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ABSTRACT

This paper introduces Relative Predictive Coding (RPC), a new contrastive repre-
sentation learning objective that maintains a good balance among training stabil-
ity, minibatch size sensitivity, and downstream task performance. The key to the
success of RPC is two-fold. First, RPC introduces the relative parameters to reg-
ularize the objective for boundedness and low variance. Second, RPC contains no
logarithm and exponential score functions, which are the main cause of training
instability in prior contrastive objectives. We empirically verify the effectiveness
of RPC on benchmark vision and speech self-supervised learning tasks. Lastly, we
relate RPC with mutual information (MI) estimation, showing RPC can be used
to estimate MI with low variance 1.

1 INTRODUCTION

Unsupervised learning has drawn tremendous attention recently because it can extract rich repre-
sentations without label supervision. Self-supervised learning, a subset of unsupervised learning,
learns representations by allowing the data to provide supervision (Devlin et al., 2018). Among
its mainstream strategies, self-supervised contrastive learning has been successful in visual object
recognition (He et al., 2020; Tian et al., 2019; Chen et al., 2020c), speech recognition (Oord et al.,
2018; Rivière et al., 2020), language modeling (Kong et al., 2019), graph representation learning
(Velickovic et al., 2019) and reinforcement learning (Kipf et al., 2019). The idea of self-supervised
contrastive learning is to learn latent representations such that related instances (e.g., patches from
the same image; defined as positive pairs) will have representations within close distance, while
unrelated instances (e.g., patches from two different images; defined as negative pairs) will have
distant representations (Arora et al., 2019).

Prior work has formulated the contrastive learning objectives as maximizing the divergence between
the distribution of related and unrelated instances. In this regard, different divergence measurement
often leads to different loss function design. For example, variational mutual information (MI) esti-
mation (Poole et al., 2019) inspires Contrastive Predictive Coding (CPC) (Oord et al., 2018). Note
that MI is also the KL-divergence between the distributions of related and unrelated instances (Cover
& Thomas, 2012). While the choices of the contrastive learning objectives are abundant (Hjelm
et al., 2018; Poole et al., 2019; Ozair et al., 2019), we point out that there are three challenges faced
by existing methods.

The first challenge is the training stability, where an unstable training process with high variance
may be problematic. For example, Hjelm et al. (2018); Tschannen et al. (2019); Tsai et al. (2020b)
show that the contrastive objectives with large variance cause numerical issues and have a poor
downstream performance with their learned representations. The second challenge is the sensitivity
to minibatch size, where the objectives requiring a huge minibatch size may restrict their practical
usage. For instance, SimCLRv2 (Chen et al., 2020c) utilizes CPC as its contrastive objective and
reaches state-of-the-art performances on multiple self-supervised and semi-supervised benchmarks.
Nonetheless, the objective is trained with a minibatch size of 8, 192, and this scale of training re-
quires enormous computational power. The third challenge is the downstream task performance,
which is the one that we would like to emphasize the most. For this reason, in most cases, CPC
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Table 1: Different contrastive learning objectives, grouped by measurements of distribution divergence. PXY

represents the distribution of related samples (positively-paired), and PX PY represents the distribution of un-
related samples (negatively-paired). f (x; y ) 2 F for F being any class of functions f : X � Y ! R.
y: Compared to JCPC and JRPC , we empirically find JWPC performs worse on complex real-world image
datasets spanning CIFAR-10/-100 (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al., 2015).

Objective Good Training
Stability

Lower Minibatch
Size Sensitivity

Good Downstream
Performance

relating to KL-divergence between PXY and PX PY : JDV (Donsker & Varadhan, 1975), JNWJ (Nguyen et al., 2010), and JCPC (Oord et al., 2018)

JDV(X,Y ) := supf 2F EPXY
[f(x, y)] � log(EPX PY

[ef (x;y )]) 7 3 7

JNWJ(X,Y ) := supf 2F EPXY
[f(x, y)] � EPX PY

[ef (x;y )� 1] 7 3 7

JCPC(X,Y ) := supf 2F E(x;y 1 )� PXY ;f y j gN
j =2 � PY

h
log

�
ef (x;y 1 )/ 1

N

P N
j =1 e

f (x;y j )
� i

3 7 3

relating to JS-divergence between PXY and PX PY : JJS (Nowozin et al., 2016)

JJS(X,Y ) := supf 2F EPXY
[� log(1 + e� f (x;y ))] � EPX PY

[log(1 + ef (x;y ))] 3 3 7

relating to Wasserstein-divergence between PXY and PX PY : JWPC (Ozair et al., 2019), with FL denoting the space of 1-Lipschitz functions

JWPC(X,Y ) := supf 2F L
E(x;y 1 )� PXY ;f y j gN

j =2 � PY

h
log

�
ef (x;y 1 )/ 1

N

P N
j =1 e

f (x;y j )
� i

3 3 7y

relating to χ2-divergence between PXY and PX PY : JRPC (ours)

JRPC(X,Y ) := supf 2F EPXY
[f(x, y)] � αEPX PY

[f(x, y)] � �
2 EPXY

�
f2(x, y)

�
� 

2 EPX PY

�
f2(x, y)

�
3 3 3

is the objective that we would adopt for contrastive representation learning, due to its favorable
performance in downstream tasks (Tschannen et al., 2019; Baevski et al., 2020).

This paper presents a new contrastive representation learning objective: the Relative Predictive Cod-
ing (RPC), which attempts to achieve a good balance among these three challenges: training stabil-
ity, sensitivity to minibatch size, and downstream task performance. At the core of RPC is the
relative parameters, which are used to regularize RPC for its boundedness and low variance. From
a modeling perspective, the relative parameters act as a `2 regularization for RPC. From a statis-
tical perspective, the relative parameters prevent RPC from growing to extreme values, as well as
upper bound its variance. In addition to the relative parameters, RPC contains no logarithm and
exponential, which are the main cause of the training instability for prior contrastive learning objec-
tives (Song & Ermon, 2019).

To empirically verify the effectiveness of RPC, we consider benchmark self-supervised represen-
tation learning tasks, including visual object classification on CIFAR-10/-100 (Krizhevsky et al.,
2009), STL-10 (Coates et al., 2011), and ImageNet (Russakovsky et al., 2015) and speech recogni-
tion on LibriSpeech (Panayotov et al., 2015). Comparing RPC to prior contrastive learning objec-
tives, we observe a lower variance during training, a lower minibatch size sensitivity, and consistent
performance improvement. Lastly, we also relate RPC with MI estimation, empirically showing that
RPC can estimate MI with low variance.

2 PROPOSED METHOD

This paper presents a new contrastive representation learning objective - the Relative Predictive
Coding (RPC). At a high level, RPC 1) introduces the relative parameters to regularize the objective
for boundedness and low variance; and 2) achieves a good balance among the three challenges in
the contrastive representation learning objectives: training stability, sensitivity to minibatch size,
and downstream task performance. We begin by describing prior contrastive objectives along with
their limitations on the three challenges in Section 2.1. Then, we detail our presented objective
and its modeling benefits in Section 2.2. An overview of different contrastive learning objectives is
provided in Table 1. We defer all the proofs in Appendix.

Notation We use an uppercase letter to denote a random variable (e.g., X), a lower case letter to
denote the outcome of this random variable (e.g., x), and a calligraphy letter to denote the sample
space of this random variable (e.g., X ). Next, if the samples (x, y) are related (or positively-paired),
we refer (x, y) � PXY with PXY being the joint distribution of X � Y . If the samples (x, y) are
unrelated (negatively-paired), we refer (x, y) � PX PY with PX PY being the product of marginal
distributions overX � Y . Last, we define f 2 F for F being any class of functions f : X �Y ! R.

2.1 PRELIMINARY

Contrastive representation learning encourages the contrastiveness between the positive and the neg-
ative pairs of the representations from the related data X and Y . Specifically, when sampling a pair
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of representations(x; y) from their joint distribution ((x; y) � PXY ), this pair is de�ned as a pos-
itive pair; when sampling from the product of marginals ((x; y) � PX PY ), this pair is de�ned as
a negative pair. Then, Tsai et al. (2020b) formalizes this idea such that the contrastiveness of the
representations can be measured by the divergence betweenPXY andPX PY , where higher diver-
gence suggests better contrastiveness. To better understand prior contrastive learning objectives, we
categorize them in terms of different divergence measurements betweenPXY andPX PY , with their
detailed objectives presented in Table 1.

We instantiate the discussion using Contrastive Predictive Coding (Oord et al., 2018,JCPC ), which
is a lower bound ofDKL (PXY k PX PY ) with DKL referring to the KL-divergence:

JCPC (X; Y ) := sup
f 2F

E(x;y 1 ) � PXY ;f y j gN
j =2 � PY

h
log

ef (x;y 1 )

1
N

P N
j =1 ef (x;y j )

i
: (1)

Then, Oord et al. (2018) presents to maximizeJCPC (X; Y ), so that the learned representationsX
and Y have high contrastiveness. We note thatJCPC has been commonly used in many recent
self-supervised representation learning frameworks (He et al., 2020; Chen et al., 2020b), where they
constrain the function to bef (x; y) = cosine(x; y) with cosine(�) being cosine similarity. Under
this function design, maximizingJCPC leads the representations of related pairs to be close and
representations of unrelated pairs to be distant.

