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Figure 1. MindCustomer seamlessly integrates visual brain signals into multi-context image generation. Given the scarcity of real-world
brain data, it efficiently performs real-time single-image generation without additional inputs (e.g. masks or muti-views of the same image
context). Text context is optional, which provides more semantics or control over the image and brain contexts.

Abstract
Advancements in generative models have pro-
moted text- and image-based multi-context im-
age generation. Brain signals, offering a direct
representation of user intent, present new opportu-
nities for image customization. However, it faces
challenges in brain interpretation, cross-modal
context fusion and retention. In this paper, we
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present MindCustomer to explore the blending of
visual brain signals in multi-context image gener-
ation. We first design shared neural data augmen-
tation for stable cross-subject brain embedding
by introducing the Image-Brain Translator (IBT)
to generate brain responses from visual images.
Then, we propose an effective cross-modal infor-
mation fusion pipeline that mask-freely adapts
distinct semantics from image and brain contexts
within a diffusion model. It resolves semantic
conflicts for context preservation and enables har-
monious context integration. During the fusion
pipeline, we further utilize the IBT to transfer
image context to the brain representation to miti-
gate the cross-modal disparity. MindCustomer en-
ables cross-subject generation, delivering unified,
high-quality, and natural image outputs. More-
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over, it exhibits strong generalization for new sub-
jects via few-shot learning, indicating the poten-
tial for practical application. As the first work for
multi-context blending with brain signal, Mind-
Customer lays a foundational exploration and in-
spiration for future brain-controlled generative
technologies.

1. Introduction
With the advance of generative models (Chang et al., 2023;
Ramesh et al., 2022a), text-to-image generation has gar-
nered increasing attention. Users can achieve a desired
visual effect or convey specific information by provid-
ing diverse text prompts. More recently, advancements
in large-scale models, such as diffusion (Rombach et al.,
2022; Xu et al., 2023), CLIP (Radford et al., 2021b), and
large language models (Naveed et al., 2023; OpenAI, 2023)
have further enhanced image generation(Kawar et al., 2023;
Nichol et al., 2022). Based on this, numerous studies (Ding
et al., 2024; Kumari et al., 2023; Ruiz et al., 2023; Gal
et al., 2023c) have made significant strides in multi-context
blended image generation from image and text prompts. It
enables high-quality and customized creations with greater
control, which has broad applications, including art creation,
user-specific design, and virtual interactions.

Simultaneously, we notice that research on brain signal in-
terpretation leveraging decoding technology enhances the
understanding of biological information (Gong et al., 2024;
Gao et al., 2024). However, current works are mainly limited
to the brain signal reconstruction (Scotti et al., 2024; Wang
et al., 2024; Xia et al., 2024). As a significant semantic
modality, brain signals straightforwardly reflect users’ per-
sonalized thoughts and preferences. We believe that it has a
broader extension to customized image creation. Compared
to traditional prompts from text and image modalities, brain
signals offer a direct representation of user intent, paving
the way to produce more efficient and personalized genera-
tion. Based on the above observation, this paper pioneers
the exploration of multi-context image generation blended
with brain signals. It integrates cross-modal contexts from
the image, text, and brain signal into a unified generative
model to facilitate image customization.

However, it lays several key challenges. (1) Cross-subject
brain encoding: to achieve unified brain context extraction
across different subjects, it is crucial to precisely capture se-
mantic brain embeddings under the shared data scarcity. (2)
Multi-modal integration: the generative model should inte-
grate implicit representations from multiple modalities in a
cohesive manner; otherwise, the embeddings from different
modalities may confuse the model’s latent space. (3) Multi-
context preservation: when multiple contexts are fused in

one generative model, it is important to ensure that the gen-
erated images retain the semantics originating from each
context, without being overshadowed or altered.

In this paper, we present MindCustomer to address this chal-
lenging task. We incorporate the visually evoked brain sig-
nals across different human subjects, rich in diverse seman-
tic information from viewing natural images, as the brain
contexts. MindCustomer leverages the diffusion model (Xu
et al., 2023) as the base structure for prompt-guided im-
age generation to synthesize high-quality images. More
importantly, we identify three critical points: (1) We in-
troduce the Image-Brain Translator (IBT) for cross-subject
brain data augmentation, ensuring subsequent stable embed-
dings. Trained to generate pseudo-brain data from image
inputs, IBT works alongside a semantic mapper to precisely
capture semantic contexts in brain embeddings. (2) We pro-
pose an effective cross-modal information fusion pipeline
for multi-context preservation during diffusion generation.
In order to blend different contexts, we design diffusion
fine-tuning based on image context to learn the image se-
mantics, and then we freeze the fine-tuned diffusion model
and lightly optimize the brain context with the target of
the image context. This helps mitigate semantic conflicts
between different contexts. (3) Besides, during the above
process, we further utilize the IBT and brain embedding
model to transfer image context to brain-embedding space
to mitigate the representation disparity across modalities.
Thus, the above-designed brain-blended cross-modal fusion
enables final natural integration and semantic preservation
across modalities, producing natural and high-quality blend-
ing results. MindCustomer performs real-time generation
on a single image in light of the scarcity of neural data.
Meanwhile, it efficiently achieves multi-context blending
without additional masks or samples.

As the first work, MindCustomer successfully implements
multi-context blended with brain signal in image genera-
tion. It achieves high-quality image customization guided
by cross-subject brain contexts. Furthermore, in real-world
scenarios where data from new subjects is often limited, we
apply MindCustomer with few-shot learning to showcase its
generalization capability. Figure 1 illustrates the overview
and performance of MindCustomer.

