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Abstract

We present an extensive study of H-consistency bounds for multi-class classifi-
cation. These are upper bounds on the target loss estimation error of a predictor
in a hypothesis set J{, expressed in terms of the surrogate loss estimation error
of that predictor. They are stronger and more significant guarantees than Bayes-
consistency, J{-calibration or J{-consistency, and more informative than excess
error bounds derived for H{ being the family of all measurable functions. We give
a series of new JH-consistency bounds for surrogate multi-class losses, including
max losses, sum losses, and constrained losses, both in the non-adversarial and
adversarial cases, and for different differentiable or convex auxiliary functions
used. We also prove that no non-trivial J{-consistency bound can be given in some
cases. To our knowledge, these are the first JH{-consistency bounds proven for the
multi-class setting. Our proof techniques are also novel and likely to be useful in
the analysis of other such guarantees.

1 Introduction

The loss functions optimized by learning algorithms are often distinct from the original one specified
for a task. This is typically because optimizing the original loss is computationally intractable or
because it does not admit some favorable properties of differentiability or smoothness. As an example,
the loss function minimized by the support vector machine (SVM) algorithm is the hinge loss (Cortes
and Vapnik, 1995) or the one associated to AdaBoost is the exponential loss (Schapire and Freund,
2012), both distinct from the binary classification loss used as a benchmark in applications. But, what
learning guarantees can we rely on when using a surrogate loss? This is a fundamental question in
learning theory that directly relates to the design of algorithms.

The standard property of Bayes-consistency, which has been shown to hold for several surrogate
losses (Zhang, 2004a,b; Bartlett, Jordan, and McAuliffe, 2006; Tewari and Bartlett, 2007; Steinwart,
2007), does not supply a sufficient guarantee, since it only ensures that, asymptotically, near optimal
minimizers of the surrogate excess loss nearly optimally minimize the target excess error. Moreover,
this asymptotic property only holds for the full family of measurable functions, which of course is
distinct from the more restricted hypothesis set used by a learning algorithm. In fact, it has been
shown by Long and Servedio (2013), both theoretically and empirically, that for some hypothesis sets
and distributions, the expected error of an algorithm minimizing a Bayes-consistent loss is bounded
below by a positive constant, while that of an algorithm minimizing an inconsistent loss goes to zero.
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This suggests that a hypothesis set-dependent notion of J{-consistency is more pertinent to the study
of consistency for learning (Long and Servedio, 2013), which has been used by Kuznetsov et al.
(2014); Cortes et al. (2016a,b) and Zhang and Agarwal (2020) and more generally by Awasthi, Frank,
Mao, Mohri, and Zhong (2021a) in an extensive study of both binary classification and adversarial
binary classification losses, as defined in (Goodfellow et al., 2014; Madry et al., 2017; Tsipras et al.,
2018; Carlini and Wagner, 2017). Nevertheless, J{-consistency remains an asymptotic property and
does not provide guarantees for approximate surrogate loss minimizers that rely on finite samples.

Awasthi, Mao, Mohri, and Zhong (2022a) recently presented a series of results providing H-
consistency bounds in binary classification. These are upper bounds on the target loss estimation
error of a predictor in a hypothesis set J{, expressed in terms of the surrogate loss estimation error of
that predictor. These guarantees are significantly stronger than the J{-calibration or J{-consistency
properties studied by Awasthi et al. (2021b,c). They are also more informative than similar excess
error bounds derived in the literature, which correspond to the special case where H is the family
of all measurable functions (Zhang, 2004a; Bartlett et al., 2006; Mohri et al., 2018). Combining
H-consistency bounds with existing surrogate loss estimation bounds directly yields finite sample
bounds on the estimation error for the original loss. See Appendix C for a more detailed discussion.

This paper presents an extensive study of J{-consistency bounds for multi-class classification. We
show in Section 4.1 that, in general, no non-trivial J{-consistency bounds can be derived for multi-
class max losses such as those of Crammer and Singer (2001), when used with a convex loss auxiliary
function such as the hinge loss. On the positive side, we prove multi-class J{-consistency bounds for
max losses under a realizability assumption and give multi-class J{-consistency bounds using as an
auxiliary function the p-margin loss, without requiring a realizability assumption. For sum losses, that
is multi-class losses such as that of Weston and Watkins (1998), we give a series of results, including
a negative result when using as auxiliary function the hinge-loss, and J{-consistency bounds when
using the exponential loss, the squared hinge-loss, and the p-margin loss (Section 4.2). We also
present a series of results for the so-called constrained losses, such as the loss function adopted
by Lee et al. (2004) in the analysis of multi-class SVM. Here, we prove multi-class J{-consistency
bounds when using as an auxiliary function the hinge-loss, the squared hinge-loss, the exponential
loss, and the p-margin loss (Section 4.3). We further give multi-class adversarial 3{-consistency
bounds for all three of the general multi-class losses just mentioned (max losses, sum losses and
constrained losses) in Section 5.

We are not aware of any prior H-consistency bound derived in the multi-class setting, even in the
special case of J{ being the family of all measurable functions, whether in the non-adversarial or
adversarial setting. All of our results are novel, including our proof techniques. Our results are
given for the hypothesis set J{ being the family of all measurable functions, the family of linear
functions, or the family of one-hidden-layer ReLU neural networks. The binary classification results
of Awasthi et al. (2022a) do not readily extend to the multi-class setting since the study of calibration
and conditional risk is more complex, the form of the surrogate losses is more diverse, and in general
the analysis is more involved and requires entirely novel proof techniques in the multi-class setting
(see Section 3 for a more detailed discussion of this point).

We give a detailed discussion of related work in Appendix A. We start with the introduction of several
multi-class definitions, as well as key concepts and definitions related to the study of J(-consistency
bounds (Section 2).