The category of modelingDKL (PXY k PX PY ) also includes the Donsker-Varadhan objective
(JDV (Donsker & Varadhan, 1975; Belghazi et al., 2018)) and the Nguyen-Wainright-Jordan ob-
jective (JNWJ (Nguyen et al., 2010; Belghazi et al., 2018)), where Belghazi et al. (2018); Tsai
et al. (2020b) show thatJDV (X; Y ) = JNWJ (X; Y ) = DKL (PXY k PX PY ). The other diver-
gence measurements considered in prior work areD JS(PXY k PX PY ) (with D JS referring to the
Jenson-Shannon divergence) andDWass (PXY k PX PY ) (with DWass referring to the Wasserstein-
divergence). The instance of modelingD JS(PXY k PX PY ) is the Jensen-Shannon f-GAN objective�
JJS (Nowozin et al., 2016; Hjelm et al., 2018)

�
, whereJJS(X; Y ) = 2

�
D JS(PXY k PX PY ) �

log 2
�
.2 The instance of modelingDWass (PXY k PX PY ) is the Wasserstein Predictive Coding�

JWPC (Ozair et al., 2019)
�
, whereJWPC (X; Y ) modi�es JCPC (X; Y ) objective (equation 1) by

searching the function fromF to FL . FL denotes any class of 1-Lipschitz continuous functions
from (X � Y ) to R, and thusFL � F . Ozair et al. (2019) shows thatJWPC (X; Y ) is the lower
bound of bothDKL (PXY k PX PY ) andDWass (PXY k PX PY ). See Table 1 for all the equations. To
conclude, the contrastive representation learning objectives are unsupervised representation learning
methods that maximize the distribution divergence betweenPXY andPX PY . The learned represen-
tations cause high contrastiveness, and recent work (Arora et al., 2019; Tsai et al., 2020a) theoret-
ically show that highly-contrastive representations could improve the performance on downstream
tasks.

After discussing prior contrastive representation learning objectives, we point out three challenges in
their practical deployments: training stability, sensitivity to minibatch training size, and downstream
task performance. In particular, the three challenges can hardly be handled well at the same time,
where we highlight the conclusions in Table 1.Training Stability: The training stability highly
relates to the variance of the objectives, where Song & Ermon (2019) shows thatJDV andJNWJ
exhibit inevitable high variance due to their inclusion of exponential function. As pointed out by Tsai
et al. (2020b),JCPC , JWPC , andJJS have better training stability becauseJCPC andJWPC can
be realized as a multi-class classi�cation task andJJS can be realized as a binary classi�cation
task. The cross-entropy loss adopted inJCPC , JWPC , andJJS is highly-optimized and stable in
existing optimization package (Abadi et al., 2016; Paszke et al., 2019).Sensitivity to minibatch
training size: Among all the prior contrastive representation learning methods,JCPC is known to
be sensitive to the minibatch training size (Ozair et al., 2019). Taking a closer look at equation 1,
JCPC deploys an instance selection such thaty1 should be selected fromf y1; y2; � � � ; yN g, with
(x; y1) � PXY , (x; y j> 1) � PX PY with N being the minibatch size. Previous work (Poole et al.,
2019; Song & Ermon, 2019; Chen et al., 2020b; Caron et al., 2020) showed that a largeN results in
a more challenging instance selection and forcesJCPC to have a better contrastiveness ofy1 (related
instance forx) againstf yj gN

j =2 (unrelated instance forx). JDV , JNWJ , andJJS do not consider

2JJS (X; Y ) achieves its supreme value whenf � (x; y ) = log( p(x; y )=p(x)p(y)) (Tsai et al., 2020b). Plug-
in f � (x; y ) into JJS (X; Y ), we can concludeJJS (X; Y ) = 2( D JS (PXY k PX PY ) � log 2).
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the instance selection, andJWPC reduces the minibatch training size sensitivity by enforcing 1-
Lipschitz constraint.Downstream Task Performance:The downstream task performance is what
we care the most among all the three challenges.JCPC has been the most popular objective as
it manifests superior performance over the other alternatives (Tschannen et al., 2019; Tsai et al.,
2020b;a). We note that althoughJWPC shows better performance on Omniglot (Lake et al., 2015)
and CelebA (Liu et al., 2015) datasets, we empirically �nd it not generalizing well to CIFAR-10/-
100 (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al., 2015).

2.2 RELATIVE PREDICTIVE CODING

In this paper, we present Relative Predictive Coding (RPC), which achieves a good balance among
the three challenges mentioned above:

JRPC (X; Y ) := sup
f 2F

EPXY [f (x; y)]� � EPX PY [f (x; y)]�
�
2

EPXY

�
f 2(x; y)

�
�


2

EPX PY

�
f 2(x; y)

�
;

(2)
where� > 0, � > 0,  > 0 are hyper-parameters and we de�ne them asrelative parameters.
Intuitively, JRPC contains no logarithm or exponential, potentially preventing unstable training due
to numerical issues. Now, we discuss the roles of�; �;  . At a �rst glance,� acts to discourage the
scores ofPXY andPX PY from being close, and�= acts as à2 regularization coef�cient to stop
f from becoming large. For a deeper analysis, the relative parameters act to regularize our objective
for boundedness and low variance. To show this claim, we �rst present the following lemma:

Lemma 1 (Optimal Solution for JRPC ) Let r (x; y) = p(x;y )
p(x )p(y) be the density ratio.JRPC has the

optimal solutionf � (x; y) = r (x;y ) � �
� r (x;y )+  := r �;�; (x; y) with � �

 � r �;�; � 1
� .

Lemma 1 suggests thatJRPC achieves its supreme value at the ratior �;�; (x; y) indexed by the
relative parameters�; �;  (i.e., we termr �;�; (x; y) as the relative density ratio). We note that
r �;�; (x; y) is an increasing function w.r.t.r (x; y) and is nicely bounded even whenr (x; y) is
large. We will now show that the boundedr �;�; suggests the empirical estimation ofJRPC has
boundeness and low variance. In particular, letf x i ; yi gn

i =1 ben samples drawn uniformly at random
from PXY andf x0

j ; y0
j gm

j =1 bem samples drawn uniformly at random fromPX PY . Then, we use
neural networks to empirically estimateJRPC asĴ m;n

RPC :

De�nition 1 ( Ĵ m;n
RPC , empirical estimation of JRPC ) We parametrizef via a family of neural net-

works F � := f f � : � 2 � � Rdg where d 2 N and � is compact. Then,Ĵ m;n
RPC =

supf � 2F �

1
n

P n
i =1 f � (x i ; yi ) � 1

m

P m
j =1 �f � (x0

j ; y0
j ) � 1

n

P n
i =1

�
2 f 2

� (x i ; yi ) � 1
m

P m
j =1


2 f 2

� (x0
j ; y0

j ):

Proposition 1 (Boundedness of̂J m;n
RPC , informal) 0 � JRPC � 1

2� + � 2

2 . Then, with probability at

least1 � � , jJRPC � Ĵ m;n
RPC j = O(

q
d+log (1 =� )

n 0 ); wheren0 = min f n; mg.

Proposition 2 (Variance ofĴ m;n
RPC , informal) There exist universal constantsc1 andc2 that depend

only on�; �;  , such thatVar[Ĵ m;n
RPC ] = O

�
c1
n + c2

m

�
:

From the two propositions, whenm andn are large, i.e., the sample sizes are large,Ĵ m;n
RPC is bounded,

and its variance vanishes to0. First, the boundedness of̂J m;n
RPC suggestŝJ m;n

RPC will not grow to ex-
tremely large or small values. Prior contrastive learning objectives with good training stability (e.g.,
JCPC /JJS/JWPC ) also have the boundedness of their objective values. For instance, the empirical
estimation ofJCPC is less thanlogN (equation 1) (Poole et al., 2019). Nevertheless,JCPC often
performs the best only when minibatch size is large, and empirical performances ofJJS andJWPC
are not as competitive asJCPC . Second, the upper bound of the variance implies the training of
Ĵ m;n

RPC can be stable, and in practice we observe a much smaller value than the stated upper bound.
On the contrary, Song & Ermon (2019) shows that the empirical estimations ofJDV and JNWJ
exhibit inevitable variances that grow exponentially with the trueDKL (PXY kPX PY ).

Lastly, similar to prior contrastive learning objective that are related to distribution diver-
gence measurement, we associateJRPC with the Chi-square divergenceD � 2 (PXY k PX PY ) =
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EPX PY [r 2(x; y)] � 1 (Nielsen & Nock, 2013). The derivations are provided in Appendix. By hav-
ing P0 = �

� +  PXY + 
� +  PX PY as the mixture distribution ofPXY andPX PY , we can rewrite

JRPC (X; Y ) asJRPC (X; Y ) = � + 
2 EP 0[r 2

�;�; (x; y)]. Hence,JRPC can be regarded as a gener-
alization ofD � 2 with the relative parameters�; �;  , whereD � 2 can be recovered fromJRPC by
specializing� = 0 , � = 0 and = 1 (e.g.,D � 2 = 2JRPC j � = � =0 ; =1 � 1). Note thatJRPC may
not be a formal divergence measure with arbitrary�; �;  .

