we additionally input patches correspond to its
ancestors in the MST. Further details are given in Appx. B.2.

As shown in Section 3.2, LVs {Zi}ki=1 are required to be categorical. To achieve this, we run the
K-means algorithm on the latent features (of all training examples) and use the resultant cluster
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Table 1: Density estimation performance of Tractable Probabilistic Models (TPMs) and Deep
Generative Models (DGMs) on three natural image datasets. Reported numbers are test set bit-per-
dimension (bpd). Bold indicates best bpd (smaller is better) among all four TPMs.

Dataset
TPMs DGMs

LVD (ours) HCLT EiNet RAT-SPN Glow RealNVP BIVA

ImageNet32 4.39±0.01 4.82 5.63 6.90 4.09 4.28 3.96
ImageNet64 4.12±0.00 4.67 5.69 6.82 3.81 3.98 -
CIFAR 4.38±0.02 4.61 5.81 6.95 3.35 3.49 3.08
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Figure 7: Generative modeling performance of four TPMs on three natural image datasets. For each
method, we report the test set bits-per-dimension (y-axis) in terms of the number of parameters
(x-axis) for different numbers of latent states.

indices as the LV assignments. Figure 6(b) shows some example image patches x1 belonging to four
latent clusters (i.e., Z1 = 1, . . . , 4). Clearly, the LVs capture semantics of different image patches.

To illustrate the effectiveness of LVD, we make minimum structural changes compared to Hidden
Chow-Liu Trees (HCLTs) (Liu & Van den Broeck, 2021), a competitive PC structure. Specifically,
we use the HCLT structure for all sub-PCs {p(xi|Zi=j)}i,j and p(z). This allows us to materialize
patch-based LVs while keeping the model architecture similar to HCLTs.

6 EXPERIMENTS

In this section, we evaluate the proposed latent variable distillation (LVD) technique on three
natural image benchmarks, i.e., CIFAR (Krizhevsky et al., 2009) and two versions of down-sampled
ImageNet (ImageNet32 and ImageNet64) (Deng et al., 2009). On all benchmarks, we demonstrate
the effectiveness of LVD from two perspectives. First, compared to PCs trained by existing EM-based
optimizers, the proposed technique offers a significant performance gain especially on large PCs.
Second, PCs trained by LVD achieve competitive performance against some of the less tractable deep
generative models, including variational autoencoders and flow-based models.

Baselines We compare the proposed method against three TPM baselines: Hidden Chow-Liu Tree
(HCLT) (Liu & Van den Broeck, 2021), Einsum Network (EiNet) (Peharz et al., 2020a), and Random
Sum-Product Network (RAT-SPN) (Peharz et al., 2020b). Though not exhausive, this baseline suite
embodies many of the recent advancement in tractable probabilistic modeling, and can be deemed
as the existing SoTA. To evaluate the performance gap with less tractable deep generative models,
we additionally compare LVD with the following flow-based and VAE models: Glow (Kingma &
Dhariwal, 2018), RealNVP (Dinh et al., 2016), and BIVA (Maaløe et al., 2019).

To facilitate a fair comparison with the chosen TPM baselines, we implement both HCLT and RAT-
SPN using the Julia package Juice.jl (Dang et al., 2021) and tune hyperparameters such as batch size,
learning rate and its schedule. We use the original PyTorch implementation of EiNet and similarly
tune their hyperparameters. For all TPMs, we train various models with number of parameters
ranging from ∼1M to ∼100M, and report the number of the model with the best performance. For
deep generative model baselines, we adopt the numbers reported in the respective original papers.
Please refer to Appx. C for more details of the experiment setup.

Empirical Insights We first compare the performance of the four TPM approaches. As shown in
Figure 1, for all three benchmarks, PCs trained by LVD are consistently better than the competitors
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by a large margin. In particular, on ImageNet32, a ∼25M PC trained by LVD is better than a HCLT
with ∼400M parameters. Next, looking at individual curves, we observe that with LVD, the test set
bpd keeps decreasing as the model size increases. This indicates that LVD is able to take advantage
of the extra capacity offered by large PCs. In contrast, PCs trained by EM immediately suffer from a
performance bottleneck as the model size increases. Additionally, the efficient LVD learning pipeline
described in Section 4 allows us to train PCs with 500M parameters in 10 hours with a single NVIDIA
A5000 GPU, while existing optimizers need over 1 day to train baseline PCs with similar sizes.
Please refer to Appx. D for detailed analysis of the computation efficiency of LVD.