2 Preliminaries

We consider the familiar multi-class classification scenario with ¢ > 2 classes. We denote by X the
input space and by Y = {1,...,c} the set of classes or categories. Let H be a hypothesis set of
functions mapping from X x Y to R. The label h(z) associated by a hypothesis A € H to x € X is
the one with the largest score: h(x) = argmax, .y h(x,y) with an arbitrary but fixed deterministic
strategy used for breaking ties. For simplicity, we fix that strategy to be the one selecting the label
with the highest index under the natural ordering of labels. See Appendix B for a more detailed
discussion of this choice.

The margin pp(x,y) of a hypothesis h € H for a labeled example (z,y) € X x Y is defined by
ph(xa y) = h(fE, y) - II’}&Xh(.’E, y,)v
Y'Y



that is the difference between the score assigned to (x,y) and that of the runner-up. Given a
distribution D over X x Y and a loss function ¢:H x X x Y — R, the generalization error of a
hypothesis h € H and the minimal generalization error are defined as follows:

Re(h) = ( ZI/E)ND[E(h,x,y)] and  Rj g = igl:}fc Re(h).

)

The goal in multi-class classification is to select a hypothesis h € J{ with small generalization error
with respect to the multi-class 0/1 loss defined, for any h € H, by lo_1(h,7,y) = Lh(g)+y. In the
adversarial scenario, the goal is to select a hypothesis i € J{ with small adversarial generalization
error defined, for any v € (0,1) and p € [1,+00], by Ry (h) = E(, ). [£+ (R, z,y)], where

E’Y(ha Z, y) = sup ]lph(w',y)SO = ]lian,Z”I,I/H’ < Pr(2",y)<0>
a'|z—z'|| p<y v

is the adversarial multi-class 0/1 loss. More generally, the adversarial generalization error and

minimal adversarial generalization error for a loss function £(h, x,y) are defined as follows:

Rﬂh):(mgm[ﬁ(h,x,y)] and R?Eﬂz}ilgﬁﬂ%z(h),

where 0(h, z,y) = SUP | z—av |, <y L (s @', y) is the supremum-based counterpart of /.

For a distribution D over X x Y, we define, for any = € X, p(x) = (p(z,1),...,p(z,c)), where
p(x,y) = D(Y = y| X = x) is the conditional probability of Y = y given X = x. We can then write
the generalization error as Ry(h) = Ex[C(h, z)], where Cy(h,x) is the conditional ¢-risk defined
by Co(h, ) = ¥yey p(x,y)L(h,z,y). We will denote by P a set of distributions D over X x Y and by
Pan the set of all such distributions. For convenience, we define yYmax by Ymax = argmax, qy p(z,y).
When there is a tie, we pick the label with the highest index under the natural ordering of labels.

The minimal conditional {-risk is denoted by C; 5. () = infpesc Co(h, ). We also use the following
shorthand for the gap ACy 5¢(h,x) = C¢(h,z) - €] 5¢(z) and call AC/ 5¢(h, ¥)Lac, 4 (h,z)>c the
conditional e-regret for £. For convenience, we also define, for any vector 7 = (71, ...,7.) in the
probability simplex of R, Co(h,z,7) = ¥yey 7y {(h,2,y), Cf 5¢(2,7) = infpesc Co(h,x,7) and
ACya¢(h,z,7) = Co(h,z,7) = €} 5¢(x, 7). Thus, we have A€ 3¢(h, z,p(x)) = AC¢,3¢(h,x). For
any € > 0, we will denote by [t]6 the e-truncation of ¢ € R defined by ¢14,.. Thus, the conditional
e-regret can be rewritten as [ACy 5¢(h, )],
For a hypothesis set H{ and distribution D, we also define the (¢, H)-minimizability gap as My ¢ =
Ry - Ex [ng{(x)], that is the difference between the best-in class error and the expectation of
the minimal conditional ¢-risk. This is a key quantity appearing in our bounds that we cannot hope
to estimate or minimize. Its value only depends on the distribution D and the hypothesis set H{. As
an example, when K is the family of all measurable functions, then the minimizability gap for the
multi-class 0/1 loss is zero for any distribution D.

3 General theorems

The general form of the H-consistency bounds that we are seeking for a surrogate loss ¢; of a target
loss £o is Ry, (h) = R, 50 < f(Re, (h) = R7, 4¢) for all h € H, for some non-decreasing function
f. To derive such bounds for surrogate multi-class losses, we draw on the following two general
theorems, which show that, under some conditions, the target loss estimation error can be bounded
by some functional form of the surrogate loss estimation error involving minimizability gaps.

Theorem 1 (Distribution-dependent W-bound). Assume that there exists a convex function
U:R, > R with ¥(0) > 0 and € > 0 such that the following holds for all h € H, z € X and
DeP: \I/([A(ﬁg%:}c(h, 2)],.) < A€y, 3¢(h, ). Then, for any hypothesis h € H and any distribution
De?,

U(Re, (h) = R7, g + Moy 9¢) < R, (R) = RG, g¢ + My, 5¢ + max{¥(0), ¥(e)}.

Theorem 2 (Distribution-dependent I'-bound). Assume that there exists a concave function
IR, - R and € > 0 such that the following holds for all h € H, v € X and D € P:
[ACy, 3¢ (h,x)], <T'(ACy, 3¢(h,x)). Then, for any hypothesis h € 3 and any distribution D € P,

Re, (h) = R, 50 <T(Rey (B) = R, g0+ My 5¢) = My 3¢ + €



The theorems show that, to derive such bounds for a specific hypothesis set and a set of distributions,
it suffices to verify that for the same hypothesis set and set of distributions, the conditional e-regret
for the target loss can be upper bounded with the same functional form of the gap between the
conditional risk and minimal conditional risk of the surrogate loss. These results are similar to their
binary classification counterparts due to Awasthi et al. (2022b). In particular, the conditional ¢-risk
C¢(h, z) in our theorems is the multi-class generalization of their binary definition. The proofs are
similar and are included in Appendix E for completeness.