3 EXPERIMENTS

We provide an overview of the experimental section. First, we conduct benchmark self-supervised
representation learning tasks spanning visual object classi�cation and speech recognition. This set
of experiments are designed to discuss the three challenges of the contrastive representation learning
objectives: downstream task performance (Section 3.1), training stability (Section 3.2), and mini-
batch size sensitivity (Section 3.3). We also provide an ablation study on the choices of the relative
parameters inJRPC (Section 3.4). On these experiments we found thatJRPC achieves a lower
variance during training, a lower batch size insensitivity, and consistent performance improvement.
Second, we relateJRPC with mutual information (MI) estimation (Section 3.5). The connection
is that MI is an average statistic of the density ratio, and we have shown that the optimal solution
of JRPC is the relative density ratio (see Lemma 1). Thus we could estimate MI using the density
ratio transformed from the optimal solution ofJRPC . On these two sets of experiments, we fairly
compareJRPC with other contrastive learning objectives. Particularly, across different objectives,
we �x the network, learning rate, optimizer, and batch size (we use the default con�gurations sug-
gested by the original implementations from Chen et al. (2020c), Rivi�ere et al. (2020) and Tsai et al.
(2020b).) The only difference will be the objective itself. In what follows, we perform the �rst set
of experiments. We defer experimental details in the Appendix.

Datasets. For the visual objective classi�cation, we consider CIFAR-10/-100 (Krizhevsky et al.,
2009), STL-10 (Coates et al., 2011), and ImageNet (Russakovsky et al., 2015). CIFAR-10/-100
and ImageNet contain labeled images only, while STL-10 contains labeled and unlabeled images.
For the speech recognition, we consider LibriSpeech-100h (Panayotov et al., 2015) dataset, which
contains100hours of16kHzEnglish speech from251speakers with41 types of phonemes.

Training and Evaluation Details. For the vision experiments, we follow the setup from Sim-
CLRv2 (Chen et al., 2020c), which considers visual object recognition as its downstream task. For
the speech experiments, we follow the setup from prior work (Oord et al., 2018; Rivi�ere et al., 2020),
which consider phoneme classi�cation and speaker identi�cation as the downstream tasks. Then, we
brie�y discuss the training and evaluation details into three modules: 1) related and unrelated data
construction, 2) pre-training, and 3) �ne-tuning and evaluation. For more details, please refer to
Appendix or the original implementations.
. Related and Unrelated Data Construction.In the vision experiment, we construct the related im-
ages by applying different augmentations on the same image. Hence, when(x; y) � PXY , x andy
are the same image with different augmentations. The unrelated images are two randomly selected
samples. In the speech experiment, we de�ne the current latent feature (feature at timet) and the
future samples (samples at time> t ) as related data. In other words, the feature in the latent space
should contain information that can be used to infer future time steps. A latent feature and randomly
selected samples would be considered as unrelated data.
. Pre-training.The pre-training stage refers to the self-supervised training by a contrastive learn-
ing objective. Our training objective is de�ned in De�nition 1, where we use neural networks to
parametrize the function using the constructed related and unrelated data. Convolutional neural net-
works are used for vision experiments. Transformers (Vaswani et al., 2017) and LSTMs (Hochreiter
& Schmidhuber, 1997) are used for speech experiments.
. Fine-tuning and Evaluation.After the pre-training stage, we �x the parameters in the pre-trained
networks and add a small �ne-tuning network on top of them. Then, we �ne-tune this small network
with the downstream labels in the data's training split. For the �ne-tuning network, both vision
and speech experiments consider multi-layer perceptrons. Last, we evaluate the �ne-tuned repre-
sentations on the data's test split. We would like to point out that we do not normalize the hidden
representations encoded by the pre-training neural network for loss calculation. This hidden nor-
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Table 2:Top-1 accuracy (%) for visual object recognition results.JDV andJNWJ are not reported on ImageNet
due to numerical instability. ResNet depth, width and Selective Kernel (SK) con�guration for each setting are
provided in ResNet depth+width+SK column. A slight drop ofJCPC performance compared to Chen et al.
(2020c) is because we only train for100 epochs rather than800 due to the fact that running 800 epochs
uninterruptedly on cloud TPU is very expensive. Also, we did not employ a memory buffer (He et al., 2020)
to store negative samples. We and we did not employ a memory buffer. We also provide the results from fully
supervised models as a comparison (Chen et al., 2020b;c). Fully supervised training performs worse on STL-10
because it does not employ the unlabeled samples in the dataset (Löwe et al., 2019).

Dataset ResNet Depth+Width+SK Self-supervised SupervisedJDV JNWJ JJS JWPC JCPC JRPC

CIFAR-10 18 + 1� + No SK 91.10 90.54 83.55 80.02 91.1291.46 93.12
CIFAR-10 50 + 1� + No SK 92.23 92.67 87.34 85.93 93.4293.57 95.70
CIFAR-100 18 + 1� + No SK 77.10 77.27 74.02 72.16 77.3677.98 79.11
CIFAR-100 50 + 1� + No SK 79.02 78.52 75.31 73.23 79.3179.89 81.20

STL-10 50 + 1� + No SK 82.25 81.17 79.07 76.50 83.4084.10 71.40
ImageNet 50 + 1� + SK - - 66.21 62.10 73.48 74.43 78.50
ImageNet 152 + 2� + SK - - 71.12 69.51 77.80 78.40 80.40

Table 3:Accuracy (%) for LibriSpeech-100h phoneme and speaker classi�cation results. We also provide the
results from fully supervised model as a comparison (Oord et al., 2018).

Task Name Self-supervised SupervisedJCPC JDV JNWJ JRPC

Phoneme classi�cation 64.6 61.27 62.09 69.39 74.6
Speaker classi�cation 97.4 95.36 95.89 97.68 98.5

malization technique is widely applied (Tian et al., 2019; Chen et al., 2020b;c) to stabilize training
and increase performance for prior objectives, but we �nd it unnecessary inJRPC .

3.1 DOWNSTREAM TASK PERFORMANCES ONV ISION AND SPEECH

For the downstream task performance in the vision domain, we test the proposedJRPC and other
contrastive learning objectives on CIFAR-10/-100 (Krizhevsky et al., 2009), STL-10 (Coates et al.,
2011), and ImageNet ILSVRC-2012 (Russakovsky et al., 2015). Here we report the best perfor-
mancesJRPC can get on each dataset (we include experimental details in A.7.) Table 2 shows that
the proposedJRPC outperforms other objectives on all datasets. UsingJRPC on the largest network
(ResNet with depth of152, channel width of2 and selective kernels), the performance jumps from
77:80%of JCPC to 78:40%of JRPC .

Regarding speech representation learning, the downstream performance for phoneme and speaker
classi�cation are shown in Table 3 (we defer experimental details in Appendix A.9.) Compared to
JCPC , JRPC improves the phoneme classi�cation results with4:8 percent and the speaker classi�-
cation results with0:3 percent, which is closer to the fully supervised model. Overall, the proposed
JRPC performs better than other unsupervised learning objectives on both phoneme classi�cation
and speaker classi�cation tasks.

3.2 TRAINING STABILITY

We provide empirical training stability comparisons onJDV , JNWJ , JCPC andJRPC by plotting the
values of the objectives as the training step increases. We apply the four objectives to the SimCLRv2
framework and train on the CIFAR-10 dataset. All setups of training are exactly the same except the
objectives. From our experiments,JDV andJNWJ soon explode to NaN and disrupt training (shown
as early stopping in Figure 1a; extremely large values are not plotted due to scale constraints). On
the other hand,JRPC and JCPC has low variance, and both enjoy stable training. As a result,
performances using the representation learned from unstableJDV andJNWJ suffer in downstream
task, while representation learned byJRPC andJCPC work much better.
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Figure 1: (a) Empirical values ofJDV , JNWJ , JCPC and JRPC performing visual object recognition on
CIFAR-10. JDV andJNWJ soon explode to NaN values and stop the training (shown as early stopping in the
�gure), while JCPC andJRPC are more stable. Performance comparison ofJCPC andJRPC on (b) CIFAR-10
and (c) LibriSpeech-100h with different minibatch sizes, showing that the performance ofJRPC is less sensitive
to minibatch size change compared toJCPC .

3.3 MINIBATCH SIZE SENSITIVITY

We then provide the analysis on the effect of minibatch size onJRPC andJCPC , sinceJCPC is
known to be sensitive to minibatch size (Poole et al., 2019). We train SimCLRv2 (Chen et al., 2020c)
on CIFAR-10 and the model from Rivi�ere et al. (2020) on LibriSpeech-100h usingJRPC andJCPC
with different minibatch sizes. The settings of relative parameters are the same as Section 3.2. From
Figure 1b and 1c, we can observe that bothJRPC andJCPC achieve their optimal performance at a
large minibatch size. However, when the minibatch size decreases, the performance ofJCPC shows
higher sensitivity and suffers more when the number of minibatch samples is small. The result
suggests that the proposed method might be less sensitive to the change of minibatch size compared
to JCPC given the same training settings.

