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ABSTRACT

This paper introduces Relative Predictive Coding (RPC), a new contrastive repre-
sentation learning objective that maintains a good balance among training stabil-
ity, minibatch size sensitivity, and downstream task performance. The key to the
success of RPC is two-fold. First, RPC introduces the relative parameters to reg-
ularize the objective for boundedness and low variance. Second, RPC contains no
logarithm and exponential score functions, which are the main cause of training
instability in prior contrastive objectives. We empirically verify the effectiveness
of RPC on benchmark vision and speech self-supervised learning tasks. Lastly, we
relate RPC with mutual information (MI) estimation, showing RPC can be used

to estimate MI with low variance !.

1 INTRODUCTION

Unsupervised learning has drawn tremendous attention recently because it can extract rich repre-
sentations without label supervision. Self-supervised learning, a subset of unsupervised learning,
learns representations by allowing the data to provide supervision (Devlin et al., 2018). Among
its mainstream strategies, self-supervised contrastive learning has been successful in visual object
recognition (He et al., 2020; Tian et al., 2019; Chen et al., 2020c), speech recognition (Oord et al.,
2018; Riviere et al., 2020), language modeling (Kong et al., 2019), graph representation learning
(Velickovic et al., 2019) and reinforcement learning (Kipf et al., 2019). The idea of self-supervised
contrastive learning is to learn latent representations such that related instances (e.g., patches from
the same image; defined as positive pairs) will have representations within close distance, while
unrelated instances (e.g., patches from two different images; defined as negative pairs) will have
distant representations (Arora et al., 2019).

Prior work has formulated the contrastive learning objectives as maximizing the divergence between
the distribution of related and unrelated instances. In this regard, different divergence measurement
often leads to different loss function design. For example, variational mutual information (MI) esti-
mation (Poole et al., 2019) inspires Contrastive Predictive Coding (CPC) (Oord et al., 2018). Note
that M1 is also the KL-divergence between the distributions of related and unrelated instances (Cover
& Thomas, 2012). While the choices of the contrastive learning objectives are abundant (Hjelm
et al., 2018; Poole et al., 2019; Ozair et al., 2019), we point out that there are three challenges faced
by existing methods.

The first challenge is the training stability, where an unstable training process with high variance
may be problematic. For example, Hjelm et al. (2018); Tschannen et al. (2019); Tsai et al. (2020b)
show that the contrastive objectives with large variance cause numerical issues and have a poor
downstream performance with their learned representations. The second challenge is the sensitivity
to minibatch size, where the objectives requiring a huge minibatch size may restrict their practical
usage. For instance, SimCLRv2 (Chen et al., 2020c¢) utilizes CPC as its contrastive objective and
reaches state-of-the-art performances on multiple self-supervised and semi-supervised benchmarks.
Nonetheless, the objective is trained with a minibatch size of 8,192, and this scale of training re-
quires enormous computational power. The third challenge is the downstream task performance,
which is the one that we would like to emphasize the most. For this reason, in most cases, CPC
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Table 1: Different contrastive learning objectives, grouped by measurements of distribution divergence. Pxy
represents the distribution of related samples (positively-paired), and Px Py represents the distribution of un-
related samples (negatively-paired). f (x;y) 2 F for F being any class of functions f : X Y ! R.
y: Compared to Jcpc and Jrpc , we empirically find Jwpc performs worse on complex real-world image
datasets spanning CIFAR-10/-100 (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al., 2015).

Lo Good Training Lower Minibatch ~ Good Downstream
Objective

Stability Size Sensitivity Performance
relating to KL-divergence between Pxy and Px Py : Jpy (Donsker & Varadhan, 1975), Jywy (Nguyen et al,, 2010), and Jepe (Oord et al., 2018)
Jov(X.Y) = supp o Epyy [f(z,9)] log(Epy py [ *¥)]) X 4 X
Jnwa(X.Y) == supgor Epyy [f(a,y)]  Epypy ef (XVYF)’ 1 i X v X
Jepe(X.Y) =supor Epy,) Py ity gl Py log ef G /L |N:1 el ovi) v X v
relating to JS-divergence between Pxy and Px Py : Jjs (Nowozin et al., 2016)
Tis(X,Y) i=supy o Epyy [ log(1+e FOY))]  Epy py [log(1l+ e (¥))) v v X
relating to Wasserstein-divergence between Pxy End Px Py: Jwpc (Ozair et al,, 2019), with F_ denoting the space of 1-Lipschitz functions
" . P vy
Jwec(X,Y) i=suppar | Exyy) puy styg, Py 108 ef Gya) /L JNzl el 01) 4 v XY

relating to XQ»divergence between Pxy and Px Py: Jgpc (ours)

Jrec(X,Y) = supi ¢ Epyy [f(2,y)]  aBpypy, [f(2,9)] 5Epy,  [2(@,y)  3Eecpy, f2(z,y) v v v

is the objective that we would adopt for contrastive representation learning, due to its favorable
performance in downstream tasks (Tschannen et al., 2019; Baevski et al., 2020).

This paper presents a new contrastive representation learning objective: the Relative Predictive Cod-
ing (RPC), which attempts to achieve a good balance among these three challenges: training stabil-
ity, sensitivity to minibatch size, and downstream task performance. At the core of RPC is the
relative parameters, which are used to regularize RPC for its boundedness and low variance. From
a modeling perspective, the relative parameters act as a ¢o regularization for RPC. From a statis-
tical perspective, the relative parameters prevent RPC from growing to extreme values, as well as
upper bound its variance. In addition to the relative parameters, RPC contains no logarithm and
exponential, which are the main cause of the training instability for prior contrastive learning objec-
tives (Song & Ermon, 2019).

To empirically verify the effectiveness of RPC, we consider benchmark self-supervised represen-
tation learning tasks, including visual object classification on CIFAR-10/-100 (Krizhevsky et al.,
2009), STL-10 (Coates et al., 2011), and ImageNet (Russakovsky et al., 2015) and speech recogni-
tion on LibriSpeech (Panayotov et al., 2015). Comparing RPC to prior contrastive learning objec-
tives, we observe a lower variance during training, a lower minibatch size sensitivity, and consistent
performance improvement. Lastly, we also relate RPC with MI estimation, empirically showing that
RPC can estimate MI with low variance.

2 PROPOSED METHOD

This paper presents a new contrastive representation learning objective - the Relative Predictive
Coding (RPC). At a high level, RPC 1) introduces the relative parameters to regularize the objective
for boundedness and low variance; and 2) achieves a good balance among the three challenges in
the contrastive representation learning objectives: training stability, sensitivity to minibatch size,
and downstream task performance. We begin by describing prior contrastive objectives along with
their limitations on the three challenges in Section 2.1. Then, we detail our presented objective
and its modeling benefits in Section 2.2. An overview of different contrastive learning objectives is
provided in Table 1. We defer all the proofs in Appendix.

Notation We use an uppercase letter to denote a random variable (e.g., X), a lower case letter to
denote the outcome of this random variable (e.g., x), and a calligraphy letter to denote the sample
space of this random variable (e.g., X). Next, if the samples (z, y) are related (or positively-paired),
we refer (x,y) Pxy with Pxy being the joint distribution of X Y. If the samples (z,y) are
unrelated (negatively-paired), we refer (z,y)  Px Py with Px Py being the product of marginal
distributions over X Y. Last, we define f 2 F for F being any class of functions f : X Y ! R.

