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Abstract

Training agents in multi-agent games presents significant challenges due to their
intricate nature. These challenges are exacerbated by dynamics influenced not
only by the environment but also by strategies of opponents. Existing methods
often struggle with slow convergence and instability. To address these challenges,
we harness the potential of imitation learning (IL) to comprehend and anticipate
actions of the opponents, aiming to mitigate uncertainties with respect to the
game dynamics. Our key contributions include: (i) a new multi-agent IL model
for predicting next moves of the opponents — our model works with hidden
actions of opponents and local observations; (ii) a new multi-agent reinforcement
learning (MARL) algorithm that combines our IL model and policy training into
one single training process; and (iii) extensive experiments in three challenging
game environments, including an advanced version of the Star-Craft multi-agent
challenge (i.e., SMACv2). Experimental results show that our approach achieves
superior performance compared to state-of-the-art MARL algorithms.

1 Introduction

Recent works in MARL have made a significant progress in developing new effective algorithms
that can perform well in complex multi-agent environments including SMAC [34, 25]. Among these
works, centralized training and decentralized execution (CTDE) [5] has attracted a great attention from
the RL community due to its advantage of leveraging global information to train a centralized critic
(i.e., actor-critic methods [18]) or a joint Q-function (i.e., value-decomposition methods [23, 29]).
This approach enables a more efficient and stable learning process while allowing agents to act in
a decentralized manner. Under this CTDE framework, off-policy methods such as MADDPG [18]
and QMIX [23] have become very popular due to their data efficiency and state-of-the-art (SOTA)
results on a wide range of benchmarks. On the other hand, on-policy gradient methods have been
under-explored in MARL due to their data consuming and difficulty in transferring knowledge from
single-agent to multi-agent settings. However, a recent work shows that on-policy methods (such
as MAPPO, a multi-agent version of proximal policy optimization) outperforms all other SOTA
methods including MADDPG and QMIX in various multi-agent benchmarks, and especially works
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well in complex SMAC settings [34]. Motivated by this promising result, we focus on improving the
performance of policy gradient methods in MARL.

We consider a partially observable MDP environment in which there are agents attempting to form an
alliance to play against a team of opponents, where allied agents have to make decision independently
without communicating with other members. We aim to enhance the performance of PPO in MARL
with the introduction of a novel opponent-imitation component. This new component is then integrated
into the MAPPO framework to enhance the policy learning of allied agents. A key challenge in our
problem setting is that allied agents are unaware of actions taken by their opponents. In addition,
each allied agent only has local observations of opponents locating in the current neighborhood of
the agent — the locations and neighborhoods of all players are changing over time depending on
actions taken by players and the dynamics of the environment. Lastly, learning to imitate opponents
occurs during the policy learning process of the allied agents. The inter-dependency between these
two learning components makes the entire learning process significantly challenging.

We address these challenges while providing the following key contributions. First, we convert
the problem of imitating the opponent policy into predicting their next states. The outcome of this
next state prediction is an indirect implication of the opponent policy. We then cast the problem of
opponent next-state prediction as a new multi-agent imitation learning (IL) problem. We propose a
new multi-agent IL algorithm, which is an adaptation of IQ-Learn [9] (a SOTA IL algorithm), that
only considers local opponent-state-only observations. Especially, instead of imitating the opponents’
policy, our IL algorithm targets the prediction of next states of the neighboring opponents. Second, we
provide a comprehensive theoretical analysis which provides bounds on the impact of the changing
policy of the allied agents (as a result of the policy learning process) on our IL outcomes.

Third, we present a unified MARL algorithmic framework in which we incorporate our IL component
into MAPPO. Our idea is to combine each allied agent’s local observations with the next-state
prediction of neighboring opponents of that agent, creating an augmented input based on which to
improve the decision making of the allied agent at every state. This novel integration results in a new
MARL algorithm, which we name Imitation-enhanced Multi-Agent EXtended PPO (IMAX-PPO).

Finally, we conduct extensive experiments in several benchmarks ranging from complex to simple
ones, including: SMACv2 (an advanced version of the Star-Craft multi-agent challenge) [4], Google
research football (GRF) [15], and Gold Miner [7]. Our empirical results show that our new algorithm
consistently outperforms SOTA algorithms significantly accross all these benchmarks.

2 Related Work

MARL. The literature on MARL includes both centralized and decentralized algorithms. While
centralized algorithms [2] learn a single joint policy to produce joint actions of all the agents, decen-
tralized learning [17] optimizes each agent’s local policy independently. There are also algorithms
based on centralized training and decentralized execution (CTDE). For example, methods in [18, 5]
adopt actor-critic structures and learn a centralized critic that takes global information as input.
Value-decomposition (VD) is a class of methods that represent the joint Q-function as a function
of agents’ local Q-functions [29, 23]. Alternatively, the use of policy-gradient methods, such as
PPO [26], has also been investigated in multi-agent RL. For example, [3] propose independent PPO
(IPPO), a decentralized MARL, that can achieve high success rates in several hard SMAC maps. IPPO
is, however, overall worse than QMIX [23], a method based on factorizing Q function to facilitate
CTDE. Later methods based on factorized Q-learning include QTRAN [27] and QPLEX [30], where
QPLEX has been shown to achive better perforamance than QMIX and QTRAN. Recently, [34]
develop MAPPO, a PPO-based MARL algorithm that outperforms QMIX and QPLEX on some
popular multi-agent environments such as SMAC [25, 4] and GRF [15]. To the best of our knowledge,
MAPPO is currently a SOTA method for MARL. Our work integrates a new opponent imitation
model into MAPPO, resulting in a new MARL algorithm that outperforms SOTA methods on various
challenging game tasks.

Imitation Learning (IL). In this study, we employ IL to anticipate the opponents’ moves. IL is
known as a compelling approach for sequential decision-making [20, 1]. In IL, a collection of expert
trajectories is provided, with the objective of learning a policy that emulates behavior similar to
the expert’s policy. One of the simplest IL methods is Behavioral Cloning (BC), which aims to
maximize the likelihood of the expert’s actions under the learned policy. BC disregards environmental
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dynamics, rendering it suitable only for uncomplicated environments. Several advanced IL techniques,
encompassing environmental dynamics, have been proposed [24, 8, 12]. While these methods operate
in complex and continuous domains, they involve adversarial learning, making them prone to
instability and sensitivity to hyperparameters. The IQ-learn [9] stands as a cutting-edge IL algorithm
with distinct advantages, specifically its incorporation of dynamics awareness and non-adversarial
training. It’s important to note that all the aforementioned IL methods were designed for single-agent
RL. In contrast, the literature on multi-agent RL is limited, with only a handful of studies addressing
IL in multi-agent RL. For instance, [28] presents an adversarial training-based algorithm, named
Multi-agent Generative Adversarial IL. It’s worth noting that all the IL algorithms mentioned above
are established on the premise that expert (aka. opponent in our case) actions are either observable or
can be accessed via sampling, which implies that no existing algorithm can be directly applied to our
multi-agent game settings with local state-only observations.

Opponent Modeling. Many existing works in MARL attempt to capture the learning process of
opponents and incorporate it into the learning of the agent’s policy [6, 14, 33]. For example, the
LOLA algorithm [6] considers the impact of one agent’s policy on the parameter update of other
opponents while Meta-MAPG [14] combines LOLA with meta-learning, accounting for continuous
adaptation. Another important line of research on opponent modelling follows hierarchical reasoning,
considering each agent holds a belief about the other agents according to varying levels of reasoning
ability [32, 31, 35, 19]. As an example, in [32], they introduce a probabilistic recursive reasoning
framework in which variational Bayes methods are used to approximate the opponents’ conditional
policies. Depart from these two lines of research, there are many other works that attempt to learn a
representation for the opponent’s policy or to consider the prediction of opponents’ actions as an an
auxiliary task that can be trained simultaneously with the RL part [11, 13, 22, 21, 10]. For example,
[21] use variational encoder to model the opponents’ fixed policies while [10] apply behavioral
cloning together with agent identification to learn a hybrid generative-discriminative representation
for the opponents’ policy. All the aforementioned related works require having access to opponent’s
observations and actions during training and/or execution. In our work, on the other hand, the
opponent modeling can be only trained based on local observations of each agent in the allied team.
These local observations contain limited information about current states of nearby opponents while
opponents’ actions are unobservable. As a result, existing methods on opponent modeling are not
applicable in our multi-agent setting.