For a given hypothesis set J{, the resulting bounds suggest three key ingredients for the choice of a
surrogate loss: (1) the functional form of the JH-consistency bound, which is specified by the function
U or I'; (2) the smoothness of the loss and more generally its optimization virtues, as needed for
the minimization of Ry, (h) — fREL%; (3) and the approximation properties of the surrogate loss
function which determine the value of the minimizability gap M, ¢. Our quantitative J{-consistency
bounds can help select the most favorable surrogate loss function among surrogate losses with good
optimization merits and comparable approximation properties.

In Section 4 and Section 5, we will apply Theorem 1 and Theorem 2 to the analysis of multi-class loss
functions and hypothesis sets widely used in practice. Here, we wish to first comment on the novelty
of our results and proof techniques. Let us emphasize that although the general tools of Theorems 1
and 2 are the multi-class generalization of that in (Awasthi et al., 2022a), the binary classification
results of Awasthi et al. (2022a) do not readily extend to the multi-class setting. This is true, even in
the classical study of Bayes-consistency, where the multi-class setting (Tewari and Bartlett, 2007)
does not readily follow the binary case (Bartlett et al., 2006) and required an alternative analysis and
new proofs. Note that, additionally, in the multi-class setting, surrogate losses are more diverse: we
will distinguish max losses, sum losses, and constrained losses and present an analysis for each loss
family with various auxiliary functions for each (see Section 4).

Proof techniques. More specifically, the need for novel proof techniques stems from the following.
To use Theorem 1 and Theorem 2, we need to find ¥ and I' such that the inequality conditions in
these theorems hold. This requires us to characterize the conditional risk and the minimal conditional
risk of the multi-class zero-one loss function and the corresponding ones for diverse surrogate
loss functions in both the non-adversarial and adversarial scenario. Unlike the binary case, such a
characterization in the multi-class setting is very difficult. For example, for the constrained loss,
solving the minimal conditional risk given a hypothesis set is equivalent to solving a c-dimensional
constrained optimization problem, which does not admit an analytical expression. In contrast, in the
binary case, solving the minimal conditional risk is equivalent to solving a minimization problem for
a univariate function and the needed function ¥ can be characterized explicitly by the J{-estimation
error transformation, as shown in (Awasthi et al., 2022a). Unfortunately, such binary classification
transformation tools cannot be adapted to the multi-class setting. Instead, in our proof for the multi-
class setting, we adopt a new idea that avoids directly characterizing the explicit expression of the
minimal conditional risk.

For example, for the constrained loss, we leverage the condition of (Lee et al., 2004) that the scores
sum to zero, and appropriately choose a hypothesis & that differs from h only by its scores for
h(z) and ymax (see Appendix K). Then, we can upper bound the minimal conditional risk by the
conditional risk of h without having to derive the closed form expression of the minimal conditional
risk. Therefore, the conditional regret of the surrogate loss can be lower bounded by that of the
zero-one loss with an appropriate function W. To the best of our knowledge, this proof idea and
technique are entirely novel. We believe that they can be used for the analysis of other multi-class
surrogate losses. Furthermore, all of our multi-class J{-consistency results are new. Likewise, our
proofs of the H-consistency bounds for sum losses for the squared hinge loss and exponential loss
use similarly a new technique and idea, and so does the proof for the p-margin loss. Furthermore, we
also present an analysis of the adversarial scenario (see Section 5), for which the multi-class proofs
are also novel. Finally, our bounds in the multi-class setting are more general: for ¢ = 2, we recover
the binary classification bounds of (Awasthi et al., 2022a). Thus, our bounds benefit from the same
tightness guarantees shown by (Awasthi et al., 2022a). A further analysis of the tightness of our
guarantees in the multi-class setting is left to future work.



4 H-consistency bounds

In this section, we discuss J{-consistency bounds in the non-adversarial scenario where the target loss
{5 is £o_1, the multi-class 0/1 loss. The lemma stated next characterizes the minimal conditional £_1 -
risk and the corresponding conditional e-regret, which will be helpful for instantiating Theorems 1
and 2 in the non-adversarial scenario. For any x € X, we will denote, by H(z) the set of labels
generated by hypotheses in H: H(x) = {h(x):h € H}.

Lemma 3. For any x € X, the minimal conditional {y_1-risk and the conditional e-regret for {y_q
can be expressed as follows:

62—0_173{(1»') =1- max p(z,y)
yeH(z)

[AC ., 3¢(h2)], = ygﬁa(ﬁ)p(x,y)—p(%h(x)) :

€

The proof of Lemma 3 is given in Appendix F. By Lemma 3, Theorems 1 and 2 can be instantiated
as Theorems 4 and 5 in the non-adversarial scenario as follows, where J{-consistency bounds are
provided between the multi-class 0/1 loss and a surrogate loss £.

Theorem 4 (Non-adversarial distribution-dependent W-bound). Assume that there exists a convex
Sunction U:R, — R with ¥(0) > 0 and € > 0 such that the following holds for all h € H, x € X and
DeP:

w([ i p(e.9) h(x))]

yeH(x

) < ACqse(h ). 1)

€

Then, for any hypothesis h € H and any distribution D € P, we have
U(Rey, (R) = Ry, ac + Meg_y 30) < Re(h) = R 50 + My ge + max{¥(0),T(e)}. (2

Theorem 5 (Non-adversarial distribution-dependent I'-bound). Assume that there exists a con-
cave function I:R, - R and € > 0 such that the following holds for all h € H, x € X and D € P:

[yga%ﬁ)p(x,y) —p(a:,h@c»] < T(ACya(h,)). G)

Then, for any hypothesis h € H and any distribution D € P, we have
Reo () = RG, | a¢ <T(Re(h) = Rf g¢ + Myc) = Mg,y 3¢ + €. 4

In the following, we will apply Theorems 4 and 5 to study the J{-consistency bounds for different
families of multi-class losses parameterized by various auxiliary functions, for several general
hypothesis sets. It is worth emphasizing that the form of the surrogate losses is more diverse in the
multi-class setting and each case requires a careful analysis and that the techniques used in the binary
case (Awasthi et al., 2022a) do not apply and cannot be readily extended to our case.