2.1 PRELIMINARY

Contrastive representation learning encourages the contrastiveness between the positive and the neg-
ative pairs of the representations from the related data X and Y. Specifically, when sampling a pair
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of representationéx;y) from their joint distribution (X;y)  Pxy ), this pair is de ned as a pos-

itive pair; when sampling from the product of marginals;f/)  Px Py ), this pair is de ned as

a negative pair. Then, Tsai et al. (2020b) formalizes this idea such that the contrastiveness of the
representations can be measured by the divergence beRygemndPx Py, where higher diver-

gence suggests better contrastiveness. To better understand prior contrastive learning objectives, we
categorize them in terms of different divergence measurements beByeeandPy Py , with their

detailed objectives presented in Table 1.

We instantiate the discussion using Contrastive Predictive Coding (Oord et al. Jgp&9, which
is a lower bound oD (Pxy kPx Py) with Dk, referring to the KL-divergence:

h g (xy1) i
;Y )= . fy; P
Jope OGY) = SUB Bixy ) Py ityial, Py 100 EN o) @)

Then, Oord et al. (2018) presents to maximizec (X;Y ), so that the learned representatiohs

andY have high contrastiveness. We note thgpc has been commonly used in many recent
self-supervised representation learning frameworks (He et al., 2020; Chen et al., 2020b), where they
constrain the function to bie(x;y) = cosine(x;y) with cosine() being cosine similarity. Under

this function design, maximizindcpc leads the representations of related pairs to be close and
representations of unrelated pairs to be distant.

The category of modelind k. (Pxy kPx Py) also includes the Donsker-Varadhan objective
(Jov (Donsker & Varadhan, 1975; Belghazi et al., 2018)) and the Nguyen-Wainright-Jordan ob-
jective Onway (Nguyen et al., 2010; Belghazi et al., 2018)), where Belghazi et al. (2018); Tsal
et al. (2020b) show thalpy (X, Y) = Jawg (X, Y) = DL (PXY k Px Py ) The other diver-
gence measurements considered in prior workDay&(Pxy kPx Py) (with D ;s referring to the
Jenson-Shannon divergence) ddass (Pxy kPx Py) (with Dywyss referring to the Wasserstein-
divergence). The instance of modelibgs(Pxy kPx Py) is the Jensen-Shannon f-GAN objective
Jis (Nowozin et al., 2016; Hjelm et al., 201§)whered;s(X;Y ) = 2 Djs(Pxy kPx Py)
log2 . The instance of modelin®wass (Pxy kPx Py) is the Wasserstein Predictive Coding
Jwpc (Ozair et al., 2019), whereJwpc (X;Y ) modi es Jcpc (X;Y ) objective (equation 1) by
searching the function frore to F_. F_ denotes any class of 1-Lipschitz continuous functions
from(X Y )toR,andthusc, F . Ozair et al. (2019) shows thatypc (X;Y ) is the lower
bound of bottDk; (Pxy kPx Py) andDwass (Pxy kPx Py). See Table 1 for all the equations. To
conclude, the contrastive representation learning objectives are unsupervised representation learning
methods that maximize the distribution divergence betwggn andPx Py . The learned represen-
tations cause high contrastiveness, and recent work (Arora et al., 2019; Tsal et al., 2020a) theoret-
ically show that highly-contrastive representations could improve the performance on downstream
tasks.

After discussing prior contrastive representation learning objectives, we point out three challenges in
their practical deployments: training stability, sensitivity to minibatch training size, and downstream
task performance. In particular, the three challenges can hardly be handled well at the same time,
where we highlight the conclusions in Table Training Stability: The training stability highly
relates to the variance of the objectives, where Song & Ermon (2019) showdpthand Jnw;

exhibit inevitable high variance due to their inclusion of exponential function. As pointed out by Tsali
et al. (2020b)Jcpec , Jwpe » andJ s have better training stability becaudepc andJwpc can

be realized as a multi-class classi cation task ahg can be realized as a binary classi cation
task. The cross-entropy loss adoptedipc , Jwpc , andJ s is highly-optimized and stable in
existing optimization package (Abadi et al., 2016; Paszke et al., 2(Sépsitivity to minibatch
training size: Among all the prior contrastive representation learning methags; is known to

be sensitive to the minibatch training size (Ozair et al., 2019). Taking a closer look at equation 1,
Jcpc deploys an instance selection such thatshould be selected frorfiy1;y2;  ;yn g, with

(x;y1)  Pxv,(Xyj>1) Px Py with N being the minibatch size. Previous work (Poole et al.,
2019; Song & Ermon, 2019; Chen et al., 2020b; Caron et al., 2020) showed that N laegelts in

a more challenging instance selection and fotkgg to have a better contrastivenesyofrelated
instance forx) againstfy; gj'\‘:2 (unrelated instance for). Jpy , Jnwi » andJs do not consider

2335(X;Y ) achieves its supreme value wHen(x; y) = log( p(x;y)=p(x)p(y)) (Tsai et al., 2020b). Plug-
inf (x;y)intoJss(X;Y ), we can concludd;s(X;Y ) =2( Dss(Pxy kPx Py) log2).
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the instance selection, adldypc reduces the minibatch training size sensitivity by enforcing 1-

Lipschitz constraint.Downstream Task PerformanceThe downstream task performance is what

we care the most among all the three challengés.c has been the most popular object|ve as

it mamfests superior performance over the other alternatives ( , ; ,
;2). We note that althoughpc shows better performance on Omniglot (

and CelebA ( , ) datasets, we empirically nd it not generalizing well to CIFAR 10/-

100 ( , ) and ImageNet ( , .

2.2 RELATIVE PREDICTIVE CODING

In this paper, we present Relative Predictive Coding (RPC), which achieves a good balance among
the three challenges mentioned above:

EPX Py fZ(X’y) ;
(2)

where > 0, > 0, > 0 are hyper-parameters and we de ne thenrelative parameters
Intuitively, Jrpc contains no logarithm or exponential, potentially preventing unstable training due
to numerical issues. Now, we discuss the roles of . Ata rst glance, acts to discourage the
scores oPxy andPx Py from being close, and= acts as a, regularization coef cient to stop

f from becoming large. For a deeper analysis, the relative parameters act to regularize our objective
for boundedness and low variance. To show this claim, we rst present the following lemma:

Jrec (X;Y ) = sup Epy, [F(GY)]  Epcp [FOGY)] 5Epy f2(XY) 5
f 2F 2 2

Lemma 1 (Optimal Solution for Jgpc ) Letr(x;y) = p?i))‘py&) be the density ratioJgpc has the

optimal solutiorf (x;y) = % =r.. (x;y)with — r.. 1
Lemma 1 suggests thdkpc achieves its supreme value at the ratio (x;y) indexed by the
relative parameters ; (i.e., we termr.. (x;y) as the relative density ratio). We note that
r.. (x;y) is an increasing funct|on Wrtr (x;y) and is nicely bounded even whekx;y) is
large. We will now show that the bounded. suggests the empirical estimation X¥pc has
boundeness and low variance. In parucularf lat yigL, ben samples drawn uniformly at random
from Pxy andfxo,y] gL, bem samples drawn uniformly at random frax Py . Then, we use

neural networks to empirically estimalgpc asJfpe :

De nition 1 (J\,;",;r(‘: , empirical estimation of Jgpc ) We parametrizé via a family of neural net-

works F ff 2 R%g whered 2 IJ,\l and is compaclg Then,J5 =
17 . 1 P 0. 1 2 200000

Supf 2F n i:]_]c (Xiin) m j=1 f (X ) n i=1 2f (Xlryl) a J =1 2f (X )

T

2

Proposition 1 (Boundedness oﬂ\mg,'g:,informal) 0 Jrrc zi 5. Then, with probability at
leastl ,jJrec  Jhpei= O( 9L =)y wheren®= min fn;mg.