3 Multi-Agent POMDP Setting

We consider a multi-player Markov game in which there are multiple agents forming an alliance to play
against some opponent agents. We present the Markov game as a tuple {S,Nα,Ne,Aα,Ae, P,R},
where S is the set of global states shared by all the agents, Nα and Ne are the set of ally and enemy
agents, Aα =

∏
i∈NA

Aα
i is the set of joint actions and Ae =

∏
j∈Ne

Ae
j is the set of joint actions of

all the ally agents, P is the transition dynamics of the game environment, and R is a reward function
that takes inputs as states and actions of all agents and returns the corresponding rewards. At each
time step where the global state is S, each ally agent i ∈ Nα makes an action aαi according to a
policy παi (a

α
i |oαi ), where oαi is the observation of ally agent i given state S. The joint action of allied

agents can be now defined as Aα = {aαi | i ∈ Nα}, and the joint policy is defined accordingly:

Πα(Aα|S) =
∏

i∈Nα
παi (a

α
i |oαi ).

The enemy agents, at the same time, make a joint action Ae = {ae
j | j ∈ Ne} with the probability:

Πe(Ae|S) =
∏

j∈N e
πe
j(a

e
j |oe

j).

After all agents make decisions, the global state transits to a new state S′ with the probability
P (S′|Ae, Aα, S). In our setting, the enemies’ policies Πe are fixed and thus can be treated as a part
of the environment dynamics, as follows:

P (S′|Aα, S) =
∑

Ae
Π(Ae|S)P (S′|Ae, Aα, S)

Our goal is to find a policy that optimizes the allies’ expected joint reward, formulated as follows:1

maxΠα E(Aα,S)∼Πα
[
Rα(S,Aα)

]
(1)

1Environment dynamics are implicitly involved in sampling.
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The game dynamics involve both the environment dynamics and the joint policy of enemies, making
the training costly to converge. We aim to migrate uncertainties associated with these game dynamics
by first predicting the opponent policy based on the allies’ past observations and leveraging this
prediction into guiding the policy training for the allies.

4 Opponent Policy Imitation

The key challenge in our problem is that actions taken by opponents are hidden from allied agents.
Moreover, each allied agent has limited observations of other agents; they can only obtain information
about nearby opponents. For example, in the SMAC environment, for each allied agent, besides
information about the agent itself, the allied agent is also aware of the relative position and health
point, etc. of the neighboring opponents.2 Therefore, instead of directly predicting opponents’ next
moves, we focus on anticipating next states of opponents — this next-state prediction can be used as
an implication of what actions have been taken by the neighboring opponents. Our key contributions
include: (i) a novel representation of the opponent next-state prediction in the form of multi-agent
IL; (ii) a new adaptation of IQ-Learn to solve our new IL problem; (iii) a comprehensive theoretical
analysis on the influence of policy learning of allied agents on the next-state prediction outcomes;
and (iv) a practical multi-agent IL algorithm which is tailored to local observations of allied agents.

Here, it is important to note that prior works on IL with state-only observations all assume that
actions are not available in the expert demonstrations but can be accessed via sampling, which is
not the case in our context. Alternatively, one could apply standard supervised learning for this
opponent-next-state prediction task. However, a well-known drawback of this approach is that it
disregards environment dynamics and often struggles with distribution shifts [16]. As shown later in
our experiments, our IL approach significantly outperforms this supervised-learning approach.

4.1 Multi-Agent IL with Unobservable Actions

We now present our IL formulation and our adaptation of IQ-Learn for solving our new IL problem.
For the sake of theoretical analysis, this section focuses on IL with global state-only observations.
We then introduce a new practical algorithm later which addresses local observations of allied agents.

Opponent Next-State Prediction as an IL. To formulate the problem as an IL that accounts for
the action-unobservable issue, we introduce a new notion of the “expert” state in our IL problem as
a pair W = (S,Aα−) which comprises of the original state S and the joint action of the allies Aα−
taken in the previous step that leads to state S. The action space of the “expert” is equivalent to
the original state space S. We then introduce a new notion of a reward function for the expert as
Re(W,S′). This action (S′) of the expert is basically a resulting state of joint actions of the allies
Aα and hidden joint actions of the enemies Ae taken at state S. Altogether with the reward function
Re(W,S′), we introduce a new notion of joint policy for the expert, Πe(S′|W ) (or Πe(S′|S,Aα−)),
which is essentially the probability of ending up at a global state S′ from state S. The dynamics in
this IL setting becomes P (W ′ |W,S′) = P ((S′, A) |(S,Aα−), S′) = Πα(A |S) (which is the allies’
policy) where W ′ = (S′, A) and A is the action taken by the allies at state S.

Let ΠΠΠ = {Π : S × S × Aα → [0, 1],
∑
S′∈S Π(S′|S,Aα−) = 1, ∀S, S′ ∈ S, Aα ∈ Aα} be the

support set of the imitating policy. We now introduce the maximum-entropy inverse RL framework
[12] w.r.t the new notions of the expert’s reward and policy (Re(S′|W ),Πe(S′|W )):

max
Re

min
Π∈ΠΠΠ

{
L(Π, Re) = Eρe,α [Re(W,S′)− EρΠ,α [Re(W,S′)] + Eρα,Π [lnΠ(S′|W )]

}
(2)

where ρe,α is the occupancy measure of (W,S′) given by the expert policy Πe and the ally joint
policy Πα, and ρΠ,α the occupancy measure of (W,S′) given by the imitation and ally policies. In
particular, ρe,α can be computed as follows:

ρe,α(S′,W ) =(1− γ)Πe(S′ |W )
∏∞

t=0
γtP (Wt =W |Πe,Πα)

An Adaptation of IQ-Learn. Drawing inspiration from the SOTA IL algorithm, IQ-learn, we
construct our IL algorithm which is an adaptation of IQ-Learn tailored to our multi-agent environment.

2These neighbors change over time depending on actions of all agents and the environment dynamics.
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The main idea of IQ-learn is to convert a reward learning problem into a Q-function learning one. To
apply IQ-Learn to our setting, we present the following new soft and inverse soft Bellman operators,
which is as adaption from the original ones introduced in [9]:

BΠ,Re

Qe (W,S′) = Re(W,S′) + γEW ′ [V e
Π(W

′)] (3)

T Π
Qe(W,S′) = Qe(W,S′)− γEW ′ [V e

Π(W
′)] (4)

where the state value function is computed as follows:

V e
Π(W )=ES′∼Π

[
Qe(W,S′)− ln(Π(S′|W ))

]
First, it is clear that BΠ,Re

Qe is contractive, thus defining a unique fixed point solution Q∗ such that

BΠ,Re

Q∗ = Q∗. Let us further define the following function of Π and Qe for the Q-function learning:

J(Π, Qe) = Eρe,α [T Π
Qe(W,S′)]− EρΠ,α [T Π

Qe(W,S′)] + EρΠ,α [lnΠ(S′|W )]

We obtain a theoretical result on a connection between the learning reward and learning Q-functions:3

Proposition 1. For any reward function Re, let Q∗ be the unique fixed point solution to the soft Bell-
man equation BΠ,Re

Q∗ = Q∗, then: L(Π, Re) = J(Π, Q∗), and for any Qe, J(Π, Qe) = L(Π, T Π
Qe).