Hypothesis sets. Let Bf(r) = {zeR?||z], <} denote the d-dimensional £,-ball with radius
r, with p € [1,+00]. Without loss of generality, in the following, we choose X = B;l(l). Let
p,q € [1,+00] be conjugate indices, that is + + 1 = 1. In the following, we will specifically study
three families: the family of all measurable functions J(,j;, the family of linear hypotheses

Hiim = {(2,) > wy -2+ by | Jwy]l, <Wi[by| < B,

and that of one-hidden-layer ReLU networks defined by the following, where (-), = max(-,0):

n
Hoo - {(ac,y) Sty s (wyg -+ by )o | gl < A Jg sy < Wi by < B}.
j=1

Multi-class loss families. We will study three broad families of multi-class loss functions: max
losses, sum losses and constrained losses, each parameterized by an auxiliary function ® on R,
assumed to be non-increasing and non-negative. In particular, we will consider the following
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Figure 1: Left: auxiliary functions with p = 0.8. Right: H-consistency dependence between ¢y_; and
pestnd with p = 0.8.

common auxiliary functions: the hinge loss ®pinge(t) = max{0,1 -t}, the squared hinge loss
Dy —hinge(t) = max{0,1 - t}2, the exponential loss @y, (t) = €7, and the p-margin loss P,(t) =
min{max{0,1-¢/p}, 1}. Note that the first three auxiliary functions are convex, while the last one
is not. Figure 1 shows plots of these auxiliary functions.

We will say that a hypothesis set H is symmetric if there exists a family F of functions f mapping
from X to R such that {[h(z,1),...,h(x,c)]:he H} = {[fi(z),..., fe(2)]: f1,..., fc € F} and
{f(z): f € F}| > 2 for any x € X. The hypothesis sets defined above (Hay, Hyi, and Hyy) are all
symmetric. Note that for a symmetric hypothesis set 3, we have H(x) = Y.

We will say that a hypothesis set J is complete if the set of scores it generates spans R, that is,
{h(z,y):h e H} = R, for any (z,y) € X x Y. The hypothesis sets defined above, H,y, Hyi, and
Hnn with B = +oo are all complete.

4.1 Max losses

In this section, we discuss guarantees for max losses, that is loss functions that can be defined by the
application of an auxiliary function ® to the margin py,(z,y), as in (Crammer and Singer, 2001):

V(z,y)eXxY, O"¥(h,x,y)= g}ggé(h(w,y) = h(z,y")) = ®(pn(z,y)). ©)

i) Negative results. We first give negative results showing that max losses ®™2*(h, x, ) with convex
and non-increasing auxiliary functions ® do not admit useful H-consistency bounds for multi-class
classification (c > 2). The proof is given in Appendix G.

Theorem 6 (Negative results for convex ®). Assume that ¢ > 2. Suppose that ® is convex and
non-increasing, and H satisfies there exist x € X and h € H such that |H(x)| > 2 and h(x,y) are
equal for all y €Y. If for a non-decreasing function f:R, — R, the following H-consistency bound
holds for any hypothesis h € H and any distribution D:

:R’ZO—I (h) - fRzo,l,J{ < f(:R@ma" (h) - :Rz%max,ﬂ-f)ﬂ 6)
then, f is lower bounded by %

The condition on the hypothesis set in Theorem 6 is very general and all symmetric hypothesis sets
verify the condition, e.g. 3,1, Hiin and Hyy. It is also worth pointing out that when ¢ = 2, that s,
in binary classification, Theorem 6 does not hold. Indeed, Awasthi et al. (2022a) present a series of
results providing J{-consistency bounds for convex ® in the binary case. In the proof, we make use
of the assumption that ¢ > 2 and thus are able to take a probability vector p(x) whose dimension is at
least three, which is crucial for the proof.

ii) Positive results without distributional assumptions. On the positive side, the max loss with the
non-convex auxiliary function ® = ®, admits J{-consistency bounds.

Theorem 7 (H-consistency bound of ©'**). Suppose that H is symmetric. Then, for any hypothesis
h € H and any distribution D,

R(I)max (h) - R* max G + M@max’g{

a - - } - M@o,l JH- (7)

‘IRZDA (h) - fRZH,:}c <

min{l, infiex S“phe;f pn(z;h(x))

See Appendix G for the proof. Theorem 7 is very powerful since it only requires J{ to be symmetric.
We can use it to derive H-consistency bounds for ®7'** with common symmetric hypothesis sets



Table 1: H{-consistency bounds for ®/*** with common symmetric hypothesis sets.

Hypothesis set ~ H-consistency bound of ®*** (Corollaries 18, 19 and 20)

* *
Han Reoy (h) - :Rfo—lﬂfan S R‘b‘;ax(h) B :Rq);“axyf}fau
Remax (h)-Rimax g¢,. +Maemax ¢,
. _ * P *b > in P >/t lin _
Hiin ‘(Rfofl(h) leo,l,ﬂ—Clm < min{l E} MZO—I’}(Iin
e
Remax (h)-Rpmax g, +Memax g¢
_ P P p o THIINN p NN
Hnn IRZoq(h) RéO—h:}CNN < min{l 2AB} Mzo—la}CNN
Top

such as J,y1, Hyi,n and Hny, as summarized in Table 1. The proofs with corresponding summarized
Corollaries 18, 19 and 20 are included in Appendix H. In the proofs, we characterize the term
inf zex Sup,eqc pr (2, h(x)) for each hypothesis set.

