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Abstract. We propose an image-conditioned diffusion model to esti-
mate high angular resolution diffusion weighted imaging (DWI) from
a low angular resolution acquisition. Our model, which we call QID2,
takes as input a set of low angular resolution DWI data and uses this
information to estimate the DWI data associated with a target gradi-
ent direction. We leverage a U-Net architecture with cross-attention to
preserve the positional information of the reference images, further guid-
ing the target image generation. We train and evaluate QID2 on single-
shell DWI samples curated from the Human Connectome Project (HCP)
dataset. Specifically, we sub-sample the HCP gradient directions to pro-
duce low angular resolution DWI data and train QID2 to reconstruct
the missing high angular resolution samples. We compare QID2 with
two state-of-the-art GAN models. Our results demonstrate that QID2

not only achieves higher-quality generated images, but it consistently
outperforms state-of-the-art baseline methods in downstream tensor es-
timation across multiple metrics and in generalizing to downsampling
scenario during testing. Taken together, this study highlights the poten-
tial of diffusion models, and QID2 in particular, for q-space up-sampling,
thus offering a promising toolkit for clinical and research applications.

Keywords: Diffusion Weighted Imaging · Diffusion Models · Deep Learn-
ing · Q-Space Up-sampling · Tensor Reconstruction

1 Introduction

Diffusion weighted imaging (DWI) is a non-invasive technique that capitalizes
on the directional diffusivity of water to probe the tissue microstructure of the
brain [4]. A typical DWI acquisition applies multiple magnetic gradients, with
the field strength controlled by the b-value and the gradient directions given
by the b-vectors. Mathematically, these gradients can be represented by a set of
coordinates on the sphere, where the magnitude and direction of each coordinate
is related to the corresponding b-value and b-vector, respectively. The domain
of all such coordinates is called the q-space [28]. In general, a denser sampling of
directions in the q-space, also known as the angular resolution, leads to higher
quality DWI. For example, higher angular resolution acquisitions can improve
⋆ Equal Contribution
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the tensor estimation [12] and facilitates the progression from single-tensor mod-
els [1] to constrained spherical deconvolution models [23] that estimate a fiber
orientation distribution function (fODF), which captures more complex fiber
configurations. However, increasing the angular resolution also prolongs the ac-
quisition time, which can be impractical in clinical settings. Not only are longer
acquisitions more expensive, but they are also difficult for some patients to tol-
erate, which in turn increases the risk of artifacts due to subject motion [10].
Given these challenges, it is necessary to explore computational methods that
can achieve high-quality DWI with a minimal number of initial scan directions.

Several studies have applied generative deep learning to DWI data. For ex-
ample, the work of [29] uses a spherical U-Net to directly estimate the ODF
using DWI acquired with only 60 gradient directions. More recently, generative
adversarial networks (GANs) have also been used to estimate DWI volumes.
Specifically, the work of [14] generates DWI for a user-specified gradient direc-
tion based on a combination of T1 and T2 images. Similarly, the authors of [22]
use the Pix2Pix model introduced by [7] to synthesize DWI with 6 gradient direc-
tions from data originally captured with only 3 gradient directions [22]. Further
variants of the GAN model, such as CycleGAN and DC2Anet, have been applied
to simulate a high b-value image from a low b-value one [15]. Beyond GANs,
autoencoders have also been used to adjust the apparent b-value [8]. While these
works are seminal contributions to the field, none of them consider the clinically
relevant problem of up-sampling a low angular resolution DWI acquisition.

Diffusion models have emerged as powerful tool for image generation. At a
high level, they work by successively adding Gaussian noise to the input and
then learning to reverse this noising process [6]. Diffusion models have been em-
ployed in several medical imaging tasks, including image translation between
modalities [11], super-resolution and artifact removal [26], registration [9], and
segmentation [13]. We will leverage diffusion models to up-sample the DWI gra-
dient directions, which to our knowledge, has not been explored in prior work.

