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ABSTRACT

We aim to learn wavefunctions simulated by time-dependent density functional
theory (TDDFT), which can be efficiently represented as linear combination co-
efficients of atomic orbitals. In real-time TDDFT, the electronic wavefunctions of
a molecule evolve over time in response to an external excitation, enabling first-
principles predictions of physical properties such as optical absorption, electron
dynamics, and high-order response. However, conventional real-time TDDFT re-
lies on time-consuming propagation of all occupied states with fine time steps.
In this work, we propose OrbEvo, which is based on an equivariant graph trans-
former architecture and learns to evolve the full electronic wavefunction coeffi-
cients across time steps. First, to account for external field, we design an equivari-
ant conditioning to encode both strength and direction of external electric field and
break the symmetry from SO(3) to SO(2). Furthermore, we design two OrbEvo
models, OrbEvo-WF and OrbEvo-DM, using wavefunction pooling and density
matrix as interaction method, respectively. Motivated by the central role of the
density functional in TDDFT, OrbEvo-DM encodes the density matrix aggregated
from all occupied electronic states into feature vectors via tensor contraction, pro-
viding a more intuitive approach to learn the time evolution operator. We adopt
a training strategy specifically tailored to limit the error accumulation of time-
dependent wavefunctions over autoregressive rollout. To evaluate our approach,
we generate TDDFT datasets consisting of 5,000 different molecules in the QM9
dataset and 1,500 molecular configurations of the malonaldehyde molecule in the
MD17 dataset. Results show that our OrbEvo model accurately captures quantum
dynamics of excited states under external field, including time-dependent wave-
functions, time-dependent dipole moment, and optical absorption spectra charac-
terized by dipole oscillator strength. It also shows strong generalization capability
on the diverse molecules in the QM9 dataset.

1 INTRODUCTION

Density functional theory (DFT) (Hohenberg & Kohn, 1964} [Kohn & Sham) [1965) provides an
efficient way to solve time-independent many-body Schrédinger equation using a variational prin-
ciple and has been widely applied to compute the properties of the ground state of molecules and
solids. However, many important physical and chemical phenomena involve the excited states and
the dynamic responses of the systems to external perturbations. In such cases, time-dependent
density functional theory (TDDFT) (Runge & Gross| [1984) provides a natural extension of the
time-dependent many-body Schrodinger equation. It can be formulated and solved in frequency
space in linear-response TDDFT (Casida, [1995), or in the time domain via real-time TDDFT (RT-
TDDFT) (Runge & Gross},|1984;|Yabana & Bertschl|1999;|Qian et al.,[2006; |Ullrich, 2011)), enabling
the investigation of excited state properties such as excitation spectra, optical absorption, charge
transfer, and electron dynamics under time-dependent external fields such as electromagnetic fields.
Starting from the static electronic wavefunctions obtained within ground-state DFT, RT-TDDFT
propagates these wavefunctions in the time domain under the influence of an external field, allowing
direct investigation of both linear and nonlinear physical properties.



Under review as a conference paper at ICLR 2026

However, RT-TDDFT is computationally demanding due to the temporal and spatial discretization of
Kohn-Sham wavefunctions, long-time propagation, repeated evaluations of the Kohn-Sham Hamil-
tonian, and the increasing number of Kohn—Sham wavefunctions with system size. To accelerate this
procedure, machine learning (ML) provides a promising way to replace or approximate the costly
propagation steps, thereby accelerating quantum dynamical simulations while retaining accuracy.
In this work, we propose a new model, OrbEvo, designed to learn the full wavefunction evolu-
tion while incorporating the underlying physical symmetries of the TDDFT problem. In particular,
we consider the SO(2) equivariance induced by the presence of an external field, and we demon-
strate how ML-based partial differential equation (ML-PDE) frameworks can be adapted to capture
quantum dynamics effectively. We extend PDE learning to the setting of wavefunction coefficient
evolution on atom graphs, while enforcing SO(2) equivariance to respect the system’s symmetry
constraints. Furthermore, we propose effective methods to handle multiple electronic states, which
remain agnostic to the choice of backbone neural architecture. Together, these innovations allow our
approach to bridge the gap between ab initio quantum dynamics and scalable ML-based approxima-
tions. To facilitate future explorations based on our work, we will release our code and data upon
publication.

2 PRELIMINARIES

In this section, we will provide a formulation of the RT-TDDFT problem. At the same time, the
constraints inherent to this physical problem will be elaborated on, serving as the motivation for the
techniques developed. Our method is built upon and enabled by existing literature. We review them
in Appendix [A]

DFT with predefined localized atomic orbital basis set. DFT provides a practical approximation
to solve the many-body Schrodinger equation of a molecular or material system. Instead of explicitly
modeling the many-body wavefunctions, DFT represents the system using a set of single-particle
Kohn-Sham wavefunctions {1, : R? — C}r=1,... Ny.» Where N denotes the number of occupied
electronic states. Each electronic state can be occupied by up to two electrons according to the Pauli
exclusion principle. To construct these Kohn-Sham states, DFT often employs a basis set, such as
the localized atomic orbitals in this work, {¢,: R® — C},=1. N,,, With Ny, the total number of
orbitals in the system. These atomic orbitals are spatially localized around atoms and describe the
electronic states of isolated atoms, forming the Hilbert space of the system. In the linear combination
of atomic orbitals (LCAO) method, each electronic wavefunction 1),, can be expressed as a linear
combination of atomic orbitals, 1, = Ei\’;“{ Chro G0, Where C € CNowX Now jg the coefficient matrix
defining the contribution of each orbital. At the ground state, the coefficients are determined by
solving the Kohn-Sham equation (Kohn & Shamy, |1965) in the matrix form, denoted as

HC, =¢,5C,, (D

where H € CNow*Now i5 the Kohn-Sham Hamiltonian matrix, S € RNooXNow ig the overlap matrix,
and €,, € R are the eigen energies for the Kohn-Sham eigen states. This formulation highlights the
central role of the Hamiltonian and overlap matrices in determining the electronic structure.

