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ABSTRACT

Large language models (LLMs) have shown significant potential in the biomolec-
ular domain, particularly by demonstrating that effective adaptation of molecular
representations for LLMs can greatly improve the quality of molecular captions.
Most previous works have focused on aligning unimodal molecular structures with
text, overlooking the diversity of modalities. Naive approaches to aligning multi-
modal molecular structures with text often lead to (1) separately aligned embed-
dings, (2) inconsistent textual representations, and (3) increased computational
overhead. To address these challenges, we propose LLM framework MV-CLAM
equipped with MQ-Former, a novel multi-querying transformer. This architec-
ture introduces a cross-model projector facilitating the simultaneous alignment
of 2D and 3D molecular representations to a unified text token. By employing
a shared self-attention layer, MQ-Former preserves rich molecular embeddings
across different dimensions while consolidating them into a universal molecular
token. Our approach outperforms baseline models in both molecule-text retrieval
and molecule captioning tasks. Additionally, our framework shows promising
results for zero-shot molecule editing and molecule-related question answering.
By effectively integrating multi-view molecular data into a format conducive to
LLMs, our method serves as a valuable tool for enhancing the characterization and
understanding of chemical structures, facilitating a more seamless transition from
molecular data to textual descriptions. The source code of MV-CLAM is available
in https://anonymous.4open.science/r/mv-clam-4827.

1 INTRODUCTION

Given that human expertise relies on a deep understanding of molecular structures and biomedi-
cal text, advancing language models to effectively integrate the two domains is a logical step for-
ward (Edwards et al., 2022). The extensive biochemical literature knowledge embedded in the large
pretraining corpora enables language models to grasp biochemical domain-specific concepts. Signif-
icant advancements in accuracy and applications have been made for molecule-related tasks, such as
biochemical, medical question answering (Taylor et al., 2022; Li et al., 2024; Liu et al., 2023a) and
molecule captioning (Liu et al., 2023b; Luo et al., 2024). The field of molecule-text translation plays
a crucial role in facilitating efficient molecule characterization and comprehensive understanding for
domain experts, particularly admist the rapid expansion of scientific data.

Self-supervised molecular representation learning (MRL) has made significant strides in capturing
the properties and functions of small molecules across diverse applications (Guo et al., 2022). This
success is built on harnessing various molecular structures, such as 1D SMILES (Simplified Molec-
ular Input Line Entry System) strings (Irwin et al., 2022), 2D graphs (You et al., 2020; Hu et al.,
2019; Wang et al., 2022), and 3D conformations (Zhou et al., 2023). Many computational chem-
istry tasks rely heavily on 2D molecular structures to capture atomic bonding patterns and molecular
inter-connectivity (Guo et al., 2022). 2D molecular representation is typically encoded as graph with
atoms as nodes and bonds as edges, offering a clear and intuitive depiction of molecular architecture.
Nodes are embedded with rich atomic features such as atomic number, formal charge and hybridiza-
tion state while edges are characterized by bond type, length, and other relevant properties (Duve-
naud et al., 2015; Yang et al., 2019). 3D molecular conformers, on the other hand, provide critical
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information about the spatial arrangement of atoms. The embedding of atom coordinates directly
hint molecular conformation, interactions, and binding affinities in biological systems. Therefore,
MRL models have evolved to handle 3D molecular information for downstream tasks that require
3D molecular geometry prediction or generation (e.g. protein-ligand affinity). Nonetheless, each
variant of molecular representations contribute uniquely. 1D SMILES provide compact represen-
tation of molecular structures, 2D graphs capture the static relationships and connectivity essential
for many chemical analyses and 3D structures reflect the dynamic spatial arrangement (Kim et al.,
2024; Du et al., 2023).

The success of vision-language modeling methods (Alayrac et al., 2022; Merullo et al., 2022) has
accelerated the application of cross-modal alignment in the molecular domain. Studies have adopted
contrastive learning (Figure 1A) or the Q-Former (Li et al., 2023) framework (Figure 1B) to align
molecular representations with text descriptions (Su et al., 2022; Liu et al., 2023a;b; Li et al., 2024).
Q-Former excels in this area due to its effective cross-modal attention and query-based representa-
tion. Previous works have aligned only a single view of a molecule within the Q-Former framework
(Figure 1B). However, as different dimensions capture distinct molecular characteristics, relying on
a single view may be insufficient. For instance, texts describing molecular properties often reference
both topology (e.g., ring structures) and spatial conformation (e.g., optimal coordinates). Simulta-
neous alignment of 2D and 3D views to textual descriptions can resolve ambiguities inherent in a
single representation. A simple approach would be to directly align each view to text using two
separate alignment modules. However, this leads to several issues. 1) Separated embedding spaces.
As independent pretrained models or encoders are utilized for 2D and 3D structures, the corre-
sponding embeddings exist in a separate space. Without alignment between the respective multiple
views, producing a consistent representation that leverages all information is difficult. 2) Lack of
text consistency. Cross-modal alignment not only aligns molecular information to text, but also
vice versa. Independent utilization of Q-formers lead textual representations to lie in different latent
space, which conflicts the purpose of utilization. 3) High computational cost. Processing each view
independently results in significant computational overhead.

To address these limitations, we propose Multi-Querying Transformer (MQ-Former). MQ-
Former approximates the embedding spaces of 2D and 3D structures using a shared self-attention
layer and employs a unified text transformer to generate a single, processed text token for each
molecule (Figure 1C). Aligning multiple molecular views to the same text provides a more sub-
tle and robust embedding, allowing models to capture both chemical and spatial semantics in a
unified representation. In essence, adopting a multi-view approach enables a deeper and more com-
plete molecular understanding. Moreover, by aligning the two views simultaneously, our approach
achieves faster training speeds and reduces the training time by more than half compared to handling
each view separately.

Our contributions are as follows:

• We incorporate both 2D and 3D molecular structures to guide a more comprehensive un-
derstanding of molecules for language models.

• We propose MQ-former, a novel cross-modal projector that can align multiple different
views to a unified text embedding space.

• We achieve state-of-the-art performance in molecule-text retrieval and molecule caption-
ing tasks while improving the interpretability of molecular representations. We conduct
downstream molecule property question answering and zero-shot molecule editing.

2 RELATED WORKS

Molecule-Text Modeling. Early approaches utilize 1D SMILES molecular sequences to treat
molecules as text sequences by adapting Transformer models (Vaswani, 2017) designed for natural
language processing (Irwin et al., 2022; Wang et al., 2019). KV-PLM (Zeng et al., 2022) specifically
employs a masked language modeling loss to pretrain on biomedical texts with 1D SMILES repre-
sentation. MolT5 (Edwards et al., 2022) specializes T5 model (Raffel et al., 2020) and tokenizer for
SMILES-to-text and text-to-SMILES translations. Further enhancements represent molecules as 2D
graphs. In particular, MoMu (Su et al., 2022) and MoleculeSTM (Liu et al., 2023a) leverage cross-
modal contrastive learning to align the molecule graph representation to text. Current approaches to
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Figure 1: Methods for molecular language modeling

use multi-view representations of molecules primarily rely on contrastive learning, as demonstrated
in models like GIT-Mol (Liu et al., 2024) and MolLM (Tang et al., 2024b). Additionally, aided
with the development of vision large language models (VLLMs), molecular large language models
with multi-modal learning architectures have been developed. Simple projection layers were used in
prior works, InstructMol (Cao et al., 2023) and GraphGPT (Tang et al., 2024a), to project molecular
graph representations to LLM’s input text token space. Recent works have been concentrated on uti-
lizing Q-Former (Li et al., 2023) suggested in vision domain to bridge the gap between molecule and
text modality. MolCA (Liu et al., 2023b) and 3D-MoLM (Li et al., 2024) aligns 2D graph and 3D
conformer molecular representations to text in purpose to generate effective soft-prompts for large
language models. UniMoT (Zhang et al., 2024) employs a vector quantization-driven tokenizer with
a Q-Former. Current methods for utilizing multi-view representations of molecules are limited to
contrastive learning or usage of specialized tokenizers, failing to achieve simultaneous alignment
across all views and text, thereby neglecting the core principle of cross-modal alignment.

