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Abstract001

Developing more data-efficient training ap-002
proaches depends on a better understanding003
of inductive biases. In this work, we hypoth-004
esize that the structural information encoded005
in a transformer’s attention matrices is key to006
acquiring syntax because attention captures re-007
lationships between words – a crucial part of008
syntax. Under this hypothesis, we would ex-009
pect that inductive biases targeting attention010
should selectively improve data-efficiency on011
syntactic benchmarks. We use knowledge dis-012
tillation (KD) as a methodological lens to test013
this hypothesis, comparing conventional KD014
through output logits against KD through at-015
tention matrices. Using GPT-2 as our teacher016
model, we train student models on datasets017
ranging from 10K to 5M sentences and evaluate018
them on both syntactic benchmarks and general019
language modeling tasks. Surprisingly, we find020
that while logit-based KD drastically improves021
data-efficiency across all metrics, attention-022
based KD offers minimal benefits even for syn-023
tactic tasks. This suggests that logits already ef-024
fectively supervise syntactic information, chal-025
lenging assumptions about how syntax is rep-026
resented in transformers and informing more027
targeted approaches to data-efficient training.028

1 Introduction029

Modern language models successfully capture030

many aspects of human linguistic competence,031

from the fundamentals of grammar (Warstadt et al.,032

2020; Linzen and Baroni, 2021; Hu et al., 2024)033

to more sophisticated uses of world knowledge034

(Ivanova et al., 2024; Yamakoshi et al., 2023). How-035

ever, they achieve these capabilities only after train-036

ing on vastly more data than human children re-037

ceive during language acquisition (Frank, 2023),038

motivating research into inductive biases (Warstadt039

et al., 2023) – predispositions that guide learning040

toward particular solutions with less data. These041

biases include architectural modifications (Sartran042

et al., 2022), curriculum learning strategies (Mar- 043

tinez et al., 2023), and specialized weight initializa- 044

tion techniques (Bencomo et al., 2025). 045

In this paper, we use knowledge distillation (KD) 046

to study which aspects of a model’s learned repre- 047

sentations are most critical for scaffolding partic- 048

ular linguistic capabilities. We focus specifically 049

on learning syntax – an ability long theorized to 050

require strong (innate) biases (Chomsky, 1965; Mc- 051

Coy et al., 2020). Previous research has shown 052

that syntactic information is encoded in the atten- 053

tion mechanism of transformer models (Clark et al., 054

2019), and that constraining these attention matri- 055

ces can serve as an effective inductive bias for syn- 056

tax (Nguyen et al., 2020; Qian et al., 2021; Yoshida 057

and Oseki, 2022; Sartran et al., 2022). These stud- 058

ies raise an intriguing hypothesis: if attention ma- 059

trices are the locus of syntactic knowledge, then 060

distillation specifically targeting these representa- 061

tions ought to transfer syntactic abilities just as 062

efficiently, or more efficiently, than conventional 063

distillation through output logits. 064

To test this hypothesis, we performed a con- 065

trolled experiment using a pretrained GPT-2 model 066

(Radford et al., 2019) as the teacher, and trained 067

student models of identical architecture on datasets 068

ranging from 10K to 5M sentences. Our contri- 069

butions are twofold. First, we demonstrate that 070

conventional distillation through an additional su- 071

pervision signal on logits can drastically reduce the 072

amount of data required for learning syntax, reach- 073

ing teacher-level performance with only 1M sen- 074

tences of training data. Second, more surprisingly, 075

we show that attention-based KD offers limited 076

benefits for syntactic tasks despite prior evidence 077

that these matrices encode crucial structural infor- 078

mation. Our work illustrates how knowledge dis- 079

tillation can serve as a powerful analytical tool for 080

understanding which aspects of a model’s represen- 081

tations are effective for achieving data-efficiency 082

with respect to specific linguistic capabilities. 083
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2 Related Work084