Proposition (1) indicates that the IL problem in (2) is equivalently to the Q-value-based IL problem:

maxQe minΠ J(Π, Q
e) (5)

Suppose Q∗ is a solution to (5), then rewards can be recovered by taking Re(W,S′) = Q∗(W,S′)−
γEW ′ [V e

Π(W
′)]. Under this viewpoint, Prop. 2 shows that key properties of original IQ-learn still

hold in our multi-agent setting with missing observations, making our IL algorithm convenient to use.
Proposition 2. The IL problem (5) is equivalent to the maximization maxQeJ(ΠQ, Qe) where the
imitation policy can be computed based on Qe as follows:

ΠQ(S′|W ) =
exp(Qe(W,S′))∑
S′′ exp(Qe(W,S′′))

Moreover, the function J(ΠQ, Qe) is concave in Qe.

4.2 Affect of Allies’ Policies on Imitation Learning

The above IL algorithm is trained during the training of the allies’ policies, which means the
dynamics P (W ′|W,S′) = Πα(Aα|S) change during the IL process. Therefore, we aim to analyze
the impact of these changes on the imitation policy. According to Proposition 2, given Qe, we can
compute corresponding optimal imitation policy as ΠQ. Therefore, the value function V e

Π(W ) can be
alternatively write as V e

Q(W ). We now can denote the loss function of the imitation model (Eq. 8) as
a function of the allies’ joint policy explicitly: Φ(Πα|Qe) ≡ J(Π, Qe).

We first present our results about bounds on the impact of the allies’ changing policies on the IL
loss function (Prop. 3). Based on these results, we then provide a bound on the IL learning outcome
accordingly (Corollary 4). Let us denote by Q =max(W,S′)Q

e(W,S′) an upper bound of Qe.

Proposition 3. Given two allies’ joint policies Πα and Π̃α such that KL(Πα(·|S)||Π̃α(·|S)) ≤ ϵ for
any state S ∈ S, the following inequality holds:∣∣∣Φ(Πα|Qe)− Φ(Π̃α|Qe)

∣∣∣ ≤ (
αQ+ β ln |S|

)√
2 ln 2ϵ

where α = γ
(1−γ)2 + γ2

1−γ + (3− γ), and β = γ2

(1−γ) + 3− γ.

Let Φ(Πα|Qe,Π) be the objective of IL J(Π, Qe), written as a function of the allies’ joint policy Πα.
The following proposition establishes a bound for the variation of |Φ(Πα|Qe,Π)− Φ(Π̃α|Qe,Π)| as
function of KL(Πα||Π̃α), for any pair of allies’ joint policies (Πα, Π̃α).

Prop. 3 allows us to establish an upper bound for the IL when the allies’ joint policy changes.
3All proofs are in the appendix.
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Figure 1: An overview of our IMAX-PPO algorithm. Each local observation oαi of an ally agent
i includes information about itself, as well as enemy and ally agents in its neighborhood (which
changes over time). The output of the IL component is the predicted next states of neighboring enemy
agents (predictions for the non-neighbor enemies will be masked out).

Corollary 4. Given two allies’ policies Πα and Π̃α with KL(Πα(·|S)||Π̃α(·|S) ≤ ϵ, ∀S∈S, then:∣∣∣maxQe
{
Φ(Πα|Qe)

}
−maxQe

{
Φ(Π̃α|Qe)

}∣∣∣ ≤ O(
√
ϵ)

Since the allies’ joint policy Πα will be changing during our policy learning process, the above result
implies that the imitating policy will be stable if Πα becomes stable, and if Πα is converging to a
target policy Πα∗, then the imitator’s policy also converges to the one that is trained with the target

ally policy with a rate of
√

KL(Πα||Π̃α). That is, if the actual policy is within a O(ϵ) neighborhood

of the target policy (i.e., KL(Πα||Π̃α) ≤ ϵ) then the expected return of the imitating policy is within
a O(

√
ϵ) neighborhood of the desired “expected return” given by the target policy.

5 IMAX-PPO: Imitation-enhanced Multi-Agent EXtended PPO Algorithm

We present our MARL algorithm for the competive game setting. We first focus on a practical
implementation of an IL algorithm taking into account local observations. We then show how
to integrate this into our MARL algorithm. We call our algorithm as IMAX-PPO, standing for
Imitation-enhanced Multi-Agent EXtended PPO algorithm.

5.1 Imitation Learning with Local Observations

In previous section, we present our new IL algorithm (which is an adaptation of IQ-Learn) to learn
an expert policy Π̂e(S′|W ) = Π̂e(S′|S,Aα) that behaves similarly to the probabilities of ending
up at state S′ when the current global state is S and the allies’ joint action is Aα. From the allies’
perspective, to run this IL algorithm, it requires the allies to have access to the global state S. However,
each ally agent i can only observe local states of its neighboring enemies (such as their locations,
speeds, etc.). Therefore, we adapt our IL algorithm in accordance with such local information. The
goal is to predict next states of enemies in the neighborhood of each allied agent i, denoted by
Π̂e(Se,next

i |wαi ), where local information wαi = (oαi , a
α
i,−) with oαi is an observation vector of agent

i, containing the local states of the agent i itself and of all the agents in the neighborhood that are
observable by agent i. In particular, given that sαik is the local state of an ally agent ik and se

jk
is of an

enemy agent jk and N(i) is the neighborhood of i, we have:

oαi = {sαi } ∪ {sαik : ik∈N(i) ∩Nα} ∪ {se
jk
: jk∈N(i) ∩N e}

To apply our IL algorithm to this local observation setting, we build a common policy network Π̂e
ψπ

and Q network Q̂e
ψQ

for all the agents where ψπ and ψQ are the network parameters. The IL objective
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function can be reformulated according to local observations of the allies as follows:

J(Π̂e
ψπ , Q̂

e
ψQ) =

∑
i∈Nα

E(Se,next
i ,wαi )∼ρ

e,α

[
Q̂e(Se,next

i , wαi ) (6)

− γEwα,next
i

[V e
Π(w

α,next
i )]

]
− (1− γ)Ewαi0∼P 0,ΠαV

e
Π(w

α
i0)

where wαi = (oαi , a
α
i,−), w

α,next
i = (oα,next

i , aαi ) (aαi is the action taken by agent i at observation oαi ,
resulting in next observation oα,next

i ), Se,next
i = {s′ejk :jk∈N(i) ∩N e} is the next states of enemies in

the current neighborhood of the agent i. In addition, the value functions are re-formulated as follows:

V e
Π(w

α
i ) = E(Se,next

i )∼Π̂e
ψπ

[
Q̂e
ψQ(S

e,next
i , wαi )− ln(Π̂e

ψπ (S
e,next
i |wαi ))

]
In the end, we can update Π̂e

ψπ
and Q̂e

ψQ
by the following actor-critic rule: for a fixed Q̂e

ψQ
, we update

ψQ to maximize J(Π̂e
ψπ
, Q̂e

ψQ
), and for a fixed Π̂e

ψπ
, we apply soft actor-critic (SAC) to update ψπ .

5.2 IMAX-PPO Algorithm

We now combine the local observation oαi of each allied agent iwith the next-state prediction Se,next
i of

its neighboring enemies (obtained by our IL algorithm) to create an augmented input. This augmented
input is used to improve the policy learning of the allied agent i. That is, we aim to optimize the
allies’ policy Παθ (a

α
i |oαi , S

e,next
i ), i∈Nα} that optimizes the long-term expected joint reward:

maxΠαθ E(aαi ,o
α
i ,S

e,next
i )∼Παθ

[∑
i∈Nα

Rαi (o
α
i , a

α
i )
]

where oαi is an observation vector of agent i, Se,next
i is the information derived from the imitator

for agent i, aαi ∈ Aα
i is a local action of agent i. To facilitate the training and integration of the

imitation learning policy into the MARL algorithm, for every ally agent i, we gather game trajectories
following the structure (oi, aαi , S

e,next
i ). These gathered observations are then stored in a replay buffer

to train the imitation policy Π̂e
ψπ

(Se,next
i |oαi , aαi ).