3 MV-CLAM
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Figure 2: Overall architecture of MV-
CLAM. MQ-Former provides universal
query which acts as a soft prompt to Llama2,
optimized by LoRA

MV-CLAM provides molecule captions given multi-
view structural information. 2D and 3D molecu-
lar structural information is extracted from special-
ized encoders and processed through MQ-Former’s
cross-attention layers to update learnable query to-
kens for each dimension. These query tokens are
aligned to textual space via the shared self atten-
tion and multi-objective learning, while also consid-
ering the alternative view. 2D and 3D queries are
combined to create a universal query, which is then
passed with the prompt and SMILES strings to the
language model for caption generation. The over-
all framework of MV-CLAM is comprised of three
main components: 1) Molecule structural graph en-
coders for 2D and 3D molecular structures, 2) MQ-
Former as a cross-modal projector, and 3) LLaMA2
as the language model. (Figure 2).

3.1 MOLECULAR GRAPH ENCODER

To capture structural information from multiple
views, we used molecular embeddings from both 3D
and 2D structural encoders. For the 3D encoder f3d,
we deployed Uni-Mol (Zhou et al., 2023), a SE(3)-transformer based model pretrained on 209 mil-
lion 3D molecular conformations using two tasks: 3D position recovery and masked atom predic-
tion. Input 3D molecule for Uni-Mol is denoted as m3d = (V, f,P), where V and f each represents
atomic nodes and their features, and P ∈ R|V|×3 represents 3D coordinates of atoms. Pair repre-
sentations are initialized by invariant spatial positional encoding from atom coordinates and interact
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Figure 3: Training scheme of MQ-Former

with atom representations. The output atomic representation H3d ∈ R|V|×d3d , where hi corresponds
to the i-th atom and d3d denotes hidden dimension size of H3d, updates learnable 3D query tokens
through the cross-attention layers in MQ-Former’s 3D molecular transformer block.

H3d = [h1, h2, ..., h|V|] = f3d(m3d) (1)

For the 2D molecular encoder f2d, we adopted Molecule Attention Transformer (MAT) (Maziarka
et al., 2020), pretrained on two million molecule samples from ZINC15 dataset (Maziarka et al.,
2020). Given 2D molecule m2d = (V, f,A) where A represents edges within the molecule as adja-
cency matrix, MAT generates atomic representations H2d ∈ R|V|×d2d using a specialized molecule-
specific attention mechanism that considers edges, atomic distances and atomic features. The atomic
representations interact with the learnable 2D query tokens via cross-attention layers in 2D molecu-
lar transformer block.

H2d = [h1, h2, ..., h|V|] = f2d(m2d) (2)

3.2 MQ-FORMER: MULTI-QUERYING TRANSFORMER

Previous studies applying Q-Former to the molecular domain projects single-dimensional structural
embeddings into the textual space (Li et al., 2024; Zhang et al., 2024). These models consist of
a single molecule transformer and a text transformer. However, this approach is inherently lim-
ited in its capacity to handle more than two modalities. MQ-Former addresses the limitation by
introducing a novel architecture capable of aligning multiple modalities to the text space (Figure 3).
Our approach combines structural representations of two dimensions, but the architecture can be
extended using multiple molecule transformers and a single text transformer. Each molecule trans-
former, based on the BERT architecture with additional cross-attention layer, processes K learnable
query tokens specific to their respective views. Following previous studies (Li et al., 2024; Liu
et al., 2023b), we adopt the SciBERT (Beltagy et al., 2019) architecture for the text transformer and
initialize all blocks with SciBERT’s pretrained weights. Hence, textual descriptions S of length L
are tokenized with SciBERT’s tokenizer fsci to Xtext before being processed through MQ-Former’s
text transformer. The cross-attention mechanism extracts relevant information from embeddings
into the query tokens, and shared self-attention layers enable information exchange across text and
multi-view data.

Figure 3 illustrates MQ-Former generating a universal query tokens for a molecule given two differ-
ent views. Two molecule transformer modules each updates distinct K query tokens Q2d ∈ RK×768

and Q3d ∈ RK×768, which are randomly initialized. The learned query tokens, Q̂2d and Q̂3d of same
size, are updated representations of these initial tokens, refined through the alignment of multiple
molecule views and textual descriptions Xtext ∈ RL×768. Updated query tokens are concatenated
to create a single universal query Q̂ ∈ R2K×768, containing complementary structural informa-
tion aligned to textual space. The resulting universal query tokens are then used as inputs for the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

language model, along with 1D SMILES string and task prompt as depicted in Figure 2.

Q̂ = fconcat(Q̂2d, Q̂3d) = fMQformer(H2d, H3d, Xtext, Q2d, Q3d) (3)

3.3 LLAMA2 & LORA

The pretraining corpus of LLaMA2 (Touvron et al., 2023) includes a vast amount of biomedical
literature and thereby exerts powerful text generation capability with internal chemistry knowledge.
This allows LLaMA2 to effectively interpret 1D molecular sequences and address tasks related to
molecular comprehension. The language model adopts a causal mask to generate textual responses,
where the prediction of each token depends on the preceding tokens. For the final prediction, each
token is mapped to the most probable word in vocabulary using a softmax function after a linear
layer. Despite its inherent capabilities, the language model necessitates fine-tuning to effectively
address the universal queries posed by MQ-Former, particularly due to the modifications in the
tokenizer resulting from changes in module processing of textual descriptions. To facilitate efficient
fine-tuning, we implemented low-rank adaptation (LoRA, Hu et al. (2021)).

4 TRAINING MV-CLAM

The training of MV-CLAM consists of two stages. 1) Guiding MQ-Former to align both multi-
view molecular representations to textual space, and 2) Refining query tokens as soft prompts to be
effectively utilized by LLaMA2. Molecular encoders are frozen during the entire pipeline.

4.1 STAGE 1: TRAINING MQ-FORMER

Two sets of K learnable query tokens are updated by each molecule transformer block in Stage 1.
Molecule transformer blocks hold self-attention, cross-attention and feed-forward layers. Specif-
ically, the self attention layers in all blocks of MQ-Former are shared to exchange information
between modalities and view. The objective is to train MQ-Former to better align molecular repre-
sentations given by cross-attention to textual space. The training employs a multi-objective training
loss constituted of molecule-text contrasting ℓMTC , molecule-text matching ℓMTM and molecule
captioning ℓMCap inspired by the BLIP-2 framework (Li et al., 2023; 2024).

Molecule-text Contrasting. During ℓMTC computation, uni-modal self-attention mask ensure each
transformer processes query tokens independently, preventing information exchange and promoting
distinct representations for matching and non-matching molecule-text pairs. The 2D and 3D query
tokens Q2d(i), Q3d(i) for i-th molecule are processed through their respective molecule transform-
ers. Our 2K universal query token Q̂(i) is formed by concatenating the learned query sets.

ℓMTC is measured as cosine similarity between the universal query Q̂(i) and text representation
Xtext(i) with temperature scaling for precision. ℓMTC is computed as the batch mean of the sum
of the molecule-to-text loss ℓg2t and text-to-molecule loss ℓt2g . ℓg2t encourages the universal query
representation which encodes both 2D and 3D molecular structures, to match its corresponding text
representation while contrasting it against all other text representations within the batch. Simi-
larly, ℓt2g aligns the text representation with its matching molecular query. Together ℓMTC form a
bidirectional alignment between molecular features and textual descriptions, enhancing the ability
of MQ-Former to jointly represent and contrast molecules and their associated textual descriptions.
ℓg2t and ℓt2g is as written below, where M is the size of the batch and τ is the temperature parameter.