3.4 EFFECT OFRELATIVE PARAMETERS

We study the effect of different combinations of relative parameters inJRPC by comparing down-
stream performances on visual object recognition. We train SimCLRv2 on CIFAR-10 with dif-
ferent combinations of�; � and  in JRPC and �x all other experimental settings. We choose
� 2 f 0; 0:001; 1:0g; � 2 f 0; 0:001; 1:0g;  2 f 0; 0:001; 1:0g and we report the best performances
under each combination of�; � , and . From Figure 2, we �rst observe that� > 0 has better
downstream performance than� = 0 when� and are �xed. This observation is as expected, since
� > 0 encourages representations of related and unrelated samples to be pushed away. Then, we
�nd that a small but nonzero� (� = 0 :001) and a large ( = 1 :0) give the best performance
compared to other combinations. Since� and serve as the coef�cients of̀2 regularization, the
results imply that the regularization is a strong and sensitive factor that will in�uence the perfor-
mance. The results here are not as competitive as Table 2 because the CIFAR-10 result reported in
Table 2 is using a set of relative parameters (� = 1 :0; � = 0 :005;  = 1 :0) that is different from the
combinations in this subsection. Also, we use quite different ranges of on ImageNet (see A.7 for
details.) In conclusion, we �nd empirically that a non-zero� , a small� and a large will lead to
the optimal representation for the downstream task on CIFAR-10.

3.5 RELATION TO MUTUAL INFORMATION ESTIMATION

The presented approach also closely relates to mutual information estimation. For random variables
X andY with joint distributionPXY and product of marginalsPX PY , the mutual information is
de�ned asI (X ; Y ) = DKL (PXY kPX PY ). Lemma 1 states that given optimal solutionf � (x; y) of
JRPC , we can get the density ratior (x; y) := p(x; y)=p(x)p(y) asr (x; y) = =� + �

1� �f � (x;y ) � 
� . We

can empirically estimatêr (x; y) from the estimated̂f (x; y) via this transformation, and usêr (x; y)
to estimate mutual information (Tsai et al., 2020b). Speci�cally,I (X ; Y ) � 1

n

P n
i =1 log r̂ (x i ; yi )

with (x i ; yi ) � P 
 n
X;Y , whereP 
 n

X;Y is the uniformly sampled empirical distribution ofPX;Y .
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Figure 2:Heatmaps of downstream task performance on CIFAR-10, using different� , � and in theJRPC .
We conclude that a nonzero� , a small� (� = 0 :001)and a large ( = 1 :0) are crucial for better performance.

Figure 3:Mutual information estimation performed on 20-d correlated Gaussian distribution, with the corre-
lation increasing each 4K steps.JRPC exhibits smaller variance than SMILE and DoE, and smaller bias than
JCPC .

We follow prior work (Poole et al., 2019; Song & Ermon, 2019; Tsai et al., 2020b) for the experi-
ments. We considerX andY as two20-dimensional Gaussians with correlation� , and our goal is
to estimate the mutual informationI (X ; Y ). Then, we perform a cubic transformation ony so that
y 7! y3. The �rst task is referred to asGaussiantask and the second is referred to asCubic task,
where both have the ground truthI (X ; Y ) = � 10log (1� � 2). The models are trained on20; 000
steps withI (X ; Y ) starting at2 and increased by2 per4; 000steps. Our method is compared with
baseline methodsJCPC (Oord et al., 2018),JNWJ (Nguyen et al., 2010),JJS (Nowozin et al., 2016),
SMILE (Song & Ermon, 2019) and Difference of Entropies (DoE) (McAllester & Stratos, 2020).
All approaches use the same network design, learning rate, optimizer and minibatch size for a fair
comparison. First, we observeJCPC (Oord et al., 2018) has the smallest variance, while it exhibits a
large bias (the estimated mutual information fromJCPC has an upper boundlog(batch size)). Sec-
ond,JNWJ (Nguyen et al., 2010) andJJSD (Poole et al., 2019) have large variances, especially in
the Cubic task. Song & Ermon (2019) pointed out the limitations ofJCPC , JNWJ , andJJSD , and
developed the SMILE method, which clips the value of the estimated density function to reduce the
variance of the estimators. DoE (McAllester & Stratos, 2020) is neither a lower bound nor a upper
bound of mutual information, but can achieve accurate estimates when underlying mutual informa-
tion is large.JRPC exhibits comparable bias and lower variance compared to the SMILE method,
and is more stable than the DoE method. We would like to highlight our method's low-variance
property, where we neither clip the values of the estimated density ratio nor impose an upper bound
of our estimated mutual information.

4 RELATED WORK

As a subset of unsupervised representation learning, self-supervised representation learning (SSL)
adopts self-de�ned signals as supervision and uses the learned representation for downstream tasks,
such as object detection and image captioning (Liu et al., 2020). We categorize SSL work into two
groups: when the signal is the input's hidden property or the corresponding view of the input. For
the �rst group, for example, Jigsaw puzzle (Noroozi & Favaro, 2016) shuf�es the image patches and
de�nes the SSL task for predicting the shuf�ed positions of the image patches. Other instances are
Predicting Rotations (Gidaris et al., 2018) and Shuf�e & Learn (Misra et al., 2016). For the second
group, the SSL task aims at modeling the co-occurrence of multiple views of data, via the contrastive
or the predictive learning objectives (Tsai et al., 2020a). The predictive objectives encourage recon-
struction from one view of the data to the other, such as predicting the lower part of an image from

8
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its upper part (ImageGPT by Chen et al. (2020a)). Comparing the contrastive with predictive learn-
ing approaches, Tsai et al. (2020a) points out that the former requires less computational resources
for a good performance but suffers more from the over-�tting problem.

Theoretical analysis (Arora et al., 2019; Tsai et al., 2020a; Tosh et al., 2020) suggests the con-
trastively learned representations can lead to a good downstream performance. Beyond the theory,
Tian et al. (2020) shows what matters more for the performance are 1) the choice of the contrastive
learning objective; and 2) the creation of the positive and negative data pairs in the contrastive
objective. Recent work (Khosla et al., 2020) extends the usage of contrastive learning from the self-
supervised setting to the supervised setting. The supervised setting de�nes the positive pairs as the
data from the same class in the contrastive objective, while the self-supervised setting de�nes the
positive pairs as the data with different augmentations.

Our work also closely rates to theskewed divergencemeasurement between distributions (Lee, 1999;
2001; Nielsen, 2010; Yamada et al., 2013). Recall that the usage of the relative parameters plays a
crucial role to regularize our objective for its boundness and low variance. This idea is similar to
theskewed divergencemeasurement, that when calculating the divergence between distributionsP
andQ, instead of consideringD(P k Q), these approaches considerD(P k �P + (1 � � )Q) with
D representing the divergence and0 < � < 1. A natural example is that the Jensen-Shannon
divergence is a symmetric skewed KL divergence:D JS(P k Q) = 0 :5DKL (P k 0:5P + 0 :5Q) +
0:5DKL (Q k 0:5P + 0 :5Q). Compared to the non-skewed counterpart, the skewed divergence has
shown to have a more robust estimation for its value (Lee, 1999; 2001; Yamada et al., 2013). Dif-
ferent from these works that focus on estimating the values of distribution divergence, we focus on
learning self-supervised representations.

5 CONCLUSION

In this work, we present RPC, the Relative Predictive Coding, that achieves a good balance among
the three challenges when modeling a contrastive learning objective: training stability, sensitivity
to minibatch size, and downstream task performance. We believe this work brings an appealing
option for training self-supervised models and inspires future work to design objectives for balancing
the aforementioned three challenges. In the future, we are interested in applying RPC in other
application domains and developing more principled approaches for better representation learning.
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A A PPENDIX

A.1 PROOF OFLEMMA 1 IN THE MAIN TEXT

Lemma 2 (Optimal Solution for JRPC , restating Lemma 1 in the main text) Let

JRPC (X; Y ) := sup
f 2F

EPXY [f (x; y)]� � EPX PY [f (x; y)]�
�
2

EPXY

�
f 2(x; y)

�
�


2

EPX PY

�
f 2(x; y)

�

andr (x; y) = p(x;y )
p(x )p(y) be the density ratio.JRPC has the optimal solution

f � (x; y) =
r (x; y) � �

� r (x; y) + 
:= r �;�; (x; y) with �

�


� r �;�; �
1
�

:

Proof: The second-order functional derivative of the objective is

� �dP X;Y � dP X PY ;

which is always negative. The negative second-order functional derivative implies the objective has
a supreme value. Then, take the �rst-order functional derivative@JRPC

@m and set it to zero:

dPX;Y � � � dPX PY � � � f (x; y) � dPX;Y �  � f (x; y) � dPX PY = 0 :

We then get

f � (x; y) =
dPX;Y � � � dPX PY

� � dPX;Y +  � dPX PY
=

p(x; y) � �p (x)p(y)
�p (x; y) + p (x)p(y)

=
r (x; y) � �
�r (x; y) + 

:

Since0 � r (x; y) � 1 , we have� �
 � r (x;y ) � �

�r (x;y )+  � 1
� . Hence,

8� 6= 0 ;  6= 0 ; f � (x; y) := r �;�; (x; y) with �
�


� r �;�; �
1
�

:

�

A.2 RELATION BETWEEN JRPC AND D � 2

In this subsection, we aim to show the following: 1)D � 2 (PXY k PX PY ) = EPX PY [r 2(x; y)] � 1;
and 2)JRPC (X; Y ) = � + 

2 EP 0[r 2
�;�; (x; y)] by havingP0 = �

� +  PXY + 
� +  PX PY as the mixture

distribution ofPXY andPX PY .