TDDFT under external electric field. For the TDDFT problem in this paper, the input consists of
atom types and 3D atomic positions of the molecule, denoted as z € NV« and R € R™+*3 respec-
tively, where NN, is the number of atoms in the system, together with an applied time-dependent uni-
form external electronic field E(t) € R3, as well as the initial ground state wavefunction coefficients
C(0). The goal is to predict the temporal evolution of the electronic wavefunction, represented by a
sequence of coefficient matrices {C(t)}7_, that reconstruct the wavefunctions at each time step.

In the absence of external electronic field, the dynamics reduces to simple unitary evolution over
time, C,,(t) = exp(—ie,t/h)Cp(0), n = 1,..., Ny, corresponding to phase rotations of the elec-
tronic wavefunction. However, under a time-dependent electronic field E(t), the perturbation cou-
ples on these electronic wavefunctions, leading to nontrivial transitions that must be captured by the
time-dependent Kohn—Sham equations in the LCAO basis as follows,

d

dt
where H,, (t) = (¢o(t)| H (t)|¢or (t)), Fiis the Planck constant, and H (£) is the Kohn-Sham Hamil-
tonian operator at time ¢, given by H(t) = Te + Hu[p(r,t)] + Vxc[p(r,t)] + Vext(t). Within

Cult) = 18 HC, (1), @
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Figure 1: The framework of RT-TDDFT. (a) Ground state wavefunctions as the initial input. (b)
External electric field applied onto the system. (c) Time evolution of wavefunctions under external
field. (d) Physical properties calculated from the time-dependent wavefunctions and dipole mo-
ments.

LCAO, the time-dependent electron density is p(r,t) = S 7V ]O\,[‘:‘“l D,y (t)$i(r)dor (r), where

o=1
D is the density matrix given by D, (t) = ngl nCr (t)Cro (t). fr is the occupation num-
ber in electronic state 1,,. The central task of RI-TDDFT is therefore to integrate Eq. [Z] over time,
compute wavefunction coefficients C(¢) in the local orbital basis, subsequently calculate electron
density p(r, t), update the density-dependent operators in the Kohn-Sham Hamiltonian and compute

H,, (t), and repeat this process iteratively for many time steps. In RT-TDDFT, each Kohn-Sham
wavefunction v, evolves in time under the time-ordered evolution operator U (¢, ), starting from

the initial time to: ¥ (t) = U(t, to)1n(to), where U(t,to) = Texp (—% -1 j;to ﬁ(t’)dt’), and

T is time-ordering operator. More details about time evolution of wavefunctions can be found
in Appendix |[E| For the machine learning model, the objective is to learn the time evolution of the
Kohn—Sham wavefunctions ,,(t), or equivalently C,,(¢), in order to accelerate TDDFT calcula-
tions.

SO(2) equivariance in TDDFT. While property prediction, force field prediction, and Hamiltonian
matrix prediction are typically formulated under SO(3) equivariance, meaning that when the input
geometry is rotated, the corresponding predicted properties transform consistently under the same
rotation, this full rotational symmetry can be broken in the presence of an external field. In partic-
ular, when a uniform external electronic field along a specific direction is introduced, it defines a
preferred spatial direction. As a result, rotations that modify the angle between the field direction
and the molecular orientation will alter the system, whereas rotations around the field axis preserve
SO(2) equivariance. Consequently, the overall symmetry of the system is reduced. In this work, we
focus on the case of a uniform external electronic field applied along a specific direction, where the
molecular system is SO(2) under rotations around its axis, thereby reducing the symmetry require-
ment for predicted properties from SO(3) to SO(2) equivariance to consider the effect of uniform
external electronic field. The SO(2)-equivariance of TDDFT data is tested in Appendix [F] Figure ]

3 METHOD

3.1 OVERALL FRAMEWORK

The overall problem framework for TDDFT is illustrated in Figure [, We describe the inputs and
targets of this framework, along with the multi time step outputs strategy used during both training
and inference of our machine learning model.
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Delta transformation for capturing small changes in wavefunction coefficients. One particular
challenge in our data is how to define the prediction target. Due to the small magnitude of external
electric field, the coefficients at future time steps differ only by a small amount compared to the
initial step by the factor of a global phase. Directly learning the wavefunction coefficient will make
the model only learn the global phase changes. To correctly model the delta wavefunction, we define
a global phase factor and delta coefficients for each electronic state as

T
) = 2o e a0 -1 (S

C,(t)TSC,(0)] o
with a = 1,000 to amplify the delta, in which case we have C,,(t) = (C,(0) + aA,(t)) ¥n(t).
In the absence of external electric field, i.e., when C,,(¢t) = exp(—ie,t/h)C,(0), we will obtain
vn(t) = exp(—ie,t/h) since C,(0) is real-valued, and A, (¢) = 0. This highlights that the pro-
posed delta transformation is able to extract the delta wavefunctions induced by the external electric
field E(¢). Since the A(t) carries the most information related to physical properties, we focus on
learning A(t) in this paper.

—cmm)écmm 3)

Time bundling. Time bundling (Brandstetter et al., 2022) is a technique in PDE surrogate models.
Instead of advancing time by one at each prediction step, we predict multiple future time steps at
once so that the total number of auto-regressive steps will be reduced to produce the same number
of total time steps. Formally, our model learns the mapping

M(O) : CO0),A(t —h),..., At —1) = A®),...,At+ f —1), )

where M is the neural network with parameters 6, % is the number of conditioning steps, and f is
the number of future steps. We use h = f = Ny = 8 in our implementation.

By using neural networks to approximate the time propagation process, the simulation time can
be greatly reduced compared to classical numerical solvers. For example, the simulation time for
one molecule using TDDFT solver would take hours, compared to ~1 second for neural network
inference. Given the predicted wavefunction coefficients, we can then calculate the properties of the
molecule, including dipole moments and absorption spectra.