ℓg2t =

M∑
i=1

log
exp(maxk cos(Q̂(i), Xtext(i))/τ)∑M
j=1 exp(maxk cos(Q̂(i), Xtext(j))/τ)

ℓt2g =

M∑
i=1

log
exp(maxk cos(Xtext(i), Q̂(i))/τ)∑M
j=1 exp(maxk cos(Xtext(i), Q̂(j))/τ)

(4)

Molecule-text Matching. ℓMTM is for a binary classification task to predict matching molecule-
text pairs. Bi-directional self-attention masks lead all text and molecular embeddings from different
dimensions to share their information, guiding MQ-Former to capture fine-grained similarities be-
tween the domains. Universal query tokens are obtained then processed through a linear classifier
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after mean pooling. Let ρ(Q̂(i), Xtext(i)) denote the predicted probability that universal query Q̂(i)
matches its corresponding text description Xtext(i). ℓMTM is calculated as follows:

ℓMTM =
1

M

M∑
i=1

(
− log ρ(Q̂(i), Xtext(i)) + log ρ(Q̂(i), Xtext(j)) + log ρ(Q̂(r), Xtext(i))

)
(5)

where Xtext(j), Q̂(r) are randomly selected negative samples from the batch. Overall, ℓMTM aids
MQ-Former to maximize the likelihood of matched pairs and minimize mismatches, enhancing its
ability to differentiate between true and false pairs.

Molecule Captioning. ℓMCap is designed to generate accurate text descriptions based on multi-view
query tokens. A multi-modal causal self-attention masking strategy ensures that molecule query to-
kens rely on cross-attention with molecular embeddings for text generation, preventing direct access
to text tokens. Text is generated auto-regressively, where each token is predicted sequentially based
on the corresponding molecular queries. Instead of harnessing universal queries, ℓMCap sums up
separate losses for 2D and 3D query tokens, ensuring that each query token retains its unique di-
mensional information while improving the captioning ability. The ℓMCap is defined as follows:

ℓMCap = − 1

M

M∑
i=1

log p(Xtext(i)|Q̂2d(i))−
1

M

M∑
i=1

log p(Xtext(i)|Q̂3d(i)) (6)

where p(Xtext|Q̂2d) and p(Xtext|Q̂3d) represents the probability of generating the text description
based independently on 2D or 3D molecular queries, respectively. While the other two losses focus
on aligning or matching molecule-text pairs, the ℓMCap directly impacts the ability to generate
new text based on molecular representations. Given its critical role, we assigned a greater weight
α during multi-objective training, guiding MQ-Former to generate quality query tokens for text-
generation tasks. Overall, the total loss for training MQ-Former ℓMQ in Stage 1 is as follows:

ℓMQ = ℓMTC + ℓMTM + α ∗ ℓMCap (7)

4.2 STAGE 2: SPECIALIZING LLAMA2 FOR MOLECULE CAPTIONING

In Stage 2, MQ-Former is further trained alongside LLaMA2 to generate molecular descriptions.
The goal is to enhance MQ-Former’s ability to produce universal queries that are not only aligned
with the textual space but better interpretable by LLaMA2. In this stage, textual descriptions are
tokenized and decoded using LLaMA tokenizer. MQ-Former is fine-tuned using ℓMTC and ℓMTM

and the captioning loss is derived from output captions of LLaMA2. Universal query tokens, 1D
SMILES are given as input with prompt. LoRA (Hu et al., 2021) is employed for efficient finetuning,
focusing on a subset of parameters. Detailed LoRA setting are in Appendix A3.

5 EXPERIMENTS

5.1 DATASETS

PubChem324K. For molecule-text alignment and molecule captioning, we collected 324k molec-
ular SMILES-text pairs from PubChem (Kim et al., 2021). 2D graph features were constructed
using Maziarka et al. (2020), and 3D conformers were generated with ETKDG and optimized using
the MMFF algorithm in RDKit (Landrum et al., 2013). We follow dataset construction as provided
in 3D-MoLM (Li et al., 2024) which also requires 3D molecular conformations. High-quality subset
of 15k pairs with text longer than 19 words are sampled for train, valid, test datasets. Shorter pairs
are used for pretraining. The statistics for the final PubChem324k dataset used in this study are
presented in Appendix Table 6.

5.2 BENCHMARK MODELS

Baseline models include 1) pretrained language models for science: Sci-BERT (Beltagy et al., 2019),
2) models with molecule-text contrastive learning: KV-PLM (Zeng et al., 2022), MoMu (Su et al.,
2022), MoleculeSTM (Liu et al., 2023a) and 3) models with Q-Former modules: MolCA (Liu et al.,
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Table 1: Molecule-Text retrieval performance in batch and test set for different models. The high-
est value in each category is indicated in bold, and the second highest value is underlined. For
MoleculeSTM* and MolCA*, we report results from UniMoT (Zhang et al., 2024).

Retrieval in batch Retrieval in test set
M2T T2M M2T T2MModel

ACC R@20 ACC R@20 ACC R@20 ACC R@20
1D SMILES
Sci-BERT(Beltagy et al., 2019) 85.32 98.74 84.20 98.43 41.67 87.31 40.18 86.77
KV-PLM(Zeng et al., 2022) 86.05 98.63 85.21 98.47 42.80 88.46 41.67 87.80
2D Graph
MoMu-S(Su et al., 2022) 87.58 99.24 86.44 99.38 47.29 90.77 48.13 89.92
MoMu-K(Su et al., 2022) 88.23 99.41 87.29 99.42 48.47 91.64 49.46 90.73
MoleculeSTM* (Liu et al., 2023a) 90.50 99.60 88.60 99.50 52.70 92.90 53.20 92.50
MolCA* (Liu et al., 2023b) 92.60 99.80 91.30 99.50 67.90 94.40 68.60 93.30
2D Graph + Tokenizer
UniMoT(Zhang et al., 2024) 93.60 100.0 92.70 99.40 69.50 96.30 69.80 94.40
3D Conformer
3D-MoLM(Li et al., 2024) 93.50 100.0 92.89 99.59 69.05 95.91 70.13 94.88
2D Graph + 3D Conformer
MV-CLAM 96.57 99.95 97.03 99.95 76.32 96.57 77.03 96.42

2023b), 3D-MoLM (Li et al., 2024), UniMoT (Zhang et al., 2024). For molecule captioning, we also
benchmark Llama2-7B and 2D-MoLM, each as a variant of 3D-MoLM using 1D and 2D information
along with MolT5 (Edwards et al., 2022) and InstructMol (Cao et al., 2023).

6 RESULTS

6.1 MOLECULE-TEXT RETRIEVAL

We evaluate MV-CLAM for molecule-text retrieval on the PubChem324k dataset. After pretraining
for 35 epochs, the model is fine-tuned on the training subset with longer captions for 10 epochs.
We perform two rounds of evaluation on molecule-to-text and text-to-molecule retrieval tasks, using
Accuracy and Recall@20 metrics: within batch size of 64 and is across the entire test set. We report
baseline performances as written in literature (Li et al., 2024; Zhang et al., 2024).

As shown in Table 1, MV-CLAM outperforms baseline approaches that represent molecules as 1D
SMILES strings, 2D graphs, or 3D conformers. Additionally, results are achieved within a to-
tal of 45 epochs, comparative to 3D-MoLM that trains for 60 epochs. We attribute our superior
performance to 1) our usage of unified query that aligns both 2D and 3D information to text and
2) modification on the Q-Former’s multi-objective loss to amplify molecule captioning loss. As a
result, the text transformer is better equipped to decode molecule descriptions under 2D and 3D con-
ditions, benefiting from the enriched molecular information. While good retrieval performance is
often indicative of strong cross-modal understanding that benefit captioning tasks as demonstrated
in previous studies (Li et al., 2024; 2023), the relationship is not absolute. Hence we proceed to
evaluate the performance of molecule captioning.