In summary, our contributions are:

• We explore the task of blending brain semantics in
multi-context image generation for the first time, and
present the effective MindCustomer to achieve it.

• We design the shared neural data augmentation via IBT
to ensure stable cross-subject brain encoding. Further-
more, we present an effective pipeline to preserve and
fuse contexts naturally during generation, alongside
IBT to mitigate the cross-modal disparity.
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Figure 2. Pipeline of MindCustomer. (1) IBT simulates shared brain data across human subjects to augment brain embedding and the
semantic extractor is designed to refine the representation. (2) We transfer the image context to the brain embedding space and utilize it for
the diffusion fine-tuning. (3) The brain context is optimized by using the fine-tuned diffusion, further ensuring cross-context adaptation.
(4) We combine these multi-modal embeddings to a new one, and finally generate the coherent blending results.

• MindCustomer achieves high-quality and seamless im-
age generation guided by brain semantics. It can fur-
ther generalize to new subjects, performing strong real-
world application capability.

2. Related Work
Advancements in diffusion models (Ho et al., 2020; Dhari-
wal & Nichol, 2021; Song et al., 2021) have sparked interest
in personalized image creation, allowing individuals to gen-
erate images based on their creative intent. Many works
adopt fine-tuning diffusion as a core principle (Ruiz et al.,
2023; Gal et al., 2023a). DreamBooth (Ruiz et al., 2023)
fine-tunes the diffusion model to associate a unique iden-
tifier with a target subject, utilizing a prior preservation
loss to maintain model generalization in few-shot tuning.
Textual Inversion (Gal et al., 2023a) leverages a text em-
bedding that is learnable for encoding a subject concept.
Blip-Diffusion (Li et al., 2023a), building on BLIP-2’s ap-
proach (Li et al., 2023b), pre-trains a multimodal encoder
to generate visual representations aligned with text prompts,
enabling a diffusion model to leverage these representations
for learning subject-specific features and creating novel ren-
ditions. Recent research also explores merging multiple
concepts for generation (Avrahami et al., 2023; Tewel et al.,
2023a; Gu et al., 2023a; Liu et al., 2023b;c). Custom Dif-
fusion (Kumari et al., 2023) implements this by employing
a constrained optimization method with a closure solution.

FreeCustom (Ding et al., 2024) designs a weighted mask
strategy to fuse input concepts with more focus. Overall,
these advancements in image creation facilitate user-driven
image generation guided by text and image prompts.

The latest developments in hardware have allowed for the
recording and analysis of various brain signals in neuro-
science labs (Sun et al., 2024; Taheri et al., 1994; Hari &
Lounasmaa, 1989). Brain signals, rich in semantic infor-
mation, are crucial for studying neural mechanisms (Daly
& Wolpaw, 2008; Chaudhary et al., 2016; Weiskopf, 2012).
Decoding visual brain signals has become a key research
area, helping researchers understand human visual percep-
tion (Cox & Savoy, 2003; Horikawa & Kamitani, 2015;
Schoenmakers et al., 2013; VanRullen & Reddy, 2018; Gu
et al., 2023b; Quan et al., 2024). The development of gener-
ative models like diffusion has significantly advanced high-
quality brain signal decoding (Wang et al., 2024; Xia et al.,
2024; Scotti et al., 2023). A predominant approach (Scotti
et al., 2024; Shen et al., 2024) involves aligning brain sig-
nal encodings with the CLIP space (Radford et al., 2021b),
which serves as a condition input for generative models
to perform the reconstruction. Additionally, Takagi et al.
(Takagi & Nishimoto, 2023) reconstruct high-resolution
images from brain activity while preserving rich semantic
details, without the need for training or fine-tuning complex
deep generative models. Mind-Vis (Chen et al., 2023) uti-
lizes Masked Autoencoders (MAE) to enhance brain signal
encoding, enabling more accurate reconstructions. Given
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the variability of brain signals across individuals, cross-
subject decoding methods have been proposed (Wang et al.,
2024; Xia et al., 2024) to integrate the encodings and re-
constructions of multiple subjects within a unified model.
Moreover, some works extend brain signals to more tasks
(Xia et al., 2024; Shen et al., 2024; Chen et al., 2024a),
such as visual grounding, visual-question-answer, and styl-
ized reconstruction. As a concurrent work, MindPainter
(Yu et al., 2025) uses the brain signal as a condition for
masked image painting via self-supervised learning. Dif-
ferent from these works, this paper presents a mask-free,
cross-subject, and multi-context (modalities in image, text,
and brain) blending task for image generation. We design
the shared neural data augmentation and cross-modal infor-
mation fusing pipeline to effectively achieve high-quality
image blending results. MindCustomer further broadens the
way for brain-controlled image creation.

3. Method
3.1. Preliminaries

NSD Data To better understand the brain-driven context,
we first introduce the data related to visual brain signals. In
this paper, we utilize the widely-used data, Natural Scenes
Dataset (NSD) (Allen, 2022), as our brain contexts. This
dataset includes high-resolution 7-Tesla fMRI scans from
eight healthy adult participants, who were tasked with view-
ing various natural images sourced from the MS-COCO
dataset (Lin et al., 2014). In accordance with standard prac-
tices (Scotti et al., 2024; Wang et al., 2024; Takagi & Nishi-
moto, 2023; Shen et al., 2024; Chen et al., 2024a), we utilize
all subject-wise data from four subjects (Subj1, 2, 5, 7) as
the training data. Each subject viewed 8859 individual im-
ages. And the remaining data of 982 images were viewed
by all four subjects as the test data.