Lemma 3 D � 2 (PXY k PX PY ) = EPX PY [r 2(x; y)] � 1

Proof: By de�nition (Nielsen & Nock, 2013),

D � 2 (PXY k PX PY ) =
Z

�
dPXY

� 2

dPX PY
� 1 =

Z � dPXY

dPX PY

� 2
dPX PY � 1

=
Z � p(x; y)

p(x)p(y)

� 2
dPX PY � 1 =

Z
r 2(x; y)dPX PY � 1

= EPX PY [r 2(x; y)] � 1:

�

Lemma 4 De�ning P0 = �
� +  PXY + 

� +  PX PY as a mixture distribution ofPXY and PX PY ,

JRPC (X; Y ) = � + 
2 EP 0[r 2

�;�; (x; y)].
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Proof: Plug in the optimal solutionf � (x; y) = dPX;Y � � �dPX PY

� �dPX;Y +  �dPX PY
(see Lemma 2) intoJRPC :

JRPC = EPXY [f � (x; y)] � � EPX PY [f � (x; y)] �
�
2

EPXY

h
f � 2(x; y)

i
�


2

EPX PY

h
f � 2(x; y)

i

=
Z

f � (x; y) �
�

dPXY � � � dPX PY

�
�

1
2

f � 2(x; y) �
�

� � dPXY +  � dPX PY

�

=
Z

dPX;Y � � � dPX PY

� � dPX;Y +  � dPX PY

�
dPXY � � � dPX PY

�
�

1
2

� dPX;Y � � � dPX PY

� � dPX;Y +  � dPX PY

� 2�
� � dPXY +  � dPX PY

�

=
1
2

Z � dPX;Y � � � dPX PY

� � dPX;Y +  � dPX PY

� 2�
� � dPXY +  � dPX PY

�

=
� + 

2

Z � dPX;Y � � � dPX PY

� � dPX;Y +  � dPX PY

� 2� �
� + 

� dPXY +


� + 
� dPX PY

�
:

Since we de�ner �;�; = dPX;Y � � �dPX PY

� �dPX;Y +  �dPX PY
andP0 = �

� +  PXY + 
� +  PX PY ,

JRPC =
� + 

2
EP 0[r 2

�;�; (x; y)]:

�

A.3 PROOF OFPROPOSITION1 IN THE MAIN TEXT

The proof contains two parts: showing0 � JRPC � 1
2� + � 2

2 (see Section A.3.1) and̂J m;n
RPC is a

consistent estimator forJRPC (see Section A.3.2).

A.3.1 BOUNDNESS OFJRPC

Lemma 5 (Boundness ofJRPC ) 0 � JRPC � 1
2� + � 2

2

Proof: Lemma 4 suggestsJRPC (X; Y ) = � + 
2 EP 0[r 2

�;�; (x; y)] with P0 = �
� +  PXY + 

� +  PX PY

as the mixture distribution ofPXY andPX PY . Hence, it is obviousJRPC (X; Y ) � 0.

We leverage the intermediate results in the proof of Lemma 4:

JRPC (X; Y ) =
1
2

Z � dPX;Y � � � dPX PY

� � dPX;Y +  � dPX PY

� 2�
� � dPXY +  � dPX PY

�

=
1
2

Z
dPX;Y

� dPX;Y � � � dPX PY

� � dPX;Y +  � dPX PY

�
�

�
2

Z
dPX PY

� dPX;Y � � � dPX PY

� � dPX;Y +  � dPX PY

�

=
1
2

EPXY [r �;�; (x; y)] �
�
2

EPX PY [r �;�; (x; y)]:

Since� �
 � r �;�; � 1

� , JRPC (X; Y ) � 1
2� + � 2

2 . �

A.3.2 CONSISTENCY

We �rst recall the de�nition of the estimation ofJRPC :

De�nition 2 ( Ĵ m;n
RPC , empirical estimation of JRPC , restating De�nition 1 in the main text) We

parametrizef via a family of neural networksF � := f f � : � 2 � � Rdg whered 2 N and � is
compact. Letf x i ; yi gn

i =1 ben samples drawn uniformly at random fromPXY andf x0
j ; y0

j gm
j =1 be

m samples drawn uniformly at random fromPX PY . Then,

Ĵ m;n
RPC = sup

f � 2F �

1
n

nX

i =1

f � (x i ; yi ) �
1
m

mX

j =1

�f � (x0
j ; y0

j ) �
1
n

nX

i =1

�
2

f 2
� (x i ; yi ) �

1
m

mX

j =1


2

f 2
� (x0

j ; y0
j ):
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Our goal is to show that̂J m;n
RPC is a consistent estimator forJRPC . We begin with the following

de�nition:

Ĵ m;n
RPC ;� :=

1
n

nX

i =1

f � (x i ; yi ) �
1
m

mX

j =1

�f � (x0
j ; y0

j ) �
1
n

nX

i =1

�
2

f 2
� (x i ; yi ) �

1
m

mX

j =1


2

f 2
� (x0

j ; y0
j ) (3)

and

E
h
ĴRPC ;�

i
:= EPXY [f � (x; y)] � � EPX PY [f � (x; y)] �

�
2

EPXY [f 2
� (x; y)] �


2

EPX PY [f 2
� (x; y)]: (4)

Then, we follow the steps:

• The �rst part is about estimation. We show that, with high probability,Ĵ m;n
RPC ;� is close to

E
h
ĴRPC ;�

i
, for any given� .

• The second part is about approximation. We will apply the universal approximation lemma
of neural networks (Hornik et al., 1989) to show that there exists a network� � such that
E

h
ĴRPC ;� �

i
is close toJRPC .

Part I - Estimation: With high probability, Ĵ m;n
RPC ;� is close toE

h
ĴRPC ;�

i
, for any given � .

Throughout the analysis on the uniform convergence, we need the assumptions on the boundness
and smoothness of the functionf � . Since we show the optimal functionf is bounded inJRPC ,
we can use the same bounded values forf � without losing too much precision. The smoothness of
the function suggests that the output of the network should only change slightly when only slightly
perturbing the parameters. Speci�cally, the two assumptions are as follows:

Assumption 1 (boundness off � ) There exist universal constants such that8f � 2 F � , CL � f � �
CU . For notations simplicity, we letM = CU � CL be the range off � andU = max fj CU j; jCL jg
be the maximal absolute value off � . In the paper, we can choose to constrain thatCL = � �

 and
CU = 1

� since the optimal functionf � has� �
 � f � � 1

� .

Assumption 2 (smoothness off � ) There exists constant� > 0 such that8(x; y) 2 (X � Y ) and
� 1; � 2 2 � , jf � 1 (x; y) � f � 2 (x; y)j � � j� 1 � � 2j.

Now, we can bound the rate of uniform convergence of a function class in terms of covering num-
ber (Bartlett, 1998):

Lemma 6 (Estimation) Let � > 0 andN (� ; � ) be the covering number of� with radius� . Then,

Pr

 

sup
f � 2F �

�
�
� Ĵ m;n

RPC ;� � E
h
ĴRPC ;�

i �
�
� � �

!

� 2N (� ;
�

4�
�
1 + � + 2( � +  )U

� )

 

exp
�

�
n� 2

32M 2

�
+ exp

�
�

m� 2

32M 2� 2

�
+ exp

�
�

n� 2

32U2� 2

�
+ exp

�
�

m� 2

32U2 2

�
!

:

Proof: For notation simplicity, we de�ne the operators

• P(f ) = EPXY [f (x; y)] andPn (f ) = 1
n

P n
i =1 f (x i ; yi )

• Q(f ) = EPX PY [f (x; y)] andQm (f ) = 1
m

P m
j =1 f (x0

j ; y0
j )

Hence,
�
�
� Ĵ m;n

RPC ;� � E
h
ĴRPC ;�

i �
�
�

=
�
�Pn (f � ) � P(f � ) � �Q m (f � ) + �Q (f � ) � �P n (f 2

� ) + �P (f 2
� ) � Q m (f 2

� ) + Q (f 2
� )

�
�

� j Pn (f � ) � P(f � )j + � jQm (f � ) � Q(f � )j + �
�
�Pn (f 2

� ) � P(f 2
� )

�
� + 

�
�Qm (f 2

� ) � Q(f 2
� )

�
�
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Let � 0 = �

4�
�

1+ � +2( � +  )U
� andT := N (� ; � 0). LetC = f f � 1 ; f � 2 ; � � � ; f � T gwith f � 1; � 2; � � � ; � T g

be such thatB1 (� 1; � 0), � � � , B1 (� T ; � 0) are� 0 cover. Hence, for anyf � 2 F � , there is anf � k 2 C
such thatk� � � k k1 � � 0.