In this paper, we propose an image-conditioned diffusion model, which we
call QID2, that can estimate high angular resolution DWI data from a low angu-
lar resolution acquisition1. One highlight is that QID2 automatically identifies
several closest available gradient directions and uses the corresponding images
as prior knowledge for generating images from any target direction not included
in the initial scan. This target image generation process, carried out using a
U-Net based structure conditioned on this prior information, can be seen as an
extrapolation based on the identified directions and images. By focusing on the
most relevant data, QID2 solicits more targeted prior information and is more
computationally efficient. We train and evaluate QID2 on DWI curated from the
Human Connectome Project (HCP) dataset [24]. Our model demonstrates su-
perior performance over GAN-based approaches, particularly when the available
low angular resolution images are sparsely distributed across the sphere.

1 Source code for our model is available online at https://github.com/jueqiw/
Diffusion-Model-for-Up-sampling-Diffusion-Weighted-Imaging

https://github.com/jueqiw/Diffusion-Model-for-Up-sampling-Diffusion-Weighted-Imaging
https://github.com/jueqiw/Diffusion-Model-for-Up-sampling-Diffusion-Weighted-Imaging
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Xbg

Fig. 1. QID2 framework for up-sampling the angular resolution of DWI. The gray
sphere represents the q-space. Red marks are the directions in the low angular resolution
scan, and blue marks are the target gradient directions for image generation.

2 Methods

Fig. 1 provides an overview of our QID2 framework. For any user-specified tar-
get gradient bg, our model will find and take as input the R closest reference
b-vectors b̄ = (b1, . . . ,bR) available in the low angular resolution scan and the
corresponding DWI slices X̄ = (X1, . . . ,XR). QID2 will then output the es-
timated target image Xbg

. We can obtain a high angular resolution DWI by
sweeping the target gradient directions across the sphere and aggregating the
generated images with the original low angular resolution scan.

2.1 A Diffusion Model for Q-space Up-sampling of DWI

Inspired by recently-introduced image-conditioned Denoising Diffusion Proba-
bilistic Models (DDPMs) [25], we design a position-aware diffusion model that
leverages “neighboring" DWI data to estimate the image associated with a target
gradient direction. Similar to traditional diffusion models [6], QID2 is comprised
of both a forward noising process and a reverse denoising process.

In the forward process, Gaussian noises are added successively at each time
step t ∈ {0, 1, . . . , T} to the generated image. This corruption process is
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s=1 αs. Therefore, at step t, the generated image
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+
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1− αt ϵ, ϵ ∼ N (0, I). (3)
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While the forward noising process operates solely on X
(0)
bg

, the reference DWI
slices {X1, . . . ,XR} will be used to guide the subsequent denoising process.
Rather than constructing a separate network to encode the reference images,
which greatly increases the number of parameters and may introduce informa-
tion loss, we opt to simply concatenate these slices with the target image being
generated (i.e., denoised) at each time t as X̄

(t)
bg

= X
(t)
bg

⊕R
i=1 Xbi

.

Starting from the fully corrupted image X̄
(T )
bg

, the reverse process aims to

gradually recover the original image X̄
(0)
bg

. We denote this process as pθ(·), where
θ denotes the learnable parameters of the underlying neural network. By restrict-
ing the denoising to be Gaussian, the process pθ(·) can be written:

pθ
(
X̄

(t−1)
bg

| X̄(t)
bg

; {bg, b̄}
)
= N

(
X̄

(t−1)
bg

; µθ

(
X̄

(t)
bg

, {bg, b̄}
)
, σ2

t I

)
, (4)

where the variances σ2
t are hyperparameters of the model. We note that the

denoising process relies on the references DWI data {X1, . . . ,XR} and the cor-
responding gradient directions b̄ = {b1, . . . ,bR}, and the target direction bg.
This combination of inputs allows QID2 to be position-aware.

To reverse the forward noising process, we train QID2 by minimizing the
KL-divergence between pθ(·) and q(·) at each time step t. As shown in [6] this
loss minimization is equivalent to matching the mean functions, i.e.,

L = Et,q

[∥∥∥∥ 1√
αt

(
X̄

(t)
bg

− βt√
1− ᾱt

ϵ

)
− µθ

(
X̄

(t)
bg
, {bg, b̄}

)∥∥∥∥2]. (5)

The mean function µθ(·) is generated with a U-Net architecture [17] with
the cross-attention mechanism based on the concatenated gradient vectors b =[
bg b1 · · · bR

]
. Specifically, the encoding block is computed as follows:

H1 = FF(H0) +H0, H2 = Attn(H1,b) +H1,

where FF(·) denotes a feed-forward network, H0 denotes the block input, and

Attn(H1,b) = Softmax

(
(WQH1)(WKb)⊤√

dk

)
WV b,

with WQ,WK ,WV being the learned weights and dk being the dimension of b.
The decoding block follows a similar expression but includes skip connections
from the corresponding encoding block. This design ensures that image features
are effectively attended to and integrated with positional information.