Diffusion Model Diffusion models (Rombach et al., 2022;
Xu et al., 2023) have shown remarkable efficacy in synthe-
sizing high-quality images. Leveraging extensive text-image
pair datasets during training, they are capable of generating
highly accurate visual representations from textual input. In
this study, we leverage versatile diffusion (VD) (Xu et al.,
2023), which is a multi-modal diffusion with independent
flows for image and text prompts. This inherently enables us
to condition the model with both image and text modalities,
and we mainly focus on integrating visual brain signals with
image modality in VD to generate high-quality images. We
initialize our model with the publicly pre-trained VD, and
the subsequent fine-tuning process is built upon this prior.

3.2. MindCustomer

Given image contexts, brain signals from different human
subjects and text prompts, our target is to perform mask-free
blending to generate images. The generation results should

naturally blend with the provided contexts, meanwhile pre-
serving the relevant semantic characteristics. We propose
MindCustomer to achieve this task. Considering the lim-
ited availability of brain data from different subjects, it is
difficult to construct large, labeled datasets for training gen-
erative models. In this work, we perform efficient real-time
generation on a single image, which holds greater practi-
cal significance for real-world applications. MindCustomer
consists of four parts, which is illustrated in Figure 2.

Brain Representation Pre-training To tackle the incon-
sistency for cross-subject brain embedding, inspired from
(Scotti et al., 2024; Wang et al., 2024), we apply individual-
to-shared encoding to encode fMRI voxels into the universal
latent space of the pre-trained CLIP model. However, previ-
ous methods only allow the subject-wise data for training,
where the limited data affects the encoding capability. We in-
troduce Image-Brain Translator Gη (IBT) to generate pseudo
voxels to augment the training data without manual collect-
ing. η refers to the parameters of the model G. IBT is trained
to simulate subject-specific brain signals from a given input
image. During the brain representation pre-training stage,
we concurrently feed fMRI data from multiple subjects (in-
cluding true and generated fMRI) in response to the same
stimulus into a shared encoding model. This approach effec-
tively augments the fMRI training dataset, as the stimulus
presented to each subject differs from those in the original
dataset. As a result, we can generate shared brain represen-
tations across subjects, rather than treating each subject’s
data as isolated samples, thereby enhancing the stability of
the embedding training data. Specifically, we utilize the
pairs of fMRI voxels B and corresponding visual stimuli
I ∈ RN×256×256 in a batch size of N to train the subject-
wise IBT. We adopt the adaptive max pooling (Wang et al.,
2024) to achieve the subject-invariant voxel sizes. Thus,
we construct the fixed size of ground truth voxel B′ from
(13000∼16000) to 8192. The training function of IBT Gη

can be formulated as:
EI = CLIPImage(I),

LIBT = LMSE(G(EI , η), B
′),

(1)

We feed the I into the pre-trained CLIP ViT/L-14 (Radford
et al., 2021b) to obtain the latent feature EI of size N×1024.
LMSE is the MSE loss function. Note that the CLIP model
remains frozen.

Next, we elaborate on the pre-training of cross-subject
brain embedder. We denote different subjects as a, b, c,
and d. For a pair of (Ia, Ba) from subject a, we first
obtain the text caption Ta from image Ia, and feed both
Ia and Ta into CLIP model to get the corresponding im-
age and text CLIP embedding EIa and ETa. Then we
fix the size of Ba to B′

a ∈ R8192, and apply the IBT
to generate B′

b ∈ R8192, B′
c ∈ R8192 and B′

d ∈ R8192

from input Ia. We employ the shallow subject-wise em-
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Figure 3. Multi-context generation results across different subjects.

bedders E∫ and deep shared embedders E⌈ to output em-
beddings of voxels, (eIa ∈ R8192,eTa ∈ R8192), (eIb,eTb),
(eIc,eTc), and (eId,eTd), which will be supervised by CLIP-
encoded text and image. Further, we utilize the SoftCLIP
loss and MSE loss to optimize the error between the pre-
dicted embeddings and corresponding CLIP embeddings
Lemb = LSoftCLIP + LMSE, where

LSoftCLIP = −
N∑

i=1

N∑
j=1

[
log

exp(Ei · Ej/τ)∑N
n=1 exp(Ei · En/τ)

+ log
exp(ei · Ej/τ)∑N

n=1 exp(ei · En/τ)

]
,

(2)

LMSE =
1

N

N∑
i=1

(ei − Ei)
2, (3)

With the pseudo voxel augmentation and pre-training pro-
cess, we can embed the cross-subject voxels into latent CLIP
embedding, which benefits accurate semantic extraction for
diffusion-based generation. Furthermore, to extract more
semantically enhanced features, we introduce the mapper
from ClipCap (Mokady et al., 2021) to guide our embed-
ding model to explore the text semantics from brain signals.
Since the mapper is formerly trained for image caption, it
effectively transfers the vision features to language features,
we utilize it as the supervisor for enhanced brain embed-
dings. We design the training of semantic extractor Mσ

for the embeddings of voxels. The output features of the
extractor Mσ are also aligned with the loss of SoftCLIP
and MSE.

LSoftCLIP = −
N∑

i=1

N∑
j=1

[
log

exp(Si · Sj/τ)∑N
n=1 exp(Si · Sn/τ)

+ log
exp(si · Sj/τ)∑N

n=1 exp(si · Sn/τ)

]
,

(4)

Subj1 Subj2 Subj5 Subj7I/B

Figure 4. We utilize the same image context (I) and visual stimuli
(B) for different subjects to blend. It demonstrates the robustness
of MindCustomer and individual variability in generation.