6.2 MOLECULE CAPTIONING

Following previous studies(Li et al., 2024), we use BLEU, ROUGE, METEOR metrics to evaluate
molecule captioning on the PubChem324k dataset. As outlined in Section 4.2, we apply LoRA to
fine-tune LLaMA2 for the molecular domain, training 10 epochs on the pretraining subset and an
additional 10 epochs on the training subset. Table 2 shows MV-CLAM consistently outperforms all
baselines. Given that the PubChem324k dataset include molecular nomenclature, our model excels
not only in generating appropriate captions based on molecular structure including information on
clinical usage and chemical properties but also in accurately predicting molecular names. Appendix
Table 8 highlights the model’s ability to correctly identify International Union of Pure and Applied
Chemistry (IUPAC) nomenclature and generic drug names. These two types of nomenclature dif-
fer significantly in terms of language model processing. IUPAC names follow systematic chemical
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Table 2: Molecule captioning performance across models. The highest value in each category is
bolded, and the second highest is underlined. Models marked with †were pretrained on larger
datasets, as noted in their original papers. Results for InstructMol and MolCA are from UniMoT
(Zhang et al., 2024), with MolCA evaluated in two variations using OPT-125M (small) and OPT-
1.3B (large) as language models.

BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
1D SMILES
MolT5-Small(Edwards et al., 2022) 22.53 15.23 30.44 13.45 20.30 23.98
MolT5-Base(Edwards et al., 2022) 24.51 16.61 32.19 14.04 21.35 26.10
MolT5-Large(Edwards et al., 2022) 25.87 17.28 34.07 16.42 23.41 28.04
Llama2-7B†(Li et al., 2024) 27.01 20.94 35.76 20.68 28.88 32.11
2D Graph
MoMu-Small(Su et al., 2022) 22.86 16.01 30.98 13.65 20.75 24.35
MoMu-Base(Su et al., 2022) 24.74 16.77 32.45 14.62 22.09 27.16
MoMu-Large(Su et al., 2022) 26.34 18.01 34.75 16.86 24.76 28.73
2D-MoLM†(Li et al., 2024) 27.15 21.19 36.02 20.76 29.12 32.28
InstructMol*(Cao et al., 2023) 18.90 11.70 27.30 11.80 17.80 21.30
MolCA-Small*(Liu et al., 2023b) 25.90 17.50 34.40 16.60 23.90 28.50
MolCA-Large*(Liu et al., 2023b) 28.60 21.30 36.20 21.40 29.70 32.60
2D Graph + Tokenizer
UniMoT(Zhang et al., 2024) 31.30 23.80 37.50 23.70 33.60 34.80
3D Conformer
3D-MoLM(Li et al., 2024) 30.32 22.52 36.84 22.32 31.23 33.06
2D Graph + 3D Conformer
MV-CLAM 31.75 24.48 40.43 25.72 33.79 36.54

rules, making them complex and highly structured, while generic drug names are more standard-
ized and commonly used in clinical contexts. Despite these differences, MV-CLAM successfully
identifies both types of names, showcasing its ability to handle a range of linguistic and chemical
complexities. Moreover, MV-CLAM demonstrates its capacity to generate literature-matching cap-
tions absent in ground truth, as seen in the case of Rifapentine in Appendix Table 8, highlighting the
ability to produce highly informed and contextually relevant outputs.

6.3 EFFECTIVENESS OF MQ-FORMER

In this section, we substantiate the effectiveness of incorporating multi-view chemical informa-
tion within the MQ-Former architecture. We conduct both quantitative and qualitative analysis to
compare our superiority to the usage of single-view molecule representation with Q-Former: 2D-
QFormer and 3D-QFormer. Molecular encoders are identically set for the ablation studies.

As a quantitative analysis, we show that the combination of both modalities leads to a notable syn-
ergistic effect, improving the model’s overall performance (Table 3). By combining the two per-
spectives, the model gains a richer understanding of molecular properties which in turn improves
accuracy and expressiveness of molecule captioning. The alignment of both modalities ensures
that critical information is utilized, leading to more robust and detailed predictions, supporting the
hypothesis that well-orchestrated multi-modal fusion can surpass the limitations of single-modal ap-
proaches in capturing complex molecular characteristics. Additionally, we conducted an ablation
experiment utilizing multi-view molecular embeddings within a single Q-Former module described
in Section A.4.4, which further highlights the benefits of MQ-Former.

We exemplify two case studies to interpret how each transformer module and modality focus on
distinct aspects of the molecule and its corresponding text. These qualitative studies provide in-
sight into the alignment process by analyzing how different views contribute to the comprehensive
understanding of molecular structures and their textual descriptions.

Table 3: Molecule Captioning Ablation Study

BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
2D-Qformer 29.72 22.26 38.22 23.45 31.61 34.22
3D-Qformer 29.45 22.03 37.86 23.11 31.83 33.79
Ours 31.75 24.48 40.43 25.72 33.79 36.54
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Case Study 1: Visualizing Attention Maps for 2D and 3D Query Tokens. Embedding grounded
on different latent spaces and dimensions differently align molecular information to text. Visualiza-
tion of the distinct alignment is performed by extracting and comparing the attention maps of the
shared self-attention layers when processing 2D and 3D query tokens respectively with text tokens.

In the first example, only 2D queries assign exceptionally high attention weights to the word ’water’
(Appendix Figure 5). The discrepancy between two attention maps implies that 2D query tokens
efficiently focus on chemical and material properties that may be neglected in 3D settings. In con-
trast, for the sentences containing of structural equation information, 3D attention map shows strong
attention to positions inherent in molecular formula (Appendix Figure 6). Significant attention is
assigned on the number ’3’ in 3D attention map, less pronounced in the 2D attention map. This sug-
gests that the 3D query tokens, informed by 3D spatial coordinates, are more attuned to the structural
aspects of the molecule. In summary, 2D and 3D query tokens each focus on different aspects within
the same sentence, complementing each other to prevent critical information from being missed and
thereby leading to more informative and accurate molecule descriptions.

Case Study 2: Comparing molecule captions with 2D-Qformer and 3D-Qformer. We illus-
trates the difference in captioning results between the uni-modal Q-Former ablation models and ours
demonstrating the effects of utilizing multi-view molecular understanding in text generation (Ap-
pendix Figure 8). The 2D and 3D uni-modal ablations struggle to fully capture complex and large
structures like ’(R)-3-hydroxytriacontanoyl-CoA’. The ablation models fail to retain sufficient struc-
tural information required to differentiate long carbon chains with their functional groups. However,
our model captures not only carboxylic acid but also phosphonate groups, which are often con-
sidered bioisosteric replacements for sulfonate acids in medicinal chemistry due to their structural
similarity (Macchiarulo & Pellicciari, 2007). In comparison, the ablation models only managed to
capture one of these groups, indicating that multi-view approach enables the generation of accurate
nomenclature and richer descriptive information.

6.4 MOLECULAR QUESTION-ANSWERING

For the molecular question-answering task, we utilized the 3D-MolT (Li et al., 2024) dataset, which
includes question-prompt and text-answer pairs derived from the same PubChem data we used in
prior. Dataset statistics are in Appendix Table 7 The dataset consists of three distinct subsets: 1)
Question-answering about non-3D properties, 2) Question-answering about 3D properties, and 3)
Descriptive molecular properties. To fine-tune MV-CLAM for this task, we initialized the model
using Stage 2 (molecule captioning) checkpoints and further trained it on the 3D-MolT dataset. For
computed property prediction, we evaluated performance using mean absolute error (MAE). For
descriptive property prediction, we measured BLEU, ROUGE, and METEOR scores.