Then, for anyf � k 2 C:
�
�
� Ĵ m;n

RPC ;� � E
h
ĴRPC ;�

i �
�
�

� j Pn (f � ) � P(f � )j + � jQm (f � ) � Q(f � )j + �
�
�Pn (f 2

� ) � P(f 2
� )

�
� + 

�
�Qm (f 2

� ) � Q(f 2
� )

�
�

� j Pn (f � k ) � P(f � k )j + jPn (f � ) � Pn (f � k )j + jP(f � ) � P(f � k )j

+ �
�

jQm (f � k ) � Q(f � k )j + jQm (f � ) � Qm (f � k )j + jQ(f � ) � Q(f � k )j
�

+ �
� �

�Pn (f 2
� k

) � P(f 2
� k

)
�
� +

�
�Pn (f 2

� ) � Pn (f 2
� k

)
�
� +

�
�P(f 2

� ) � P(f 2
� k

)
�
�
�

+ 
� �

�Qm (f 2
� k

) � Q(f 2
� k

)
�
� +

�
�Qm (f 2

� ) � Qm (f 2
� k

)
�
� +

�
�Q(f 2

� ) � Q(f 2
� k

)
�
�
�

� j Pn (f � k ) � P(f � k )j + � k� � � k k + � k� � � k k

+ �
�

jQm (f � k ) � Q(f � k )j + � k� � � k k + � k� � � k k
�

+ �
� �

�Pn (f 2
� k

) � P(f 2
� k

)
�
� + 2 �U k� � � k k + 2 �U k� � � k k

�

+ 
� �

�Qm (f 2
� k

) � Q(f 2
� k

)
�
� + 2 �U k� � � k k + 2 �U k� � � k k

�

= jPn (f � k ) � P(f � k )j + � jQm (f � k ) � Q(f � k )j + �
�
�Pn (f 2

� k
) � P(f 2

� k
)
�
� + 

�
�Qm (f 2

� k
) � Q(f 2

� k
)
�
�

+ 2 �
�
1 + � + 2( � +  )U

�
k� � � k k

� j Pn (f � k ) � P(f � k )j + � jQm (f � k ) � Q(f � k )j + �
�
�Pn (f 2

� k
) � P(f 2

� k
)
�
� + 

�
�Qm (f 2

� k
) � Q(f 2

� k
)
�
� +

�
2

;

where

• jPn (f � ) � Pn (f � k )j � � k� � � k k due to Assumption 2, and the result also applies for
jP(f � ) � P(f � k )j, jQm (f � ) � Qm (f � k )j, andjQ(f � ) � Q(f � k )j.

•
�
�Pn (f 2

� ) � Pn (f 2
� k

)
�
� � 2kf � k1 � k� � � k k � 2�U k� � � k k due to Assumptions 1 and 2. The

result also applies for
�
�P(f 2

� ) � P(f 2
� k

)
�
� ,

�
�Qm (f 2

� ) � Qm (f 2
� k

)
�
� , and

�
�Q(f 2

� ) � Q(f 2
� k

)
�
� .

Hence,

Pr

 

sup
f � 2F �

�
�
� Ĵ m;n

RPC ;� � E
h
ĴRPC ;�

i �
�
� � �

!

� Pr
�

max
f � k 2 C

jPn (f � k ) � P(f � k )j + � jQm (f � k ) � Q(f � k )j + �
�
�Pn (f 2

� k
) � P(f 2

� k
)
�
� + 

�
�Qm (f 2

� k
) � Q(f 2

� k
)
�
� +

�
2

� �
�

= Pr
�

max
f � k 2 C

jPn (f � k ) � P(f � k )j + � jQm (f � k ) � Q(f � k )j + �
�
�Pn (f 2

� k
) � P(f 2

� k
)
�
� + 

�
�Qm (f 2

� k
) � Q(f 2

� k
)
�
� �

�
2

�

�
TX

k=1

Pr
�

jPn (f � k ) � P(f � k )j + � jQm (f � k ) � Q(f � k )j + �
�
�Pn (f 2

� k
) � P(f 2

� k
)
�
� + 

�
�Qm (f 2

� k
) � Q(f 2

� k
)
�
� �

�
2

�

�
TX

k=1

Pr
�

jPn (f � k ) � P(f � k )j �
�
8

�
+ Pr

�
� jQm (f � k ) � Q(f � k )j �

�
8

�

+ Pr
�

�
�
�Pn (f 2

� k
) � P(f 2

� k
)
�
� �

�
8

�
+ Pr

�


�
�Qm (f 2

� k
) � Q(f 2

� k
)
�
� �

�
8

�
:

With Hoeffding's inequality,
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• Pr
�
jPn (f � k ) � P(f � k )j � �

8

�
� 2exp

�
� n� 2

32M 2

�

• Pr
�
� jQm (f � k ) � Q(f � k )j � �

8

�
� 2exp

�
� m� 2

32M 2 � 2

�

• Pr
�
�

�
�Pn (f 2

� k
) � P(f 2

� k
)
�
� � �

8

�
� 2exp

�
� n� 2

32U 2 � 2

�

• Pr
�


�
�Qm (f 2

� k
) � Q(f 2

� k
)
�
� � �

8

�
� 2exp

�
� m� 2

32U 2  2

�

To conclude,

Pr

 

sup
f � 2F �

�
�
� Ĵ m;n

RPC ;� � E
h
ĴRPC ;�

i �
�
� � �

!

� 2N (� ;
�

4�
�
1 + � + 2( � +  )U

� )

 

exp
�

�
n� 2

32M 2

�
+ exp

�
�

m� 2

32M 2� 2

�
+ exp

�
�

n� 2

32U2� 2

�
+ exp

�
�

m� 2

32U2 2

�
!

:

�

Part II - Approximation: Neural Network Universal Approximation. We leverage the univer-
sal function approximation lemma of neural network

Lemma 7 (Approximation (Hornik et al., 1989)) Let � > 0. There existsd 2 N and a fam-
ily of neural networksF � := f f � : � 2 � � Rdg where � is compact, such that

inf
f � 2F �

�
�
�E

h
ĴRPC ;�

i
� JRPC

�
�
� � � .

Part III - Bringing everything together. Now, we are ready to bring the estimation and approxi-
mation together to show that there exists a neural network� � such that, with high probability,̂J m;n

RPC ;�

can approximateJRPC with n0 = min f n; mg at a rate ofO(1=
p

n0):

Proposition 3 With probability at least1 � � , 9� � 2 � , jJRPC � Ĵ m;n
RPC ;� j = O(

q
d+log (1 =� )

n 0 );
wheren0 = min f n; mg.

Proof: The proof follows by combining Lemma 6 and 7.

First, Lemma 7 suggests,9� � 2 � ,
�
�
�E

h
ĴRPC ;� �

i
� JRPC

�
�
� �

�
2

:

Next, we perform analysis on the estimation error, aiming to �ndn; m and the corresponding prob-
ability, such that �

�
� Ĵ m;n

RPC ;� � E
h
ĴRPC ;� �

i �
�
� �

�
2

:

Applying Lemma 6 with the covering number of the neural network:
�

N (� ; � ) =

O
�

exp
�
d log (1=�)

� �
(Anthony & Bartlett, 2009)

�
and letn0 = min f n; mg:

Pr

 

sup
f � 2F �

�
�
� Ĵ m;n

RPC ;� � E
h
ĴRPC ;�

i �
�
� �

�
2

!

� 2N (� ;
�

8�
�
1 + � + 2( � +  )U

� )

 

exp
�

�
n� 2

128M 2

�
+ exp

�
�

m� 2

128M 2 � 2

�
+ exp

�
�

n� 2

128U2 � 2

�
+ exp

�
�

m� 2

128U2  2

�
!