In the IMAX-PPO framework, at each game state S, considering the current actor policy Πα and
the imitating policy Π̂e, for each agent i ∈ Nα, we draw a sample for the allied agents’ joint
action Ãα ∼Πα. Corresponding local observation oαi and action ãαi of each agent i are then fed
as inputs into the imitation policy to predict the subsequent state Se,next

i ∼ Π̂e(·|oαi , ãαi ). Once the
predicted local states {Se,next

i , i∈Nα} are available, it is used as input to the actor policy Παθ in
order to generate new actions for the allied agents. In simpler terms, we select a next local action
a′αi ∼Παθ (·|oαi , S

e,next
i ). Beside the allies’ policy network, we also use a centralized value network

V αθv (S) and update it together with the policy network in an actor-critic manner, similarly to MAPPO.
The actor-network is trained by optimizing the following objective:

Lα(θ) =
∑

i∈Nα
Eoαi ,aαi ,Se,next

i

[
min{ri(θ)Â, clip(ri(θ), 1− ϵ, 1 + ϵ)Â}

]
(7)

where ri(θ) =
Παθ (a

α
i |o

α
i ,S

e,next
i )

Παθold
(aαi |oαi ,S

e,next
i )

and Â is the advantage function, calculated by Generalized Advan-

tage Estimation (GAE). The Critic network is trained by optimizing

Φα(θv) = ES
[
max

{
[V αθv (S)− R̂(S)]2, [V clip

θv,θv,old
(S)− R̂(S)]2

}]
where R̂(S) = Â+ V αθv,old(S) and V clip

θv,θv,old
(S) = clip(V αθv (S), V

α
θv,old

(S)− ϵ, V αθv,old(S) + ϵ). We
provide the key stages in Algorithm 1. Additionally, Fig. 1 serves as an illustration of our IMAX-PPO.

6 Experiments

We evaluate the performance of our IMAX-PPO algorithm (Algo. 1) in comparison with some
standard and SOTA multi-agent RL algorithms: IPPO, MAPPO, QMIX and QPLEX. In addition, to
examine the impact of our multi-agent IL model on the performance of IMAX-PPO, we include two
versions of IMAX-PPO where opponent’s next states are predicted by (i) an adaption of the GAIL
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Algorithm 1 IMAX-PPO Algorithm
Input: Initial allies’ policy network Παθ , initial allies’ value network V αθv , initial imitator’s policy
network Π̂e

ψπ
, initial imitator’s Q network Qe

ψQ
, learning rates κe

π, κ
e
Q, κ

α
π , κ

α
V .

Output: Trained allies’ policy Παθ
1: for t = 0, 1, . . . do
2: # Updating imitator:
3: ψQ,t+1 = ψQ,t + κe

Q∇ψQ [J(ψQ)] # Train Q function using the objective in (6)
4: ψπ,t+1 = ψπ,t − κe

π∇ψπESe,next
i

[V e
Π(S

e,next
i )] # Update policy Π̂e

ψπ
(for continuous domains)

5: # Updating allies’ policy:
6: θt+1 = θt + καπ∇θL

α(θ) # Update allies’ actor by maximizing Lα(θ)
7: θv,t+1 = θv,t − καV∇θvΦ

α(θv) # Update allies’ critic by minimizing Φα(θv)
8: end for
9: return policy solution for allied agents

Table 1: Win-rates (percentage).

Tasks Scenarios MAPPO IPPO QMIX QPLEX Sup IMAX-PPO
MAPPO GAIL InQ

SMAC
Protoss

5_vs_5 58.0 54.6 70.2 53.3 71.8 68.1 78.7
10_vs_10 58.3 58.0 69.0 53.7 67.3 59.6 79.8
10_vs_11 18.2 20.3 42.5 22.8 36.7 21.3 48.7
20_vs_20 38.1 44.5 69.7 27.2 71.1 76.3 80.6
20_vs_23 5.1 4.1 16.5 4.8 21.9 11.8 24.2

SMAC
Terran

5_vs_5 52.0 56.2 58.4 70.0 55.8 53.3 69.9
10_vs_10 58.1 57.3 65.8 66.1 54.1 58.4 72.2
10_vs_11 28.6 31.0 39.4 41.4 26.9 28.4 53.9
20_vs_20 52.8 49.6 57.6 23.9 38.6 35.9 65.4
20_vs_23 11.2 10.0 10.0 7.0 11.2 4.7 17.7

SMAC
Zerg

5_vs_5 41.0 37.2 37.2 47.8 52.5 48.6 55.0
10_vs_10 39.1 49.4 40.8 41.6 57.4 50.6 57.6
10_vs_11 31.2 26.0 28.0 31.1 38.1 34.8 41.5
20_vs_20 31.9 31.2 30.4 15.8 44.3 26.7 43.3
20_vs_23 15.8 8.3 10.1 6.7 13.6 8.2 21.3

Gold
Miner

easy 48.9 49.3 57.2 59.8 47.1 54.5 61.8
medium 40.6 39.5 47.3 50.4 39.4 39.3 55.0

hard 31.2 31.2 41.7 43.5 31.3 29.7 49.8

GRF
3_vs_1 88.0 82.7 8.1 90.2 96.1 96.4 98.1

easy 87.8 84.1 16.0 94.9 89.7 64.1 95.0
hard 77.4 70.9 3.2 95.1 10.7 15.2 97.3

algorithm [12], denoted as IMAX-PPO (GAIL) and (ii) the IQ-learn adaption (i.e. Algorithm 1,
denoted as IMAX-PPO (InQ). Moreover, to compare out IL-based approach with supervise learning,
we include an approach based on MAPPO where the opponent’s next states are learned and predicted
by standard supervising learning. We denote this approach as Sup-MAPPO.

The details of Sup-MAPPO and IMAX-PPO (GAIL) are provided in the appendix. We run extensive
experiments in three multi-agent competitive environments: SMACv2, Google Research Football
(GRF), and Miner. Each reported value is computed based on 32 different rounds of game playing
(each corresponds to a different random seed).

SMACv2. SMACv2 [4] is an advanced variant of SMAC, driven by the aim to present a more
challenging setting for the assessment of cooperative MARL algorithms. In SMACv2, scenarios are
procedurally generated, which require agents to generalize to previously unseen settings (from the
same distribution) during evaluation. This benchmark consists of 15 sub-tasks where the number
of agents varies from 5 to 20. The agents can play with opponents of different difficulty levels. In
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Figure 2: Win-rate curves on SMACv2 environment.

comparison to SMACv1 [25], SMACv2 stands apart by permitting randomized team compositions,
varied starting positions, and an emphasis on augmenting diversity.

Figure 2 shows the performance of the five algorithms during the training process across 15 sub-tasks.
The x-axis is the number of training steps and the y-axis is the winning rates averaged over 32
rounds of evaluations. In Figure 2, IMAX-PPO (InQ) consistently and significantly outperforms
other baselines. Our algorithm frequently attains quicker convergence; it achieves high win rates
at earlier training stages. This could be attributed to the incorporation of our IL component, which
facilitates faster comprehension of opponents throughout the game. In particular, the IMAX-PPO
(InQ) outperforms the two other variants IMAX-PPO (GAIL) and Sup-MAPPO, indicating the
advantage of our inverse-Q approach over other IL (i.e. GAIL) and traditional supervising learning
methods. Details of win rates at the end of training are shown in Table 1.

Google Research Football (GRF). This is a challenge on Kaggle competitions made by Google
Research team [15]. We focus on three main sub-tasks, sorted based on increasing difficulty levels: (i)
academy-3-vs-1-with-keeper: three allies try to score against a goal-keeping opponent; (ii) academy-
counterattack-easy: four allies versus a counter-attack opponent and a goal-keeping opponent; and
(iii) academy-counterattack-hard: four allies versus two counter-attack opponents and a goalkeeper.

By default, the representations of all agents’ observations are RGB pixels in GRF, so we pre-process
this information by distilling some important features such as object positions, object directions,
distances between objects, etc. The final win rates are in Table 1, which shows that IMAX-PPO
(InQ) achieves nearly 100% win-rates, and significantly outperforms other baselines.4

Gold Miner [7]. This is another competitive multi-agent game for evaluating our methods, orig-
inating from a MARL competition. Multiple miners navigate in a 2D terrain containing obstacles
and repositories of gold. Players get points according to the volume of gold they successfully extract.
This game is challenging to win as the agents have to learn playing against extremely well-designed
heuristic-based enemies. In this game, the ally agents win if the allied team’s average mined gold is
higher than that of the enemy team.