Proposition 2 (Variance of Jipe , informal) There exist universal constargsandc, that depend

onlyon;; ,suchthavar[Jipe]=0 %+ &

From the two propositions, when andn are large, i.e., the sample sizes are laf§gg. is bounded,

and its variance vanishes @ First, the boundedness 8§:;. suggestsirpe will not grow to ex-

tremely large or small values. Prior contrastive learning objectives with good training stability (e.g.,
Jepe 1J3s/Iwpe ) also have the boundedness of their objective values. For instance, the empirical
estimation ofJcpc is less thadogN (equation 1) ( , ). Nevertheleksc often
performs the best only when minibatch size is large, and empirical performandgs afidJwpc

are not as competitive akpc . Second, the upper bound of the variance implies the training of
JEEe can be stable, and in practice we observe a much smaller value than the stated upper bound.
On the contrary, ( ) shows that the empirical estimatiods\ofand Jnw;

exhibit inevitable variances that grow exponentially with the yg (Pxy kPx Py).

Lastly, similar to prior contrastive learning objective that are related to distribution diver-
gence measurement, we associtec with the Chi-square divergend® :(Pxy kPx Py) =
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Ep, py [F2(x;y)]  1( , ). The derivations are provided in Appendix. By hav-
ing PO = we can rewrite

Jrprc (X;Y ) asdrpc (X;Y) = (x;¥)]. HenceJrpc can be regarded as a gener-
alization ofD - with the relative parameters; , whereD - can be recovered frolrpc by
specializing =0, =0and =1 (e.g.,.D 2 =2Jrpcj = =0: =1 1). Note thatlrpc may
not be a formal divergence measure with arbitrary

3 EXPERIMENTS

We provide an overview of the experimental section. First, we conduct benchmark self-supervised
representation learning tasks spanning visual object classi cation and speech recognition. This set
of experiments are designed to discuss the three challenges of the contrastive representation learning
objectives: downstream task performance (Section 3.1), training stability (Section 3.2), and mini-
batch size sensitivity (Section 3.3). We also provide an ablation study on the choices of the relative
parameters iNlgpc (Section 3.4). On these experiments we found thalc achieves a lower
variance during training, a lower batch size insensitivity, and consistent performance improvement.
Second, we relat@rpc with mutual information (MI) estimation (Section 3.5). The connection

is that Ml is an average statistic of the density ratio, and we have shown that the optimal solution
of Jrpc is the relative density ratio (see Lemma 1). Thus we could estimate MI using the density
ratio transformed from the optimal solution dfpc . On these two sets of experiments, we fairly
comparelgpc With other contrastive learning objectives. Particularly, across different objectives,
we X the network, learning rate, optimizer, and batch size (we use the default con gurations sug-
gested by the original implementations from ( ) ( ) and

( ).) The only difference will be the objective itself. In what follows, we perform the rst set

of experiments. We defer experimental details in the Appendix.

Datasets. For the visual objective classi cation, we consider CIFAR-10/-100 (

), STL-10 ( , ), and ImageNet ( , ). CIFAR-lO/-iOO
and ImageNet contain labeled images only, while STL-10 contains labeled and unlabeled images.
For the speech recognition, we consider LibriSpeech-100h ( , ) dataset, which

contains100hours ofl6kHz English speech frori51 speakers witld1 types of phonemes.

Training and Evaluation Details. For the vision experiments, we follow the setup from Sim-
CLRv2 ( , ), which considers visual object recognition as its downstream task. For
the speech experiments, we follow the setup from prior work ( , i ),

which consider phoneme classi cation and speaker identi cation as the downstream tasks Then, we
brie y discuss the training and evaluation details into three modules: 1) related and unrelated data
construction, 2) pre-training, and 3) ne-tuning and evaluation. For more details, please refer to
Appendix or the original implementations.

Related and Unrelated Data Constructidn.the vision experiment, we construct the related im-
ages by applying different augmentations on the same image. Hence(xylygn Pxy , X andy
are the same image with different augmentations. The unrelated images are two randomly selected
samples. In the speech experiment, we de ne the current latent feature (feature Bt dinaethe
future samples (samples at timet ) as related data. In other words, the feature in the latent space
should contain information that can be used to infer future time steps. A latent feature and randomly
selected samples would be considered as unrelated data.

Pre-training. The pre-training stage refers to the self-supervised training by a contrastive learn-
ing objective. Our training objective is de ned in De nition 1, where we use neural networks to
parametrize the function using the constructed related and unrelated data. Convolutional neural net-
works are used for vision experiments. Transformers ( , )and LSTMs (

, ) are used for speech experiments.

Fine-tuning and Evaluatiorfter the pre-training stage, we x the parameters in the pre-trained
networks and add a small ne-tuning network on top of them. Then, we ne-tune this small network
with the downstream labels in the data's training split. For the ne-tuning network, both vision
and speech experiments consider multi-layer perceptrons. Last, we evaluate the ne-tuned repre-
sentations on the data's test split. We would like to point out that we do not normalize the hidden
representations encoded by the pre-training neural network for loss calculation. This hidden nor-
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Table 2:Top-1 accuracy (%) for visual object recognition results, andJnws are not reported on ImageNet

due to numerical instability. ResNet depth, width and Selective Kernel (SK) con guration for each setting are
provided in ResNet depth+width+SK column. A slight dropJetc performance compared to

( ) is because we only train f&00 epochs rather thaB0O0 due to the fact that running 800 epochs
uninterruptedly on cloud TPU is very expensive. Also, we did not employ a memory buffer (

to store negative samples. We and we did not employ a memory buffer. We also provide the results from fully
supervised models as a comparison ( ;¢). Fully superwsed training performs worse on STL-10
because it does not employ the unlabeled samples in the dataset ¢ , .

Self-supervised

Dataset ResNet Depth+W|dth+S+< Jov  Jnws Jis  Jwee  Jere  Jree Supervised
CIFAR-10 18+1 +NoSK 91.10 90.54 83.55 80.02 91.1291.46 93.12
CIFAR-10 50+1 +NoSK 92.23 92.67 87.34 85.93 93.4293.57 95.70
CIFAR-100 18+1 +No SK 7710 77.27 74.02 72.16 77.3677.98 79.11
CIFAR-100 50+ 1 +No SK 79.02 7852 7531 73.23 79.3179.89 81.20

STL-10 50+1 +NoSK 82.25 81.17 79.07 76.50 83.4084.10 71.40

ImageNet 50+1 +SK - - 66.21 62.10 73.48 74.43 78.50
ImageNet 152 +2 + SK - - 71.12 69.51 77.80 78.40 80.40

Table 3:Accuracy (%) for LibriSpeech-100h phoneme and speaker classi cation results. We also provide the
results from fully supervised model as a comparison ( , ).

Self-supervised
Jepc Jov Jnws  Jrec

Phoneme classi cation 64.6 61.27 62.09 69.39 74.6
Speaker classi cation| 97.4 95.36 95.89 97.68 98.5

Task Name Supervised

malization technique is widely applled ( ; , ;C) to stabilize training
and increase performance for prior objectives, but we nd it unnecessdppi.