Note that by Theorem 6, there is no useful }{-consistency bound for the max loss with ® = ®y;; e,
Dgq-hinge OF Peyp in these cases. However, under the realizability assumption (Definition 8), we will
show that such bounds hold.

iii) Positive results with realizable distributions. We consider the J{-realizability condition (Long
and Servedio, 2013; Kuznetsov et al., 2014; Cortes et al., 2016a,b; Zhang and Agarwal, 2020; Awasthi
et al., 2021a) which is defined as follows.

Definition 8 (H-realizability). A distribution D over X x Y is H-realizable if it labels points
according to a deterministic model in 3, i.e., if 3h € 3} such that P, ,y.o (pn(z,y) >0) = 1.

Theorem 9 (Realizable J{-consistency bound of ®™%*). Suppose that H is symmetric and complete,
and @ is non-increasing and satisfies that lim;_, o, ®(t) = 0. Then, for any hypothesis h € H and
any H-realizable distribution D, we have

R&Fl (h) - R;Oil’g{ < R@maX(h) - :R:%max,g.c + qunax)g—c. (8)
See Appendix G for the proof. Long and Servedio (2013, Theorem 9) show that CID{E?]’;S is realizable
H-consistent for any symmetric hypothesis set J{ that is closed under scaling. Since for any H-
realizable distribution, the assumption that I is closed under scaling implies that H is complete and
Mgmax g¢ = 0, Theorem 9 also yields a quantitative relationship in that case that is stronger than the
asymptotic consistency property of that previous work.

4.2 Sum losses

In this section, we discuss guarantees for sum losses, that is loss functions defined via a sum, as in
(Weston and Watkins, 1998):
O™ (h,x,y) = Y ®(h(w,y) - h(z,y)). 9)

y'#Fy

i) Negative results. We first give a negative result showing that when using as auxiliary function
the hinge-loss, the sum loss cannot benefit from any useful J{-consistency guarantee. The proof is
deferred to Appendix J.
Theorem 10 (Negative results for hinge loss). Assume that ¢ > 2. Suppose that H is symmetric and
complete. If for a non-decreasing function f:R, — R, the following H-consistency bound holds for
any hypothesis h € H and any distribution D:

Reg 1 (h) = Rj, 5 < f(Ragm (h) = Rggorn0), (10)

hinge hinge’

then, f is lower bounded by %.

ii) Positive results. We then complement this negative result with positive results when using the
exponential loss, the squared hinge-loss, and the p-margin loss, as summarized in Table 2. The proofs
with corresponding summarized Theorems 22, 23 and 24 are included in Appendix J for completeness.
For @7, the symmetry and completeness assumption can be relaxed to symmetry and the condition
that for any = € X, there exists a hypothesis h € H such that |h(x,i) — h(x,j)| > pforany i+ j €Y,
as shown in Theorem 24. In the proof, we introduce an auxiliary Lemma 21 in Appendix I, which
would be helpful for lower bounding the conditional regret of ®7*™ with that of the multi-class 0 /1
loss.



Table 2: JH-consistency bounds for sum losses with symmetric and complete hypothesis sets.

Sum loss JH-consistency bound (Theorems 22, 23 and 24)

[N

Psum :R‘Zo—l (h) — :Rz.o—hj{ < (qu)sum (h) — R i gt qucsum 9—() - M@o—l,ﬂ'(

Sq_hlnge sq—hinge sq-hinge’ sq—hinge’

sum * * 2

(I)exp :Rfoq (h) - Rzo_l,f}f < \/5(31‘1‘2?(3“ (h) -R sum + bez,;:;“,?f) - Mfo—lyj’f
sum * *

B Ry ()~ Ri, g € Rasp () ~ Ry o+ Mg o - M1

Table 3: JH-consistency bounds for constrained losses with symmetric and complete hypothesis sets.
Constrained loss J{-consistency bound (Theorems 25, 26, 27 and 28)

cstnd * *

(I)hingc fR@oq (h) - ‘,REU_I JH < R@;ﬁ;‘;‘ (h) - Ré‘k::é(ij{ + M@Eﬁ;‘;,}( - Mfo,l,ﬂ{
cstnd * " %

(I)sq—hinge :Réo—l (h) - :REO_l,ﬂ—C < R@Sgﬂgngc (h) - R@;:grisllge’}( + M@:Z&‘L‘}ngc,}f - Mfo_hﬂ
cstnd * * 2

ol Reg, (h) =R}, 50 < V2(Rapggpa (h) - Riyesna ¢ + Maggipa s )" = Meg s 96
cstnd * *

(I)p Rfo,l (h) - Rgml L < R@Zsmd (h) - Rqﬁstnd’g—( + Mq;.;:)stndy}( - M@mh%

4.3 Constrained losses

In this section, we discuss guarantees for constrained loss, that is loss functions defined via a
constraint, as in (Lee et al., 2004):

> (h,z,y) = Y ®(-h(z,y")) (11)

y'#y

with the constraint that 3°, .y h(z,y) = 0. We present a series of positive results by proving multi-class
H-consistency bounds when using as an auxiliary function the hinge-loss, the squared hinge-loss,
the exponential loss, and the p-margin loss, as summarized in Table 3. As with the binary case
(Awasthi et al., 2022a), the bound admits a linear dependency for ®¢5t"d and @fftnd, in contrast

hinge
with a square-root dependency for @ggﬂ’}ﬂnge and @g;t;d, as illustrated in Figure 1. The proofs with

corresponding summarized Theorems 25, 26, 27 and 28 are included in Appendix K for completeness.
For @Zsmd, the symmetric and complete assumption can be relaxed to be symmetric and satisfy that

for any x € X, there exists a hypothesis h € H such that h(z,y) < —p for any y # ymax, as shown in
Theorem 28.