3.2 MODEL

3.2.1 EQUIVARIANT GRAPH TRANSFORMER

Our model is based on EquiformerV?2 (Liao et al.|[2024), which is an SO(3)-equivariant graph trans-
former, and we use SO(2)-equivariant electric field conditioning to break the symmetry to SO(2).
In EquiformerV2, each node of the graph has an equivariant feature f; € R%w>dnm where dgph 18
the number of spherical channels and d.p, is the embedding dimension. The spherical channels are
partitioned into different segments where each segment has a different rotation order ¢ > 0. The
rotation order ¢ defines the equivariance property of each segment when the global reference frame
of input space undergoes a 3D rotation, and an order-¢ segment has 2¢ 4 1 spherical channels, in-
dexed by m € [—, ¢]. For example, when the input reference frame is rotated by a rotation matrix
R € R3%3, then ¢ = 0 features will transform as scalars and remain unchanged, ¢ = 1 features
will transform as 3D vectors and will be rotated by the same matrix R, and ¢ = 2 features will
transform as order-2 spherical harmonics and will be rotated by the corresponding wigner-D matrix
D(R) € R5*5, Although EquiformerV?2 has the possibility of reducing the range of m to be smaller
than [—/¢, £], we always use the full 2¢ + 1 spherical channels in our implementation.

Equivariant graph transformers are composed of equivariant transformer blocks, which process the
features with equivariant graph attention and node-wise feedforward networks. The key operation
in equivariant graph attention is to compute a rotation invariant attention score «;; and a rotation
equivariant message m;; between node ¢ and its neighbor node j. «;; and m;; are computed using
tensor products between the concatenated node features [f;, f;] and the spherical harmonics projec-
tion of their relative vector r;; as o, m;; = TPy ([f;, f;], r;;), where TPy contains parameters that
encode the distance information and mix different rotation orders. Node ¢’s feature is then updated
as the weighted sum of messages f; = 3, \r(;) @ijm;, where N/ (i) denotes the neighbors of node
1.
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Figure 2: (a) Overview of OrbEvo. Top: Given the molecular structure and ground-state wave-
functions, OrbEvo predicts the delta wavefunctions (Equation E[) in future steps (one time bundle)
autoregressively. Bottom: OrbEvo takes wavefunction coefficients as node features on 3D atom
graphs, where each electronic state is represented by one graph. The output node features corre-
spond to the target wavefunction coefficients at the next time bundle. (b, ¢) OrbEvo architectures.
(b) OrbEvo-WF uses layer-wise pooling and global transformer blocks to perform electronic state
interactions. (¢) OrbEvo-DM computes density matrix features from input wavefunctions via ten-
sor contraction and linear projection. Diagonal block features are added into node features and
off-diagonal block features are conditioned in equivariant graph attentions. (d) Embedding layer,
where atom type embedding, edge degree embedding and linear projection of input coefficients are
added together. (c¢) EquiformerV2 block with SO(2) equivariance, composed of two SO(2) Layer-
Norm layers, one equivariant graph attention layer and one feed forward network. (d) Illustration
of density matrix featurization via tensor contraction. (g) SO(2) LayerNorms, where the output of
the SO(3)-LayerNorm in the original EquiformerV?2 is multiplied by a scale vector and added with
a bias vector. The scale and bias vectors are computed from the external electric field intensity at
current the the next time bundles with an MLP. Scale has different values for different rotation order
£’s, which perserves the SO(3) equivariance. Bias has non-zero values only at m = 0, which breaks
the symmetry from SO(3) to SO(2).

3.2.2 WAVEFUNCTION GRAPHS WITH SHARED GEOMETRY

We model the wavefunctions on atom graphs where each atom has as feature its atom type z; € N
and its coordinates r; € R3.

Wavefunction as node features. The wavefunction coefficients for atomic orbitals of the same
atom are grouped together to form initial wavefunction features. The coefficients are further grouped
according their rotation orders ¢. The resulting wavefunction feature for electronic state n and atom ¢
is fWF € Rdezxdeons where dyo = 9 corresponds to the concatenation of rotation orders up to £ = 2,
and the deond = 2(2N:b + 1) corresponds to the concatenation of real and imaginary parts of the
conditioning Ny, steps and the initial state C(0), which is real-valued. The additional multiplicative
factor of 2 is the multiplicity of rotation orders, which accounts for the fact that each atom has two s
orbitals and up to two p orbitals. Since each atom has zero or one d orbital in our data, we use zero
padding to fill the second multiplicity channel of rotation order £ = 2. We also zero-pad atoms with
fewer orbitals to the same maximum rotation order and multiplicity. Practically this only affects
hydrogen atoms, which have orbitals 1s, 2s and 1p.

Electronic states as set of graphs. As the wavefunctions of all occupied electronic states jointly
decide the electron density, and consequently the propagation operator, it is important to consider the
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interaction between electronic states when evolving each individual electronic state. One straightfor-
ward option would be ordering the electronic states according to their energy levels {€, }n=1,... N,.
and concatenating all electronic states together into a global feature vector. However, as shown in
Section f.4] we find such an approach fails to learn the propagation. We attribute this failure to
the fact that the electronic states are eigen vectors of the initial Hamiltonian matrix and are better
interpreted as a set, thus mixing them as separate feature channels would make learning difficult.

Instead, we propose to model each electronic state as individual graphs {G,, },=1,... n,.. Where G,, =
{FWVF z R}, FYF = {fVF},_, N, is the node features of electronic state n. z and R are atom

types and coordinates shared by all electronic states.

Wavefunction encoding. We apply a linear layer to f\'! and increase its number of channels from

deond 10 demp, Where different weights are used for different rotation order £’s, and bias is added to £ =
0. We also add the atom type embedding and the edge degree embedding from EquiformerV2 (Liao
et al.,[2024)) to the projected wavefunction features.

3.2.3 LEARNING INTERACTION OVER ELECTRONIC STATES

Interaction via wavefunction pooling. Following set learning methods (Q1 et al., |2017; Maron
et al., [2020), we do average pooling after each graph transformer block over electronic states. The
pooled feature is processed with another graph transformer block and is subsequently broadcasted
back to each individual electronic states.