3.1 DoOWNSTREAM TASK PERFORMANCES ONVISION AND SPEECH

For the downstream task performance in the vision domain, we test the prapgsednd other
contrastive learning objectives on CIFAR-10/-100 ( , ), STL-10 (

), and ImageNet ILSVRC-2012 ( ). Here we report the best perfor—
manceslgpc Can get on each dataset (we include experlmental details in A.7.) Table 2 shows that
the proposedgrpc outperforms other objectives on all datasets. USigg: on the largest network
(ResNet with depth 0152, channel width oR and selective kernels), the performance jumps from
77:80%0f Jcpe to 78:40%0f Jrpc .

Regarding speech representation learning, the downstream performance for phoneme and speaker
classi cation are shown in Table 3 (we defer experimental details in Appendix A.9.) Compared to
Jcpe , Jrrc improves the phoneme classi cation results wit® percent and the speaker classi -

cation results witlD:3 percent, which is closer to the fully supervised model. Overall, the proposed
Jrpc performs better than other unsupervised learning objectives on both phoneme classi cation
and speaker classi cation tasks.

3.2 TRAINING STABILITY

We provide empirical training stability comparisonsdyy , Jnwa » Jecpe andJgpc by plotting the

values of the objectives as the training step increases. We apply the four objectives to the SImCLRv2
framework and train on the CIFAR-10 dataset. All setups of training are exactly the same except the
objectives. From our experimentk;y andJyw; soon explode to NaN and disrupt training (shown

as early stopping in Figure la; extremely large values are not plotted due to scale constraints). On
the other handJgpc and Jcpc has low variance, and both enjoy stable training. As a result,
performances using the representation learned from unsigblendJyw; suffer in downstream

task, while representation learned hypc andJcpc Work much better.
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Figure 1: (a) Empirical values oflpy , Jnws , Jcrc @and Jrec  performing visual object recognition on
CIFAR-10. Jpy andJnws soon explode to NaN values and stop the training (shown as early stopping in the
gure), while Jcpc andJrpc are more stable. Performance comparisoddgt andJgrpc on (b) CIFAR-10

and (c) LibriSpeech-100h with different minibatch sizes, showing that the performadgeofs less sensitive

to minibatch size change comparedig:c .

3.3 MINIBATCH SIZE SENSITIVITY

We then provide the analysis on the effect of minibatch sizdgst andJcpc , sincedcpc is

known to be sensitive to minibatch size ( , ). We train SImCLRv2 ( , )
on CIFAR-10 and the model from ( ) on LibriSpeech-100h usihgc andJcpc

with different minibatch sizes. The settings of relative parameters are the same as Section 3.2. From
Figure 1b and 1c, we can observe that biac andJcpc achieve their optimal performance at a

large minibatch size. However, when the minibatch size decreases, the performapse shows

higher sensitivity and suffers more when the number of minibatch samples is small. The result
suggests that the proposed method might be less sensitive to the change of minibatch size compared
to Jcpe given the same training settings.

3.4 BEFFECT OFRELATIVE PARAMETERS

We study the effect of different combinations of relative parametedg#g by comparing down-
stream performances on visual object recognition. We train SimCLRv2 on CIFAR-10 with dif-
ferent combinations of, and in Jgpc and x all other experimental settings. We choose

2 f0;0:001; 1:0g; 2 f0;0:00% 1:0g; 2 f0;0:001 1:0g and we report the best performances
under each combination of , and . From Figure 2, we rst observe that> 0 has better
downstream performance tharn= 0 when and are xed. This observation is as expected, since

> 0 encourages representations of related and unrelated samples to be pushed away. Then, we
nd that a small but nonzero ( = 0:001) and a large ( = 1:0) give the best performance
compared to other combinations. Sinceand serve as the coef cients of, regularization, the
results imply that the regularization is a strong and sensitive factor that will in uence the perfor-
mance. The results here are not as competitive as Table 2 because the CIFAR-10 result reported in
Table 2 is using a set of relative parameters=(1:0; =0:005 = 1:0) thatis different from the
combinations in this subsection. Also, we use quite different rangeoafimageNet (see A.7 for
details.) In conclusion, we nd empirically that a non-zerpa small and a large will lead to
the optimal representation for the downstream task on CIFAR-10.

3.5 RELATION TO MUTUAL INFORMATION ESTIMATION

The presented approach also closely relates to mutual information estimation. For random variables
X andY with joint distributionPyxy and product of marginalBx Py , the mutual information is
de ned asl (X;Y) = Dk (Pxy kPx Py). Lemma 1 states that given optimal solutior(x;y) of

Jrpc , We can get the density ratigx; y) := p(x;y)=p(x)p(y) asr(x;y) = ﬁ —-. We
can empirically estimat&(x; y) from the estimated(x; y) via this transformagion, and uséx;y)
to estimate mutual information ( , ). SpecicdlX;Y) 2 L logn(xi;yi)

with (Xi; Vi) PX;S , WherePX;$ is the uniformly sampled empirical distribution Bf.y .
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Figure 2:Heatmaps of downstream task performance on CIFAR-10, using differenaind in the Jrpc -
We conclude thatanonzergasmall ( =0:001)andalarge ( = 1:0) are crucial for better performance.

Figure 3:Mutual information estimation performed on 20-d correlated Gaussian distribution, with the corre-
lation increasing each 4K step3grpc exhibits smaller variance than SMILE and DoE, and smaller bias than
Jerc -

We follow prior work (Poole et al., 2019; Song & Ermon, 2019; Tsal et al., 2020b) for the experi-
ments. We consideX andY as two20-dimensional Gaussians with correlationand our goal is

to estimate the mutual informatidr{X ; Y). Then, we perform a cubic transformation yso that

y 7! y3. The rst task is referred to aGaussiantask and the second is referred toGshic task,

where both have the ground trutkiX ; Y) = 10log(1  2). The models are trained @&@; 000

steps withl (X ; Y) starting a2 and increased bg per4; 000steps. Our method is compared with
baseline method¥cpc (Oord et al., 2018wy (Nguyen etal., 2010)3s (Nowozin et al., 2016),
SMILE (Song & Ermon, 2019) and Difference of Entropies (DoE) (McAllester & Stratos, 2020).
All approaches use the same network design, learning rate, optimizer and minibatch size for a fair
comparison. First, we obserdgpc (Oord et al., 2018) has the smallest variance, while it exhibits a
large bias (the estimated mutual information frdgpc has an upper bourldg(batch size)). Sec-
ond,Jnyws (Nguyen et al., 2010) andysp (Poole et al., 2019) have large variances, especially in
the Cubic task. Song & Ermon (2019) pointed out the limitationdgfc , Inws , andJsp, and
developed the SMILE method, which clips the value of the estimated density function to reduce the
variance of the estimators. DoE (McAllester & Stratos, 2020) is neither a lower bound nor a upper
bound of mutual information, but can achieve accurate estimates when underlying mutual informa-
tion is large.Jrpc exhibits comparable bias and lower variance compared to the SMILE method,
and is more stable than the DoE method. We would like to highlight our method's low-variance
property, where we neither clip the values of the estimated density ratio nor impose an upper bound
of our estimated mutual information.