The main idea of the proofs in this section is to leverage the constraint condition of Lee et al. (2004)
that the scores sum to zero, and appropriately choose a hypothesis & that differs from £ only by its
scores for h(z) and Ymax. We can then upper bound the minimal conditional risk by the conditional
risk of &, without having to derive the closed form expression of the minimal conditional risk.

As shown by Steinwart (2007, Theorem 3.2), for the family of all measurable functions, the min-
imizability gaps vanish: My,_, 3¢, = Masum g¢,; = Mgesma g¢,,, = 0, for & = Ppypge, Poqoninges
®cyp and ®,. Therefore, when H = H,y1, our quantitative bounds in Table 2 and Table 3 imply the
asymptotic consistency results of those multi-class losses in (Tewari and Bartlett, 2007), which shows
that our results are stronger and more significant. We also provide bounds for multi-class losses using
a non-convex auxiliary function, which are not studied in the previous work.

5 Adversarial H-consistency bounds

In this section, we analyze multi-class J{-consistency bounds in the adversarial scenario ({3 = £.,).
For any = € X, we denote by J{,(x) the set of hypotheses h with a positive margin on the ball
of radius ~ around x, H, (z) = {h e H:inforpear) <y pn(z’ h(x)) > O}, and by H, (z) the set of

labels generated by these hypotheses, H, (z) = {h(z):h e H,(z)}. When H is symmetric, we
have H,(z) = Y iff K, (x) # @. The following lemma characterizes the conditional e-regret for



adversarial 0/1 loss, which will be helpful for applying Theorem 1 and Theorem 2 to the adversarial
scenario.

Lemma 11. For any x € X, the minimal conditional {.,-risk and the conditional e-regret for (., can
be expressed as follows:

€y sc(2) =1- max p(z,y)lsc (2)20
eH, (z)

maXyeH., (= p(a?,y) _p(x7h(x))]lheﬂ-f,Y x lfg{ (ﬂ?) * 0
[Aeg%:}((h,l‘)]e B {([) e ( )]6 othe:'wise.

The proof of Lemma 11 is presented in Appendix F. By Lemma 11, Theorems 1 and 2 can be
instantiated as Theorems 12 and 13 in the adversarial scenario as follows, where J{-consistency
bounds are provided between the adversarial multi-class 0/1 loss and a surrogate loss £.

Theorem 12 (Adversarial distribution-dependent U-bound). Assume that there exists a convex
Sunction U:R, — R with ¥(0) = 0 and € > 0 such that the following holds for all h € 3, x €
{xeX:H, (z)*2} and D e P:

w([ max_p(z,y) —p(mh(m))ﬂhew)] ) < ACus(hy o). 12)

yeHy (z)
Then, for any hypothesis h € H and any distribution D € P, we have
\I/(fRe,Y (h) - :RZ,,U{ + Mgwg-() <Re(h) - Rz’g{ + M9 + max{O, \If(e)} (13)

Theorem 13 (Adversarial distribution-dependent I'-bound). Assume that there exists a non-
negative concave function IR, — R and € > 0 such that the following holds for all h ¢ T,
re{reX:H (x)* 3} and D eP:

yeH, (z

[ o p(e.0) - pla, h(x))]lhmm] CT(AC, (b)), (14)

€

Then, for any hypothesis h € H and any distribution D € P, we have
Re, (h) =Ry g¢ <T(Re(h) = R} g0 + Megc) = Me, g¢ + €. (15)

Next, we will apply Theorem 12 and Theorem 13 to study various hypothesis sets and adversarial
surrogate loss functions in Sections 5.1 for negative results and Section 5.2, 5.3, and 5.4 for positive
results. A careful analysis is presented in each case (see Appendix L, M, N and O).

5.1 Negative results for adversarial robustness
The following result rules out the J{-consistency guarantee of multi-class losses with a convex

auxiliary function, which are commonly used in practice. The proof is given in Appendix L.

Theorem 14 (Negative results for convex functions). Fix c = 2. Suppose that ® is convex and non-
increasing, and H contains 0 and satisfies the condition that there exists x € X such that 3 (z) # @.
If for a non-decreasing function f:R, — R, the following H-consistency bound holds for any
hypothesis h € H and any distribution D:

Re, (1) =R a0 < F(Re(h) - Rz, ), (16)
then, f is lower bounded by % for U= ®max sum gpg Fostnd,

Instead, we show in Sections 5.2, 5.3, and 5.4 that the max, sum and constrained losses using
as auxiliary function the non-convex p-margin loss admit favorable J{-consistency bounds in the
multi-class setting, thereby significantly generalizing the binary counterpart in (Awasthi et al., 2022a).

5.2 Adversarial max losses

We first consider the adversarial max loss $™#* defined as the supremum based counterpart of (5):
U (hyay) = sup B(pa(a’y). (17

a|z-a'] <y

For the adversarial max loss with ® = ®,, we can obtain J-consistency bounds as follows.



Theorem 15 (JH-consistency bound of 6;‘“”‘). Suppose that H is symmetric. Then, for any hypoth-
esis h € H and any distribution D, we have

fR@gmx (h) = RZ e 5 * M@,axﬂ

q;.xglax’

Re, (h) =Ry 5¢ < -Mg 5. (18)

Inf e fpeniac, (2)2e) SUPLeTC, (2) infwunwfwfupg pn(x’;h(z)) } v

p

min{l,

5.3 Adversarial sum losses

Next, we consider the adversarial sum loss 5™ defined as the supremum based counterpart of (9):

55“’“(/1,30,3;) _ sup Z (I)(h(g;”y) - h(az',y')). (19)

atlz-'|| <y y'+y

Using the auxiliary Lemma 21 in Appendix I, we can obtain the J{-consistency bound of 52‘”’“.