Interaction via density matrix. We use tensor product contraction to extract features from di-
agonal and off-diagonal blocks of the density matrix. The density matrix is defined as D(t) =

Zﬁil . Cn(t) ® C,(t)* € CNowxNow where @ is the outer product between vectors. We divide
the density matrix into matrix blocks D;; according to which atom pairs the left and right coeffi-
cients in the outer product belong to. We then use tensor contraction to re-organize each D;; matrix
into a set of equivariant features with rotation orders up to ¢/ = 4. In practice, we use the linearity
of tensor contraction implement this process by first compute the atom pair features for each elec-

tronic state as D;; , = contract (C; ,(t) ® C; (t)*), we then aggregate over electronic states and

compute the density matrix feature as D;; = Zgil nD;; n. The resulting high-order features 1~)“

and D;; describe the density matrix blocks for the self-interaction of each atom and the interactions
between pairs of different atoms, respectively. An illustration for the density matrix feature compu-
tation is shown in Figure {d). Additional information on tensor product contraction can be found
in|Gl Due to delta transform, the density matrix will contain both linear term and quadratic term on
delta wavefunctions. We find that including the quadratic term will hurt the performance (as shown
in Section 4.4), potentially due to its small contribution in the density matrix which may be more
sensitive to noise, we thus only keep the linear term in our model. The diagonal pairs of the density
matrix are linearly projected and added to the initial node features and the off-diagonal density ma-
trix features are projected into the same channels using linear layers and are used in computing the

graph attention, denoted as v, m;; = TPy ([f;, f;, linear(D;;)], r;;).

3.2.4 ORBEVO MODELS

We design two OrbEvo models based on the above two interaction methods. The model architectures
are shown in Figure 2]

OrbEvo-WEF. The model uses pooling as electronic state interaction. It has 6 local graph transformer
blocks, each followed by pooling and a global graph transformer block except for the last layer,
resulting in 5 global blocks in total. The model is called full wavefunction model as it makes use of
wavefunction features from all electronic states at each layer.

OrbEvo-DM. The model uses density matrix interaction. The density matrix is computed from the
input coefficients. The model has 6 layers in total, the off-diagonal blocks are feed into the first two
layers of the model. We use ¢ = 4 for the first two layers and ¢ = 2 for the later 4 layers since
the computational cost associated with higher-order features is much higher. The feature conversion
from ¢ = 4 to £ = 2 is done by only keeping the lower ¢ features.

Electronic state sampling with OrbEvo-DM Since OrbEvo process different electronic states in
parallel, and the number of electronic states grows linearly with the number of atoms, the com-
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putational cost of OrbEvo will be the cost of processing one molecular graph using the backbone
equivariant graph transformer multiplied by the number of electronic states. This can increase the
training cost significantly, particularly for larger systems. To mitigate this, we do sampling on the
electronic states during training and only supervise on the sampled electronic states. As a result,
only a subset of electronic states will be processed by the network layers during training. We indi-
cate the electronic state sampling using suffix -s. For example, WF-sall means we use all electronic
states when training OrbEvo-WF, and DM-s8 means we randomly sample 8 electronic states when
training OrbEvo-DM. We find that sampling will degrade the performance of the full wavefunction
model significantly while it will not affect the density matrix model. This is because the density
matrix model aggregates information from all electronic states at the input of the model and thus
sampling will not affect the interaction between electronic states, while the full wavefunction model
will have less information when using sampling.

OrbEvo-DM and OrbEvo-WF have 27,977,056 and 26,963,360 parameters, respectively. We opti-
mize the implementation by sharing the radial function computation for different electronic states.
We use automatic mixed precision for acceleration.

3.2.5 SO(2)-EQUIVARIANT ELECTRIC FIELD CONDITIONING

Following |Gupta & Brandstetter| (2023); [Herde et al.| (2024); [Helwig et al.| (2025), we use
FiLM (Perez et al.,|2018]) like method to insert the conditioning information by computing a scaling
factor and a shifting factor from the conditioning, and apply them to the feature map. We apply the
conditioning after each layer norm layer in the graph transformer blocks.

Since the feature maps are equivariant features, the conditioning features must also satisfy the equiv-
ariant constraints. Specifically, we apply a different scaling factor to different £’s and compute the
bias according the direction of the electric field. In our case, the electric field is always along the
z-axis, so the spherical harmonics encoding of it is a vector with non-zero entries at m = 0 po-
sitions and zero otherwise. Mathematically, y, = s, © LN (x); + by, LN (), € RN*2+1)xC
s € RIXIxC p, ¢ RIX@HDXC nonzero for m = 0, zero otherwise. Here LN is an SO(3)-
equivariant LayerNorm as in EquiformerV2, s, and b, are computed using a MLP from the electric
field intensities at current next time bundles, and ® is multiplication with broadcasting. Since the
scale term sy is the same for each /, it preserves the SO(3) equivariance. On the other hand, the bias
term b, adds predefined directional information into the features and consequently breaks the SO(3)
equivariance to SO(2).

We show in the ablation studies in Section [4.4] that breaking the symmetry is essential to correctly
learn the mapping from ground state to the first evolution step.The SO(2)-equivariance of the OrbEvo
model is tested in Appendix [F] Figure[3]

Wavefunction readout. We apply an additional equivariant graph attention block to readout the
wavefunctions, which is the same as the force prediction in EquiformerV?2 but we keep the order up
to = 2.

3.3 TRAINING STRATEGY

Loss. We use the per-atom /2-MAE loss (Chanussot et al., 2021} Liao et al.,2024), defined as

Nbatch
1 . ;
Eg-MAE(Cpred, Ctarget) _ o Z Hcgred _ C;drgetH% (5)
a i=1

where CP® and C%'¢* are the predicted and ground-truth wavefunction coefficients, respectively,
CP™® and CY"*' denote the predicted and ground-truth coefficients for the i-th atom in the batch,
where different orbitals are concatenated into one vector, and || - ||2 denotes the ¢5-norm. The atom
index runs over all sampled electronic states and all molecules in a batch. The loss is averaged over
all time steps in the time bundle.

Push-forward Training. Although training inputs A(¢ —h), ..., A(t — 1) are uncorrupted by error,
a distribution shift occurs during auto-regressive rollout, where errors made in previous predictions
leads to inputs A(t — h) +e(t — h),...,A(t — 1) + (¢t — 1). Previous works have attempted to
mitigate this misalignment by intentionally corrupting training inputs with errors £(¢) sampled from
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Table 1: Results on the MDA dataset.