We customized the original environment into three sub-tasks (between two allies against two enemies)
of three difficulty levels: (i) Easy (easy_2_vs_2): The enemies’ greedy strategy is to find the shortest
way to the golds; (ii) Medium (medium_2_vs_2): One enemy is greedy, and the other follows the
algorithm of the second-ranking team in the competition; and (iii) Hard (hard_2_vs_2): The enemies
are the first- and second-ranking teams in the competition.

4The win rate curves during the training for GRF and Gold Miner environments are in the appendix.
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For this environment, the win rates are in Table 1. Again, IMAX-PPO (InQ) obtained superior win
rates across all three tasks. Especially, in the hard-level task, our algorithm manages to win more
than 50% of the time against the first and second-ranking teams in the competition.

7 Conclusion

We introduced a novel principled framework for enhancing agent training in multi-agent environments
through IL. Our new IL model, adapted from IQ-learn, can predict opponents’ policy using only local
state observations. By integrating this model into a multi-agent PPO algorithm, our IMAX-PPO
algorithm consistently outperforms previous SOTA algorithms such as QMIX and MAPPO. This
improvement is observed across various challenging multi-agent tasks, including SMACv2 and
GRF. A possible limitation of our work is that it relies on the assumption that the enemies do not
update their policies during training (even though this is a standard setting in cooperative multi-agent
reinforcement learning [4, 25]). A future direction would be to delve into these aspects to develop
efficient MARL algorithms for cooperative-competitive multi-agent RL.
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Appendices
A Missing Proofs

A.1 Proof of Proposition 1

Proposition 1: For any reward function Re, let Q∗ be the unique fixed point solution to the soft
Bellman equation BΠ,Re

Q∗ = Q∗, then we have L(Π, Re) = J(Π, Q∗), and for any Qe, J(Π, Qe) =

L(Π, T Π
Qe).

Proof. The proof is similar to that given in [9], as we can see that if Q∗ is a solution to the soft
Bellman equation, then

Q∗(W,S′) = Re(W,S′) + γEW ′ [V ∗
Π(W

′)]

where
V ∗
Π(W ) = ES′∼Π[Q

∗(W,S′)−ln(Π(S′|W ))]
which implies

Re(W,S′) = Q∗(W,S′)− γEW ′ [V ∗
Π(W

′)] = T Π
Q∗(W,S′)

which validatesL(Π, Re) = J(Π, Q∗). The second inequality is just a trivial result from the definition
of J and L.

A.2 Proposition 5

Our following Proposition 5 shows that the function J(Π, Qe) can be reformulated in a more compact
form that is convenient for training.
Proposition 5. The function J(·) can be written as follows:

J(Π, Qe) = E(W,S′)∼ρe,α

[
Qe(W,S′)− γEW ′ [V e

Π(W
′)]
]

− (1− γ)EW0∼(P 0,Πα)V
e
Π(W0) (8)

where S0 is an initial state and P 0 is the initial state distribution in the original MDP.

Proof. From the definition of J(Π, Qe) , we write function J as
J(Π, Qe) = Eρe,α [T Π

Qe(W,S′)]− Eρα,Π [T Π
Qe(W,S′)] + Eρα,Π [lnΠ(S′|W )]

= E(S,Aα−,S)∼ρe,α[Qe(W,S′)−γEW ′V e
Π(W

′)]− E(S,Aα−,S
′)∼ρα,Π[Q

e(W,S′)−γEW ′ [V e
Π(W

′)]]

+ Eρα,Π [lnΠ(S′|W )] (9)
We consider the second and third terms of (9) and write
E(S,Aα−,S

′)∼ρα,Π[Q
e(W,S′)−γEW ′ [V e

Π(W
′)]]− Eρα,Π [lnΠ(S′|W )]

= (1− γ)

(
ESt,Aαt−1,St+1∼Πα,Π

[∑
t=0

γtQe(St+1,Wt)

]
− γ

(
EWt∼ΠA,Π

[∑
t=0

γtV e
Π(Wt+1)

])

− ESt,Aαt−1,St+1∼Π

[∑
t=0

γt lnΠ(St+1|Wt)

])

= (1− γ)

(
ESt,Aαt−1,St+1∼Πα,Π

[∑
t=0

γtQe(St+1,Wt)

]
− γ

(
ESt+1,St,Aαt−1∼Πα,Π

[∑
t=1

γt−1Qe(St+1,Wt)

])

− γ

(
ESt+1,St,Aαt−1∼Πα,Π

[∑
t=1

γt−1 lnΠ(St+1|Wt)

])
+ ESt,Aαt−1,St+1∼Πα,Π

[∑
t=0

γt lnΠ(St+1|Wt)

])
= (1− γ)ES1,W0

[Qe(S1,W0)− lnΠ(S1|W0)]

= (1− γ)EW0
V e
Π(W0). (10)

Thus,
J(Π, Qe) = E(S,Aα−,S

′)∼ρe,α[Qe(W,S′)−γEW ′V e
Π(W

′)]− (1− γ)EW0∼P 0V e
Π(W0) (11)

as desired.
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A.3 Proof of Proposition 2

Proposition 2: The problem maxQe minΠ J(Π, Q
e) is equivalent to the maximization

maxQeJ(ΠQ, Qe) where

ΠQ(S′|W ) =
exp(Qe(W,S′))∑
S′′ exp(Qe(W,S′′))

Moreover, the function J(ΠQ, Qe) is concave in Qe.

Proof. To simplify the proof, we first consider the following simpler optimization problem. Let
p1, p2, ..., pN ∈ [0, 1] and x1, ..., xN are N real numbers. Consider the maximization problem

max
p∈[0,1]N

N∑
i=1

xipi − pi ln pi (P1)

subject to
∑
i

pi = 1

Using the KKT condition, if p∗ is an optimal solution to the above convex problem, p∗ needs to
satisfy the following conditions: there exists λ such that{

xi − ln p∗i − 1− λ = 0, ∀i∑
i p

∗
i = 1

which implies
p∗i = exp(xi − 1− λ)

Combine this with the condition
∑
i p

∗
i = 1 we should have exp(−1 − λ) =

∑
i exp(xi) and

p∗i =
exp(xi)∑
j exp(xj)

(*). In addition, when p = p∗, the objective function of (P1) can be written as

f(x) =
∑
i

xip
∗
i − p∗i ln(p

∗
i )

=
∑
i

pi (xi − ln(p∗i ))

=
∑
i

pi

(
xi − xi + ln

(∑
i

exp(xi)

))

= ln

(∑
i

exp(xi)

)
We then see that f(x) has a log-sum-exp form, thus it is convex in x (**).

We now return to the minimax problem maxQe minΠ J(Π, Q
e). For any fixed Qe, it can be seen that

the problem minΠ J(Π, Q
e) is equivalent to

max
Π

{
γEW [V e

Π(W )] + (1− γ)EW0∼P 0 [V e
Π(W0)]

}
We first consider the problem maxΠ V

e
Π(W ), recalling that V e

Π(W ) can be written as

V e
Π(W ) =

∑
S′

Π(S′|W )× [Qe(W,S′)− log(Π(S′|W ))]

Then it can be seen that each term
∑
S′ Π(S′|W )× [Qe(W,S′)− log(Π(S′|W ))] has the form of

(P1), thus from (**) we see that V e
Π(S) is maximized at

ΠQ(S′|W ) =
exp(Qe(W,S′))∑
S′′ exp(Qe(W,S′′))

Moreover, according to the result (**) proved above, when Π = ΠQ, V e
Π(W ) is convex in Qe.

