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Abstract

Developing more data-efficient training ap-
proaches depends on a better understanding
of inductive biases. In this work, we hypoth-
esize that the structural information encoded
in a transformer’s attention matrices is key to
acquiring syntax because attention captures re-
lationships between words — a crucial part of
syntax. Under this hypothesis, we would ex-
pect that inductive biases targeting attention
should selectively improve data-efficiency on
syntactic benchmarks. We use knowledge dis-
tillation (KD) as a methodological lens to test
this hypothesis, comparing conventional KD
through output logits against KD through at-
tention matrices. Using GPT-2 as our teacher
model, we train student models on datasets
ranging from 10K to SM sentences and evaluate
them on both syntactic benchmarks and general
language modeling tasks. Surprisingly, we find
that while logit-based KD drastically improves
data-efficiency across all metrics, attention-
based KD offers minimal benefits even for syn-
tactic tasks. This suggests that logits already ef-
fectively supervise syntactic information, chal-
lenging assumptions about how syntax is rep-
resented in transformers and informing more
targeted approaches to data-efficient training.

1 Introduction

Modern language models successfully capture
many aspects of human linguistic competence,
from the fundamentals of grammar (Warstadt et al.,
2020; Linzen and Baroni, 2021; Hu et al., 2024)
to more sophisticated uses of world knowledge
(Ivanova et al., 2024; Yamakoshi et al., 2023). How-
ever, they achieve these capabilities only after train-
ing on vastly more data than human children re-
ceive during language acquisition (Frank, 2023),
motivating research into inductive biases (Warstadt
et al., 2023) — predispositions that guide learning
toward particular solutions with less data. These
biases include architectural modifications (Sartran

et al., 2022), curriculum learning strategies (Mar-
tinez et al., 2023), and specialized weight initializa-
tion techniques (Bencomo et al., 2025).

In this paper, we use knowledge distillation (KD)
to study which aspects of a model’s learned repre-
sentations are most critical for scaffolding partic-
ular linguistic capabilities. We focus specifically
on learning syntax — an ability long theorized to
require strong (innate) biases (Chomsky, 1965; Mc-
Coy et al., 2020). Previous research has shown
that syntactic information is encoded in the atten-
tion mechanism of transformer models (Clark et al.,
2019), and that constraining these attention matri-
ces can serve as an effective inductive bias for syn-
tax (Nguyen et al., 2020; Qian et al., 2021; Yoshida
and Oseki, 2022; Sartran et al., 2022). These stud-
ies raise an intriguing hypothesis: if attention ma-
trices are the locus of syntactic knowledge, then
distillation specifically targeting these representa-
tions ought to transfer syntactic abilities just as
efficiently, or more efficiently, than conventional
distillation through output logits.

To test this hypothesis, we performed a con-
trolled experiment using a pretrained GPT-2 model
(Radford et al., 2019) as the teacher, and trained
student models of identical architecture on datasets
ranging from 10K to 5M sentences. Our contri-
butions are twofold. First, we demonstrate that
conventional distillation through an additional su-
pervision signal on logits can drastically reduce the
amount of data required for learning syntax, reach-
ing teacher-level performance with only 1M sen-
tences of training data. Second, more surprisingly,
we show that attention-based KD offers limited
benefits for syntactic tasks despite prior evidence
that these matrices encode crucial structural infor-
mation. Our work illustrates how knowledge dis-
tillation can serve as a powerful analytical tool for
understanding which aspects of a model’s represen-
tations are effective for achieving data-efficiency
with respect to specific linguistic capabilities.



2 Related Work

2.1 Knowledge distillation

Knowledge distillation (KD) consists of three main
approaches (Gou et al., 2021): response-based KD,
which aligns the output distributions of teacher and
student models; feature-based KD, which matches
internal representations to transfer detailed com-
putational patterns; and relation-based KD, which
preserves relational structures across multiple sam-
ples. In this work, we employ both response-based
KD through logits and feature-based KD through
attention to investigate their relative effectiveness
for transferring syntactic knowledge.

While KD was initially developed for model
compression, its applications have been expanded
in several directions. For example, Furlanello et al.
(2018) demonstrated that distilling knowledge to
a student of identical architecture can actually im-
prove performance. Others have used KD to fa-
cilitate transfer between architecturally different
models (Kuncoro et al., 2019, 2020; Abnar et al.,
2020), showing that inductive biases from special-
ized architectures can be distilled into more general
ones. Finally, recent work has explored KD for
data-efficient training, using ensembles of teacher
models to improve student performance on limited
data (Timiryasov and Tastet, 2023; Samuel, 2023;
Yam and Paek, 2024). Our approach maintains
architectural consistency between teacher and stu-
dent, and uses a single pre-trained model as the
teacher, in order to isolate the effects of different
distillation mechanisms on syntactic competencies.