For baselines, we reproduced results for 3D-MoLM and 2D-MoLM (with MAT (Maziarka et al.,
2020) graph encoder). These baselines represent single-modal alignment using Q-Former, and pro-
vides a fair point of comparison to demonstrate the efficacy of our multi-view cross-modal align-
ment. Tables 4 and 5 show that MV-CLAM consistently outperformed the single-modal models.

Table 4: Comparison of Descriptive Property Generation Performance

Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
2D-MoLM 31.24 25.13 39.30 25.16 34.11 49.88
3D-MoLM 29.22 22.82 37.38 22.54 31.47 27.29

Ours 31.70 25.60 39.61 25.46 34.51 50.61

Table 5: Comparison of Q&A performance on 3D and non-3D properties

Model Molecular Weight LogP Complexity Topological Polar
Surface Area HOMO LUMO HOMO-LUMO SCF Energy

2D-MoLM 47.51 (0.98) 0.89 (0.99) 110.78 (0.99) 16.65 (0.99) 0.78 (0.99) 0.47 (0.99) 0.39 (0.90) 0.98 (1.00)
3D-MoLM 42.76 (0.96) 1.25 (0.96) 105.03 (0.96) 20.97 (0.92) 0.42 (0.99) 0.44 (0.98) 1.26 (0.99) 1.22 (0.98)

Ours 21.35 (0.92) 0.69 (0.94) 55.14 (0.91) 9.65 (0.91) 0.35 (0.98) 0.42 (0.93) 0.35 (0.99) 0.32 (0.99)

6.5 ZERO-SHOT MOLECULE EDITING

Unlike conventional natural languages, SMILES encode molecular topology and properties demand-
ing a specialized understanding of its notation system. Thereby, previous efforts in text-based de-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

novo molecule generation with large language models typically involves training or developing to-
kenizers that account for the unique grammar of SMILES (Edwards et al., 2022). In contrast, our
approach is the first to attempt generating SMILES directly using the raw LLaMA tokenizer. By
fine-tuning MV-CLAM, we enabled the model to output SMILES strings without additional tok-
enizer training. Initialized with the Stage 2 checkpoint, the model was trained to generate target
SMILES sequences based on the universal molecular queries produced by MQ-Former. Following
this training, we conducted zero-shot molecule editing, utilizing the model’s pre-existing multi-view
molecular understanding from prior stages. We evaluate the edited results by computing desired
chemical properties using RDKit (Landrum et al., 2013).

In this section we show successful case studies of the language model generating valid SMILES
strings with adequate property modifications. Compared to previous works which mostly generate
mere modifications of a single functional group, MV-CLAM generates diversified chemical struc-
ture modifications that may not be immediately obvious. This ability to generate more complex
modifications is particularly advantageous for domain experts, as simple functional group changes
are typically easy to perform manually. We attribute this diversity to the model’s robust understand-
ing of molecules within the textual space. The alignment between molecules and text is achieved
by focusing on distinct substructures and molecular properties through the multi-view approach.
Additional examples and more details in the training procedure can be found in Appendix A.5.

Original molecule

LogP: 2.75

The molecule is 

soluble in water.

Editing Prompt

LogP: 2.37 LogP: 4.58 (↑)

The molecule is 

insoluble in water.

Editing Prompt

LogP: 2.07 (↓)

Edited molecule

Figure 4: Zero-shot editing with chemical properties

7 CONCLUSION

In this paper, we introduce MV-CLAM equipped with MQ-Former, a novel cross-modal projector.
The essence of cross-modal projection lies in aligning the enriched molecular representation spaces
with the text space of language models. Our architecture successfully retains complementary infor-
mation from multiple dimension into a single universal token easily interpreted by large language
models for molecule description tasks. Extensive experiments demonstrate that MV-CLAM has
successfully fine-tunes large language models for molecule understanding, including molecule-text
retrieval and molecule captioning tasks, with potential for broader applications.

For future work, we aim to extend this framework to incorporate additional molecular representa-
tions, including 1D chemical structures, proteomics, and multiomics data. By aligning more views
within MV-CLAM’s architecture, we anticipate improved navigation of the drug space and a deeper
understanding of molecular interactions across biological contexts. Additionally, curating larger
molecule-text datasets is expected to enhance the model’s performance and its ability to generalize
to subtle molecular variations.
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A APPENDIX

A.1 RELATED WORKS

Molecular representation learning. Recent research in representation learning for molecules
has seen significant advancements, particularly in leveraging large-scale unlabeled molecular data.
SMILES-BERT (Wang et al., 2019), MolBERT (Li & Jiang, 2021) adapts the BERT architecture on
SMILES string for molecular property prediction tasks. To better focus on structural information
of molecules, various graph-based representation learning models were presented. MolCLR (Wang
et al., 2022) specifically tailored contrastive learning for molecular graphs using data augmentation
while MAT (Maziarka et al., 2020) reinterpreted the attention mechanism of transformers to consider
distance and edges. More recent works concentrate on employing 3D geometry, mostly to exploit
3D spatial coordinates. GraphMVP (Liu et al., 2021) proposed a contrastive learning framework
that bridges 2D topological and 3D geometric views of molecules. GEM (Fang et al., 2022) incor-
porated 3D geometric information by using bond angles and lengths as additional edge attributes in
molecular graphs. Uni-Mol is a SE(3)-transformer based model pretrained via 3D position recovery
and masked atom prediction. Additionally, MolFormer (Wu et al., 2023) integrates SMILES, graph,
and 3D conformer information in a unified transformer architecture for molecular property predic-
tion. These recent advancements demonstrate a trend towards incorporating more diverse and rich
molecular information to improve the quality and applicability of learned representations, validating
the approach of our research.

A.2 DATASETS STATISTICS

PubChem. We gathered 324k SMILES-text pairs from PubChem, generating 2D graphs and 3D
conformations using existing methods (Maziarka et al., 2020; Landrum et al., 2013). Molecules with
valid structures were used, with 15k longer-text pairs for training, and shorter ones for pretraining.

Table 6: PubChem324k dataset statistics

Subset #Molecule-Text Pairs #Min Words #Avg Words
Pretrain 290,507 1 17.84

Train 11,753 20 57.24
Valid 977 20 58.31
Test 1,955 20 55.21

For the molecule captioning task, we chose not to use ChEBI-20 dataset (Degtyarenko et al., 2007)
due to two main considerations (Li et al., 2024). First, ChEBI-20 is a curated subset of PubChem,
which introduces potential issues of data redundancy and leakage given the overlap between the
two datasets. Second, ChEBI-20 replaces molecular names with generic terms like ’the molecule’,
limiting the evaluation of the model’s ability to associate structural features with accurate molecular
names. Therefore, we utilized the PubChem dataset, which retains molecular names and offers
a broader variety of structures, ensuring a more comprehensive evaluation of our framework in
molecule captioning task.

ZINC20. Following the experiment settings of Liu et al. (2023a), 200 molecules randomly se-
lected from the ZINC20 dataset are given 6 single-objective molecule editing instructions. The
200 molecules follow the property distribution of the entire dataset, and do not overlap with the
PubChem324k training dataset in previous stages. The six instructions are the following. 1) The
molecule is soluble in water. 2) The molecule is insoluble in water. 3) The molecule has high per-
meability. 4) The molecule has low permeability. 5) The molecule is like a drug. 6) The molecule
is not like a drug. 7) The molecule has more hydrogen bond donors. 8) The molecule has more
hydrogen bond acceptors.