LMSE =
1

N

N∑
i=1

(si − Si)
2, (5)

S is the feature of the ground truth mapper, and s is the
predicted feature of the extractor Mσ. Note that the IBTs,
shallow embedders, deep embedders, and semantic extractor
are all MLP-based models. Especially, the IBT has only 3
layers of MLPs, which are light for efficient training.

Diffusion Fine-tuning with Embedding Optimization We
observed that when directly fusing brain modality with im-
age modality, the semantic gap between the modalities often
results in inferior generation outcomes. Although alignment
within the CLIP latent space has been attempted, the implicit
and complex representations of brain signals still exhibit
semantic discrepancies with the image space. Therefore,
we propose to apply the IBT Gη to transform the image
context I into brain voxel, aiming to eliminate inter-modal
inconsistencies and reduce the semantic bias. We feed the
transferred image context Bp into brain embedder E to ob-
tain the embeddings ep and fine-tune the versatile diffusion
to reconstruct the image. It not only allows the diffusion
model to maintain the image context represented as the
transferred brain signal but also benefits the later natural
fusion of brain context. The fine-tuning of the diffusion
model with the parameters θ can be formulated as:

Limg
t (θ) = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t, ep)∥22

]
, (6)

where t = 1, . . . , T and xt is Gaussian corrupted image of
input I . ϵθ(xt, t) is a UNets-based denoising function.
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Figure 5. Visualization of the generation process through gradual interpolation between image and brain contexts.
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Figure 6. Multi-context blending results with only different text contexts. MindCustomer robustly creates multi-context images that are
content-consistent and naturally integrated.

Next, we empirically observe that when different contexts
are fused often results in semantic conflict. Partial context
may lost or disturbed. To better preserve the multi-semantics
and enhance seamless fusion, we lightly optimize the brain
context embedding eb for approximating the semantics of
the image context. The optimization only modifies the brain
context embedding while we freeze the parameters of the
diffusion model. We run this optimization for a few steps
and this process can be formulated as:

Lbrain
t (eb) = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t, eb)∥22

]
, (7)

Consequently, we can adapt the semantics between the im-
age and brain contexts in latent space that enables the diffu-
sion model to better understand the fusion of both embed-
dings to generate natural images.

Embeddings Integration Finally, we apply the fine-tuned

diffusion for blended image outcomes. As for the generation
only guided by dual contexts, we directly concatenate the
embeddings of ep and eb for the VD to obtain the results. As
for triplet contexts, the concatenated dimension of embed-
dings will exceed the model capacity. Thus, we utilize linear
interpolation of ep and optimized eb with a hyperparameter
α ∈ [0, 1] to build the combined embedding ec:

ec = (1− α) · ep + α · eb. (8)

We employ the combined embedding ec to the image flow
of the fine-tuned versatile diffusion, and meanwhile feed the
text context embedding to the text flow, to jointly generate
the final multi-context blended image. Note that the α can
be smoothly adjusted for asymptotical generation results
balancing the image and brain contexts.

New-subject Few-shot Generation Collecting brain sig-
nals in real-world scenarios is time-consuming and costly,
often resulting in limited data for new subjects. To address
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Figure 7. Baseline comparison. Baseline-1: We replace the brain context with its visual stimuli to construct a multi-image blending.
Baseline-2: We reconstruct the brain context to the image and merge all the image contexts for blending. Benefiting from the designed
cross-modal fusion pipeline, MindCustomer naturally preserves and fuses different contexts to generate more visually pleasing results.

Table 1. Quantitative comparisons. We compare our method with
the baselines on context similarity and generation quality.

Baseline-1 Baseline-2 Ours

CLIP-I↑ 0.559 0.526 0.563
DINOv2↑ 0.630 0.612 0.654

CLIP-IQA↑ 0.734 0.830 0.892

this, MindCustomer constructs a cross-subject model that
integrates brain signals from different subjects into a unified
framework, enabling better generalization to new subjects.
Specifically, we first use limited new-subject data to train a
new IBT and fine-tune the brain embedding network. Lever-
aging the Reset-Tuning operation (Wang et al., 2024), we
train only the shallow embedder for the new subject while
freezing the deep shared embedder, without IBT augmen-
tation. The remaining generation steps are the same as the
above processes. Empirical results show that using less than
20% of the full dataset is sufficient for few-shot learning to
generate natural outputs.

4. Experiments
Evaluation Metrics To assess the semantic preservation of
the generated image, we use the common metrics on image
similarity, DINOv2 (Oquab et al., 2024) and CLIP-I (Rad-
ford et al., 2021c). We further apply CLIP-IQA (Wang et al.,
2023) to test the generation quality, a measure evaluating
both the visual appeal and the conceptual perception of an
image. Moreover, we adopt metrics of visual fMRI recon-
struction to assess brain decoding performance. Following
previous works (Wang et al., 2024; Xia et al., 2024), Pix-
Corr, SSIM (Wang et al., 2004), AlexNet(2), and AlexNet(5)

(Krizhevsky et al., 2012) are low-level property evaluation,
and metrics of Inception (Szegedy et al., 2016) and CLIP
(Radford et al., 2021a) are high-level property evaluation.
The implementation is described in Appendix-B.