2.1 Knowledge distillation085

Knowledge distillation (KD) consists of three main086

approaches (Gou et al., 2021): response-based KD,087

which aligns the output distributions of teacher and088

student models; feature-based KD, which matches089

internal representations to transfer detailed com-090

putational patterns; and relation-based KD, which091

preserves relational structures across multiple sam-092

ples. In this work, we employ both response-based093

KD through logits and feature-based KD through094

attention to investigate their relative effectiveness095

for transferring syntactic knowledge.096

While KD was initially developed for model097

compression, its applications have been expanded098

in several directions. For example, Furlanello et al.099

(2018) demonstrated that distilling knowledge to100

a student of identical architecture can actually im-101

prove performance. Others have used KD to fa-102

cilitate transfer between architecturally different103

models (Kuncoro et al., 2019, 2020; Abnar et al.,104

2020), showing that inductive biases from special-105

ized architectures can be distilled into more general106

ones. Finally, recent work has explored KD for107

data-efficient training, using ensembles of teacher108

models to improve student performance on limited109

data (Timiryasov and Tastet, 2023; Samuel, 2023;110

Yam and Paek, 2024). Our approach maintains111

architectural consistency between teacher and stu-112

dent, and uses a single pre-trained model as the113

teacher, in order to isolate the effects of different114

distillation mechanisms on syntactic competencies.115

2.2 How transformers represent syntax116

Understanding how transformers capture syntac-117

tic structure has been a central question in inter-118

pretability research. Numerous studies have identi-119

fied attention matrices as repositories of syntactic120

information, with certain attention heads specializ-121

ing in tracking specific syntactic relations (Clark122

et al., 2019; Vig and Belinkov, 2019; Htut et al.,123

2019) and incorporating explicit syntactic guidance124

into attention patterns can improve performance on125

syntactic tasks (Strubell et al., 2018; Sachan et al.,126

2021; Bugliarello and Okazaki, 2019; Wang et al.,127

2019b; Bai et al., 2021; Chen et al., 2024).128

Recent work has also investigated the data re-129

quirements for acquiring syntactic knowledge, with130

some studies finding that pre-training on small,131

developmentally plausible corpora can lead to132

syntax acquisition with the right inductive biases133

(Warstadt et al., 2023; Huebner et al., 2021). How- 134

ever, the precise mechanisms through which trans- 135

formers acquire syntactic knowledge, and the rel- 136

ative contributions of different elements of the ar- 137

chitecture, remain open questions. 138

3 Approach 139

We ask whether distillation through attention pro- 140

vides a stronger inductive bias for syntax acquisi- 141

tion compared to conventional distillation through 142

logits. To investigate this question, we conducted 143

controlled experiments using the GPT-2 small 144

architecture (Radford et al., 2019) for both the 145

teacher and student models. The teacher model 146

was a fully pre-trained GPT-2, while the student 147

models were trained from scratch on different sub- 148

sets of the BabyLM dataset (Warstadt et al., 2023), 149

ranging from 10K to 5M sentences. By varying the 150

dataset size, we assessed how different distillation 151

methods affect data efficiency. All results reported 152

are averages across three random seeds. Complete 153

training details are provided in Appendix A. 154

3.1 Distillation via logits 155

We first established the baseline effectiveness of
conventional KD through output distributions. Fol-
lowing Kim and Rush (2016), we implemented
word-level KD where the student model learns to
match the teacher’s output probability distributions.
Let Pt(w|w<i) and Ps(w|w<i) be the conditional
probability of the word w at the i-th token calcu-
lated by the teacher and the student model respec-
tively. The auxiliary loss for distillation Llogits for
each sentence with length N was defined as

Llogits =
1

N

N∑
i=1

∑
w∈V

Pt(w|w<i) logPs(w|w<i),

where V is the vocabulary. This formulation is
equivalent to calculating the forward KL diver-
gence between teacher and student distributions
at each token position and taking the average. This
auxiliary loss was then added to the standard cross-
entropy loss LCE with a coefficient α controlling
the strength of distillation:

L = LCE + αLlogits.