Theorem 16 (H-consistency bound of &™), Assume that H is symmetric and that for any
x € X, there exists a hypothesis h € H inducing the same ordering of the labels for any
x' e {Jc': |z -2, < ’y} and such that infzr;Hz,x/”pSﬂh(a:',i) -h(z',§)| = pforanyi + j €Y.
Then, for any hypothesis h € H and any distribution D, the following inequality holds:

Re, (h) =R 5¢ < R%;ﬂm(h) -R3 + Mgum g = M, 3¢ (20)

@;um’j{

v

5.4 Adversarial constrained loss

Similarly, we define the adversarial constrained loss Pestnd g supremum based counterpart of (11):

$C8trld(h,$,y) — sup Z (I)(_h(.’E,’y’)) (21)

@' z—a’|| <y y' 2y

with the constraint that 3’y h(z,y) = 0. For the adversarial constrained loss with ® = ®,, we can
obtain the J-consistency bound of 5;““‘1 as follows.

Theorem 17 (JH-consistency bound of ?éf,smd). Suppose that H is symmetric and satisfies that

for any x € X, there exists a hypothesis h € 3 with the constraint 3.,y h(x,y) = 0 such that

SUD 12 g—a | <y h(x',y) < —p for any y # Ymax. Then, for any hypothesis h € H and any distribution,
o<

:Rg,y (h) — :Rz.y,f}f < R%zstnd (h) - R%g““d,f}f + M@zsmd’.}( - Mg%g{. 22)

The proofs of Theorems 15, 16 and 17 are included in Appendix M, N and O respectively. These
results are significant since they apply to general hypothesis sets. In particular, symmetric hypothesis
sets Hayr, Hiin and Hyy with B = +oo all verify the conditions of those theorems. When B < +oo0,
the conditions in Theorems 16 and 17 can still be verified with a suitable choice of p, where we can
consider the hypotheses such that w,, = 0 in Hy;,, and Hy, while Theorem 15 holds for any p > 0.

6 Conclusion

We presented a comprehensive study of H-consistency bounds for multi-class classification, including
the analysis of the three most commonly used families of multi-class surrogate losses (max losses, sum
losses and constrained losses) and including the study of surrogate losses for the adversarial robustness.
Our theoretical analysis helps determine which surrogate losses admit a favorable guarantee for a
given hypothesis set J{. Our bounds can help guide the design of multi-class classification algorithms
for both the adversarial and non-adversarial settings. They also help compare different surrogate
losses for the same setting and the same hypothesis set. Of course, in addition to the functional form
of the J{-consistency bound, the approximation property of a surrogate loss function combined with
the hypothesis set plays an important role.

10



References

A. Agarwal and S. Agarwal. On consistent surrogate risk minimization and property elicitation. In
Conference on Learning Theory, pages 4-22, 2015.

P. Awasthi, N. Frank, A. Mao, M. Mohri, and Y. Zhong. Calibration and consistency of adversarial
surrogate losses. In Advances in Neural Information Processing Systems, pages 9804-9815, 2021a.

P. Awasthi, N. Frank, A. Mao, M. Mohri, and Y. Zhong. Calibration and consistency of adversarial
surrogate losses. arXiv preprint arXiv:2104.09658, 2021b.

P. Awasthi, A. Mao, M. Mohri, and Y. Zhong. A finer calibration analysis for adversarial robustness.
arXiv preprint arXiv:2105.01550, 2021c.

P. Awasthi, A. Mao, M. Mohri, and Y. Zhong. H-consistency bounds for surrogate loss minimizers.
In International Conference on Machine Learning, pages 1117-1174, 2022a.

P. Awasthi, A. Mao, M. Mohri, and Y. Zhong. H-consistency estimation error of surrogate loss
minimizers. arXiv preprint arXiv:2205.08017, 2022b.

P. Awasthi, A. Mao, M. Mohri, and Y. Zhong. DC-programming for neural network optimizations.
Journal of Global Optimization, 2023.

H. Bao, C. Scott, and M. Sugiyama. Calibrated surrogate losses for adversarially robust classification.
In Conference on Learning Theory, pages 408-451, 2020.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Journal
of the American Statistical Association, 101(473):138-156, 2006.

M. Blondel. Structured prediction with projection oracles. In Advances in neural information
processing systems, 2019.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In IEEE Symposium
on Security and Privacy (SP), pages 39-57, 2017.

D.-R. Chen and T. Sun. Consistency of multiclass empirical risk minimization methods based on
convex loss. Journal of Machine Learning Research, 7:2435-2447, 2006.

D.-R. Chen and D.-H. Xiang. The consistency of multicategory support vector machines. Advances
in Computational Mathematics, 24(1):155-169, 2006.

C. Ciliberto, L. Rosasco, and A. Rudi. A consistent regularization approach for structured prediction.
In Advances in neural information processing systems, 2016.

C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn., 20(3):273-297, 1995.

C. Cortes, G. DeSalvo, and M. Mohri. Learning with rejection. In Algorithmic Learning Theory,
pages 67-82, 2016a.

C. Cortes, G. DeSalvo, and M. Mohri. Boosting with abstention. In Advances in Neural Information
Processing Systems, pages 1660-1668, 2016b.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. Journal of machine learning research, 2(Dec):265-292, 2001.

K. Dembczynski, W. Kotlowski, and E. Hiillermeier. Consistent multilabel ranking through univariate
losses. arXiv preprint arXiv:1206.6401, 2012.

U. Dogan, T. Glasmachers, and C. Igel. A unified view on multi-class support vector classification.
Journal of Machine Learning Research, 17:1-32, 2016.

J. Finocchiaro, R. M. Frongillo, and B. Waggoner. An embedding framework for the design and
analysis of consistent polyhedral surrogates. arXiv preprint arXiv:2206.14707, 2022.