We move on to compare the performance of LVD with the three adopted DGM baselines. As shown
in Table 1, although the performance gap is relatively large on CIFAR, the performance of LVD is
highly competitive on ImageNet32 and ImageNet64, with bpd gap ranging from ∼0.1 to ∼0.3. We
hypothesize that the relatively large performance gap on CIFAR is caused by insufficient training
samples. Specifically, for the PC structures specified in Section 5, the sub-PCs correspond to the
latent-conditioned distributions {p(xi|Zi = j)}i,j are constructed independently, and thus every
training sample xi can only be used to train its corresponding latent-conditioned distribution, making
the model extremely data-hungry. However, we note that this is not an inherent problem of LVD. For
example, by performing parameter tying of sub-PCs correspond to different image patches, we can
significantly improve sample complexity of the model. This is left to future work.

7 RELATED WORKS

There has been various recent endeavors to improve the performance of PCs on modeling complex
and high-dimensional datasets. An extensively-explored direction is to construct or learn the structure
of PCs that is tailored to the target dataset. For example, Gens & Pedro (2013); Dang et al. (2022)
seek to progressively improve the PC structure during the optimization process. Many other work
aim to construct good PC structures given the dataset in one shot, and then move on to parameter
optimization (Rahman et al., 2014; Adel et al., 2015). Model agnostic PC structures such as RAT-SPN
(Peharz et al., 2020b) and extremely randomized PCs (XPCs) (Di Mauro et al., 2021) are also shown
effective in various density estimation benchmarks. There are also papers that focus exclusively on
scaling up a particular TPM. For example, scaling HMM (Chiu & Rush, 2020) uses techniques such
as learning blocked emission probabilities to boost the performance of HMMs.

Another line of work seek to scale up PCs by learning hybrid models with neural networks (NNs).
Specifically, Shao et al. (2022) leverages the expressive power of NNs to learn expressive yet tractable
conditional distributions; HyperSPN (Shih et al., 2021) uses NN to regularize PC parameters, which
prevents large PCs from overfitting. Such hybrid models are able to leverage the expressiveness of
NNs at the cost of losing tractability on certain queries.

8 CONCLUSION

Scaling probabilistic circuits to large and high-dimensional real-world datasets has been a key
challenge: as the number of parameters increases, their performance gain diminishes immediately.
In this paper, we propose to tackle this problem by latent variable distillation: a general framework
for training probabilistic circuit that provides extra supervision over their latent spaces by distilling
information from existing deep generative models. The proposed framework significantly boosts the
performance of large probabilistic circuits on challenging benchmarks for both image and language
modeling. In particular, with latent variable distillation, a image-patch-structured probabilistic circuit
achieves competitive performance against flow-based models and variational autoencoders. Despite
its empirical success on scaling up probabilistic circuits, at high-level, latent variable distillation also
implies a new way to organically combine probabilistic circuits and neural models, opening up new
avenues for tractable generative modeling.

Reproducibility statement To facilitate reproducibility, we provide detailed description of the
models and training details in both the main text and the appendix. Specifically, the last paragraph
in Section 5 elaborates the PC structure used for image modeling tasks; training details of both the
proposed method and the baselines are provided in Section 6 and Appx. C. For baselines, we always
use the official GitHub implementation if possible. For our method, we provide detailed explanation
of all hyperparameters used in the experiment (Appx. C).

9



Published as a conference paper at ICLR 2023

REFERENCES

Tameem Adel, David Balduzzi, and Ali Ghodsi. Learning the structure of sum-product networks via
an svd-based algorithm. In UAI, pp. 32–41, 2015.

Justin Chiu and Alexander Rush. Scaling hidden Markov language models. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1341–
1349, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.103. URL https://aclanthology.org/2020.emnlp-main.103.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. oct 2020.

YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group fairness by probabilistic modeling
with latent fair decisions. In Proceedings of the 35th AAAI Conference on Artificial Intelligence,
Feb 2021.

Alvaro HC Correia, Gennaro Gala, Erik Quaeghebeur, Cassio de Campos, and Robert Peharz.
Continuous mixtures of tractable probabilistic models. arXiv preprint arXiv:2209.10584, 2022.