Consequently, the loss function of the IQ-learn

J(Π, Qe)=E(S,Aα−,S
′)∼(ρe,α)[Q

e(W,S′)−γEW ′V e
Π(W

′)] + (1− γ)EW 0∼P 0V e
Π(W

0)

is concave in Qe, which completes the proof.
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A.4 Corollary 6

Corollary 6. If Π = ΠQ (defined in Proposition 2), then we can write V e
Π(S) as follows:

V e
Π(W ) = V e

Q(W ) = ln
(∑

S′
exp

(
Qe(W,S′)

) )
Note that Corollary 6 is just a direct result from the proof of Proposition 2.

A.5 Proof of Proposition 3

Proposition 3: Given two allies’ joint policies Πα and Π̃α such that KL(Πα(·|S)||Π̃α(·|S)) ≤ ϵ for
any state S ∈ S, the following inequality holds:∣∣∣Φ(Πα|Qe)− Φ(Π̃α|Qe)

∣∣∣ ≤ (
αQ+ β ln |S|

)√
2 ln 2ϵ

where Q = max
(W,S′)

Qe(W,S′) is an upper bound of Qe, α = γ
(1−γ)2 + γ2

1−γ + (3 − γ), and β =

γ2

(1−γ) + 3− γ..

Proof. We first write the loss function as

Φ(Πα|Qe)=E(S,Aα−,S
′)∼(ρe,α)

[
Qe(W,S′)−γEW ′∼ΠαV

e
Q(W

′)
]
− (1− γ)EW 0∼P 0,ΠαV

e
Q(W0)

We first write the difference between two loss values as

Φ(Πα|Qe)− Φ(Π̃α|Qe)=E(S,Aα−,S
′)∼ρe,α[Qe(W,S′)]− E(S,Aα−,S

′)∼ρe,α̃[Qe(W,S′)]

−γ
(
EW ′∼ρe,α

[
V e
Q(W

′)
]
− EW ′∼ρe,α̃

[
V e
Q(W

′)
])

− (1− γ)
(
EW0∼P 0,Πα(V

e
Q(W0)− V e

Q(W0)
)

(12)

We first consider the first term of (12). Let us denote the following function

Γ(S′|W ) = E(S′
t,Wt)∼Πe,Π̃α

[∑
t=0

γt (Qe(S′
t,Wt))

∣∣∣(S′
0,W0) = (W,S′)

]
and write the first term of (12) as

(1− γ)

(
E(S′

t,Wt)∼(Πe,Πα)

[∑
t=0

γt (Qe(S′
t,Wt))

]
− E(S′

t,Wt)∼(Πe,Π̃α)

[∑
t=0

γt (Qe(S′
t,Wt))

])

= (1− γ)

(
E(S′

t,Wt)∼(Πe,Πα)

[∑
t=0

γt (Qe(S′
t,Wt))

]
− E(S′

0,W0)∼(P 0,Π̃α)

[
Γ(S′

0|W0)
])

= (1− γ)

(
E(S′

t,Wt)∼(Πe,Πα)

[∑
t=0

γt (Qe(S′
t,Wt))

]
− E(S′

0,W0)∼(P 0,Πα)

[
Γ(S′

0|W0)
])

+ (1− γ)
(
E(S′

0,W0)∼(P 0,Πα)

[
Γ(S′

0|W0)− E(S′
0,W0)∼(P 0,Π̃α)

[
Γ(S′

0|W0)
]])

= (1− γ)

(
E(S′

t,Wt)∼(Πe,Πα)

[∑
t=0

γt (Qe(S′
t,Wt))

]
+ E(S′

t,Wt)∼(Πe,Πα)

[∑
t=0

γt
(
γΓ(S′

t+1|Wt+1)− Γ(S′
t|Wt)

)])
+ (1− γ)

(
E(S′

0,W0)∼(P 0,Πα)

[
Γ(S′

0|W0)− E(S′
0,W0)∼(P 0,Π̃α)

[
Γ(S′

0|W0)
]])

= (1− γ)E(S′
t,Wt)∼(Πe,Πα)

[∑
t=0

γt
(
Qe(S′

t,Wt) + γΓ(S′
t+1|Wt+1)− Γ(S′

t|Wt)
) ]

+ (1− γ)
(
E(S′

0,W0)∼(P 0,Πα)

[
Γ(S′

0|W0)− E(S′
0,W0)∼(P 0,Π̃α)

[
Γ(S′

0|W0)
]])

(13)

We first see that

Γ(S|W ) = E(S′
t,Wt)∼Πe,Π̃α

[∑
t=0

γt (Qe(S′
t,Wt))

∣∣∣(S′
0,W0) = (W,S′)

]
≤ Q

1− γ
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Thus, we can bound the second term of (13) as

(1− γ)
(
E(S′

0,W0)∼(P 0,Πα) [Γ(S
′
0|W0)]− E(S′

0,W0)∼(P 0,Π̃α) [Γ(S
′
0|W0)]

)
≤ (1− γ)(max

S,W
Γ(S|W ))||Πα(·|St)− Π̃α(·|St)||∞

≤ Qmax
S

{√
2 ln 2KL(Πα(·|S)||Π̃α(·|S))

}
(14)

We also see that

Γ(S′
t|Wt) = Qe(S′

t,Wt) + γE(S′
t+1,Wt+1)∼Πe,Π̃α|S′

t,Wt

[
Γ(S′

t+1|Wt+1)
]

Thus, we further can bound the first term (13) as

E(S′
t+1,Wt+1)∼Πe,Πα|S′

t,Wt

[ (
Qe(S′

t,Wt) + γΓ(S′
t+1|Wt+1)− Γ(S′

t|Wt)
) ]

= γE(S′
t+1,Wt+1)∼Πe,Πα|S′

t,Wt

[ (
Γ(S′

t+1|Wt+1

) ]
− γE(S′

t+1,Wt+1)∼Πe,Π̃α|S′
t,Wt

[ (
Γ(S′

t+1|Wt+1

) ]
≤ γH||Πα(·|St)− Π̃α(·|St)||∞

≤ γHmax
S

{√
2 ln 2KL(Πα(·|S)||Π̃α(·|S))

}
where:

H= max
(W,S′)

{Γ(S′|W )}

= max
(W,S′)

{
E(S′

t,Wt)∼(Πe,Π̃α)

[∑
t=0

γt (Qe(S′
t,Wt))

]}

≤ Q

1− γ

where Q is an upper bound of Qe(·|·). Therefore, we can bound (13) as

E(S′
t|St,Aαt )∼(Πe,Πα)

[∑
t=0

γt
(
Qe(S′

t,Wt) + γΓ(S′
t+1|Wt+1)− Γ(S′

t|Wt)
) ]

+ (1− γ)
(
E(S′

0,W0)∼(P 0,Πα)

[
Γ(S′

0|W0)− E(S′
0,W0)∼(P 0,Π̃α)

[
Γ(S′

0|W0)
]])

(15)

≤
(

γ

(1− γ)2
+ 1

)
Qmax

S

{√
2 ln 2KL(Πα(·|S)||Π̃α(·|S))

}
(16)

For the second term of (12), we can bound it as

γ
(
E(W,S′,W ′)∼ρe,α

[
γV e

Q(W
′)
]
− γE(W,S′,W ′)∼ρe,α̃

[
γV e

Q(W
′)
])

= (1− γ)

(
EWt∼Πe,Πα

[∑
t=1

γtV e
Q(Wt)

]
− E(Wt)∼Πe,Π̃α

[∑
t=1

γtV e
Q(Wt)

])

= (1− γ)E(Wt∼Πe,Πα)

[∑
t=1

γt
(
V e
Q(Wt)+γU(Wt+1)−U(Wt)

)]
+ (1− γ)

(
E(W1)∼(P 0,Πα)[U(W1)]− EW1∼(P 0,Π̃α)[U(W1)]

)
(17)

where U(W )=E(Wt∼Πe,Π̃α)

[∑
t=0

γt
(
V e
Q(Wt)

) ∣∣∣W0=W

]
. It then can be seen that

U(Wt) = V e
Q(Wt) + γE(Wt+1)∼Πe,Π̃α|Wt

[U(Wt+1)] (18)
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and

U(W ) ≤ 1

1− γ
max
W

V e
Q(W )