Based on preliminary experiments testing different 156

values of α, we found that α = 10 led to optimal 157

performance and fixed it at this value for all logit- 158

based distillation experiments. 159
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Figure 1: Performance of the students trained on datasets with different sizes. Linzen, BLiMP, and Zorro are
targeted syntactic evaluations, while perplexity quantifies general language modeling performance. Ribbons show
the bootstrapped 95% CI. Dashed lines indicate the performance of the teacher.

3.2 Distillation via attention160

To test our hypothesis that attention matrices might
provide a stronger inductive bias for syntax acqui-
sition, we implemented feature-based KD targeting
the attention mechanisms directly. We calculated
the auxiliary loss Lattn as the mean squared error
between the attention matrices of the teacher and
the student. Let At(l, h) and As(l, h) be the atten-
tion matrices of the head h at layer l calculated by
the teacher and the student model, respectively.

Lattn =
1

L

1

H

L∑
l=1

H∑
h=1

MSE(At(l, h)−As(l, h)),

where L and H are the number of layers and heads.161

As with logit-based distillation, this auxiliary loss162

was added to the cross-entropy loss with a coeffi-163

cient α, which we set to 1 based on preliminary164

experiments.165

3.3 Evaluation166

To test our hypothesis about the relative effective-167

ness of different distillation approaches for syntax168

acquisition, we evaluated models on both syntactic169

benchmarks and a conventional language modeling170

metric. If attention matrices encode critical syntac-171

tic information not fully captured in output distribu-172

tions, then attention-based distillation should show173

selective advantages on syntactic tasks, especially174

when training data is limited. For syntactic eval-175

uation, we used three datasets based on minimal176

pairs:177

• Linzen (Linzen et al., 2016; Gulordava et al.,178

2018) tests subject-verb agreement across var- 179

ious syntactic constructions. 180

• BLiMP (Warstadt et al., 2020) tests 67 dis- 181

tinct tasks across 12 syntactic phenomena. 182

• Zorro (Huebner et al., 2021): tests basic syn- 183

tactic tasks that align with the developmental 184

nature of our training data. 185

For each item in these benchmarks, we com- 186

puted the log probability of both sentences and 187

counted the model as correct if it assigns a higher 188

probability to the grammatically acceptable variant. 189

To ensure we capture overall language modeling 190

capability (beyond syntax), we also measured per- 191

plexity on the BabyLM test split. This dual eval- 192

uation allows us to distinguish between general 193

improvements in language modeling and selective 194

enhancements in syntactic competence, helping to 195

determine whether different distillation methods 196

provide domain-specific inductive biases or gen- 197

eral learning benefits. 198

4 Results 199

Before testing the effects of KD on syntactic per- 200

formance, we first check to make sure that each 201

KD approach achieves what it is intended to do. As 202

shown in S1, this is indeed the case: logit-based KD 203

enables the student model to have a much lower KL 204

divergence from the teacher model, and attention- 205

based KD enables the student model to have a much 206

more similar attention pattern to the teacher model. 207

Now that we have established that each KD method 208

3



is effective for its training objective, we turn to our209

main question: how does each KD method affect210

the linguistic abilities of the student models?211

4.1 Logit-based KD improves data efficiency212

Figure 1 shows the performance of students trained213

with and without KD via logits across varying214

dataset sizes. KD resulted in substantial improve-215

ments on both syntactic benchmarks and perplexity.216

With just 1M sentences (approx. 10M tokens), the217

students approached the performance of the teacher218

that was trained on billions of tokens, demonstrat-219

ing the remarkable data efficiency of KD.220

The impact of logit-based KD was particularly221

pronounced with smaller datasets, where inductive222

biases are most crucial. For models trained on just223

50K-100K sentences, KD provided a >20% boost224