Wavefunction Dipole Absorption

OrbEvo Model z;ﬁ?E ;:fﬁ%g ot | WRMSE-all nRMSE-z | nRMSE-a

DM-s8 0.0242 0.0947 0.1778 0.3008 0.2326 0.0671
WF-sall 0.0192 0.0853 0.1585 0.3957 0.3066 0.0865

Table 2: Results on the QM9 dataset.

Wavefunction Dipole Absorption

OrbEvo Model z;ﬁ?E ;:fﬁ%g ot | WRMSE-all nRMSE-z | nRMSE-a

DM-s8 0.0190 0.0797 0.1885 0.1946 0.1459 0.0752
WF-sall 0.0164 0.0874 0.2071 0.6045 0.4629 0.1270

a distribution approximating the rollout error distribution. Pushforward training (Brandstetter et al.,
2022) samples these errors directly from the one-step error distribution of the model as

E(t—h),...,E(t — 1) = StopGrad (M (C(0), A(=2h)) — A(—h)),

where A(—2h) := A(t—2h), - ,A(t—h—1),and A(=h) := A(t—h),--- , A(t—1). Practically,
this amounts to letting the model unroll once and then use the unrolled prediction as the new input.
However, the one-step error distribution at the outset of training produces noise that dominates the
signal at the beginning of training. Thus, in addition to maintaining uncorrupted inputs A; or adding
A; 4 ¢, from the pushforward distribution with equal probability, we multiply the £; with a warm-up
factor (7) € [0, 1] which increases linearly to a maximum value of 1 according to the training step
7. Finally, because the first target A(h + 1), A(h + 2),...,A(2h + 1) cannot be modeled with
pushed-forward inputs, we double the weight for its loss in any batch that it appears in to balance
its utilization relative to other targets, which can all be modeled using either pushed-forward or
uncorrupted targets.

4 EXPERIMENTS

4.1 DATASET DESCRIPTION

We randomly selected 5, 000 diverse molecules from the QM9 (Ramakrishnan et al., 2014) dataset
to demonstrate the generalization capability of our model, and 1,500 molecular configurations of
the malonaldehyde (MDA) molecule from the MD17 dataset (Chmiela et al., |2018)) for the abla-
tion study. Both QM9 and MD17 are widely used in machine learning for materials science and
computational chemistry. We then performed self-consistent field (SCF) DFT calculation for each
molecule to obtain their ground-state Kohn-Sham wavefunctions using the open-source ABACUS
software package (Chen et al.,[2010;|L1 et al.,|2016; [Lin et al., [2024)). Subsequently, we carried out
RT-TDDFT calculations to propagate all occupied electronic states for 5 fs in a total of 1, 000 steps
with a time step of 0.005 fs under a spatially uniform, time-dependent electric field. During each
time step, wavefunction coefficient matrices were extracted and uniformly downsampled for every
10 steps. After downsampling, each time-dependent wavefunction trajectory contained 101 steps
including the first step, which were used as input data for the training, validation, and testing of our
OrbEvo model. More details about dataset generation and description can be found in Appendix D]

4.2 SETUP

Dataset Split For QM9, we use 4,000 molecules for training, 500 molecules for validation, and
500 molecules for testing. For MDA, we use 800 configurations for training, 200 configurations for
validation, and 500 configurations for testing.

Data Normalization We normalize the initial and delta wavefunction coefficients by dividing their
respective orbital-wise rooted mean square (RMS) across all orbitals in training dataset. For delta,
we also average across time. We normalize the electric field by scaling the maximum intensity to 1.

Evaluation Metrics We evaluate the performance of our OrbEvo model on three key physical prop-
erties: time-dependent wavefunction coefficients, time-dependent dipole moments, and optical ab-
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Figure 3: QM9 dipole and absorption with the OrbEvo-DM model on test samples 0, 10, 20, 30, 40.
Note that the test samples are randomly shuffled during dataset generation. The unit for dipole in

the plot is 0.529¢A. The unit for absorption spectra is 0.529¢A” /.

sorption spectra characterized by dipole oscillator strengths. These properties are crucial for down-
stream tasks in TDDFT, and thus provides a comprehensive evaluation of the model’s outputs. The
detailed information about these three metrics are provided in Appendix [B]

4.3 RESULTS
4.3.1 QUANTITATIVE RESULTS

The results on MDA and QM9 datasets are summarized in Table [T] and Table 2] respectively. The
wavefunction coefficients do not have a unit. The nRMSE errors also do not have units since they
are relative errors. Hence all metrics in the tables are unitless.

Overall, the results on the QM9 dataset shown in Table 2] suggest that the OrbEvo-DM model us-
ing density matrix as interaction between occupied electronic states outperforms the OrbEvo-WF
model which employs layer-wise pooling of the features of occupied electronic states. This may be
because the density matrix in the OrbEvo-DM model is inherently consistent with the mathematical
formulation of TDDFT: the density functional is used to evaluate the time-dependent Kohn—Sham
Hamiltonian in RT-TDDFT. Consequently, it is more straightforward for the OrbEvo-DM model to
learn the time evolution operator which depends directly on the density matrix D ().

We conduct ablation studies on the MDA dataset to verify the model design choices and training
strategies. A lower wavefunction error shows a model’s ability to evolve the wavefunctions in time
while a lower error in dipole and absorption shows a model’s ability in capturing the underlying
physics. The results are summarized in Section[4.4] Additionally, we report the training and infer-
ence cost, as well the simulation time using the classical solver in Appendix [C]

4.3.2 QUALITATIVE RESULTS

We show the computed dipole and absorption spectra produced by OrbEvo-DM in Figure [3] The
plots show that the wavefunctions produced by OrbEvo-DM starting from ground states can repro-
duce the per-time-step dipole moment with high correlation. The optical absorption produced by the
dipole prediction can faithfully locate the peaks in the spectra, which provides insightful information
into the molecular excited states.
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Table 3: Ablation studies on the MDA dataset.