= O
�

exp
�
d log (1=�) � n0� 2 � �

;
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where the big-O notation absorbs all the constants that do not require in the following derivation.
Since we want to bound the probability with1 � � , we solve the� such that

exp
�
d log (1=�) � n0� 2�

� �:

With log (x) � x � 1,

n0� 2 + d(� � 1) � n0� 2 + dlog � � log (1=� );

where this inequality holds when

� = O
� r

d + log (1=� )
n0

�
:

�

A.4 PROOF OFPROPOSITION2 IN THE MAIN TEXT - FROM AN ASYMPTOTIC V IEWPOINT

Here, we provide the variance analysis onĴ m;n
RPC via an asymptotic viewpoint. First, assum-

ing the network is correctly speci�ed, and hence there exists a network parameter� � satisfying
f � (x; y) = f � � (x; y) = r �;�; (x; y). Then we recall that̂J m;n

RPC is a consistent estimator ofJ RPC

(see Proposition 3), and under regular conditions, the estimated network parameter�̂ in Ĵ m;n
RPC sat-

isfying the asymptotic normality in the large sample limit (see Theorem 5.23 in (Van der Vaart,
2000)). We recall the de�nition of̂J m;n

RPC ;� in equation 3 and letn0 = min f n; mg, the asymptotic

expansion ofĴ m;n
RPC has

Ĵ m;n
RPC ;� � = Ĵ m;n

RPC ;�̂
+ _̂J m;n

RPC ;�̂
(� � � �̂ ) + o(k� � � �̂ k)

= Ĵ m;n
RPC ;�̂

+ _̂J m;n
RPC ;�̂

(� � � �̂ ) + op(
1

p
n0

)

= Ĵ m;n
RPC ;�̂

+ op(
1

p
n0

);

(5)

where _̂J m;n
RPC ;�̂

= 0 since�̂ is the estimation from̂J m;n
RPC = sup

f � 2F �

Ĵ m;n
RPC ;� .

Next, we recall the de�nition in equation 4:

E[ĴRPC ;�̂ ] = EPXY [f �̂ (x; y)] � � EPX PY [f �̂ (x; y)] �
�
2

EPXY [f 2
�̂

(x; y)] �

2

EPX PY [f 2
�̂

(x; y)]:

Likewise, the asymptotic expansion ofE[ĴRPC ;� ] has

E[ĴRPC ;�̂ ] = E[ĴRPC ;� � ] + E[ _̂JRPC ;� � ](�̂ � � � ) + o(k�̂ � � � k)

= E[ĴRPC ;� � ] + E[ _̂JRPC ;� � ](�̂ � � � ) + op(
1

p
n0

)

= E[ĴRPC ;� � ] + op(
1

p
n0

);

(6)

whereE[ _̂JRPC ;� � ] = 0 sinceE[ĴRPC ;� � ] = JRPC and� � satisfyingf � (x; y) = f � � (x; y).
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Combining equations 5 and 6:

Ĵ m;n
RPC ;�̂

� E[ĴRPC ;�̂ ] = Ĵ m;n
RPC ;� � � JRPC + op(

1
p

n0
)

=
1
n

nX

i =1

f �
� (x i ; yi ) � �

1
m

mX

j =1

f �
� (x0

j ; y0
j ) �

�
2

1
n

nX

i =1

f 2
� � (x i ; yi ) �


2

1
m

mX

j =1

f 2
� � (x0

j ; y0
j )

� EPXY [f � (x; y)] + � EPX PY [f � (x; y)] +
�
2

EPXY

h
f � 2(x; y)

i
+


2

EPX PY

h
f � 2(x; y)

i
+ op(

1
p

n0
)

=
1
n

nX

i =1

r �;�; (x i ; yi ) � �
1
m

mX

j =1

r �;�; (x0
j ; y0

j ) �
�
2

1
n

nX

i =1

r 2
�;�; (x i ; yi ) �


2

1
m

mX

j =1

r 2
�;�; (x0

j ; y0
j )

� EPXY [r �;�; (x; y)] + � EPX PY [r �;�; (x; y)] +
�
2

EPXY

�
r 2

�;�; (x; y)
�

+

2

EPX PY

�
r 2

�;�; (x; y)
�

+ op(
1

p
n0

)

=
1

p
n

�
1

p
n

nX

i =1

 

r �;�; (x i ; yi ) �
�
2

r 2
�;�; (x i ; yi ) � EPXY

�
r �;�; (x; y) �

�
2

r 2
�;�; (x; y)

� !

�
1

p
m

�
1

p
m

mX

j =1

 

�r �;�; (x0
j ; y0

j ) +

2

r 2
�;�; (x0

j ; y0
j ) � EPX PY

�
�r �;�; (x; y) +


2

r 2
�;�; (x; y)

� !

+ op(
1

p
n0

):

Therefore, the asymptotic Variance ofĴ m;n
RPC is

Var[Ĵ m;n
RPC ] =

1
n

VarPXY [r �;�; (x; y) �
�
2

r 2
�;�; (x; y)] +

1
m

VarPX PY [�r �;�; (x; y) +

2

r 2
�;�; (x; y)] + o(

1
n0):

First, we look atVarPXY [r �;�; (x; y) � �
2 r 2

�;�; (x; y)]. Since� > 0 and� �
 � r �;�; � 1

� , simple

calculation gives us� 2� + �� 2

2 2 � r �;�; (x; y) � �
2 r 2

�;�; (x; y) � 1
2� . Hence,

VarPXY [r �;�; (x; y) �
�
2

r 2
�;�; (x; y)] � max

� � 2� + �� 2

2 2

� 2
;
� 1

2�

� 2
�

:

Next, we look atVarPX PY [�r �;�; (x; y) + 
2 r 2

�;�; (x; y)]. Since� � 0;  > 0 and� �
 � r �;�; �

1
� , simple calculation gives us� � 2

2 � �r �;�; (x; y) + 
2 r 2

�;�; (x; y) � 2�� + 
2� 2 . Hence,

VarPX PY [�r �;�; (x; y) +

2

r 2
�;�; (x; y)] � max

� � � 2

2

� 2
;
� 2�� + 

2� 2

� 2
�

:

Combining everything together, we restate the Proposition 2 in the main text:

Proposition 4 (Asymptotic Variance ofĴ m;n
RPC )

Var[Ĵ m;n
RPC ] =

1
n

VarPXY [r �;�; (x; y) �
�
2

r 2
�;�; (x; y)] +

1
m

VarPX PY [�r �;�; (x; y) +

2

r 2
�;�; (x; y)] + o(

1
n0)

�
1
n

max
� � 2� + �� 2

2 2

� 2
;
� 1

2�

� 2
�

+
1
m

max
� � � 2

2

� 2
;
� 2�� + 

2� 2

� 2
�

+ o(
1
n0)
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A.5 PROOF OFPROPOSITION2 IN THE MAIN TEXT - FROM BOUNDNESS OFf �

As discussed in Assumption 1, for the estimationĴ m;n
RPC , we can bound the functionf � in F � within

[� �
 ; 1

� ] without losing precision. Then, re-arranginĝJ m;n
RPC :

sup
f � 2F �

1
n

nX

i =1

f � (x i ; yi ) �
1
m

mX

j =1

�f � (x0
j ; y0

j ) �
1
n

nX

i =1

�
2

f 2
� (x i ; yi ) �

1
m

mX

j =1


2

f 2
� (x0

j ; y0
j )

sup
f � 2F �

1
n

nX

i =1

�
f � (x i ; yi ) �

�
2

f 2
� (x i ; yi )

�
+

1
m

nX

j = m

�
�f � (x0

j ; y0
j ) +


2

f 2
� (x0

j ; y0
j )
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Then, since� �
 � f � (�; �) � 1

� , basic calculations give us

�
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�
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The resulting variances have
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2
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2 2
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� 2
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2
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� 2
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2� 2
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�

:

Taking the mean ofm; n independent random variables gives the result:

Proposition 5 (Variance ofĴ m;n
RPC )

Var[Ĵ m;n
RPC ] �

1
n

max
� � 2� + �� 2

2 2

� 2
;
� 1

2�

� 2
�

+
1
m

max
� � � 2

2

� 2
;
� 2�� + 

2� 2

� 2
�

:

A.6 IMPLEMENTATION OF EXPERIMENTS

For visual representation learning, we follow the implementation inhttps://github.com/
google-research/simclr . For speech representation learning, we follow the imple-
mentation inhttps://github.com/facebookresearch/CPC_audio . For MI estima-
tion, we follow the implementation inhttps://github.com/yaohungt/Pointwise_
Dependency_Neural_Estimation/tree/master/MI_Est_and_CrossModal ..

A.7 RELATIVE PREDICTIVE CODING ON V ISION

The whole pipeline of pretraining contains the following steps: First, a stochastic data augmentation
will transform one image samplex k to two different but correlated augmented views,x 0

2k � 1 and
x 0

2k . Then a base encoderf (�) implemented using ResNet (He et al., 2016) will extract representa-
tions from augmented views, creating representationsh2k � 1 andh2k . Later a small neural network
g(�) called projection head will maph2k � 1 andh2k to z2k � 1 andz2k in a different latent space. For
each minibatch ofN samples, there will be2N views generated. For each imagex k there will be
one positive pairx 0

2k � 1 andx 0
2k and2(N � 1) negative samples. The RPC loss between a pair of

positive views,x 0
i andx 0

j (augmented from the same image) , can be calculated by the substitution
f � (x 0

i ; x 0
j ) = ( z i � z j )=� = si;j (� is a hyperparameter) to the de�nition of RPC:

`RPC
i;j = � (si;j �

�
2(N � 1)

2NX

k=1

1[k 6=i] si;k �
�
2

s2
i;j �


2 � 2(N � 1)

2NX

k=1

1[k 6=i] s2
i;k ) (7)

For losses other than RPC, a hidden normalization ofsi;j is often required by replacingz i � z j with
(z i � z j )=jz i jj z j j. CPC and WPC adopt this, while other objectives needs it to help stabilize training
variance. RPC does not need this normalization.
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Con�dence Interval ofJRPC andJCPC
Objective CIFAR 10 CIFAR 100 ImageNet
JCPC (91:09%; 91:13%) (77:11%; 77:36%) (73:39%; 73:48%)
JRPC (91:16%; 91:47%) (77:41%; 77:98%) (73:92%; 74:43%)

Table 4: Con�dence Intervals of performances ofJRPC andJCPC on CIFAR-10/-100 and ImageNet.