2.2 How transformers represent syntax

Understanding how transformers capture syntac-
tic structure has been a central question in inter-
pretability research. Numerous studies have identi-
fied attention matrices as repositories of syntactic
information, with certain attention heads specializ-
ing in tracking specific syntactic relations (Clark
et al., 2019; Vig and Belinkov, 2019; Htut et al.,
2019) and incorporating explicit syntactic guidance
into attention patterns can improve performance on
syntactic tasks (Strubell et al., 2018; Sachan et al.,
2021; Bugliarello and Okazaki, 2019; Wang et al.,
2019b; Bai et al., 2021; Chen et al., 2024).

Recent work has also investigated the data re-
quirements for acquiring syntactic knowledge, with
some studies finding that pre-training on small,
developmentally plausible corpora can lead to
syntax acquisition with the right inductive biases

(Warstadt et al., 2023; Huebner et al., 2021). How-
ever, the precise mechanisms through which trans-
formers acquire syntactic knowledge, and the rel-
ative contributions of different elements of the ar-
chitecture, remain open questions.

3 Approach

We ask whether distillation through attention pro-
vides a stronger inductive bias for syntax acquisi-
tion compared to conventional distillation through
logits. To investigate this question, we conducted
controlled experiments using the GPT-2 small
architecture (Radford et al., 2019) for both the
teacher and student models. The teacher model
was a fully pre-trained GPT-2, while the student
models were trained from scratch on different sub-
sets of the BabyLLM dataset (Warstadt et al., 2023),
ranging from 10K to SM sentences. By varying the
dataset size, we assessed how different distillation
methods affect data efficiency. All results reported
are averages across three random seeds. Complete
training details are provided in Appendix A.

3.1 Distillation via logits

We first established the baseline effectiveness of
conventional KD through output distributions. Fol-
lowing Kim and Rush (2016), we implemented
word-level KD where the student model learns to
match the teacher’s output probability distributions.
Let P,(w|w<;) and Ps(w|w<;) be the conditional
probability of the word w at the i-th token calcu-
lated by the teacher and the student model respec-
tively. The auxiliary loss for distillation L)t for
each sentence with length N was defined as

1 N
ﬁlogits = N Z Z Pt(w’w<z) IOgPS(’LU|’LU<Z‘),
i=1lweV

where V is the vocabulary. This formulation is
equivalent to calculating the forward KL diver-
gence between teacher and student distributions
at each token position and taking the average. This
auxiliary loss was then added to the standard cross-
entropy loss Lcg with a coefficient « controlling
the strength of distillation:

L = Lck + aLiogits-

Based on preliminary experiments testing different
values of a, we found that o« = 10 led to optimal
performance and fixed it at this value for all logit-
based distillation experiments.
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Figure 1: Performance of the students trained on datasets with different sizes. Linzen, BLiMP, and Zorro are
targeted syntactic evaluations, while perplexity quantifies general language modeling performance. Ribbons show
the bootstrapped 95% CI. Dashed lines indicate the performance of the teacher.

3.2 Distillation via attention

To test our hypothesis that attention matrices might
provide a stronger inductive bias for syntax acqui-
sition, we implemented feature-based KD targeting
the attention mechanisms directly. We calculated
the auxiliary loss L.+, as the mean squared error
between the attention matrices of the teacher and
the student. Let A;(l, k) and A(l, h) be the atten-
tion matrices of the head h at layer [ calculated by
the teacher and the student model, respectively.
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where L and H are the number of layers and heads.
As with logit-based distillation, this auxiliary loss
was added to the cross-entropy loss with a coeffi-
cient o, which we set to 1 based on preliminary
experiments.

3.3 Evaluation

To test our hypothesis about the relative effective-
ness of different distillation approaches for syntax
acquisition, we evaluated models on both syntactic
benchmarks and a conventional language modeling
metric. If attention matrices encode critical syntac-
tic information not fully captured in output distribu-
tions, then attention-based distillation should show
selective advantages on syntactic tasks, especially
when training data is limited. For syntactic eval-
uation, we used three datasets based on minimal
pairs:

¢ Linzen (Linzen et al., 2016; Gulordava et al.,

2018) tests subject-verb agreement across var-
ious syntactic constructions.

e BLiMP (Warstadt et al., 2020) tests 67 dis-
tinct tasks across 12 syntactic phenomena.