4.1. Qualitative Results

We use MindCustomer for multi-context image generation
by integrating semantic information from brain signals. Im-
age contexts from the NSD COCO dataset are paired with
brain contexts and optionally enhanced with concise textual
prompts to control spatial, environmental, and stylistic at-
tributes. We present the customization results across all the
subjects of NSD in Figure 3, showcasing the generation of
high-quality and contextually faithful images. More results
are presented in Appendix-D.1.

Since the visual stimuli in test data are shared across all four
subjects, we conduct experiments under identical conditions
using the same contexts for each subject. This setup allows
us to evaluate the model’s robustness and showcase the
individual variability among different subjects. The results
are shown in Figure 4.

In the embedding interpolation of MindCustomer, we apply
a hyperparameter α to control the ratio of transferred image
embedding and brain instruction embedding. In Figure 5,
we visualize the generation process via smoothly changing
α. It can be observed that when the alpha value is around
0.5, our method achieves a natural fusion of two embed-
dings while preserving their respective feature information.
Empirical experiments indicate that α range between 0.4
and 0.7 generally yields optimal blending results.

Moreover, we present more visual results in Figure 6 with
only different text contexts. As we can see, MindCus-
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Figure 8. Few-shot generation to the new human subject. We sepa-
rately utilize 10%, 20%, and 40% of the subject’s complete dataset
to perform generation fine-tuning. MindCustomer generalizes well
to the new subject, indicating its real-world applicability.

tomer robustly creates multi-context images that are content-
consistent and naturally integrated.

4.2. Comparisons and Analysis

Baseline Unlike traditional methods (Ruiz et al., 2023; Ding
et al., 2024; Kumari et al., 2023), relying on masks or mul-
tiple images of the same object, MindCustomer enables
mask-free, single-image generation, which makes direct
comparisons challenging. To address this, we design two
baselines using versatile diffusion (VD) (Xu et al., 2023),
capable of multi-context blending. Baseline-1: We replace
the brain context with its image-based visual stimuli and
input all the contexts for VD to generate results. Baseline-2:
We use an SOTA fMRI-to-image model (MindEye (Scotti
et al., 2023)) to reconstruct the brain context as another
image context, and merge all the contexts for VD blending.
Note that as baselines, VD requires no extra fine-tuning
or optimization and relies on the original large text-image
pre-training capability for direct inference.

Here we present both qualitative and quantitative compar-
isons of generated images in Figure 7 and Table 1. Due to
the brain signal interpretation error caused by fMRI recon-
struction and some semantic overlap between distinct image
contexts resulting from the blending diffusion model, these
baselines show some semantic deviation and loss. While

Table 2. User study on multi-context image generation. Users are
asked to score the generated images from 1 to 3 (3 is the best).

Method Quality↑ Consistency↑
Baseline 1.868 1.675

Ours 2.618 1.868

Table 3. Quantitative results on Subj1 few-shot generation.

10% 20% 40%

CLIP-I↑ 0.523 0.541 0.561
DINOv2↑ 0.642 0.650 0.652

CLIP-IQA↑ 0.944 0.947 0.952

Average ↑ 0.703 0.713 0.722

in MindCustomer, we designed VD fine-tuning based on
image context to learn the image semantics, and then we
freeze the fine-tuned VD model, and lightly optimize brain
contexts with the target of the image context. This helps
mitigate semantic conflicts between different contexts. Dur-
ing the above process, we further utilize the IBT to transfer
image context to brain-embedding space to reduce the gap
between modalities. Thus, the designed brain-blended cross-
modal fusion pipeline allows the blending to better preserve
each modality’s semantics and produce more accurate, high-
quality results. The quantitative metrics also demonstrate
that MindCustomer significantly outperforms the baselines
in terms of context similarity and image generation quality.

User Study We also conduct the human evaluation study,
surveying our method and baseline. As the overall perfor-
mance of Baseline-1 surpasses that of Baseline-2, we choose
Baseline-1 as the baseline for this analysis. In the study,
each generated image is scored according to the generation
quality and the alignment to the contexts. In total, we col-
lect 220 answers, whose results are summarized in Table 2.
Participants exhibit a notable preference for our method in
both perspectives. More details of the study protocols are
described in Appendix-C.

4.3. Few-shot Generation on New Subject

In real-world scenarios, collecting brain signals from human
subjects is highly costly, leading to data scarcity. There-
fore, the ability of a designed algorithm to generalize to
new individuals is crucial. To demonstrate MindCustomer’s
practical generalization capability, we pre-trained the model
from Subj2, 5, and 7 and performed few-shot learning on
Subj1. We fine-tuned our model using 10%, 20%, and 40%
of the total data from Subj1, respectively.

As shown in Figure 8, MindCustomer achieved natural and
competitive generation results even with limited data for
fine-tuning. As the data point increased, the model consis-
tently generated higher-quality images. The quantitative
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“Cyberpunk Style”

Image Brain (1) (2) (3) (4) MindCustomer（5）

Figure 9. Qualitative ablation. (1) wo [IBT & fine-tuning & optimization]: Direct generation by concatenating CLIP-encoded image and
Brain embedder-encoded contexts leads to semantic inconsistency and context overlap. (2) wo IBT: Adding fine-tuning and optimization
fails to resolve these issues. (3) wo [fine-tuning & optimization]: Using IBT for alignment before concatenation allows partial
explicit representation of semantic information. (4) wo optimization: Adding fine-tuning significantly improves results, enabling better
representation of different semantic contexts. (5) wo ClipCap: Without the introduced ClipCap for semantic enhancement in Brain
Representation Pretraining may result in low details of context representation in blending results. MindCustomer: Incorporating all
techniques, we can produce higher-quality image generation with detailed context fidelity.