R. Frongillo and B. Waggoner. Surrogate regret bounds for polyhedral losses. In Advances in Neural
Information Processing Systems, pages 21569-21580, 2021.

11



W. Gao and Z.-H. Zhou. On the consistency of multi-label learning. In Conference on learning
theory, pages 341-358, 2011.

W. Gao and Z.-H. Zhou. On the consistency of auc pairwise optimization. In International Joint
Conference on Artificial Intelligence, 2015.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

V. Kuznetsov, M. Mohri, and U. Syed. Multi-class deep boosting. In Advances in Neural Information
Processing Systems, pages 2501-2509, 2014.

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines: Theory and application to the
classification of microarray data and satellite radiance data. Journal of the American Statistical
Association, 99(465):67-81, 2004.

Y. Liu. Fisher consistency of multicategory support vector machines. In Artificial intelligence and
statistics, pages 291-298, 2007.

P. Long and R. Servedio. Consistency versus realizable H-consistency for multiclass classification.
In International Conference on Machine Learning, pages 801-809, 2013.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT Press, second
edition, 2018.

H. Narasimhan, H. Ramaswamy, A. Saha, and S. Agarwal. Consistent multiclass algorithms for
complex performance measures. In International Conference on Machine Learning, pages 2398—
2407, 2015.

A. Osokin, F. Bach, and S. Lacoste-Julien. On structured prediction theory with calibrated convex
surrogate losses. In Advances in Neural Information Processing Systems, 2017.

F. Pedregosa, F. Bach, and A. Gramfort. On the consistency of ordinal regression methods. Journal
of Machine Learning Research, 18:1-35, 2017.

B. A. Pires and C. Szepesvéri. Multiclass classification calibration functions. arXiv preprint
arXiv:1609.06385, 2016.

B. A. Pires, C. Szepesvari, and M. Ghavamzadeh. Cost-sensitive multiclass classification risk bounds.
In International Conference on Machine Learning, pages 1391-1399, 2013.

H. G. Ramaswamy and S. Agarwal. Classification calibration dimension for general multiclass losses.
In Advances in Neural Information Processing Systems, 2012.

H. G. Ramaswamy and S. Agarwal. Convex calibration dimension for multiclass loss matrices.
Journal of Machine Learning Research, 17(1):397-441, 2016.

H. G. Ramaswamy, S. Agarwal, and A. Tewari. Convex calibrated surrogates for low-rank loss
matrices with applications to subset ranking losses. In Advances in Neural Information Processing
Systems, 2013.

H. G. Ramaswamy, A. Tewari, and S. Agarwal. Consistent algorithms for multiclass classification
with a reject option. arXiv preprint arXiv:1505.04137, 2015.

P. Ravikumar, A. Tewari, and E. Yang. On NDCG consistency of listwise ranking methods. In
International Conference on Artificial Intelligence and Statistics, pages 618-626, 2011.

R. E. Schapire and Y. Freund. Boosting: Foundations and Algorithms. MIT Press, 2012.
I. Steinwart. How to compare different loss functions and their risks. Constructive Approximation,

26(2):225-287, 2007.

12



A. Tewari and P. L. Bartlett. On the consistency of multiclass classification methods. Journal of
Machine Learning Research, 8(36):1007-1025, 2007.

A. Thilagar, R. Frongillo, J. J. Finocchiaro, and E. Goodwill. Consistent polyhedral surrogates
for top-k classification and variants. In International Conference on Machine Learning, pages
21329-21359, 2022.

D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry. Robustness may be at odds with
accuracy. arXiv preprint arXiv:1805.12152, 2018.

K. Uematsu and Y. Lee. On theoretically optimal ranking functions in bipartite ranking. Journal of
the American Statistical Association, 112(519):1311-1322, 2017.

Y. Wang and C. Scott. Weston-watkins hinge loss and ordered partitions. In Advances in neural
information processing systems, pages 19873—19883, 2020.

J. Weston and C. Watkins. Multi-class support vector machines. Technical report, Citeseer, 1998.

R. C. Williamson, E. Vernet, and M. D. Reid. Composite multiclass losses. Journal of Machine
Learning Research, 17:1-52, 2016.

M. Zhang and S. Agarwal. Bayes consistency vs. H-consistency: The interplay between surrogate
loss functions and the scoring function class. In Advances in Neural Information Processing
Systems, pages 16927-16936, 2020.

M. Zhang, H. G. Ramaswamy, and S. Agarwal. Convex calibrated surrogates for the multi-label
f-measure. In International Conference on Machine Learning, pages 11246-11255, 2020.

T. Zhang. Statistical behavior and consistency of classification methods based on convex risk
minimization. The Annals of Statistics, 32(1):56-85, 2004a.

T. Zhang. Statistical analysis of some multi-category large margin classification methods. Journal of
Machine Learning Research, 5(0Oct):1225-1251, 2004b.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See abstract and introduction.
(b) Did you describe the limitations of your work? [Yes] See Appendix D.

(c) Did you discuss any potential negative societal impacts of your work? We don’t
foresee any negative societal impact of our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3,
Section 4 and Section 5.
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix E, F, G,
H LJ,K,L,M,N,O.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

13



4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [IN/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

14



	Related work
	Discussion on multi-class 0/1 loss
	Discussion on finite sample bounds
	Future work
	General H-consistency bounds
	Non-adversarial and adversarial conditional regrets
	Proof of negative results and H-consistency bounds for max losses max
	Proof of H-consistency bounds for max rho-margin loss maxrho
	Auxiliary Lemma for sum losses
	Proof of negative and H-consistency bounds for sum losses sum
	Proof of H-consistency bounds for constrained losses cstnd
	Proof of negative results for adversarial robustness
	Proof of H-consistency bounds for adversarial max losses maxadv
	Proof of H-consistency bounds for adversarial sum losses sumadv
	Proof of H-consistency bounds for adversarial constrained losses cstndadv