4 RELATED WORK

As a subset of unsupervised representation learning, self-supervised representation learning (SSL)
adopts self-de ned signals as supervision and uses the learned representation for downstream tasks,
such as object detection and image captioning (Liu et al., 2020). We categorize SSL work into two
groups: when the signal is the input's hidden property or the corresponding view of the input. For
the rst group, for example, Jigsaw puzzle (Noroozi & Favaro, 2016) shuf es the image patches and
de nes the SSL task for predicting the shuf ed positions of the image patches. Other instances are
Predicting Rotations (Gidaris et al., 2018) and Shuf e & Learn (Misra et al., 2016). For the second
group, the SSL task aims at modeling the co-occurrence of multiple views of data, via the contrastive
or the predictive learning objectives (Tsai et al., 2020a). The predictive objectives encourage recon-
struction from one view of the data to the other, such as predicting the lower part of an image from



Published as a conference paper at ICLR 2021

its upper part (ImageGPT by ( )). Comparing the contrastive with predictive learn-
ing approaches, ( ) points out that the former requires less computational resources
for a good performance but suffers more from the over- tting problem.

Theoretical analysis ( , ) suggests the con-
trastively learned representatlons can Iead toa good downstream performance. Beyond the theory,

( ) shows what matters more for the performance are 1) the choice of the contrastive
learning objective; and 2) the creation of the positive and negative data pairs in the contrastive
objective. Recent work ( , ) extends the usage of contrastive learning from the self-
supervised setting to the supervised setting. The supervised setting de nes the positive pairs as the
data from the same class in the contrastive objective, while the self-supervised setting de nes the
positive pairs as the data with different augmentations.

Our work also closely rates to tiskewed divergenaaeasurement between distributions (Lee,

, ). Recall that the usage of the relative parameters pIays a
crUC|aI role to regularlze our objective for its boundness and low variance. This idea is similar to
the skewed divergenameasurement, that when calculating the divergence between distribBtions
andQ, instead of considerin®(P kQ), these approaches considg(fP k P + (1 )Q) with
D representing the divergence a@dk < 1. A natural example is that the Jensen-Shannon
divergence is a symmetric skewed KL divergenBeis(P kQ) = 0:5Dk, (P k0:5P + 0:5Q) +
0:5Dk. (QkO:5P +0:5Q). Compared to the non-skewed counterpart the skewed divergence has
shown to have a more robust estimation for its value (Lee, , ). Dif-
ferent from these works that focus on estimating the values of dlstrrbuuon divergence, we focus on
learning self-supervised representations.

5 CONCLUSION

In this work, we present RPC, the Relative Predictive Coding, that achieves a good balance among
the three challenges when modeling a contrastive learning objective: training stability, sensitivity
to minibatch size, and downstream task performance. We believe this work brings an appealing
option for training self-supervised models and inspires future work to design objectives for balancing
the aforementioned three challenges. In the future, we are interested in applying RPC in other
application domains and developing more principled approaches for better representation learning.
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A APPENDIX

A.1 PROOF OFLEMMA 1IN THE MAIN TEXT

Lemma 2 (Optimal Solution for Jgpc , restating Lemma 1 in the main text) Let

Jrec (XiY) 1= sup Epy, [F(GY)] Epypy [ OGY)] 5By F206y)  5Bece, F2(XY)

andr(x;y) = pi’i’)‘g’&) be the density ratioJgpc has the optimal solution
r(x; . 1
f(xy)= %::r;; (x;y) with - r.. —:

Proof: The second-order functional derivative of the objective is
dP X;Y dP X PY X

which is always negative. The negative second-order functional derivative implies the objective has
a supreme value. Then, take the rst-order functional deriva@% and set it to zero:

dPx.y dPx Py f(x;y) dPxy f(x;y) dPx Py =0:
We then get
f(xy)= 9P dPxPy _ p(xy) pOIpy) _ r(xy)
dPxy +  dPxPy p;y)+ p(x)ply) r(xy)+
Since0 r(x;y) 1 ,wehave — % 1 Hence,
8 60; 60;f (x;y):=r.. (Xy)with - r.. 1:

A.2 RELATION BETWEENJgrpc AND D 2

In this subsection, we aim to show the following: ). (Pxy kPx Py) = Ep, p, [r2(x;y)] 1

and 2)Jrpc (X;Y ) = ——Epo[r2.  (x;y)] by havingP®= ——Pxy + ——Px Py asthe mixture
distribution ofPxy andPx Py .
Lemma3 D :(Pxy kPxPy)= Ep,p, [r?(x;y)] 1
Proof: By de nition ( , ),
2
D :(Pxy kPxP )—Z (v 1—Z dPxv gpepy 1
AT R T TdPy Py "~ dPxPy XY
p(x;y) 2 2
——" dPxP 1= ro(x;y)dPx P 1
pOORY) o

EPx Py [rz(X,y)] L

Lemma 4 De ning P° = —Pxy + ——Px Py as a mixture distribution oPxy andPx Py,
Jrec (X;Y) = —5—Epolr?.  (x;y)].

13
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Proof: Plug in the optimal solutioh (X;y) = — g ——aF 5

(see Lemma 2) intdrpc :

Jrrc = pry [f eyl Eecre IF CGYT SEpy hf 2(x;y)I 5EPxPy hf 2(x;y)I
= . f (xy) dPxy dPx Py %f 2(xy) dPxy +  dPxPy
. . 2
AR e R
_ ;Jr : Z)%IYD . ZEEEYP 2dPXY +  dPy Py
N Ghoy * dpePy v Ot dPx Py
Sincewedene .. = %andm: —Pxy + —PxPy,

+ 2
Jrpc = 5 Epolrs,  (y)I:

A.3 PROOF OFPROPOSITIONL IN THE MAIN TEXT

The proof contains two parts: showify Jgrpc Zi + 2—2 (see Section A.3.1) anﬁg”,;’é is a
consistent estimator falrpc (See Section A.3.2).

A.3.1 BOUNDNESS OFJrpc

Lemma5 (Boundness 0Bgpc) 0 Jrpc 5 + 2*2

Proof: Lemma 4 suggestipc (X;Y ) = —5—Epo[r?.  (x;y)]withP®= ——Pxy + ——Px Py
as the mixture distribution d?xy andPyx Py . Hence, itis obviouSgpc (X;Y ) 0.
We leverage the intermediate results in the proof of Lemma 4:
z
1 dPx.y dPx Py
X;Y)= 2 : Pxy + Px P
Jrec (X;Y) 22 APy +  dPy Py dPxy Z dPx Py
_ } dP dPx;Y dPx PY . dP p dpx;y dPx PY
T2 XY dPx;Y + dPx Py 2 XY dPx;Y + dPy Py
1
= 5B [ (Y] 3Eecp [ (GYL
Since - r.. L 0rpc (XY) A+ 2—2

A.3.2 CONSISTENCY

We rst recall the de nition of the estimation afgpc :

De nition 2 (‘fgﬁ% , empirical estimation of Jrpc , restating De nition 1 in the main text) We
parametrizef via a family of neural networks = ff : 2 Rgwhered 2 Nand is
compact. Lefx;;yigL,; ben samples drawn uniformly at random frofxy andfx-o;yj‘)gj”‘:l be
m samples drawn uniformly at random frdy Py . Then,

] 1 X 1 X 1 X 1 X
Jwe = sup o Foaw) oo TRy o St SRy

i=1 j=1 i=1 j=1

14
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Our goal is to show thaf;“g,% is a consistent estimator fdrpc . We begin with the following
de nition:

. 1 X 1 X 1 X 1 X
Jeee, = = P Oay) 0 FOy) o SR = SPEEY) ()
i=1 i=1 i=1 j=1
and
h i
E Jrec: = Bp [f (Y] Epcry [f (6] 5Epy [F206Y)] SEBecry [F206Y)]: (4)
Then, we follow the steps:

. Tﬂe rst part is about estimation. We show that, with high probabiljg),;,”c; is close to
E Jrec. ,forany given .
» The second part is about approximation. We will apply the universal approximation lemma
of,neural networks ( , ) to show that there exists a netwoskich that
E J\Rpc; is close toJrpc .
. h [
Part | - Estimation: With high probability, mb?:; is close toE Jrpc: , for any given

Throughout the analysis on the uniform convergence, we need the assumptions on the boundness
and smoothness of the functiédn. Since we show the optimal functidnis bounded inJgpc ,

we can use the same bounded valued fowithout losing too much precision. The smoothness of

the function suggests that the output of the network should only change slightly when only slightly
perturbing the parameters. Speci cally, the two assumptions are as follows:

Assumption 1 (boundness of ) There exist universal constants sucht8at2F ,C. f
Cu . For notations simplicity, we le¥l = Cy  C_ be the range of andU = max fj Cyj;jCLjg
be the maximal absolute valuefof. In the paper, we can choose to constrain tat= - and

Cu = 1 since the optimal functioh has — f ES

Assumption 2 (smoothness of ) There exists constant> 0 such that8(x;y) 2 (X Y ) and
122 Lif L 06y) FL Gy T 2

Now, we can bound the rate of uniform convergence of a function class in terms of covering num-
ber ( , ):
Lemma 6 (Estimation) Let > OandN ( ; ) be the covering number of with radius . Then,

!

h i
Pr sup Jipe. E Jrec:
f 2F '

2 m2 n2 m2

: — o+ 4 _ —
NC sz TP gz TP gz TP gz

4 1+ +2( +)u )

Proof: For notation simplicity, we de ne the operators

P
« P(f)= Ep,, [FOGY)]andPu(f)= X 1) f(xisyi)
« Q(f)= Ep, p, [F(Y)] andQm(f) = 2 ) f(x0y0)
Hence,
. h i
JRbe.  E Jrec;

= Po(f) P(f) Qm(f)+ Q(f) Pa(f5)+ P(f?) Qm(f?)+ Q(f?
i Pa(f) P(E)i+ jQm(f) Q)i+ Pu(f?) P(f?) + Qm(f?) Q(f?
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0— — . = . . . : . . .
Let 0= TR andT := N( ; 9.LetC = ff ;f ,; f _gwithf 1; 2, ; 19

be suchthaB; ( 1; 9, ,B1 ( 7; 9 are °cover. Hence, foranfy 2F ,thereisarf , 2 C
such thak k1 0

Then, foranyf , 2 C:
h
JRee.  E Jrec,

i Pa(f) P+ jQm(f) Q)i+ Pa(f?) PE?) + Qm(f?) Q(F?
JPa(f ) PEDI+HIP(F)  Pa(f D+ jP(F ) P(f )

+ jQm(f) QM Ji+iQm(f) Qm(f )i+ jQ(f ) Q(f )i

+  Pa(f%) P(f%) + Pa(f?) Pa(f%) + P(f?) P(f%)
+ Qm(f2) QUF2) + Qm(f?) Qm(f%) + Q(F?) Q(f?%)
JPa(f ) PME DI+ ko kk+ ko kK

+ JQm(f k) Q(f k)j+ k kk+ k kk
+ Pa(f2) P(f%2) +2UKk k+2 Uk Kk

+ Qm(f2) Q(f2) +2Uk  (k+2Uk ¢k

=jPa(f ) P i+ Qm(f,) QU i+ Pa(f2) P(E2) + Qm(f2) Q(f?)
+2 1+ +2( + Uk Kk

i Pa(f ) P DI+ jQm(f ) Q(f i+ Pa(f%) P(f2) + Qm(f2) Q(fzk)+§;

where

o iPn(f ) Pn(f )i k kk due to Assumption 2, and the result also applies for
jP(F) P DiLIQm(f ) Qm(f )i, andjQ(f )  Q(f ).

« Pa(f?) Pa(f2) 2kf ki k ¢k 2Uk  kduetoAssumptions1and 2. The
result also applies foP (f2)  P(f2), Qm(f?) Qm(f2).and Q(f?) Q(f2).

Hence, '
| h i
Pr sup Jopt. E Jrec:
f 2F ’

Promax jPn(f,) P(f i+ jQm(f ) Q(F Ji+ Pa(f5) PEL) + Qm(f7) QUF7) +

=Pr maxjPn(f ) P(f )i+ jQm(f,) Q(f )i+ Pa(f2) P(f2) + Qm(f2) Q(f%)
X

ProjPa(f ) P i+ jQm(f ) Q(F i+ Pa(f2) PE%) + Qm(f2) Q(f2)
k=1
X

ProjPa(f,) P{E I g +PrjQm(f,) QI g
k=1

+Pr Pn(fzk) P(fzk) 3 +Pr Qm(fzk) Q(fzk) 3 :

With Hoeffding's inequality,

16

N



Published as a conference paper at ICLR 2021

PriPa(f ) P DI 5 2exp 2%

ProjQm(f,) Q(f )i 5 2exp myz=

Pro Py(f2) P(f2) 5 2exp o=

Pr Qm(f%) Q(f2) g 2exp 7=

To conclude,
|
| h o0
Pr sup Jopt. E Jrec:
f 2F '
n2 2 n2 2
2N ( ; ex —— +ex ——— +tex — ex —
G T w2070 3wz P 3wz 2 P 3072 P 3072

Part Il - Approximation: Neural Network Universal Approximation.  We leverage the univer-
sal function approximation lemma of neural network

Lemma 7 (Approximation ( , )) Let > 0. There existdl 2 N and a fam-
ily of ngpral ngtworksF = ff 2 R%g where is compact, such that
. lanf E Jrec: JrpPc

Part 11l - Bringing everything together.  Now, we are ready to bring the estimation and approxi-
mation together to show that there exists a neural netwoskich that, with high probabilit)d‘;“g,% :

can approximatdgrpc With n°=min fn;mgat a rate o0(1= n9:

q_ —
Proposition 3 With probability at leastt. ~ ,9 2, jdgec  Jhpe.j = O( TBG 2y
wheren®=min fn;mg.

Proof: The proof follows by combining Lemma 6 and 7.