A.8 CIFAR-10/-100AND IMAGENET EXPERIMENTSDETAILS

ImageNet Following the settings in (Chen et al., 2020b;c), we train the model on Cloud TPU with
128cores, with a batch size of4; 096and global batch normalization3 (Ioffe & Szegedy, 2015). Here
we refer to the term batch size as the number of images (or utterances in the speech experiments)
we use per GPU, while the term minibatch size refers to the number of negative samples used to
calculate the objective, such as CPC or our proposed RPC. The largest model we train is a 152-layer
ResNet with selective kernels (SK) (Li et al., 2019) and2� wider channels. We use the LARS
optimizer (You et al., 2017) with momentum0:9. The learning rate linearly increases for the �rst
20 epochs, reaching a maximum of6:4, then decayed with cosine decay schedule. The weight
decay is10� 4. A MLP projection headg(�) with three layers is used on top of the ResNet encoder.
Unlike Chen et al. (2020c), we do not use a memory buffer, and train the model for only100epochs
rather than800epochs due to computational constraints. These two options slightly reduce CPC's
performance benchmark for about2%with the exact same setting. The unsupervised pre-training is
followed by a supervised �ne-tuning. Following SimCLRv2 (Chen et al., 2020b;c), we �ne-tune the
3-layerg(�) for the downstream tasks. We use learning rates0:16 and0:064 for standard 50-layer
ResNet and larger 152-layer ResNet respectively, and weight decay and learning rate warmup are
removed. Different from Chen et al. (2020c), we use a batch size of4; 096, and we do not use
global batch normalization for �ne-tuning. ForJRPC we disable hidden normalization and use a
temperature� = 32. For all other objectives, we use hidden normalization and� = 0 :1 following
previous work (Chen et al., 2020c). For relative parameters, we use� = 0 :3; � = 0 :001;  = 0 :1
and� = 0 :3; � = 0 :001;  = 0 :005for ResNet-50 and ResNet-152 respectively.

CIFAR-10/-100 Following the settings in (Chen et al., 2020b), we train the model on a single
GPU, with a batch size of512 and global batch normalization (Ioffe & Szegedy, 2015). We use
ResNet (He et al., 2016) of depth18and depth50, and does not use Selective Kernel (Li et al., 2019)
or a multiplied width size. We use the LARS optimizer (You et al., 2017) with momentum0:9. The
learning rate linearly increases for the �rst20epochs, reaching a maximum of6:4, then decayed with
cosine decay schedule. The weight decay is10� 4. A MLP projection headg(�) with three layers
is used on top of the ResNet encoder. Unlike Chen et al. (2020c), we do not use a memory buffer.
We train the model for1000epochs. The unsupervised pre-training is followed by a supervised
�ne-tuning. Following SimCLRv2 (Chen et al., 2020b;c), we �ne-tune the 3-layerg(�) for the
downstream tasks. We use learning rates0:16 for standard 50-layer ResNet , and weight decay and
learning rate warmup are removed. ForJRPC we disable hidden normalization and use a temperature
� = 128. For all other objectives, we use hidden normalization and� = 0 :5 following previous work
(Chen et al., 2020c). For relative parameters, we use� = 1 :0; � = 0 :005; and = 1 :0.

STL-10 We also perform the pre-training and �ne-tuning on STL-10 (Coates et al., 2011) using
the model proposed in Chuang et al. (2020). Chuang et al. (2020) proposed to indirectly approximate
the distribution of negative samples so that the objective isdebiased. However, their implementation
of contrastive learning is consistent with Chen et al. (2020b). We use a ResNet with depth50 as an
encoder for pre-training, with Adam optimizer, learning rate0:001 and weight decay10� 6. The
temperature� is set to0:5 for all objectives other thanJRPC , which disables hidden normalization
and use� = 128. The downstream task performance increases from83:4% of JCPC to 84:1% of
JRPC .

Con�dence Interval We also provide the con�dence interval ofJRPC andJCPC on CIFAR-10,
CIFAR-100 and ImageNet, using ResNet-18, ResNet-18 and ResNet-50 respectively (95% con�-

3For WPC (Ozair et al., 2019), the global batch normalization during pretraining is disabled since we enforce
1-Lipschitz by gradient penalty (Gulrajani et al., 2017).

21



Published as a conference paper at ICLR 2021

dence level is chosen) in Table 4. Both CPC and RPC use the same experimental settings throughout
this paper. Here we use the relative parameters (� = 1 :0; � = 0 :005;  = 1 :0) in JRPC which gives
the best performance on CIFAR-10. The con�dence intervals of CPC do not overlap with the con-
�dence intervals of RPC, which means the difference of the downstream task performance between
RPC and CPC is statistically signi�cant.

A.9 RELATIVE PREDICTIVE CODING ON SPEECH

For speech representation learning, we adopt the general architecture from Oord et al. (2018). Given
an input signalx 1:T with T time steps, we �rst pass it through an encoder� � parametrized by
� to produce a sequence of hidden representationsf h1:T g whereh t = � � (x t ). After that, we
obtain the contextual representationct at time stept with a sequential model � parametrized by� :
ct =  � (h1; : : : ; h t ), wherect contains context information before time stept. For unsupervised
pre-training, we use a multi-layer convolutional network as the encoder� � , and an LSTM with
hidden dimension256as the sequential model � . Here, the contrastiveness is between the positive
pair (h t + k ; ct ) wherek is the number of time steps ahead, and the negative pairs(h i ; ct ), whereh i
is randomly sampled fromN , a batch of hidden representation of signals assumed to be unrelated to
ct . The scoring functionf based on Equation 2 at stept and look-aheadk will be f k = f k (h ; ct ) =
exp((h)> W k ct ), whereW k is a learnable linear transformation de�ned separately for eachk 2
f 1; :::; K g andK is predetermined as12 time steps. The loss in Equation 2 will then be formulated
as:

`RPC
t;k = � (f k (h t + k ; ct ) �

�
jN j

X

h i 2N

f k (h i ; ct ) �
�
2

f 2
k (h t + k ; ct ) �


2jN j

X

h i 2N

f 2
k (h i ; ct )) (8)

We use the following relative parameters:� = 1 ; � = 0 :25; and = 1 , and we use the temperature
� = 16 for JRPC . For JCPC we follow the original implementation which sets� = 1 . We �x all
other experimental setups, including architecture, learning rate, and optimizer. As shown in Table
3, JRPC has better downstream task performance, and is closer to the performance from a fully
supervised model.

A.10 EMPIRICAL OBSERVATIONS ONVARIANCE AND M INIBATCH SIZE

Variance Experiment Setup We perform the variance comparison ofJDV , JNWJ and the pro-
posedJRPC . The empirical experiments are performed using SimCLRv2 (Chen et al., 2020c) on
CIFAR-10 dataset. We use a ResNet of depth18, with batch size of512. We train each objective
with 30K training steps and record their value. In Figure 1, we use a temperature� = 128 for all
objectives. Unlike other experiments, where hidden normalization is applied to other objectives, we
remove hidden normarlization for all objectives due to the reality that objectives after normalization
does not re�ect their original values. From Figure 1,JRPC enjoys lower variance and more stable
training compared toJDV andJNWJ .

Minibatch Size Experimental Setup We perform experiments on the effect of batch size on
downstream performances for different objective. The experiments are performed using SimCLRv2
(Chen et al., 2020c) on CIFAR-10 dataset, as well as the model from Rivi�ere et al. (2020) on
LibriSpeech-100h dataset (Panayotov et al., 2015). For vision task, we use the default tempera-
ture � = 0 :5 from Chen et al. (2020c) and hidden normalization mentioned in Section 3 forJCPC .
ForJRPC in vision and speech tasks we use a temperature of� = 128 and� = 16 respectively, both
without hidden normalization.

A.11 MUTUAL INFORMATION ESTIMATION

Our method is compared with baseline methods CPC (Oord et al., 2018), NWJ (Nguyen et al., 2010),
JSD (Nowozin et al., 2016), and SMILE (Song & Ermon, 2019). All the approaches consider the
same design off (x; y), which is a 3-layer neural network taking concatenated(x; y) as the input.
We also �x the learning rate, the optimizer, and the minibatch size across all the estimators for a fair
comparison.

We present results of mutual information by Relative Predictive Coding using different sets of rela-
tive parameters in Figure 4. In the �rst row, we set� = 10 � 3,  = 1 , and experiment with different
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