3D-MolT. A total of 18439K molecule-instruction text pairs are employed using the dataset split
as given in the original paper (Li et al., 2024). The dataset consists of two types of molecular
property prediction tasks: (1) Computed property prediction including 3D-dependent properties
(e.g. HOMO) and (2) descriptive property prediction.
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Table 7: Statistics of the PubChemQC and PubChem datasets across different subsets.

Subset PubChemQC PubChem
#Mol #Comp. QA #Mol #Comp. QA #Desc. QA

Pretrain 3,119,717 12,478,868 301,658 1,199,066 1,508,290
Train 623,944 2,495,776 12,000 46,680 60,000
Valid 77,993 311,972 1,000 3,898 5,000
Test 77,993 311,972 2,000 7,785 10,000

A.3 EXPERIMENTAL SETTINGS

Stage 1 Molecule-Text Retrieval Pretraining. Stage 1 serves to effectively transform molecular
representations into query tokens interpretable in textual space. Using the PubChem324k pretraining
subset with shorter textual descriptions, that is less informative but easier to align, MQ-former is
trained for 35 epochs. A total of 301,658 molecules generated valid 2D graphs and 3D conformers,
and thereby was used for pretraining. The goal of this stage was to optimize MQ-Former’s universal
query generation by multi-objective training (molecule-text contrasting, molecule-text contrasting,
and molecule captioning). Pretraining was conducted for 35 epochs using 3 NVIDIA A6000 GPUs
with a batch size of 99. Learnable query tokens of each view was set to 12 tokens and were randomly
initialized. Both the Uni-Mol and MAT graph encoders were frozen throughout the pipeline to
prevent the model from focusing too much on modifying the graph encoders, ensuring the training
prioritized aligning representations with the textual space. To put emphasis on the decoding ability
given the molecule tokens, we assigned a weight of 2 to the captioning loss. Maximum text length
was configured to 256. We used an optimizer with a warmup step of 200 and a learning rate scheduler
with a decay rate of 0.9. Gradient accumulation was set to 1 batch per step.

Stage 1 Molecule-Text Retrieval Finetuning. After 35 epochs of pretraining, we loaded the check-
point and fine-tuned MQ-Former for an additional 10 eopchs on PubChem’s train, validation and test
datasets, consisting of 12,000, 1,000, and 2,000 molecules respectively. This serves to raise align-
ment capability given longer and more complex textual descriptions. The optimizer, learning rate
scheduler, batch size and text length settings are identical to the previous phase.

Stage 2 Molecule Captioning Pretraining. Stage 2 serves to further refine the universal to-
kens in a manner suited to a specific language model, LLaMA2 (Touvron et al., 2023) available
at https://huggingface.co/baffo32/decapoda-research-llama-7B-hf. Us-
ing the trained model checkpoint from Stage 1 training stage, we conducted 10 epochs of pretraining
on the PubChem dataset. During the phase, we optimized two tasks: molecule-text contrasting and
molecule-text matching for MQ-Former, while using LLaMA2 for the molecule captioning task.
The universal query generated by MQ-Former, along with the 1D SMILES string and an instruction
prompt were given as input to the language model to generate textual descriptions for the molecules.

To fine-tune LLaMA2 efficiently, we employed LoRA (Hu et al., 2021) with a con-
figuration of r=8, α=32, and a 0.1 dropout rate. These settings were applied to the
[kproj , vproj , qproj , oproj , gateproj , upproj , downproj] modules, adding 19 million trainable param-
eters, which constituted 0.29% of the total parameters in the LLaMA2-7B model. Unlike Stage 1,
we used batch size of 30 with a maximum text length of 320 considering the prompt size. Token
length for generation was set to range between 128 and 320. Gradient accumulation was set to 2.
The training was carried out using 3 NVIDIA A6000 GPUs.

Stage 2 Molecule Captioning Fine-tuning. Stage 2 pretraining checkpoint was further finetuned on
the train-validation-test datasets. Experimental settings are identical with stage 2 pretraining phase,
excluding batch size which was reduced to 18.

Downstream Tasks: Question Answering. For robust guidance into instruction tuning, the three
sub-datasets of 3D-MolT Li et al. (2024) were used in combination for training a single epoch. The
pretrained MV-CLAM checkpoints from the molecule captioning stage were used for initialization
to the instruction-tuning process. Given the dataset size, the model was further fine-tuned for 5
epochs on non-3D, descriptive property tasks and 1 epoch on 3D property tasks.

Downstream Tasks: Zero-shot Molecule Editing. Zero-shot molecule editing was conducted
on the curated dataset presented in Liu et al. (2023a) which consists of 200 randomly sampled
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molecules from the ZINC dataset. Each molecule was paired with molecule editing prompts (chem-
ical instructions such as ”The molecule is more soluble in water”) and their corresponding SMILES.
The dataset included molecular structures that were unseen during training. Starting with the orig-
inal SMILES, the universal molecular token generated by the trained MQ-Former, and the editing
prompt, we generated SMILES of the edited molecule. Using the pretrained MV-CLAM checkpoints
from the molecule captioning stage, the model was further fine-tuned for 4 epochs on the PubChem
324k pretraining and training datasets. This fine-tuning enabled MV-CLAM to directly generate
SMILES from molecular universal tokens and was crucial to produce valid SMILES, considering
the nature of LLaMA’s general-purpose tokenizer which was not explicitly trained for SMILES gen-
eration.

A.4 EFFECTIVENESS OF MQ-FORMER

In this appendix section, we demonstrate the efficiency of our proposed MQ-Former, which aligns
two modalities (2D and 3D molecular representations) simultaneously to text. We begin by com-
paring the captions generated by our model to ground truth PubChem label descriptions, showing
that our model successfully outputs IUPAC names, generic names, and clinical usages that align
with literature references. Next, we visualize the attention maps for our query tokens alongside their
distances in latent embeddings, revealing that 2D queries attend to 2D-related textual descriptions
and 3D queries to 3D-related ones, with our MQ-Former effectively capturing both modalities. We
also compare the captions generated using 2D-only or 3D-only embeddings aligned by the former
Q-Former module to highlight the limitations of single-modal approaches. Finally, we examine
multi-view embeddings aligned to text by the former Q-Former, demonstrating that simply repre-
senting the molecule via multi-view embeddings and aligning them simultaneously does not fully
extract diverse perspectives. This analysis emphasizes the need for the novel MQ-Former archi-
tecture, which efficiently aligns multi-modal molecular representations to text for richer and more
accurate understanding.

A.4.1 COMPARISON OF MV-CLAM CAPTIONS WITH GROUND TRUTH

We provide caption examples within the test dataset as specified in Section 6.2. MV-CLAM not only
correctly generates IUPAC and generic names but also additional information unavailable in ground
truth labels.

Table 8: Comparison of ground truth and MV-CLAM descriptions. Matching keywords are high-
lighted in bold, while additional details provided by MV-CLAM are marked in red.

Molecule Ground Truth MV-CLAM
Rifapentine is a rifamycin antibiotic that is
similar in structure and activity to rifampin
and rifabutin and that is used in combination
with other agents as therapy of tuberculo-
sis, particularly in once or twice weekly reg-
imens. Rifapentine is associated with transient
and asymptomatic elevations in serum amino-
transferase and is a likely cause of clinically
apparent acute liver injury.

Rifapentine is a rifamycin antibiotic that is
similar in structure and activity to rifampin
and rifabutin and that is used in combination
with other agents as therapy of tuberculo-
sis, particularly in once or twice weekly reg-
imens. Rifapentine is associated with transient
and asymptomatic elevations in serum amino-
transferase and is a likely cause of clinically
apparent acute liver injury. Rifapentine is a
long-acting, cyclopentyl-substituted deriva-
tive of rifamycin.