Table 4. Quantitative ablation. We compare MindCustomer with
the ablations on context similarity and generation quality. (1) wo
[IBT & fine-tuning & optimization]; (2) wo IBT; (3) wo [fine-
tuning & optimization]; (4) wo optimization; (5) wo ClipCap.

(1) (2) (3) (4) (5) MindCustomer

CLIP-I↑ 0.518 0.515 0.529 0.548 0.560 0.563
DINOv2↑ 0.594 0.595 0.614 0.635 0.637 0.654

CLIP-IQA↑ 0.842 0.838 0.893 0.893 0.875 0.892

results of few-shot learning under different data volumes
are presented in Table 3, indicating the promising general-
ization ability of MindCustomer. More few-shot generation
results are illustrated in Appendix-D.1.

4.4. Ablation

We conduct experiments to validate the components of
MindCustomer. First, we design IBT to achieve cross-modal
alignment by mapping semantic representations from dif-
ferent modalities into a shared implicit space, forming the
basis for fusion. Second, we fine-tune the diffusion model
on image contexts to preserve semantics and optimize brain
contexts for high-level semantic adaptation, generating co-
herent images. Figure 9 illustrates the key components of
our design, and Table 4 provides quantitative ablation re-
sults. Besides, we visualize the brain reconstruction ability
of MindCustomer in Figure 10. Compared with the SOTA
method (Xia et al., 2024), MindCustomer also demonstrates
superiority and robustness across diverse subjects. The quan-
titative results on brain reconstruction and more detailed
ablation experiments are conducted in Appendix-D.

Subj1 Subj2 Subj5 Subj7Visual Stimuli

UMBRAE MindCustomerVisual Stimuli UMBRAE MindCustomerVisual Stimuli

Figure 10. Above: Comparison of brain decoding on Subj1. Below:
Brain decoding across subjects by MindCustomer.

5. Conclusion
In this paper, we propose a novel brain-blended image
customization method, MindCustomer. We introduce the
IBT to enhance the data augmentation for cross-subject
brain embedding. Further, the proposed fusion information
pipeline, along with IBT, effectively adapts distinct seman-
tics across multiple contexts. Thus, MindCustomer can
generate context-preserved and naturally coherent blend-
ing results. Besides, it can also generalize to new human
subjects via few-shot learning, demonstrating the potential
for real-world applications. In all, we hope MindCustomer
serves as an exploration of brain context in the image cus-
tomization task and gives inspiration for follow-up research,
promoting the development of brain-computer interaction.
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guage models, AI-driven personalized generation is gar-
nering increasing attention and application. At the same
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Customer represents the first exploration of multi-context
image generation guided by brain semantics. We aim for
it to serve as foundational research, offering potential in-
sights and inspiration for future research in related fields
as well as practical applications. We believe personalized
brain-controlled generation will lead to groundbreaking de-
velopments in areas such as artistic creation, game design,
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Appendix
*Note that all the appendix figures are at the end of the text.

A. More Related Works
Apart from the image customization, blending and composition introduced in the main paper, here we describe other related
works on editing task. Image editing applies more precise control to the source image, allowing users to slightly modify
image contents according to external instructions. Many works perform image manipulation based on GAN models (Abdal
et al., 2021; Härkönen et al., 2020; Lang et al., 2021; Patashnik et al., 2021; Shen et al., 2020; Shen & Zhou, 2021) to edit
images with contents and styles. Recently, the success of the diffusion model (Rombach et al., 2022; Xu et al., 2023) and
large-scale pre-trained CLIP model (Radford et al., 2021b) also improves the development of editing (Avrahami et al., 2022;
Hertz et al., 2023b; Ramesh et al., 2022b). Several methods integrate text conditions into the denoising process of latent
diffusion to alter the resulting images (Brooks et al., 2023; Kawar et al., 2023). Liu et al. (Liu et al., 2023a) trained diffusion
models to generate images that approximate the text condition, enabling edits to the source images. Hertz et al. (Hertz et al.,
2023a) enhanced cross-attention mechanisms to more accurately fuse the source image with the condition, allowing for
more precise modifications. Concurrently, research on image inpainting (Yang et al., 2023; Wasserman et al., 2024) has
focused on utilizing manually added masks to incorporate text conditions, facilitating targeted image editing. In all, image
editing focuses on more specific modifications to the reference image while customization and blending mainly deal with
context integration.

B. Implementation
We utilize the training set of NSD data for the Brain Representation Pre-training, and use the test set as the brain context for
generation. We train the subject-wise IBT with a learning rate of 5e−5 for 200 epochs and then adopt AdamW schedule for
our Brain Embedder with a learning rate of 3e−3 for 600 epochs. MindCustomer is implemented with the publicly available
versatile diffusion. The model supports multi-modal generation with multiple flows in the latent space (of size 4 x 64 x 64),
accompanied by VAE encoders and decoders for image and text. We fine-tune the VD for 200 epochs with a learning rate of
5e−8 utilizing Adam schedule. Then we optimize the brain embedding for 100 epochs with a learning rate of 1e−5. We
present the intuitively detailed setting in Table 5. The time of one image generation is about 6 minutes on a single Tesla
A100 GPU. The efficiency enables us to perform single-image real-time creation for MindCustomer.