Wavefunction Dipole Absorption
OrbEvo Model 1-step Rollout  Rollout
0,-MAE  (,-MAE nRMSE nRMSE-all nRMSE-z | nRMSE-«
DM-sall 0.0244 0.0997 0.1888 0.3203 0.2494 0.0729
DM-s8 0.0242 0.0947 0.1778 0.3008 0.2326 0.0671
DM-s4 0.0257 0.1010 0.1902 0.3096 0.2396 0.0734
DM-sall-cat 0.1269 0.4429 0.7875 2.063 1.6345 0.8040
DM-s8-no-dm(t) 0.0508 0.2788 0.5457 0.8738 0.6768 0.1758
DM-s8-onestep 0.0200 0.1501 0.2851 0.4369 0.3386 0.1211
WEF-sall 0.0192 0.0853 0.1585 0.3957 0.3066 0.0865
WF-s8 0.0334 0.2074 0.4054 0.6579 0.5218 0.1338
WF-s4 0.0414 0.2527 0.4961 0.7762 0.6104 0.1582
WF-sall-onestep 0.0205 0.1978 0.3708 0.7400 0.5754 0.1590
WE-sall-inv-cond | 0.0224 0.6773 1.1564 1.3405 1.2632 0.1667

4.4 ABLATION STUDIES

We conduct ablation studies on the MDA dataset to verify the model design choices and training
strategies. A lower wavefunction error shows a model’s ability to evolve the wavefunctions in time
while a lower error in dipole and absorption shows a model’s ability in capturing the underlying
physics. The results are summarized in Table[3]

Electronic states sampling. Models with suffix -all”” use all electronic states during training. Mod-
els end with ”-s8” and ”-s4” randomly sample 8 and 4 electronic states during training, respectively.
The results show that the sampling does not affect OrbEvo-DM’s performance while it degrades the
performance of OrbEvo-WF significantly. It shows that by aggregating the electronics state infor-
mation early via density matrix can effectively capture the inter-electronic-state interaction. The
OrbEvo-WF results show the importance of considering all electronic states’ information.

Electronic state graph construction. In DM-sall-cat, we concatenate wavefunctions from all elec-
tronic states along the channel dimension at model’s input instead of considering them as individual
graphs. The result shows that the model cannot learn the wavefunction mapping correctly, demon-
strating the importance of our graph modeling method.

Density matrix ablation. In DM-s8-no-dm(t), we remove the dependency on the time-evolving
density matrix. The results show that the model cannot learn correctly, showing the importance of
time-evolving density in learning the propagation.

Training strategy. We show the results without using pushforward for DM-s8-onetep and WF-sall-
onestep. The results show that although the models are able to learn the onestep mapping more
accurately, the rollout error is significantly worse, showing importance of pushforward training for
learning error accumulation during rollout.

Equivariant conditioning. In WF-sall-inv-cond, we disable the equivariant electric field condition-
ing and add the bias term into the invariant £ = 0 part instead. The results show that although the
onestep error can go down normally, the rollout does not work. We observe that the model cannot
learn the mapping from the initial ground state to the first step correctly, although it is able to evolve
the subsequent steps given the groundtruth.

5 CONCLUSION

In this paper, we propose OrbEvo, which is built upon an equivariant graph transformer architec-
ture. We identify the key issues in modeling inter-electronic-state interaction and propose to model
electronic states as separate graphs. We further propose models based on density matrix featur-
ization and full wavefunction pooling interaction. Together with pushforward training, our models
can accurately learn the wavefunction evolution accurately. Moreover, we show that the density-
matrix-based model is able to learn the underlying physical properties without providing explicit
supervising signal to the model.

10
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A RELATED WORKS

DFT surrogate models aim to bypass the expensive self-consistency calculation by directly mapping
from inputs to the converged DFT outputs. Hamiltonian prediction models (Schiitt et al., 2019
Unke et al., 2021} |Yu et al.| [2023) learn to map from atom types and their 3D coordinates to the
converged Hamiltonian matrix. Equivariant 3D graph neural networks enable effective learning
with spherical basis through tensor products, albeit the increased computational complexity. For
efficiency, eSCN (Passaro & Zitnick, [2023) reduces SO(3) tensor products to SO(2) operations by
rotating the relative direction. EquiformerV2 (Liao et al., 2024) incorporates the eSCN convolution
into a graph transformer architecture. These models take atom types and coordinates as input. We
extend it to a setting where the input features are also high-order equivariant features.

Besides molecules, machine learning has enabled surrogate models for time-dependent PDEs (Li
et al.,|2021} Tran et al.| 2023} |Gupta & Brandstetter, 2023;|Zhang et al.,|2024a)) for applications such
as modeling fluid dynamics. These surrogate models frequently require conditioning on external
information, such as force magnitude or time steps|Gupta & Brandstetter| (2023)); Herde et al.[(2024);
Helwig et al.| (2025). PDE surrogate models have also been developed for graph data (Brandstetter,
et al.| [2022), where the pushforward trick and temporal bundling were proposed to enhance stability
over long time-integration periods. We adopt the temporal bundling and apply pushforward training
on more realistic 3D graph. While Lippe et al.[(2023)) showed that the pushforward training may not
be helpful in general settings, we show that it can be indeed helpful for realistic graph data.

Machine learning TDDFT is relatively under-explored. |Suzuki et al.| (2020) use neural networks
to improve the exchange-correlation potential in TDDFT. |Boyer et al.| (2024) learns dipole mo-
ments using ridge regression. For time propagation within the ML-PDE paradigm, [Shah & Cangi
(2024; 2025) study the evolution of charge density in one-dimensional diatomic systems. TDDFT-
Net (Zhang et al., 2024b) learns the density evolution starting from the ground-state density for
complex molecules. To the best of our knowledge, no existing work directly addresses the learning
of time-dependent wavefunctions, representing a critical gap in the field. Here we study TDDFT di-
rectly in the wavefunction space, which captures the underlying physical process and enables more
accurate predictions. The orbital-based representation that we adopted also allows for more efficient
data encoding.