N-(2-hydroxytricosanoyl)-15-
methylhexadecasphing-4-enine-1-
phosphocholine is an N-acyl-15-
methylhexadecasphing-4-enine-1-
phosphocholine in which the acyl group
has 23 carbons and 0 double bonds and is
2-hydroxylated. It is functionally related to a
15-methylhexadecasphing-4-enine.

N-(2-hydroxytricosanoyl)-15-
methylhexadecasphing-4-enine-1-
phosphocholine is an N-acyl-15-
methylhexadecasphing-4-enine-1-
phosphocholine in which the acyl group
has 23 carbons and 0 double bonds and is
2-hydroxylated. It is functionally related to a
15-methylhexadecasphing-4-enine.

A.4.2 ATTENTION MAP VISUALIZATION

We provide the images of attention map explained in Section 6.3 (Appendix Figures 5, 6). Attention
map of the shared self-attention layers is visualized to compare the processing of 2D and 3D query
tokens. As shown in the figures, the query tokens for each dimension exhibit distinct attention
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patterns across the sentence. To further analyze the embeddings of 2D, 3D queries, and our universal
query tokens, we visualized them in the latent space alongside the word embeddings of ”water” -
a chemical property with high attention to 2D - and ”3”-a positional coordinate with high attention
to 3D (Appendix Figure 7). The results reveal that the universal query token maintains moderate
distances to both word embeddings, reflecting the interplay between 2D and 3D molecular views.
This demonstrates that MQ-Former effectively preserves modality-specific information from 2D and
3D while aligning seamlessly with textual semantics.
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Figure 5: Attention map visualization. 2D query tokens focus on chemical prop-
erties like water solubility present in text descriptions.
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Figure 6: Attention map visualization. 3D query token focuses on positional
information of atoms in text descriptions.
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Figure 7: Latent space representation of query tokens and word embeddings, il-
lustrating the alignment of 2D, 3D, and universal queries with textual semantics.

A.4.3 SINGLE-MODALITY CAPTION ALIGNMENT

Appendix Figure 8 highlights the differences in captioning results between the uni-modal Q-Former
ablation models and our multi-view approach. This demonstrates that the multi-view approach gen-
erates richer and more precise molecular descriptions as mentioned in Section 6.3.

2D Only 3D Only Original Ground Truth

isatinic acid is a member of the class 

of 4-aminobenzoic acids that is 

anthranilic acid substituted by a 

hydroxy group at C-5. It has a role as a 

bacterial metabolite. It is a 

monohydroxybenzoic acid and a 

member of 4-aminobenzoic acids. It is 

functionally related to an anthranilic 

acid. It is a conjugate acid of an 

isatinate.

Anthraniloic acid is a metabolite found 

in or produced by Escherichia coli 

(stra

4-hydroxyphenyl sulfate(1-) is a 

phenyl sulfate oxoanion that is the 

conjugate base of 4-hydroxyphenyl 

hydrogen sulfate, obtained by 

deprotonation of the sulfate group; 

major species at pH 7. 3. It has a role 

as a human metabolite. It is a 

conjugate base of a 4-hydroxyphenyl 

hydrogen sulfate.

Phenyl hydrogen sulfate is a 

metabolite found in or produced by 

Escherichia col

(R)-3-hydroxytriacontanoyl-CoA is a 

3-hydroxy fatty acyl-CoA that results f

rom the formal condensation of the thi

ol group of coenzyme A with the carbo

xy group of (R)-3-hydroxytriacontanoi

c acid. It is a (R)-3-hydroxyacyl-CoA, 

a 3-hydroxy fatty acyl-CoA and an ultr

a-long-chain fatty acyl-CoA. It is a con

jugate acid

(R)-3-hydroxytriacontanoyl-CoA is a 

3-hydroxy fatty acyl-CoA that results 

from the formal condensation of the 

thiol group of coenzyme A with the 

carboxy group of (R)-3-

hydroxytriacontanoic acid [(R)-3-

hydroxymelissic acid]. It is a (R)-3-

hydroxyacyl-CoA, a 3-hydroxy fatty 

acyl-CoA and an ultra-long-chain fatty 

acyl-CoA. It is functionally related to a 

triacontanoic acid. It is a conjugate 

acid of a (R)-3-hydroxytriacontanoyl-

CoA(4-)

2D only 3D only Original Ground Truth

Figure 8: Comparison of Uni-modal Q-Former Ablation and Ours

A.4.4 MULTI-VIEW REPRESENTATION ANALYSIS

To highlight the necessity of MQ-Former, we conducted an ablation study comparing our architec-
ture with a variant that aligns multi-view molecular representations using a single Q-Former module.
The multi-view molecular embedding was constructed by concatenating the 2D embeddings from
MAT and the 3D embeddings from Uni-Mol, then projected to textual space using the Q-Former.
Unlike the concatenation-based approach, MQ-Former preserves the rich, distinct representations
of molecular views. This design facilitates more fine-grained alignment with text, maintaining di-
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versified information, which results in higher-quality captions across all evaluated metrics (Table
9). Overall, MQ-Former enables the preservation of detailed and diverse molecular representations,
facilitating precise alignment with textual descriptions and delivering superior performance in the
captioning task.

Table 9: Captioning Performance Comparison: Multi-View Representation with Single Q-Former

Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
Multi-view + Q-Former 29.80 22.70 39.07 24.92 33.09 35.49

MV-CLAM 31.75 24.48 40.43 25.72 33.79 36.54

A.5 ZERO-SHOT MOLECULE EDITING

We provide more examples of successful zero-shot molecule editing cases given chemical prop-
erty based instructions (Appendix Figure 9,10,11,12). The values presented indicate the predicted
LogP (octanol-water partition coefficient), topological surface area (TPSA), quantitative estimate of
drug-likeness (QED) and number of hydrogen bond and acceptors. Each figure showcases original
molecules alongside their modified counterparts with numerical indicators representing the chemi-
cal properties before and after the zero-shot editing. LogP values reflect solubility in water, while
topological surface area relates to molecular permeability. QED reflects drug likeliness. The modi-
fications are aligned with targeted property-based editing prompt, demonstrating the flexibility and
chemical expertise of MV-CLAM.

Case Study: Zero-shot Molecule Editing

• Output SMILES notation for given molecule & chemical property-based 
instruction (Solubility, Hydrogen bond donor/acceptors, Permeability, Drug-likeliness) 

SNU BHI1

The molecule is soluble in water. The molecule is insoluble in water.
 (LogP)

Original (4.53) Modified (1.59) Original (3.43) Modified (4.84)

• Previous works mostly generate mere modifications in terms of functional groups. 

• WITHOUT additional tokenizer training, succeed in generating valid chemical SMILES notation, while 

diversifying chemical structure modifications that meet the given chemical instructions.

Figure 9: Editing Solubility (LogP Adjustments): Smaller LogP indicates higher solubility in water.
Molecules were successfully modified given the prompt ”The molecule is soluble/insoluble in wa-
ter”.

SNU BHI1

The molecule has high permeabiliy. The molecule has low permeability.
 (Topological Surface Area)

Original (71.34) Modified (84.48) Original (67.43) Modified (58.20)

Original (64.80) Modified (79.81) Original (89.35) Modified (64.21)

Figure 10: Editing Permeability (Topological Surface Area, TPSA Adjustments): A higher TPSA
implies lower permeability, while a lower TPSA suggests higher permeability. Molecules were
successfully modified given the prompt ”The molecule has high/low permeability”.
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SNU BHI1

The molecule is like a drug. The molecule is not like a drug.
 (QED)

Original (0.73) Modified (0.86) Original (0.84) Modified (0.69)

Original (0.77) Modified (0.88) Original (0.84) Modified (0.70)

Figure 11: Editing Drug Likeliness (Quantitative Estimate of Drug-likeness, QED): A higher QED
suggests a compound is more likely to possess favorable pharmacokinetic and ADMET (absorption,
distribution, metabolism, excretion, and toxicity) properties, being more drug-likely. Molecules
were successfully modified given the prompt ”The molecule is/is not like a drug”.