Table 5. Training parameters of MindCustomer

Optimizer Learning rate Weight decay Training epochs Batch size LR scheduler

IBT AdamW 5e−5 1e−2 200 50 OneCycleLR
Brain Representation AdamW 3e−3 1e−2 600 50 OneCycleLR

VD Finetune Adam 5e−8 0 200 1 None
Embedding Opt Adam 1e−5 0 100 1 None

C. Details of User Study
We randomly selected 110 pairs of comparison images, including ours and the baseline, and divided them into 11 groups. A
total of 22 participants were involved, and to minimize bias caused by individual preferences, we randomly assigned every
two participants to the same group, ensuring that each image received ratings from two different individuals. By comparing
ours with the baseline, participants are required to score each generated image based on the quality and consistency from
1 to 3, with 3 being better. Ultimately, we collected 220 answers for the 110 randomly selected image pairs from the 22
participants. The results broadly reflect the participants’ consistent preference for our approach.
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Table 6. Pearson correlation coefficient and significance analysis on brain simulation of IBT with the ground truth. The range of Pearson
and significance coefficient α is [-1, 1] and [0, 1].

Subj1 Subj2 Subj5 Subj7 Avg

Pearson 0.389 0.423 0.502 0.389 0.426
α 1− 5.73× 10−8 1− 1.170× 10−12 1− 7.370× 10−19 1− 9.250× 10−4 0.999

D. More Experiments
D.1. Additional Results on Multi-Context Generation

In Figure 11, we provide more results of multi-context generation across different subjects. And in Figure 12, we illustrate
more few-shot generation results on Subj1.

D.2. Different Seeds for Generation

To demonstrate the robustness of MindCustomer, we present generation results across different random seeds in Figure 13.
Our method is capable of producing images of consistently high quality, with minor variations. We also recommend that
users experiment with multiple random seeds to obtain results that best suit their preferences.

D.3. Discussion on Embedding Integration

In this paper, we employ two different methods of embedding fusion: interpolation and concatenation. In the triplet contexts
generation, we apply linear interpolation to the image and brain contexts to prevent exceeding the dimensional capacity of
the VD model. In the case of dual contexts, we directly concatenate the two. To demonstrate the impact of these two fusion
methods on generation quality, we input identical image and brain contexts with both fusion strategies in the absence of text
context. In Figure 14, both methods successfully merge the information in a natural manner. However, we observe that,
compared to concatenation, linear interpolation slightly alters the original semantic representations of the two modalities
in the latent space, resulting in generated images with somewhat reduced fidelity and details. We speculate that this issue
may be addressed through more sophisticated mechanisms, such as cross-attention. Additionally, optimizing this process
with the currently limited brain data presents a significant challenge. Nevertheless, our method shows that even with simple
fusion techniques, satisfactory results can be achieved. As research on neural data continues to evolve, we anticipate the
development of more effective mechanisms to generate even higher-quality images.

D.4. Text Context for Enhanced Generation

In Figure 15, we compare the impact of including versus excluding the text context on generation results using the same
image and brain contexts. It is evident that the text context provides additional semantic information or more precise
interaction control between the image and brain contexts. This empowers MindCustomer to better meet user needs, enabling
more accurate, richer, and higher-quality image generation.

D.5. Effectiveness of Image-Brain-Translator

We conduct experiments to demonstrate the effectiveness of IBT in simulating pseudo-brain signals. First, we simulate brain
signals for visual stimulus images from the test set and quantitatively assess them against ground truths (GT). Following
standard practices in neuroscience for brain signal simulation, we measure the similarity between the simulated and GT
brain signals using the Pearson correlation coefficient. In Table 6, the average Pearson correlation coefficient across the four
subjects is 0.426 (ranging from -1 to 1). According to relevant literature (Chee, 2015; Evans, 1995), it indicates a moderate
positive correlation, meanwhile with a high confidence level of 99%. The results show that IBT can approximate the brain
signal waves corresponding to the input images, providing a foundational prior for natural cross-modal fusion. Additionally,
we visualize the brain signal simulations for four human subjects in Figure 16, further validating the method’s effectiveness.
Moreover, we transfer the brain signals derived from the images and directly fed them in the diffusion model to explicitly
showcase the semantic accuracy of the simulated brain signals in Figure 17.
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Table 7. Ablations on brain decoding. We compare our method with the open-sourced SOTA methods. For a fair comparison, all methods
are trained on four subjects from NSD with only one generative model.

Method PixCorr↑ SSIM↑ AlexNet(2)↑ AlexNet(5)↑ Inception↑ CLIP↑
MindBridge (Wang et al., 2024) .151 .263 87.7% 95.5% 92.4% 94.7%

UMBRAE (Xia et al., 2024) .283 .328 93.9% 96.7% 91.7% 93.5%
Ours .157 .289 88.3% 95.5% 92.1% 94.5%

wo IBT .152 .272 87.9% 95.2% 91.5% 94.1%

D.6. Additional Results on Brain Decoding

Table 7 shows the reconstruction performance, which highlights the impact of our Brain Representation Pre-training,
where reconstructing brain signals with IBT improves cross-subject embeddings and achieves competitive results with
SOTA methods (Wang et al., 2024; Xia et al., 2024). In Figure 18 & 19 & 20, we conduct more brain reconstruction
comparisons with another SOTA MindBridge (Wang et al., 2024) and illustrations to demonstrate the effectiveness of our
Brain Representation Pre-training. Moreover, we further illustrate the few-shot reconstruction capability of MindCustomer,
as shown in Figure 20, where our method can also precisely reconstruct the visual stimuli under limited data.