B EVALUATION METRICS

Wavefunction We report the £2-MAE error (Equation (5)) for the time-dependent wavefunctions.
For a more interpretable metric, we also report the normalized rooted mean square (nRMSE) error,
defined for each molecule as

orb d
S S e — 2
oce orb t t
> ml e

where 1n°° and n°® denote the number of occupied electronic states and local atomic orbital bases
in the molecule.

nRMSE(CP™¢, Ctoeet) — ; (6)

occ

Dipole Moment Dipole moment describes the density distribution over spatial directions and
are defined as (i|7,,|v), where 7, is the position operator along m € {z,y,z} direction.
With the local atomic orbital basis, given the position matrices for three spatial directions
Tomij = {(Gi|Pm|e;) € RNow*Now  the dipole moment of each molecule can be computed as
Pm = Zf\i“f C'ZT r,, C;. We report the nRMSE of the dipole moment for all directions, defined

as nRMSE-all (p*, p**) =/S1, T,.c sy, (08 0 -p5 WZT Sty (P “‘g“(w)

well as for z direction, defined as nRMSE-z (pP™d, p'e!) \/ S (e () P2 (1)) /S ‘“‘ge‘(f))
Density conservation is applied before computing dipole.

Optical Absorption Optical absorption is an important physical property which reflects the ability
of molecule to absorb light at specific frequencies. It is characterized by dipole oscillator strength
which can be calculated from the time-dependent dipole moment in response to the applied external
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electric field as follows:

zwtd
/ p-(t t} -

P Im
as(w) = [ JE.( emdt
We report the nRMSE for the dipole oscillator strength along the z direction, defined as

nRMSE-a ( pred at;:get) \/Z\/ pred(t larget(t))2
Z ("ﬂ’”e(( )

C COMPUTATIONAL COST & COMPARISON

In this section we report the training (Table ) and inference cost of OrbEvo (Table [5). We also
report the simulation time with the classical solver ABACUS (Table|[6).

Dataset | Model | #iterations | GPU | Wall Clock Time | GPU Memory (MB)
MDA | OrbEvo-DM-s8 300k 2x 11GB 2080Ti 3.475 days 13,848

MDA OrbEvo-WF 300k 2x 11GB 2080Ti 3.345 days 14,248

QM9 | OrbEvo-DM-s8 395k 4 x 48GB A6000 3.118 days 49,434 - 54,700
QM9 OrbEvo-WF 395k 2 x 80GB A100 5.003 days 46,652 - 69,662

Table 4: Training cost of OrbEvo models. MDA models are trained with a batch size 32. QM9
models use a batch size of 16. All models are trained with Pytorch distributed data parallel
(torch.ddp) for multi-gpu training and with num_workers=16 in dataloader for MDA and
num_workers=32 for QM9. As arough estimation, 2x 2080Ti is roughly equivalent to 1 x A6000
in terms of speed. The GPU memory usage is tested by running training on 1 single A100 GPU for
10 minutes. For QM9, The GPU memory can vary depending on the molecule sizes in a batch.

. Wall Clock Time / Batch GPU Memory
Dataset Model ‘ GPU ‘ Batch Size | w. vefunction | Wavefunction + Property | (MB)
MDA | OrbEvo-DM | 1x A6000 20 3.67 seconds 5.23 seconds 5742
MDA | OrbEvo-WF | 1x A6000 20 2.84 seconds 4.60 seconds 2032
QM9 OrbEvo-DM | 1x A6000 20 18.00 seconds 26.74 seconds 34,164 - 42,842
QM9 OrbEvo-WF | 1x A6000 20 11.86 seconds 20.31 seconds 17,204

Table 5: Inference cost of OrbEvo models. All models are tested one a single A6000 GPU using
num_workers=10 in dataloader. The reported times are wall clock time per batch. We report both
the time for producing the wavefunction trajectory (Wavefunction), as well as the time for producing
the wavefunction trajectories and computing the dipoles and absorptions (Wavefunction + Property).
Note that the properties are not parallelized with batch processing and are computed on CPUs. We
note that electronic state sampling is not enabled during inference, which leads to increased GPU
memory usage for OrbEvo-DM. In comparison, during training OrbEvo-DM is able to use electronic
state sampling to reduce GPU usage.

Wall Clock Time / Molecule
Ground-state DFT |  Total

MDA 24 34.3 seconds 1.5 hours
QM9 24 73.1 seconds 3.2 hours

Dataset ‘ # CPU cores

Table 6: Simulation time per molecule. The simulation time is averaged over 40 simulations.
Ground-state DFT is the time to compute the initial wavefunction coefficients from molecular struc-
tures. The initial wavefunction coefficients are used as input to OrbEvo models.

D DATASET DESCRIPTION

The molecules and their configurations used in this work were sourced from the QM9 (Ramakrish-
nan et al., 2014) and MD17 databases (Chmiela et al., [2018). The QM9 dataset contains a large
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number of chemically diverse molecules. This combination allows our model to cover a wide range
of potential molecular behaviors and properties. The MD17 dataset provides high-resolution molec-
ular dynamics trajectories for a small number of molecules with many different conformations. Both
QM9 and MD17 are widely used in machine learning for materials science and computational chem-
istry. For this work, we randomly chose 5, 000 different molecules from the QM9 dataset consisting
of C, H, O, and N elements to demonstrate the generalization capability of our model, and randomly
selected 1,500 molecular configurations of the malonaldehyde (MDA) molecule from the MD17
dataset for the ablation study.

To generate the RT-TDDFT datasets for the above QM9 and MDA molecules, we utilized the open-
source ABACUS software package (Chen et al.,2010; |Li et al., 2016} [Lin et al., [2024) to perform
the DFT and RT-TDDFT calculations. Consistent input parameters were used to ensure comparabil-
ity between datasets. Specifically we employed the SG15 Optimized Norm-Conserving Vanderbilt
(ONCV) pseudopotentials (SG15-V1.0) (Hamann, 2013)), a standard atomic orbitals basis set hierar-
chically optimized for the SG15-V 1.0 pseudopotentials (Lin et al.;,[2021), and a kinetic energy cutoff
of 100 Rydberg. The ground-state Kohn-Sham wavefunctions were obtained by self-consistent field
(SCF) calculations of DFT with a dimensionless convergence threshold of 107,

For RT-TDDFT calculations, we used ground-state Kohn-Sham wavefunctions as the initial states at
t = 0 and performed time propagation for 5 fs in a total of 1, 000 steps with a time step of 0.005 fs.
To simulate the quantum dynamics of the system under an external field, a time-dependent uniform
electric field E, (t) was applied along the z direction:

E.(t) = Eqg (cos[2m f1(t — tg)] + cos[2m fa(t — tg)]) exp [—(t_to)? .
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It consists of two frequencies of f; = 3.66 fs~* and f, = 1.22 fs~!, with a Gaussian width o =
0.2 fs, a field amplitude £y = 0.01 V/A, and a central time of tq = 0.75 fs. During each time step,
wavefunction coefficient matrices were saved and then extracted, serving as input data for our model
training, validation and testing.