SNU BHI1

The molecule has more hydrogen bond donors. The molecule has more hydrogen bond acceptors.
 (number of donors/acceptor)

Original (2) Modified (4) Original (3) Modified (4)

Original (2) Modified (4) Original (6) Modified (7)

Figure 12: Editing Hydrogen Bond Acceptor/Donors: The number of hydrogen bond acceptors and
donors in the molecule were given for evaluation. Molecules were successfully modified given the
prompt ”The molecule has more hydrogen bond donors/acceptors”.

A.6 ABLATION STUDIES FOR STAGE 1. TRAINING MQ-FORMER

To better understand the contributions of individual components in our model, we conducted a series
of ablation studies focusing on three factors: the graph encoder architecture, the training loss design,
number of query tokens used in the model. We report the preliminary results retrieval metrics for
the first stage of pretraining MQ-Former. Although early molecule-text retrieval results do not di-
rectly translate to improved molecule captioning outcomes, they have a tendency to exhibit positive
correlation in previous studies.

Graph Encoder Ablation We examine three variations of 2D graph encoders, all of which remain
frozen during MQ-Former training (Appendix Table 10). Under a consistent 3D encoder configu-
ration, we report retrieval metrics for GIN initialized randomly, MAT embeddings adjusted via an
additional linear layer for size reduction, and preserved MAT embeddings. The results illustrate
that the quality of graph encoders significantly influenced the initial performance during the first
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stage of pretraining MQ-Former. This observation was a key motivation behind MQ-Former; main-
taining high-quality embeddings from pretrained graph encoders appears to be effective for textual
alignment.

Table 10: Retrieval performance comparison in batch and test set for different 2D graph encoders.

Retrieval in batch Retrieval in test set
M2T T2M M2T T2MModel

ACC R@20 ACC R@20 ACC R@20 ACC R@20
Random 87.42 99.54 87.31 99.54 38.87 88.59 37.54 88.03

MAT linear 90.38 99.64 89.26 99.64 55.96 90.84 54.37 90.69
Ours 96.16 99.85 96.06 99.85 67.72 96.62 68.69 95.86

Number of Query Tokens We conducted a preliminary ablation study comparing the use of a sin-
gle query token versus multiple query tokens (Appendix Table 11). We also showcase an attention
map (Appendix Figure 13) to show multiple query tokens allow the model to capture distinct atten-
tion patterns in textual descriptions. This decision aligns with the design philosophy of BLIP-2 (Li
et al., 2023) and ensures that MQ-Former is capable of leveraging the unique information provided
by each modality for more comprehensive molecule captioning.

Table 11: Retrieval performance comparison in batch and test set for different number of query
tokens.

Retrieval in batch Retrieval in test set
M2T T2M M2T T2MModel

ACC R@20 ACC R@20 ACC R@20 ACC R@20
1 Query Token 96.16 99.85 95.40 99.85 70.08 96.42 70.97 95.5

12 Query Tokens 96.73 99.90 96.01 99.85 70.90 96.98 71.15 95.96
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Figure 13: Attention map of length 12 molecular query token. Different queries attend to different
words within the textual descriptions, allowing comprehensive alignment between molecules and
text.

Training Loss Ablation We also evaluated the effect of loss weighting in the multi-objective
training framework, along with the evaluation of symmetric components in molecule-text contrasting
loss (Appendix Table 12). These findings demonstrate that amplifying the LM loss weight better
aligns molecular and textual representations, justifying its use in subsequent training stages. Due to
different batches within experiments, we only report the metrics for the entire test set.

A.7 ABLATION STUDIES FOR STAGE 2. SPECIALIZING LLAMA2 FOR MOLECULE
CAPTIONING

1D Molecular Representations We conducted an ablation study to compare the use of SELF-
IES (Krenn et al., 2020) with SMILES as input representations (Appendix Table 13). Using the
pretrained Stage 2 checkpoint, the model was further trained for captioning under identical settings.
After 10 stages of training with SELFIES, SMILES consistently demonstrated superior performance
across metrics such as BLEU, METEOR, and ROUGE, validating the effectiveness of our selection.
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Table 12: Retrieval performance comparison in test set for training loss weight and components.

M2T T2MModel
ACC R@20 ACC R@20

lm loss * 1 69.87 97.75 69.26 95.55
Ours 70.90 96.98 71.15 95.96

Table 13: Captioning performance comparison for 1D molecular representations

Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
SELFIES 28.39 20.89 33.25 37.58 22.49 31.37
SMILES 31.75 24.48 40.43 25.72 33.79 36.54

A.8 FAILURE CASE STUDY

Appendix Table 14 showcases two instances where MV-CLAM fails to differentiate structurally sim-
ilar molecules. First, the model misclassifies lactoyl-CoA as oleoyl-CoA despite the key difference
being the length of the carbon chain. This indicates a limitation in the model’s capacity to capture
subtle variations in carbon chain lengths. Second, the model misidentifies Ajugaciliatin B as sub-
types E and C, demonstrating that while it successfully recognizes the molecule’s primary backbone,
it struggles to distinguish the small functional groups that define each subtype. This suggests that
the model is not sufficiently sensitive to minor structural modifications. Both errors appear to stem
from the model’s difficulty in perceiving refine differences in chemical properties and spatial struc-
ture between the ground truth and its predictions. This underscores a broader challenge in molecular
captioning: capturing subtle yet critical molecular features that may not greatly impact the primary
structure but are crucial contributors for property.

To overcome these limitations, we propose several future studies. First, expanding our MQ-Former
to align additional views or modalities, along with finer-grained molecular or related biological
embeddings, could offer complementary insights to enhance the model’s ability to differentiate be-
tween similar molecules. This multi-view alignment could offer a more holistic understanding of the
molecule’s structure and properties. In addition, curating larger molecule datasets would enhance
the model’s capacity to generalize, ensuring it has sufficient exposure to a wide range of molecular
variations during training. These developments will address the current shortcomings and pave the
way for more accurate molecular identification in future iterations of the model.

Table 14: Failure Case Study: Comparison of Ground Truth and MV-CLAM Descriptions

Molecule Ground Truth MV-CLAM

Lactoyl-CoA(4-) is an acyl-CoA(4-) that is
the tetraanion of lactoyl-CoA arising from
deprotonation of phosphate and diphosphate
functions. It is a conjugate base of a lactoyl-
CoA.

oleoyl-CoA(4-) is an acyl-CoA(4-) that is the
tetraanion of oleoyl-CoA, arising from depro-
tonation of phosphate and diphosphate func-
tions. It has a role as a human metabolite
and a Saccharomyces cerevisiae metabolite.
It is a saturated fatty acyl-CoA(4-) and a 3-
substituted propionyl-CoA(4-). It is a conju-
gate base of an oleoyl-CoA

Ajugaciliatin B is a diterpene lactone isolated
from the whole plants of Ajuga ciliata and has
been shown to exhibit neuroprotective activity.
It has a role as a plant metabolite and a neu-
roprotective agent. It is a diterpene lactone,
an acetate ester, a butenolide, a carbobicyclic
compound, an organochlorine compound and
a tertiary alcohol. Ajugaciliatin B is a natural
product found in Ajuga ciliata with data avail-
able.

ajugaciliatin C is a natural product found in
Ajuga ciliata with data available. Ajugacili-
atin E is a diterpene lactone isolated from the
whole plants of Ajuga ciliata. It has a role as a
plant metabolite. It is a butenolide, an acetate
ester, a diterpene lactone and a organochlo-
rine compound. It is functionally related to a
tiglic acid. Ajugaciliatin E is a natural prod-
uct found in Ajuga ciliata
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