Meihua Dang, Pasha Khosravi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck. Juice: A
julia package for logic and probabilistic circuits. In Proceedings of the 35th AAAI Conference on
Artificial Intelligence (Demo Track), Feb 2021.

Meihua Dang, Anji Liu, and Guy Van den Broeck. Sparse probabilistic circuits via pruning and
growing. In The 5th Workshop on Tractable Probabilistic Modeling, 2022.

Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the ACM
(JACM), 50(3):280–305, 2003.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1). Association for
Computational Linguistics, 2019.

Nicola Di Mauro, Gennaro Gala, Marco Iannotta, and Teresa MA Basile. Random probabilistic
circuits. In Uncertainty in Artificial Intelligence, pp. 1682–1691. PMLR, 2021.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations, 2016.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Robert Gens and Domingos Pedro. Learning the structure of sum-product networks. In International
conference on machine learning, pp. 873–880. PMLR, 2013.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16000–16009, 2022.

Diederik P Kingma and Prafulla Dhariwal. Glow: generative flow with invertible 1× 1 convolutions.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pp. 10236–10245, 2018.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sentential decision
diagrams. In Fourteenth International Conference on the Principles of Knowledge Representation
and Reasoning, 2014.

10

https://aclanthology.org/2020.emnlp-main.103


Published as a conference paper at ICLR 2023

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Anji Liu and Guy Van den Broeck. Tractable regularization of probabilistic circuits. In Advances in
Neural Information Processing Systems 35 (NeurIPS), dec 2021.

Anji Liu, Stephan Mandt, and Guy Van den Broeck. Lossless compression with probabilistic circuits.
In Proceedings of the International Conference on Learning Representations (ICLR), apr 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.
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A PROOFS

In this section, we provide detailed proofs of Lemma 1.

A.1 PROOF OF LEMMA 1

Proof. Define Y :=X\W. To prove that variables W is conditional independent with Y given Z, it
is sufficient to show that ∀w∈val(W), z∈val(Z),y∈val(Y), we have p(w|z)=p(w|z,y).

Define Ssum
p,W and Sprod

p,W as the set of sum and product units with scope W, respectively. ∀n∈Ssum
p,W,

since the scope of n does not contain variables Y, we can immediately conclude that pn(w|z) =
p(w|z,y). In order to show that this equation also holds for the root PC unit, we only need to show
that for each PC unit n in p, if all its children (whose scope contains W) satisfy this equation, then n
also does. The reason is that the root unit nr of p must be an ancestor unit of every unit in Ssum

p,W.

We start with the case that n is a product unit. Since the PC is assumed to be decomposable, only one
child, denoted m, satisfies W ⊆ ϕ(m). Therefore, the distribution of n can be written as

pn(x) = pm(x) ·
∏

c∈in(n),c̸=m

pc(x)
(a)
= pm(x) ·

∏
c∈in(n),c ̸=m

pc(y),

where (a) holds because ∀c∈ in(n), c ̸=m, we have ϕ(c) ∩W = ∅. Therefore, we have pn(w|z) =
pm(w|z) and pn(w|z,y) = pm(w|z,y). Taking the two equations together and use the assumption
from the induction step: pm(w|z)=pm(w|z,y), we conclude that pn(w|z)=pn(w|z,y).

Define nz as the product unit in Sprod
p,W that is augmented with input unit Z = z by Algorithm 1.

Before proving the main result, we highlight that ∀n whose scope contains W, pn(x) can be written
as pnz

(w) · gn(y), where gn(y) is independent with w. This is because ∀m ∈ Sprod
p,W and m ̸= nz ,

pm(w, z) = 0(∀w ∈ val(W)).

Next, assume n is a sum unit whose scope contains W. Using the above result, we know that every
child c of n satisfies the following: pc(x) = pnz

(w) · gc(y). Thus, we have

pn(x) =
∑

c∈in(n)

θc|n · pnz (w) · gc(y) = pnz (w) ·
( ∑

c∈in(n)

θc|n · gc(y)
)
.

Since pnz (w|z)=pnz (w|z,y), we have pn(w|z)=pn(w|z,y).
Taking the above two inductive cases (i.e., for sum and product units, respectively), we can conclude
that for the root unit nr, pnr

(w|z)=pnr
(w|z,y).