First, Lemma 7 suggests, 2
h i

E Jrec: JrpPc >

Next, we perform analysis on the estimation error, aiming tomd and the corresponding prob-
ability, such that h i
NHES . E Jrec 5

Applying Lemma 6 with the covering number of the neural network:N( ;) =

O expdlog(1=) ( , ) and letn®=min fn;mg:
. |
A h i '
Pr sup Jo.  E Jrec: 5
f 2F ' 2
|
n?2 m 2 n?2 m2
N ( o _m_ _n _m_
Cig v v2( v )u) &P auz " gvzz TP gz TP gz

=0 exp dlog(l=) n°?
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where the big-O notation absorbs all the constants that do not require in the following derivation.
Since we want to bound the probability with , we solve the such that

exp dlog(1=) n°?2

Withlog(x) x 1,
n2+d( 1) n°2+dog log(1=);
where this inequality holds when

r—
d+log(1=)
nO

A.4 PROOF OFPROPOSITIONZ IN THE MAIN TEXT - FROM AN ASYMPTOTIC VIEWPOINT

Here, we provide the variance analysis :ﬁgfo via an asymptotic viewpoint. First, assum-
ing the network is correctly speci ed, and hence there exists a network paramesatisfying
f (xy)=f (xy)=r.. (xy). Then we recall thaffpe is a consistent estimator 6fF¢

(see Proposition 3), and under regular conditions, the estimated network parémm@g(‘: sat-
isfying the asymptotic normality in the large sample limit (see Theorem 5.23 in ( ,
)). We recall the de nition offg5¢ . in equation 3 and let® = min f n; mg, the asymptotic

expansion offe. has

S = I S ek W

n n 1
= J\anF"C;'\ * j\ll_?nPC ;'\( A) + Op(pﬁ)) (%)

. 1
= T+ Op(PiO);
n

RPC ;

n _ . A . . no_ n
whereJT—Q“PC;A = 0 since” is the estimation frondpe. = sup JRee -

Next, we recall the de nition in equation 4:

E[J\RPC ;A] = EPXY [f A(X; y)] EPx Py [f ’\(X; y)] EEPXY [f ’%(Xv y)] EEPX Pv [f ’%(Xv y)]

Likewise, the asymptotic expansion BfSrec . ] has

ElJrec .1 = Eldrec; 1+ Eldrec; 1(" )+ ok K
Elfrec; 1+ Elfee, 1 )+ op(py ©

ElJrec: 1+ Op(P%));

whereE[Jrpc: ]=0 sinceE[Jrpc: 1= Jrpc and satisfyingf (x;y) = f (x;y).

18



Published as a conference paper at ICLR 2021

Combining equations 5 and 6:

RPC ;

. 1
T E[‘j\RPC ;’\] = j\lr?nprg: ; Jrec + Op(pﬁ))

_1)@ . 1 0.,,0 1 X 2 [y 1 X 2 7,0.,,0
“n f (xiryi) m f(x5y)) 2n f< (Xiyi) >m £ (x55y))
i=1 j=1 i=1 i=1
h i h , i 1
Eexy [ OGYII+ Epcry [ (G + SEpy 2(x; y) * 5By T O(XY) £ op(pﬁ)
1 X 1 X 1 X 1 X
:ﬁi:lr;; (Xi;yi) Ej:lr;; (on;yjo) Eﬁiﬂ r2:; (Xi;yi) iaj:l r2;; (on;yio)

EPXY [I’ i (X; y)] + EPx Py [I’ o (X y)] + Eva r2;; (X y) + EP>< Py r2;; (X; y)

1
+ Op(pﬁ)) |
1 1 X i 2 . i 2 . .
:pﬁ pﬁ r., (Xiiyi) Er;; (Xi,yi) Eva r:; (va) Er;; (Xry)
i=1 |
1 1 X 0.,,0 2 0.,,0 . 2 .
Pﬁ F’ﬁ ro (Yt 5 (X75¥7)  Eegry 1 (XY)+ A (xy)
j=1
+ L.
Op(pﬁ)-

Therefore, the asymptotic Variance 8. is

Var[Jgpe 1= Varpxy [r.. (xy) Er?; (x;y)]+%Varppr[r oY)+ Er?; Gy + 0(%)):

First, we look aVarp,, [r.. (Xy) frz;; (x;y)]. Since > Oand - .. L simple
2

calculation gives us 2 r-. (xy) irz;; (x;y) Zi Hence,

Var r X; r2. (x max 2 + 22 17
arp,, [r:: (Xy) DY (x;y)l a T %32 3
Next, we look aVarp, p, [T .. (X;y)+ frz;; (x;y)]. Since 0, > 0Oand — r..
1 simple calculation gives usz—2 r.. (Gy)+ 5r2. (xy) 255 Hence,
. 2 . 22 2 o+ 2
Varp, p, [T, (Xy)+ 5 (x;y)]  max > 0 Tz

Combining everything together, we restate the Proposition 2 in the main text:
Proposition 4 (Asymptotic Variance ofJ\,;“PC )
1 2 1 2 1
Varlfgic]= “vare, [ri (y)  5r? (Gy)+ Varee [ (6y)+ 5 (6y)]+ o)
2 1 2.2 2 4 2

+ 22 1
—2z 3 g oy g T
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A.5 PROOF OFPROPOSITIONZ IN THE MAIN TEXT - FROM BOUNDNESS OFf

As discussed in Assumption 1, for the estimatiffji. , we can bound the functidn in F  within
[ —; 3] without losing precision. Then, re-arrangidpe :

X

0.,,0 1X1 2
f(xyp) o Ef (Xi;yi)
i=1 j=1 i=1 j=1

:|_)(1
sup — f (Xiyi)

2¢,,0.,,0
v Ef (X3 y;)

X f v f2(x v X FoxOvO) 4 —f 2(x0: O
Sup (leyl) (leyl) + (X] 1y|)+ (XJ ,y])
foF N._ 2 m. 2
i=1 j=m
Then,since — f (;) 1, basic calculations give us

2 + 2 . . 1 2
—%7 f(Xiiyi) Ef (Xi; Vi) Z—and >

The resulting variances have

Eogyr 5P200y) =55

2 2

+ 1 2
22 "2

Varlf (xi;yi)  5f 2(xi;yi)]  max
and
22 2 4 2
2 22
Taking the mean ofn; n independent random variables gives the result:

Var[f (iy) + SFAOTy)] max

Proposition 5 (Variance of J5pe )

: 1 2 + 22 1 1
n .
Var[Jrpe 1 Smax S 5 o+ —max

A.6 |IMPLEMENTATION OF EXPERIMENTS

For visual representation learning, we follow the implementatiohtips://github.com/
google-research/simclr . For speech representation learning, we follow the imple-
mentation inhttps://github.com/facebookresearch/CPC_audio . For MI estima-
tion, we follow the implementation irttps://github.com/yaochungt/Pointwise
Dependency_Neural_Estimation/tree/master/MI_Est_and_CrossModal

A.7 RELATIVE PREDICTIVE CODING ON VISION

The whole pipeline of pretraining contains the following steps: First, a stochastic data augmentation
will transform one image sampbey to two different but correlated augmented view$, , and

X9 Then a base encode( ) implemented using ResNet (He et al., 2016) will extract representa-
tions from augmented views, creating representations 1 andh,i. Later a small neural network

g( ) called projection head will malp,x 1 andh, tozox 1 andzyk in a different latent space. For
each minibatch oN samples, there will b8N views generated. For each imagg there will be

one positive pailxgk 1 andxgk and2(N 1) negative samples. The RPC loss between a pair of
positive views x © andxj0 (augmented from the same image) , can be calculated by the substitution

f (x%:x?)=(z z)= = s ( isahyperparameter) to the de nition of RPC:
~RPC _ - XN 1 . 2 XN 1 2 7
i = (si m - [k&i] Si;k Esi;j m » [k6i] Sik ) (7)

For losses other than RPC, a hidden normalizatias;ofis often required by replacing z; with
(zi zj)=zijjz;j. CPC and WPC adopt this, while other objectives needs it to help stabilize training
variance. RPC does not need this normalization.
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Con dence Interval oflgpc andJcpc
Objective CIFAR 10 CIFAR 100 ImageNet
Jepe (91:09% 91:13%) (77:119% 77:36%) (73:39% 73:48%)
JrPc (91:16% 91:47%) (77:41%; 77:98%) (73:92% 74:43%)

Table 4: Con dence Intervals of performancesl@bc andJcpc on CIFAR-10/-100 and ImageNet.