E. Discussion and Limitation
MindCustomer utilizes visual brain signals as one of the key information sources in multi-context image generation. Here
we discuss our approach with traditional methods (Alaluf et al., 2023; Cao et al., 2023; Chen et al., 2024b; Gal et al., 2023b;
Tewel et al., 2023b) that rely solely on image and text modalities in three aspects. (1) Data: Brain signal acquisition directly
and implicitly reflects the user’s intentions, without the need for additional modality conversion. In contrast, traditional
methods often require users to explicitly convey their ideas through images or text, which may introduce deviations
and complexities. (2) Technology: Traditional methods can directly embed prompts with the assistance of large-scale
pre-trained models, such as CLIP and diffusion models. In contrast, brain-controlled image customization presents more
challenges, requiring precise embedding of brain signals and bridging the implicit gaps between modalities to achieve
naturally blended results. (3) Result: Since text and images can provide fine-grained semantic information, image generation
(e.g. customization, editing, manipulation) based on these modalities can achieve more detailed alignment. However, current
brain signals primarily record coarse information due to noise or disturbance, making them more suitable for global context
blending but potentially insufficient for handling detailed features or specific instructions.

Besides, prior works that focus on better decoding brain signals themselves (Scotti et al., 2023; 2024; Wang et al., 2024;
Xia et al., 2024) and utilize neural data for image stylization (Chen et al., 2024a) or painting (Yu et al., 2025) have made
tremendous progress in brain analysis and applications. Different from these works, MindCustomer further researches
how to fuse brain signals with other contexts in image and text modalities to mask-freely create naturally blended images.
Our experimental results have proven that MindCustomer is capable of effectively extracting brain signal semantics, and
more importantly, it has demonstrated excellent performance in the personalized blending task. Therefore, we believe
that previous works and MindCustomer can mutually inspire and complement each other, sparking more interesting and
meaningful research and applications in the field of brain-computer interaction.

The limitation of this work primarily lies in current brain signal acquisition and analysis, which requires further development.
This includes improving the quality (e.g. Signal to Noise Ratio) and diversity (e.g. type, content) of neural data, and
expanding data samples, as these factors currently constrain our precision and richness of personalized generation. Further,
we believe that the collection of brain imagery data specifically for brain-controlled generation tasks may inject new
momentum into the development of this field. In the future, we will also explore and acquire these data. As brain-machine
interface technology continues to evolve, brain-controlled creative research will become increasingly sophisticated. We
hope MindCustomer provides a critical foundation for advancing this emerging area of research.
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“turn nose appearance”

Image Brain MindCustomer Image Brain MindCustomer

“with sunglasses” “riding”

“outside” “made of”

“Eiffel Tower in the behind”

Figure 11. More brain-blended multi-context generation results.
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BrainImage 10% 20% 40%

“Eiffel Tower in the behind”

“evening sky with grand nebula”

Figure 12. More few-shot generation results on Subj1. We only use 10%, 20%, and 40% of the subject’s complete training data for
few-shot learning.
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Figure 13. Different seeds for generation.
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Figure 14. Comparison on the methods of brain and image embedding integration: interpolation and concatenation.
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BrainImage Dual Context Gen Triplet Context Gen

“play”

“made of”

“in the snow”

“bus in the 
background”

Figure 15. Generation results w / wo text contexts. It demonstrates that the text context provides additional semantic information or more
precise control over the image and brain contexts.
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Figure 16. Visualization of the predicted brain voxel by IBT with its ground truth (GT). It illustrates voxels in brain signals with their
corresponding feature values. Here we randomly choose three examples for each subject, and report the difference error between the
prediction and the ground truth. We simply compute the absolute difference in value for each voxel, and then take the average of the
absolute differences across all voxels, symbolized as Avg Diff. Note that the range of Avg Diff is [0, 2], lower is better. It is observed that
the subject-wise IBT can effectively simulate brain signals with low differences to GT. It facilitates the transferring accuracy of image
features to brain modality in our method.
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IBT Subj1Visual Stimuli IBT Subj2 IBT Subj5 IBT Subj7

Avg Diff: 0.2 Avg Diff: 0.3 Avg Diff: 0.15 Avg Diff: 0.1

Avg Diff: 0.15 Avg Diff: 0.2 Avg Diff: 0.2 Avg Diff: 0.25

Avg Diff: 0.15 Avg Diff: 0.15 Avg Diff: 0.3 Avg Diff: 0.2

Avg Diff: 0.3 Avg Diff: 0.2 Avg Diff: 0.1 Avg Diff: 0.2

Avg Diff: 0.3 Avg Diff: 0.2 Avg Diff: 0.2 Avg Diff: 0.3

Figure 17. We utilize the predicted brain voxels of IBT for direct reconstruction to explicitly demonstrate the effectiveness of accurate
semantics. Same with Figure 16, here we also report the Avg Diff of brain voxels between the prediction and the ground truth.
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Visual Stimuli
MindBridge

Subj1 Subj2 Subj5 Subj7 Subj1 Subj2 Subj5 Subj7
MindCustomer

Figure 18. Comparison on the cross-subject brain reconstruction. We compare our method with the SOTA MindBridge (Wang et al., 2024)
to show its competitive performance of MindCustomer on the brain decoding task.

Subj1 Subj2 Subj5 Subj7
MindCustomer

Visual Stimuli

Figure 19. More cross-subject brain reconstruction results of MindCustomer.
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Visual Stimuli 10% 20% 40% 100%

Figure 20. Few-shot brain reconstruction results on Subj1. Compared to full training (100%), our method can also roughly decode the
brain signals with limited data. No more then 40%, MindCustomer is already capable of precise reconstruction.
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