B DETAILS FOR LATENT VARIABLE DISTILLATION

This section provides additional details for latent variable distillation (LVD), including description of
the adopted EM algorithm and details of the LV extraction step.

B.1 PARAMETER ESTIMATION

We adopt a stochastic mini-batch version of the Expectation-Maximization algorithm. Specifically, a
mini-batch of samples are drown from the dataset, and the EM algorithm for PCs (Choi et al., 2021;
Dang et al., 2021) is used to compute a set of new parameters θnew, which is updated with a learning
rate α: θt+1 ← α·θnew + (1− α)·θt.

B.2 DETAILS OF THE MAE-BASED LV EXTRACTION STEP

We use the official code (https://github.com/facebookresearch/mae) to train MAE
models on the adopted datasets (i.e., CIFAR, ImageNet32, and ImageNet64). At each training step,
the percentage of masked patches is chosen uniformly from 10% to 90%. After training, the LV
extraction step follows the description in Section 5.
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C EXPERIMENT DETAILS

In this section, we describe experiment details of all four TPMs adopted in Section 2 and Section 6.

Hardware specification All experiments are run on servers/workstations with the following
configuration:

• 32 CPUs, 128G Mem, 4 × NVIDIA A5000 GPU;

• 32 CPUs, 64G Mem, 1 × NVIDIA GeForce RTX 3090 GPU;

• 64 CPUs, 128G Mem, 3 × NVIDIA A100 GPU.

HMM The HMM models are trained with varying hidden states h = 128, 256, 512, 750, 1024 and
1250, with and without LVD. All HMM models are trained with mini-batch EM (Appx. B.1) for two
phases: in phase 1, the model is trained with learning rate 0.1 for 20 epochs; in phase 2, the model is
trained with learning rate 0.01 for 5 epochs. Note that for HMM models with hidden states ≥ 750,
we train for 30 epochs in phase 1. The number of epochs are selected such that all model converges
before training stops.

LVD For every subset Xi, the number of hidden categories, i.e., {Mi}ki=1 are set to values in
{8, 16, 32, 64, 128, 256}. For the latent-conditioned distribution {p(Xi|Zi=j)}i,j , we adopt HCLTs
with hidden size 16, and for the latent distribution p(Z), a HCLT with hidden size Mi is adopted.
When optimizing the model with the MLE lower bound, we adopt mini-batch EM (Appx. B.1) with
learning rate annealed linearly from 0.1 to 0.01. In the latent distribution training step (Sec. Section 4),
we anneal learning rate from 0.1 to 0.001.

HCLT We use the publicly available implementation of HCLT at https://github.
com/Juice-jl/ProbabilisticCircuits.jl/blob/master/src/structures/
hclts.jl. The hidden size is chosen from {16, 32, 64, 128, 256, 512, 1024}. We anneal the EM
learning rate from 0.1 to 0.01 and train for 100 epochs, and then anneal the learning rate from 0.01 to
0.001 and train for another 100 epochs.

RAT-SPN We adopt the publicly available implementation at https://github.com/
Juice-jl/ProbabilisticCircuits.jl/blob/master/src/structures/rat.
jl. num nodes region, num features, and num nodes leaf are set to the same value, which is
chosen from {16, 32, 64, 128, 256, 512, 1024}. Learning rate schedule is same with HCLTs.

EiNet We use the official implementation on GitHub: https://github.com/
cambridge-mlg/EinsumNetworks. We use the PD structure provided in the codebase. We
select hyperparameter delta from {4, 6, 8} and select num sums from {16, 32, 64, 128, 256}. Learn-
ing rate is set to 0.001.

D EFFICIENCY ANALYSIS

This section provides the breakdown of the runtime for each stage of the LVD algorithm for the PC
that achieves 4.38 bpd on ImageNet32. The PC has 836M parameters. All experiments are done on a
single NVIDIA A5000 GPU.

For this PC, training all latent conditioned distributions {p(xi|Zi = j)}i,j take ∼ 8 hours, and
training the latent distribution p(z) takes ∼0.5 hours. Finally, the fine-tuning stage takes ∼1 hour.

As shown in the above computation time breakdown, the most time-consuming part is to train the
latent conditioned distributions. However, we note that this is not a fundamental problem of LVD:
we are training every latent conditioned distributions independently, while there could be massive
structure/parameter sharing among such distributions. We left this to future work.
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