A.8 CIFAR-10/-100AND IMAGENET EXPERIMENTSDETAILS

ImageNet Following the settings in ( ;C), we train the model on Cloud TPU with
128cores, with a batch size df 096and global batch normahzatlo”r( , ). Here

we refer to the term batch size as the number of images (or utterances in the speech experiments)
we use per GPU, while the term minibatch size refers to the number of negative samples used to
calculate the objective, such as CPC or our proposed RPC. The largest model we train is a 152-layer
ResNet with selective kernels (SK) ( , ) @d wider channels. We use the LARS
optimizer ( , ) with momentuf9. The learning rate linearly increases for the rst

20 epochs, reaching a maximum 64, then decayed with cosine decay schedule. The weight
decay is10 “. A MLP projection heady( ) with three layers is used on top of the ResNet encoder.
Unlike ( ), we do not use a memory buffer, and train the model fot@dgpochs

rather tharBOO epochs due to computational constraints. These two options slightly reduce CPC's
performance benchmark for ab®®%o with the exact same setting. The unsupervised pre-training is
followed by a supervised ne-tuning. Following SImCLRv2 ( , ;C), we ne-tune the
3-layerg( ) for the downstream tasks. We use learning rété6 and0:064 for standard 50-layer
ResNet and larger 152-layer ResNet respectively, and weight decay and learning rate warmup are
removed. Different from ( ), we use a batch size @36, and we do not use

global batch normalization for ne-tuning. Fdirpc we disable hidden normalization and use a
temperature = 32. For all other objectives, we use hidden normalization ard0:1 following
previous work ( ). For relative parameters, we us®:3; =0:001, =0:1

and =0:3; =0:00L = O :005for ResNet-50 and ResNet-152 respectively.

CIFAR-10/-100 Followmg the settings in ( ), we train the model on a single
GPU, with a batch size 812 and global batch normallzatlon ( ). We use
ResNet ( , ) of deptB and depttb0, and does not use Selective Kernel ( , )
or a multiplied width size. We use the LARS optimizer ( , ) with momeBtanihe
learning rate linearly increases for the @depochs, reaching a maximumé@#, then decayed with
cosine decay schedule. The weight decayds*. A MLP projection heady( ) with three layers

is used on top of the ResNet encoder. Unlike ( ), we do not use a memory buffer.
We train the model fol000epochs. The unsupervised pre-training is followed by a supervised
ne-tuning. Following SImCLRv2 ( ;C), we ne-tune the 3-lag€) for the

downstream tasks. We use learning rdxds for standard 50-layer ResNet , and weight decay and

learning rate warmup are removed. Bapc we disable hidden normallzauon and use a temperature
=128. For all other objectives, we use hidden normalization ard) :5 following previous work

( , ). For relative parameters, we usel:0; =0:005 and =1:0.

STL-10 We also perform the pre-training and ne-tuning on STL-10 ( , ) using
the model proposed in ( ). ( ) proposed to indirectly approximate
the distribution of negatlve samples so that the objectideased However, their implementation

of contrastive learning is consistent with ( ). We use a ResNet withb@eysttan
encoder for pre-training, with Adam optimizer, learning r@t@01 and weight decayl0 ¢. The
temperature is set to0:5 for all objectives other thadigrpc , Which disables hidden normalization

and use = 128. The downstream task performance increases 88m% of Jcpc to 84:1% of

JrPc .

Con dence Interval We also provide the con dence interval dkpc andJcpc on CIFAR-10,
CIFAR-100 and ImageNet, using ResNet-18, ResNet-18 and ResNet-50 respectively (95% con -

3For WPC ( , ), the global batch normalization during pretraining is disabled since we enforce
1-Lipschitz by gradient penalty ( , ).
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dence level is chosen) in Table 4. Both CPC and RPC use the same experimental settings throughout
this paper. Here we use the relative parameters £:0; =0:005 =1:0)inJgrpc Which gives

the best performance on CIFAR-10. The con dence intervals of CPC do not overlap with the con-
dence intervals of RPC, which means the difference of the downstream task performance between
RPC and CPC is statistically signi cant.

A.9 RELATIVE PREDICTIVE CODING ON SPEECH

For speech representation learning, we adopt the general architecture from ( ). Given
an input signak ;.7 with T time steps, we rst pass it through an encoder parametrized by

to produce a sequence of hidden representatitngr g whereh; =  (x{). After that, we
obtain the contextual representatipnat time ste with a sequential model parametrized by:
¢t = (hg;:::;hy), wherec; contains context information before time stepg-or unsupervised
pre-training, we use a multi-layer convolutional network as the encodeand an LSTM with
hidden dimensio256 as the sequential model . Here, the contrastiveness is between the positive
pair (h¢+k; ct) wherek is the number of time steps ahead, and the negative {fairs;), whereh;
is randomly sampled froN , a batch of hidden representation of signals assumed to be unrelated to
ct. The scoring functiof based on Equation 2 at stepnd look-aheadt will be fyx = fi(h;c;) =
exp((h)> Wcy), whereWy is a learnable linear transformation de ned separately for éaéh
f1;::;KgandK is predetermined a2 time steps. The loss in Equation 2 will then be formulated
as:

X
“RPC _ . . f2 . 2(h. -
tk (fk(hek;ct) jiNj - fr(hisce) 2fk(ht+k-ct) 72“\”- o fe(hisc)) (8)
We use the following relative parameters=1; =0:25 and =1, and we use the temperature

= 16 for Jgpc . ForJcpc we follow the original implementation which sets= 1. We x all
other experimental setups, including architecture, learning rate, and optimizer. As shown in Table
3, Jrec has better downstream task performance, and is closer to the performance from a fully
supervised model.

A.10 EMPIRICAL OBSERVATIONS ONVARIANCE AND MINIBATCH SIZE

Variance Experiment Setup We perform the variance comparison 3y , Jnwy and the pro-
posedJgrpc . The empirical experiments are performed usmg SImCLRv2 ( ) on
CIFAR-10 dataset. We use a ResNet of defBhwith batch size 0612 We train each objectlve

with 30K training steps and record their value. In Figure 1, we use a temperatar&28 for all
objectives. Unlike other experiments, where hidden normalization is applied to other objectives, we
remove hidden normarlization for all objectives due to the reality that objectives after normalization
does not re ect their original values. From FigureJkpc enjoys lower variance and more stable
training compared tdpy andJnwg -

Minibatch Size Experimental Setup We perform experiments on the effect of batch size on
downstream performances for different objective. The experiments are performed using SimCLRv2

) on CIFAR-10 dataset, as well as the model from ( ) on
L|br|Speech 100h dataset ( ). For vision task, we use the default tempera-
ture = 0:5from ( ) and h|dden normalization mentioned in SectionJ:fer.

ForJgrpc in vision and speech tasks we use a temperature0128 and = 16 respectively, both
without hidden normalization.

A.11 MUTUAL INFORMATION ESTIMATION

Our method is compared with baseline methods CPC ( , ), NWJ ( ),
JSD ( , ), and SMILE ( , ). All the approaches conS|der the
same design dof (x; y), which is a 3-layer neural network taking concatendted) as the input.

We also x the learning rate, the optimizer, and the minibatch size across all the estimators for a fair
comparison.

We present results of mutual information by Relative Predictive Coding using different sets of rela-
tive parameters in Figure 4. In the rst row, we set 10 3, =1, and experiment with different
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