in performance on the Linzen benchmark, elevat-225

ing models from chance-level performance (50%).226

This indicates that KD can serve as a powerful in-227

ductive bias that enables syntax acquisition even228

with very limited data.229

Interestingly, some students outperformed the230

teacher on the Zorro benchmark. This may re-231

flect the domain alignment between the student’s232

training data and the benchmark, which uses the233

vocabulary from the BabyLM dataset, whereas the234

teacher’s training data was a more general Internet-235

based corpus. This result suggests that distilla-236

tion can combine the teacher’s knowledge and the237

domain-specific property of the student’s training238

data.239

4.2 Attention-based KD has a limited effect240

Contrary to our hypothesis that attention matrices241

provide a stronger inductive bias for syntax ac-242

quisition, Figure 1 shows that attention-based KD243

offered limited benefits compared to logit-based244

KD, even though it leads to better alignment in at-245

tention S1. This pattern held consistently across246

all dataset sizes tested, suggesting that the syntac-247

tic information encoded in attention matrices may248

not provide substantial advantages beyond what is249

already captured in output distributions.250

To determine whether attention-based KD se-251

lectively benefits particular aspects of syntax, we252

performed fine-grained evaluations across individ-253

ual tasks and grammatical phenomena. Figure S2254

breaks down performance by tasks, and Figure S3255

by phenomena, in the BLiMP benchmark. De-256

spite considerable variation in the teacher’s per-257

formance across these tasks and phenomena, the258

relative performance pattern of different distillation 259

approaches remained remarkably consistent. Simi- 260

lar patterns were observed for the Zorro benchmark 261

(Figure S4). 262

5 Discussion 263

Our results reveal a striking contrast in the ability to 264

improve data-efficiency among different KD meth- 265

ods. While KD via logits enabled student models 266

to achieve teacher-level syntactic performance with 267

just 1M sentences, KD via attention matrices – de- 268

spite their capacity to encode syntactic structures – 269

offered only marginal benefits. 270

One explanation is that logit-based KD indi- 271

rectly aligns attention patterns, making explicit 272

attention distillation redundant (Wu et al., 2024). 273

A preliminary analysis supports this hypothesis: 274

when both KD methods are combined, perfor- 275

mance remains similar to logit-based KD alone 276

(Figure S5), suggesting no unique contribution 277

from attention-based KD. This indicates that output 278

distributions may provide sufficient signal to scaf- 279

fold data-efficient syntax learning, suggesting that 280

syntax might be encoded redundantly throughout 281

the network rather than being localized primarily 282

in attention patterns. 283

One key advantage of KD is that it requires min- 284

imal assumptions about the specific form of in- 285

ductive biases. In fact, our results demonstrate 286

that strong syntactic performance can be achieved 287

without relying on explicit grammatical rules. On 288

the other hand, KD-based approaches present cer- 289

tain challenges. KD can be computationally inten- 290

sive, requiring forward passes through the teacher 291

model for the entire training dataset, and the in- 292

ductive biases transferred via KD are less inter- 293

pretable than those from explicit grammar-based 294

approaches (Sartran et al., 2022). 295

Our findings highlight how feature-based KD 296

can serve as a powerful analytical tool to investi- 297

gate which features are most critical for specific 298

capabilities. Effective distillation through a partic- 299

ular feature suggests that it contains information 300

that works as an inductive bias for the target ca- 301

pability. Our results suggest that the information 302

contained in attention matrices was not a strong 303

enough inductive bias for syntax acquisition, but 304

future work must systematically compare differ- 305

ent feature-based KD methods to better understand 306

how different linguistic competencies are encoded 307

within transformer representations. 308
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Limitations309