≤ 1

1− γ
max
W

{
ln

(∑
S′

exp(Qe(W,S′))

)}

≤ 1

1− γ
(ln |S|+Q)

Thus, given any Wt, we have

EWt+1∼(Πe,Πα)|St
[
V e
Q(Wt) + γU(Wt+1)− U(Wt)

]
= γEWt+1∼(Πe,Πα)|Wt

[U(Wt+1)]− γEWt+1∼(Πe,Π̃α)|Wt
[U(Wt+1)]

≤ γK||Πα(·|St)− Π̃α(·|St)||∞

≤ γKmax
S

{√
2 ln 2KL(Πα(·|S)||Π̃α(·|S))

}
(19)

where K = 1
1−γ (ln |S|+Q) ≥ maxW {U(W )}. So, (17) can be bounded as

(1− γ)E(Wt∼Πe,Πα)

[∑
t=1

γt
(
V e
Q(Wt)+γU(Wt+1)−U(Wt)

)]

≤ γ2(ln |S|+Q)

(1− γ)
max
S

{√
2 ln 2KL(Πα(·|S)||Π̃α(·|S))

}
(20)

Moreover,

(1− γ)
(
E(W1)∼(P 0,Πα)[U(W1)]− EW1∼(P 0,Π̃α)[U(W1)]

)
≤ (1− γ)max

S,Aα

(
(Πα(Aα|S))2 − (Π̃α(Aα|S))2

)
K

≤ 2(1− γ)K||Πα(·|St)− Π̃α(·|St)||∞

≤ 2(ln |S|+Q)max
S

{√
2 ln 2KL(Πα(·|S)||Π̃α(·|S))

}
(21)

Combine (17) and (20) and (21), we bound the second term of (12) as∣∣E(W,S′,W ′)∼ρe,α

[
γV e

Q(W
′)
]
− E(W,S′,W ′)∼ρe,α̃

[
γV e

Q(W
′)
]∣∣

=

(
γ2

(1− γ)
+ 2

)
(ln |S|+Q)max

S

{√
2 ln 2KL(Πα(·|S)||Π̃α(·|S))

}
(22)

The last term of (12) can be bounded simply as as

(1− γ)
∣∣EW0∼P 0,Πα [V

e
Q(W

0)]− EW0∼P 0,Πα [V
e
Q(W

0)])
∣∣

≤ (1− γ)max
W

{V e
Q(W )}max

S

{√
2 ln 2KL(Πα(·|S)||Π̃α(·|S))

}
≤ (1− γ)(ln |S|+Q)max

S

{√
2 ln 2KL(Πα(·|S)||Π̃α(·|S))

}
(23)

Combine (16), (22) and (23) we get∣∣∣Φ(Πα|Qe)− Φ(Π̃α|Qe)
∣∣∣

≤
(

γQ

(1− γ)2
+
γ2(ln |S|+Q)

(1− γ)
+ (3− γ)(ln |S|+Q)

)
max
S

{√
2 ln 2KL(Πα(·|S)||Π̃α(·|S))

}
=

((
γ

(1− γ)2
+

γ2

1− γ
+ (3− γ)

)
Q+

(
γ2

(1− γ)
+ 3− γ

)
ln |S|

)
max
S

{√
2 ln 2KL(Πα(·|S)||Π̃α(·|S))

}
which completes the proof.
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B Continuous Action Space

We extend the results in Section 4.2 to provide bounds for the case of continuous action space. In this
scenario, an actor-critic method is used since the policy ΠQ cannot be computed exactly as in Prop. 2.
In this case, we can use an explicit policy Π to approximate ΠQ instead. We then iteratively update
Qe and Π alternatively using the loss function in Prop. 5. In particular, for a fixed Qe, a soft actor
update maxΠ ES′∼Π(·|W )[Q

e(W,S′)− lnΠ(S′|W )] will bring the imitation policy Π closer to ΠQ.

Let Φ(Πα|Qe,Π) be the objective of IL in Eq. (8), written as a function of the allies’ joint policy Πα.
The following proposition establishes a bound for the variation of |Φ(Πα|Qe,Π)− Φ(Π̃α|Qe,Π)| as
function of KL(Πα||Π̃α), for any pair of allies’ joint policies (Πα, Π̃α).

Proposition 7 (Continuous state space S). Given two allies’ joint policies Πα and Π̃α such that for
every state S ∈ S, KL(Πα(·|S)||Π̃α(·|S)) ≤ ϵ, the following inequality holds:∣∣∣Φ(Πα|Qe,Π)− Φ(Π̃α|Qe,Π)

∣∣∣ ≤ (αQ− βH
)√

2 ln 2ϵ

where H=infW
∑
S′ Π(S′|W ) lnΠ(S′|W ), is a lower bound of the entropy of the actor policy Π.

Proof. We can follow the same arguments as in the proof of Proposition 3 above, with the only
difference being when we bound V e

Q(W ). Here, V e
Q(W ) is replaced by V e

Π(W ) and can be bounded
as

V e
Π(W ) =

∑
S′

Πα(S′|W ) [Qe(W,S′)− log(Π(S′|W ))]

≤ inf
W,S′

{Qe(W,S′)} − inf
W

{∑
S′

Π(S′|W ) log(Π(S′|W ))

}
≤ Q−H (24)

We now see that the entropy term
∑
S′ Π(S′|W ) log(Π(S′|W )) is minimized when

Π(S′|W ) = 1/|S|, where H = infW {H(W )}, and H(W ) is the entropy of Π(·|W ), i.e.,∑
S′ Π(S′|W ) lnΠ(S′|W ). Therefore, the overall bound can be established by replacing the term

ln |S| in the discrete case by −H . We then obtain∣∣∣Φ(Πα|Qe,Π)− Φ(Π̃α|Qe,Π)
∣∣∣ ≤ (αQ− βH

)
max
S

{√
2 ln 2KL(Πα(·|S)||Π̃α(·|S))

}

Prop. 3 & 7 allow us to establish an upper bound for the IL when the allies’ joint policy changes.

Corollary 8. Given two allies’ policies Πα and Π̃α with KL(Πα(·|S)||Π̃α(·|S) ≤ ϵ, ∀S∈S, then:∣∣∣maxQe minΠ

{
Φ(Πα|Qe,Π)

}
−maxQe minΠ

{
Φ(Π̃α|Qe,Π)

}∣∣∣ ≤ O(
√
ϵ) (continuous)

Proof. To simplify the notation, we first prove the following result:

Lemma 9. Given ϵ > 0, and two functions f(x), g(x) such that |f(x)− g(x)| ≤ ϵ for any x ∈ X
(X is the feasible set of x). The following hold true

|max
x

f(x)−max
x

g(x)| ≤ ϵ

|min
x
f(x)−min

x
g(x)| ≤ ϵ

To prove the above lemma, let xf , xg be optimal solutions to maxx f(x) and minx g(x), respectively.
We consider 2 cases

(i) If maxx f(x) ≥ minx g(x), then we have

|max
x

f(x)−min
x
g(x)| = f(xf )− g(xg) ≤ f(xf )− g(xf )

(a)

≤ ϵ

where (a) is because |f(x)− g(x)| ≤ ϵ for any x ∈ X
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(ii) If maxx f(x) ≤ minx g(x), then we have

|max
x

f(x)−min
x
g(x)| = g(xg)− f(xf ) ≤ g(xg)− f(xg)≤ϵ

Thus |maxx f(x)−maxx g(x)| ≤ ϵ. The inequality |minx f(x)−minx g(x)| ≤ ϵ can be validated
in the same way.