* Zorro (Huebner et al., 2021): tests basic syn-
tactic tasks that align with the developmental
nature of our training data.

For each item in these benchmarks, we com-
puted the log probability of both sentences and
counted the model as correct if it assigns a higher
probability to the grammatically acceptable variant.
To ensure we capture overall language modeling
capability (beyond syntax), we also measured per-
plexity on the BabyLM test split. This dual eval-
uation allows us to distinguish between general
improvements in language modeling and selective
enhancements in syntactic competence, helping to
determine whether different distillation methods
provide domain-specific inductive biases or gen-
eral learning benefits.

4 Results

Before testing the effects of KD on syntactic per-
formance, we first check to make sure that each
KD approach achieves what it is intended to do. As
shown in S1, this is indeed the case: logit-based KD
enables the student model to have a much lower KL
divergence from the teacher model, and attention-
based KD enables the student model to have a much
more similar attention pattern to the teacher model.
Now that we have established that each KD method



is effective for its training objective, we turn to our
main question: how does each KD method affect
the linguistic abilities of the student models?

4.1 Logit-based KD improves data efficiency

Figure 1 shows the performance of students trained
with and without KD via logits across varying
dataset sizes. KD resulted in substantial improve-
ments on both syntactic benchmarks and perplexity.
With just 1M sentences (approx. 10M tokens), the
students approached the performance of the teacher
that was trained on billions of tokens, demonstrat-
ing the remarkable data efficiency of KD.

The impact of logit-based KD was particularly
pronounced with smaller datasets, where inductive
biases are most crucial. For models trained on just
50K-100K sentences, KD provided a >20% boost
in performance on the Linzen benchmark, elevat-
ing models from chance-level performance (50%).
This indicates that KD can serve as a powerful in-
ductive bias that enables syntax acquisition even
with very limited data.

Interestingly, some students outperformed the
teacher on the Zorro benchmark. This may re-
flect the domain alignment between the student’s
training data and the benchmark, which uses the
vocabulary from the BabyLM dataset, whereas the
teacher’s training data was a more general Internet-
based corpus. This result suggests that distilla-
tion can combine the teacher’s knowledge and the
domain-specific property of the student’s training
data.

4.2 Attention-based KD has a limited effect

Contrary to our hypothesis that attention matrices
provide a stronger inductive bias for syntax ac-
quisition, Figure 1 shows that attention-based KD
offered limited benefits compared to logit-based
KD, even though it leads to better alignment in at-
tention S1. This pattern held consistently across
all dataset sizes tested, suggesting that the syntac-
tic information encoded in attention matrices may
not provide substantial advantages beyond what is
already captured in output distributions.

To determine whether attention-based KD se-
lectively benefits particular aspects of syntax, we
performed fine-grained evaluations across individ-
ual tasks and grammatical phenomena. Figure S2
breaks down performance by tasks, and Figure S3
by phenomena, in the BLiMP benchmark. De-
spite considerable variation in the teacher’s per-
formance across these tasks and phenomena, the

relative performance pattern of different distillation
approaches remained remarkably consistent. Simi-
lar patterns were observed for the Zorro benchmark
(Figure S4).

5 Discussion

Our results reveal a striking contrast in the ability to
improve data-efficiency among different KD meth-
ods. While KD via logits enabled student models
to achieve teacher-level syntactic performance with
just 1M sentences, KD via attention matrices — de-
spite their capacity to encode syntactic structures —
offered only marginal benefits.

One explanation is that logit-based KD indi-
rectly aligns attention patterns, making explicit
attention distillation redundant (Wu et al., 2024).
A preliminary analysis supports this hypothesis:
when both KD methods are combined, perfor-
mance remains similar to logit-based KD alone
(Figure S5), suggesting no unique contribution
from attention-based KD. This indicates that output
distributions may provide sufficient signal to scaf-
fold data-efficient syntax learning, suggesting that
syntax might be encoded redundantly throughout
the network rather than being localized primarily
in attention patterns.

One key advantage of KD is that it requires min-
imal assumptions about the specific form of in-
ductive biases. In fact, our results demonstrate
that strong syntactic performance can be achieved
without relying on explicit grammatical rules. On
the other hand, KD-based approaches present cer-
tain challenges. KD can be computationally inten-
sive, requiring forward passes through the teacher
model for the entire training dataset, and the in-
ductive biases transferred via KD are less inter-
pretable than those from explicit grammar-based
approaches (Sartran et al., 2022).