To enhance computational efficiency and accuracy, we modified the ABACUS source code to calcu-
late the overlap matrix only once at ¢ = 0. Furthermore, we ensured that the output matrix retained
16 significant digits of precision. This modification allowed us to generate reliable data with greater
efficiency, making it well suited for model training and testing. The DFT and RT-TDDFT calcula-
tions were performed using 24 parallel CPU cores.

E TIME EVOLUTION OF KOHN-SHAM WAVEFUNCTIONS IN RT-TDDFT

In RT-TDDFT, each Kohn-Sham wavefunction ); evolves in time under the time-ordered evolution
operator U (t, tg), starting from the initial time to: ¢;(t) = U (%, to)w;(to), where

. t
Ult,ty) = Texp (—;S‘l/ ﬁ(t’)dt’) .
to

T is time-ordering operator. In RT-TDDFT, total simulation time Tt is discretized into Ny steps
with each time step of At = Ty /Ny, and U(t,tg) is approximated by the product of evolution
operators over the discretized time grid (Gémez Pueyo et al., 2018)),

Nﬂ)l
Ult,to) = [] Ulto +mAt, to + (m — 1)At].

m=1

In general, 0[750 +mAt, to+ (m—1)At] should satisfy the unitary condition to conserve the density:
Utlto +mAt, to + (m — 1)At] = U~ [tg + mAt, to + (m — 1)At]. Moreover, for molecules and
solids under external electric field, it should satisfy time-reversal symmetry: U [to +mAL, to+ (m—
1)At] = Ulto + (m — 1)At, tg + mAt]. Such time evolution needs to be applied to all occupied
electronic states for IV, time steps, making it computationally demanding.
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F EQUIVARIANCE TEST

In this section we test the SO(2)-equivariance error for both the TDDFT numerical simulation and
the OrbEvo model.

In Figure ] we run two simulations using ABACUS with original or rotated molecule. In Figure[5]
we use the model to make predictions using inputs before and after rotation. In both cases we
rotate around the electric field direction by 35 degree and we conduct manual rotation-transform to
align the resulting coefficients or to produce rotation-transformed input. When applying the rotation
transformation to the coefficients, s orbitals and m = 0 components in p and d orbitals remain
unchanged, m = =£1 components in p and d orbitals are rotated by 35 degree around the electric
field direction, and m = =£2 components in d orbitals are rotated by 70 degree around the electric
field direction.

0.003

0.002

Data Equivariance Error 0.001
0

i 0.0 H | [ | 0.000
10 4 i . i ofky " g m Iy - I

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

—0.001
—0.002

—0.003

Figure 4: Equivariance error of TDDFT data. Left: real part of the wavefunction coefficients of
an unrotated MDA molecule at one time step. Right: the difference between the wavefunctions at
the same time step in a second simulation produced from a rotated version of the same molecule,
and the coefficients manually rotation-transformed from the left plot. In the second simulation the
molecule is rotated by 35 degree around the electric field direction.
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Figure 5: Equivariance error of OrbEvo-DM. Left: real part of the model’s predicted wavefunction
coefficients for a MDA molecule using the ground-truth wavefunctions at one time step as input.
Right: the difference between the model’s predicted wavefunctions using the rotated structure and
manually rotation-transformed ground-truth wavefunctions, and the coefficients manually rotation-
transformed from the left plot. The molecule’s rotation and the rotation transformation is 35 degree
around the electric field direction.
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G TENSOR PrRODUCT

In Figure[6] we visualize the tensor product for computing density matrix feature from wavefunction,
which is implemented using e3nn.o3.FullTensorProduct.

XX XXXXX XXXXX XX
SNSRIt AN

Figure 6: Tensor product visualization produced by the e3nn library.

H ADDITIONAL ABLATIONS

Table 7: Density matrix analysis on the MDA dataset.

Wavefunction Dipole Absorption
OrbEvo Model 1-step Rollout  Rollout
0,-MAE  f(,-MAE nRMSE nRMSE-all nRMSE-z | nRMSE-«a
DM-s8 0.0242 0.0947 0.1778 0.3012 0.2329 0.0672
DM-s8-w/-quadratic-dm | 0.0290 0.1110 0.2088 0.3538 0.2744 0.0784
Table 8: Noise injection results on the MDA dataset.
Wavefunction Dipole Absorption
OrbEvo Model 1-step Rollout  Rollout
0-MAE  (,-MAE nRMSE nRMSE-all nRMSE-z | nRMSE-«
DM-s8-noise 0.0204 0.1262 0.2423 0.3868 0.3036 0.0815
Pool-sall-noise | 0.0155 0.0866 0.1617 0.4045 0.3157 0.0788

I MODEL HYPERPARAMETERS

We summarize OrbEvo’s hyperparameters in Table 8] Most of them are hyperparameters for the
EquiformerV2 (Liao et al., [2024)) backbone.

J LARGE LANGUAGE MODEL USAGE

We use large language models to aid or polish writing sparsely. LLMs are also used lightly to help
write data processing scripts.
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Hyperparameters Value
Optimizer AdamW
Learning rate scheduling Cosine Annealing
Maximum learning rate 1x1073
Weight decay 1x1073
Number of epochs 129 for MDA, 17 for QM9
Maximum cutoff radius 5.0
Number of layers 6
Number of sphere channels 128
Number of attention hidden channels 128
Number of attention heads 8
Number of attention alpha channels 32
Number of attention value channels 16
Number of FFN hidden channels 512

Limax list (41, [2]
Mmax list (4], [2]
Grid resolution eSCN default
Number of sphere samples 128
Number of edge channels 128
Number of distance basis 250
Alpha drop rate 0.1
Drop path rate 0.05
Projection drop rate 0.0
Number of future time steps 8
Number of conditioning time steps 8

Table 9: OrbEvo model hyperparameters.
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