We now get back to the main proof. Since
∣∣∣Φ(Πα|Qe)− Φ(Π̃α|Qe)

∣∣∣ ≤ O(
√
ϵ) (Proposition 3),

Lemma 9 above implies that∣∣∣maxQe

{
Φ(Πα|Qe)

}
−maxQe

{
Φ(Π̃α|Qe)

}∣∣∣ ≤ O(
√
ϵ)

Moreover, from Proposition 7, applying Lemma 9 twice, we have the following∣∣∣minΠ
{
Φ(Πα|Qe,Π)

}
−minΠ

{
Φ(Π̃α|Qe,Π)

}∣∣∣ ≤ O(
√
ϵ)

and ∣∣∣maxQe minΠ
{
Φ(Πα|Qe,Π)

}
−maxQe minΠ

{
Φ(Π̃α|Qe,Π)

}∣∣∣ ≤ O(
√
ϵ)

which completes the proof.

C Other Experimental Settings and Results

C.1 MAPPO with Supervised Learning to Predict Opponent’s Next States

In this approach, instead of using IQ-learn to predict opponent’s next states, we employ a simple
supervised learning approach. Specifically, we create a neural network of parameters δ: M i

δ(o
α
i , a

α
i ),

taking inputs as an observation and an action of allied agent i, and predict the next states of enemy
agents in the observable area of agent i. The loss function can be defined as to minimize the MSE
between the actual next enemy states and predicted ones, as follows:

min

JSup(δ) = ∑
(S̃e,next
i ,õαi ,ã

α
i ,∀i)∼buffer

√∑
i

(
S̃e,next
i −M i

δ(õ
α
i , ã

α
i )
)2

C.2 IMAX-PPO with GAIL

To predict enemies’ next states, the GAIL algorithm by [12] can be adapted in a similar way as
our main IMAX-PPO algorithm. Building upon our new MDP framework, which is necessary
to handle the unobservable-action issue, the aim is also to learn a policy Π(S′|W ) by creating a
discriminator D(W,S′) that distinguishes between generated transitions (W,S′) and those collected
from interacting with the actual enemy agents. The GAIL loss function can be formulated as

min
Π

max
D

{
JGAIL(Π, D) = E(S′,Q)∼ρΠ,α [logD(S′,W )] + Eρe,α [log(1−D(W,S′))]− λH(Π)]

}
,

where H(Π) is the entropy of Π. In practice with partial observations, we can model D and Π as
neutral networks Dw(Se,next

i , oαi , a
α
i ) and Πθ(S

e,next
i , oαi , a

α
i ), where w, θ are trainable parameters.

The objective can be formulated as follows:

min
θ

max
w

{
JGAIL(θ, w) = E(Se,next

i ,oαi ,a
α
i )∼ρΠ,α

[
logD(Se,next

i , oαi , a
α
i )
]

+ E(Se,next
i ,oαi ,a

α
i )∼buffer

[
log(1−D(Se,next

i , oαi , a
α
i ))
]
− λH(Πθ)

}
.

C.3 Experimental Settings

For a fair comparison between our proposed algorithm and existing methods, we use the same
model architecture and hyperparameters as shown in Tables 2 and 3 respectively. We also use

19



SMACv2 GRF Miner

Runner Parallel
Workers 8 32

Total steps 10e6 0.5e6 2e6
Mini steps 1024
Evaluation 32
Mini batch 1

Device Cuda
Mini epochs 5
Learning rate 5e-4 2e-4

Epsilon 1e-5
Weight decay 0.0

Clip range 0.2
Entropy coefficient 0.01 0.0 0.01
Value coefficient 0.5

Weight gain 0.01
Weight initializer Orthogonal

Max gradient norm 10.0
Gamma (GAE) 0.99
Lambda (GAE) 0.95

Table 2: Hyperparameters

Value Normalization method and Recurrent Neural Network mechanism proposed by MAPPO [34],
which used as an improvement method to speed up the training process. All sub-tasks (SMACv2,
GRF, Miner) are trained concurrently in a GPU-accelerated HPC (High Performance Computing).
Therefore, running times reported might not be accurate. In average, each sub-task requires 4-7 days
of training depending on its difficulty. As a result, due to the limitation of our computing resources,
we do not test our method’s performance with other settings such as disabling Value Normalization,
using MLP instead of Recurrent Neural Network, tuning learning rate, tuning clip range, etc.

Regarding GRF tasks, there are 11 academy scenarios (depicted at https://github.com/
google-research/football/blob/master/gfootball/doc/scenarios.md).
Although testing in all these sub-tasks is interesting, but we only evaluate on top three
importance scenarios: academy_3_vs_1_with_keeper, academy_counterattack_easy, and
academy_counterattack_hard. All are the hardest sub-tasks with the highest number of agents except
the almost full football scenarios academy_single_goal_versus_lazy. We report the win-rate curves
of our IMAX for the three tasks in Figure 4. We do not show the performance curves of the other
baselines methods (QMIX, QPLEX, and MAPPO) as they are not available in their papers, noting
that the final win-rates of all the methods considered are already reported in the main paper. Finally,
Figure 5 shows the win-rate curves on the Gold Miner tasks.

MLP

GRU

MLP

MLP

GRU

MLP

MLP

GRU

MLP

+ + +

(a) Actor architecture

MLP

GRU

MLP

MLP

GRU

MLP

MLP

GRU

MLP

(b) Critic architecture

Figure 3: PPO model architecture
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Figure 4: Win-rate curves on GRF environment.
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Figure 5: Win-rate curves on Gold Miner environment.

D Ablation Study

In this section, we present an ablation study to evaluate the effectiveness of our IMAX framework
when integrated with traditional multi-agent reinforcement learning algorithms. Specifically, we
introduce a variant called QMIX-IMAX, which incorporates our IMAX framework into the conven-
tional QMIX algorithm. We conducted experiments using the SMACv2 benchmark, focusing on three
different factions: Protoss, Terran, and Zerg. For each faction, we tested two team configurations:
5_vs_5 and 10_vs_10.

The performance of QMIX-IMAX was compared against the original, non-IMAX versions of
popular algorithms such as MAPPO and QMIX. The results of these experiments are summarized
in Table 3, which illustrates the winning rates achieved by each algorithm across the different
scenarios. Additionally, Figure 6 displays the learning curves, providing a visual representation of
the performance dynamics over the training period.

Our findings indicate that the QMIX-IMAX variant consistently outperforms the traditional QMIX
algorithm across all tested scenarios. However, it does not achieve the same level of performance as
our MAPPO-IMAX variant. This suggests that while the IMAX framework enhances the capabilities
of QMIX, the integration with MAPPO yields superior results. These observations underscore the
potential of the IMAX framework to improve baseline algorithms, offering a promising direction for
future research in multi-agent reinforcement learning.

Task MAPPO QMIX MAPPO-IMAX QMIX-IMAX
(ours) (ours)

protoss 5_vs_5 21.66±9.05 33.84±4.90 48.22±7.87 40.75±2.99
10_vs_10 9.11±2.04 18.64±5.97 46.03±5.93 18.65±5.03

terran 5_vs_5 23.95±4.89 41.48±5.64 50.56±4.84 48.44±4.15
10_vs_10 13.53±2.83 34.12±3.22 45.16±2.87 38.75±5.93

zerg 5_vs_5 13.74±6.10 30.37±4.24 36.39±3.96 29.50±2.03
10_vs_10 6.06±1.76 28.13±7.76 41.53±6.53 25.52±3.81

Table 3: Wining rate (percentage) of two baseline methods MAPPO and QMIX and our improvement
algorithm on SMACv2 tasks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract includes our main claims reflecting our main contributions and
finding.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of the work in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All the proofs of the theorems and propositions stated in the main paper are
provided in the appendix with clear references.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details on the environments and hyper-parameter settings in the
appendix. We also uploaded our source code for re-productivity purposes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data we used, along with our source code, has been uploaded with the
main paper. We have also provided sufficient instructions for their use.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the details are provided in the main paper and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Following standard practices, we reported win-rate scores, computed via
several independent evaluations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provides all the details in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper develops a general algorithm for multi-agent RL, which we have
tested only in simulated environments. As such, we do not foresee any direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [TODO]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have provided clear citations to the source code and data we used in the
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our source code is submitted alongside the paper, accompanied by sufficient
instructions. We will share the code publicly for re-producibility or benchmarking purposes.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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