Our findings highlight how feature-based KD
can serve as a powerful analytical tool to investi-
gate which features are most critical for specific
capabilities. Effective distillation through a partic-
ular feature suggests that it contains information
that works as an inductive bias for the target ca-
pability. Our results suggest that the information
contained in attention matrices was not a strong
enough inductive bias for syntax acquisition, but
future work must systematically compare differ-
ent feature-based KD methods to better understand
how different linguistic competencies are encoded
within transformer representations.



Limitations

Our evaluation focused specifically on syntactic
benchmarks, motivated by previous work showing
that attention matrices encode syntactic informa-
tion and that syntactically-guided attention con-
straints serve as effective inductive biases. While
this targeted approach allowed us to directly ad-
dress questions about syntax acquisition, it limits
the generalizability of our findings to other lin-
guistic competencies. Different aspects of linguis-
tic knowledge may be encoded preferentially in
different components of transformer architectures,
and distillation methods might show varying ef-
fectiveness across other linguistic domains, from
semantics and pragmatics to discourse representa-
tion. Further work should systematically compare
feature-based KD methods across a broader range
of linguistic capabilities to develop a more com-
plete understanding of knowledge representation
in these models.

Future work should evaluate attention-based KD
on a broader range of benchmarks spanning di-
verse capabilities, such as SuperGLUE (Wang et al.,
2019a) for language understanding and EWOK
(Ivanova et al., 2024) for world knowledge. A more
comprehensive evaluation would allow researchers
to determine whether the relative efficacy of dif-
ferent distillation methods varies across linguistic
domains. It’s possible that attention-based distilla-
tion might provide stronger benefits for capabilities
other than syntax, such as long-range semantic de-
pendencies or pragmatic reasoning.

Additionally, our experiments used a single pre-
trained model (GPT-2) as the teacher. Exploring
different teacher architectures and scales would
help determine the generalizability of our findings
across different model families and capabilities. Fi-
nally, our exploration of feature-based distillation
was limited to attention matrices; future work could
investigate other internal representations such as
hidden states, feed-forward network activations, or
combinations of these features.

Ethics Statement

All datasets (BabyLLM, Linzen, BLiMP, and Zorro)
and the model (GPT-2) used in this paper were em-
ployed according to their intended usage. BabyLM
consists of the following publicly available datasets
(Warstadt et al., 2023):

CHILDES' (MacWhinney, 2000)
* British National Corpus? (Consortium, 2007)

e Children’s Book Test (Hill et al., 2016)

Children’s Stories Text Corpus (Bensaid et al.,
2021)

* Project Gutenberg (Gerlach and Font-Clos,
2020)

OpenSubtitles (Lison and Tiedemann, 2016)
* QED (Abdelali et al., 2014)

* Wikipedia

» Simple English Wikipedia

» Switchboard Corpus (Godfrey et al., 1992)

While we utilized knowledge distillation (KD)
to distill the inductive biases required for data-
efficient syntax learning, KD can also transfer the
biases embedded in the teacher. When training stu-
dent models using KD, we need to consider the
biases of the teacher as well as those in the training
dataset.
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A Training details

Table S1 shows hyperparameters used in our exper-
iments. The BabyLLM preprocessing pipeline® was
used to clean the dataset. Since the dataset has one
sentence per line, we used the number of sentences
as the measure of dataset size rather than the num-
ber of words or tokens. All train runs had the same
number of training steps (156,250 steps) except for
those for the largest dataset size (5,000,000 sen-
tences). We used a linear warm-up for 1% of the
total number of training steps.

We used Hugging Face transformers (version
4.45.2; Apache License 2.0) (Wolf et al., 2020)
and PyTorch (version 2.4.1; BSD-style license *)
(Ansel et al., 2024) to train and evaluate models.
Experiments took approximately 750 GPU hours
with NVIDIA RTX A6000 GPUs.

3https ://github.com/babylm/babylm_data_
preprocessing

4https ://github.com/pytorch/pytorch/blob/main/
LICENSE

n_layers 12
n_heads 12
hidden_size 768
intermediate_size | 3072
max # tokens 128
batch size 32
learning rate 0.0002

Table S1: Hyperparameters
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Figure S1: Auxiliary losses evaluated on the BLiMP dataset. We randomly selected 3 items from each task
(3*67=201 in total). Unlike attention-based knowledge distillation, logit-based knowledge distillation does not align
the internal computations, which leaves the possibility that similar attention patterns are implemented in both the
teacher and the student by different attention heads. To account for this, we calculated the loss using the attention
matrices averaged across layers and heads (middle), in addition to the loss used in training (left) as described in 3.2.
Y-axis of the left two panels are on the log scale.
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