Our evaluation focused specifically on syntactic310

benchmarks, motivated by previous work showing311

that attention matrices encode syntactic informa-312

tion and that syntactically-guided attention con-313

straints serve as effective inductive biases. While314

this targeted approach allowed us to directly ad-315

dress questions about syntax acquisition, it limits316

the generalizability of our findings to other lin-317

guistic competencies. Different aspects of linguis-318

tic knowledge may be encoded preferentially in319

different components of transformer architectures,320

and distillation methods might show varying ef-321

fectiveness across other linguistic domains, from322

semantics and pragmatics to discourse representa-323

tion. Further work should systematically compare324

feature-based KD methods across a broader range325

of linguistic capabilities to develop a more com-326

plete understanding of knowledge representation327

in these models.328

Future work should evaluate attention-based KD329

on a broader range of benchmarks spanning di-330

verse capabilities, such as SuperGLUE (Wang et al.,331

2019a) for language understanding and EWOK332

(Ivanova et al., 2024) for world knowledge. A more333

comprehensive evaluation would allow researchers334

to determine whether the relative efficacy of dif-335

ferent distillation methods varies across linguistic336

domains. It’s possible that attention-based distilla-337

tion might provide stronger benefits for capabilities338

other than syntax, such as long-range semantic de-339

pendencies or pragmatic reasoning.340

Additionally, our experiments used a single pre-341

trained model (GPT-2) as the teacher. Exploring342

different teacher architectures and scales would343

help determine the generalizability of our findings344

across different model families and capabilities. Fi-345

nally, our exploration of feature-based distillation346

was limited to attention matrices; future work could347

investigate other internal representations such as348

hidden states, feed-forward network activations, or349

combinations of these features.350

Ethics Statement351

All datasets (BabyLM, Linzen, BLiMP, and Zorro)352

and the model (GPT-2) used in this paper were em-353

ployed according to their intended usage. BabyLM354

consists of the following publicly available datasets355

(Warstadt et al., 2023):356

• CHILDES1 (MacWhinney, 2000) 357

• British National Corpus2 (Consortium, 2007) 358

• Children’s Book Test (Hill et al., 2016) 359

• Children’s Stories Text Corpus (Bensaid et al., 360

2021) 361

• Project Gutenberg (Gerlach and Font-Clos, 362

2020) 363

• OpenSubtitles (Lison and Tiedemann, 2016) 364

• QED (Abdelali et al., 2014) 365

• Wikipedia 366

• Simple English Wikipedia 367

• Switchboard Corpus (Godfrey et al., 1992) 368

While we utilized knowledge distillation (KD) 369

to distill the inductive biases required for data- 370

efficient syntax learning, KD can also transfer the 371

biases embedded in the teacher. When training stu- 372

dent models using KD, we need to consider the 373

biases of the teacher as well as those in the training 374

dataset. 375
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A Training details649

Table S1 shows hyperparameters used in our exper-650

iments. The BabyLM preprocessing pipeline3 was651

used to clean the dataset. Since the dataset has one652

sentence per line, we used the number of sentences653

as the measure of dataset size rather than the num-654

ber of words or tokens. All train runs had the same655

number of training steps (156,250 steps) except for656

those for the largest dataset size (5,000,000 sen-657

tences). We used a linear warm-up for 1% of the658

total number of training steps.659

We used Hugging Face transformers (version660

4.45.2; Apache License 2.0) (Wolf et al., 2020)661

and PyTorch (version 2.4.1; BSD-style license 4)662

(Ansel et al., 2024) to train and evaluate models.663

Experiments took approximately 750 GPU hours664

with NVIDIA RTX A6000 GPUs.665

3https://github.com/babylm/babylm_data_
preprocessing

4https://github.com/pytorch/pytorch/blob/main/
LICENSE

n_layers 12
n_heads 12

hidden_size 768
intermediate_size 3072

max # tokens 128
batch size 32

learning rate 0.0002

Table S1: Hyperparameters
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Figure S2: Performance on BLiMP split into tasks. Ribbons show the bootstrapped 95% CI.
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Figure S4: Performance on Zorro split into tasks. Ribbons show the bootstrapped 95% CI.
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Figure S5: Preliminary analysis showing little unique effects of KD through attention matrices.

12


	Introduction
	Related Work
	Knowledge distillation
	How transformers represent syntax

	Approach
	Distillation via logits
	Distillation via attention
	Evaluation

	Results
	Logit-based KD improves data efficiency
	Attention-based KD has a limited effect

	Discussion
	Training details