Once QID2 is trained, we can generate DWI for arbitrary gradient directions
by sampling from the standard normal distribution and applying the reverse
process in Eq. (4) recursively with the corresponding reference images, namely:

X̄
(t−1)
bg

= µθ

(
X̄

(t)
bg
, {bg, b̄}

)
+ σt ϵ, ϵ ∼ N (0, I). (6)
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2.2 Baseline Comparison Methods

We compare QID2 with two state-of-the-art GAN models. The first model is a
conditional GAN (cGAN) for image generation proposed by [7]. We use the
same cross-attention U-Net architecture for the generator as used in QID2. We
use a PatchGAN discriminator [7] and inject the gradient direction informa-
tion {bg, b̄} into the discriminator with cross-attention mechanism. We train
the generator to minimize the GAN objective plus a regularization term that
encourages voxel-level similarity of the generated and ground-truth images:

G∗ = argmin
G

max
D

λG

[
EX [logD(X,b)] + EX̃

[
log(1−D(X̃,b))

]]
+ λV L1(G)

where X = [Xbg
,X1, . . . ,XR] is the concatenated real sample with Xbg

drawn
from the (high resolution) training data and X̃ = [G(X1:R,b),X1, . . . ,XR] rep-
resents the synthesized data of generated DWI and real reference slices. Finally,
λG and λV balance the adversarial and similarity L1 losses, respectively.

The second model is the Q-space conditional GAN (qGAN) proposed by [14].
Unlike QID2 and the cGAN baseline, qGAN incorporates the gradient direc-
tions and reference DWI data using a feature-wise linear modulation scheme.
The qGAN discriminator is also a conditional U-Net and combines the gradient
directions and reference DWI data via an inner product. Although the inputs to
the original qGAN model [14] are a single structural image (e.g., B0, T1, T2)
and a user-defined target gradient, we provide the same set of closest directions
and corresponding images as input to ensure a fair comparison with QID2.

Finally, as a sanity check, we compare the deep learning models to a simple
interpolation scheme (Interp), in which we express the target gradient direc-
tion as a linear combination of the reference gradients and then use the linear
coefficients to interpolate between the reference DWI slices to obtain the target.

2.3 Implementation Details

For QID2, we use a linear noise schedule of 1000 time steps. The QID2 U-Net
employs [128, 128, 256] channels across three levels with one residual block per
level. We use the Adam optimizer with a learning rate of 2.5×10−5, β1 = 0.5 and
β2 = 0.999. These hyperparameters are selected based on a relevant study [16]
and not fine-tuned. We use the same U-Net architecture for the cGAN generator
with the same set of hyperparameters. We fix λG = 1 and λV = 100 in the
loss function weights for both GAN methods. The discriminator is updated once
for every two updates of the generator during training [14]. For both qGAN
and cGAN, we use a learning rate of 5 × 10−5 with the Adam optimizer. We
evaluate all models with both R = 3 and R = 6 reference DWI data. To avoid
memory issues, we train the deep learning models to generate 2D axial slices,
which we stack into 3D DWI volumes. Each 2D image has a size of (145, 174).
During training, we independently normalize each slice from its original intensity
to a range of [0, 1]. Data augmentation is employed to enhance model training.
Specifically, we use rotations by random angles in [−15◦, 15◦] and random spatial
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Fig. 2. Qualitative results that compare the ground-truth DWI acquisition to images
generated by QID2 and the baselines methods for R = 3 and R = 6. Zoomed-in area
highlights details that are preserved by our method and do not appear in the baselines.

scaling factors in [0.9, 1.1]. The final output is rescaled voxel-wise back to the
original intensity and masked by the subject Xbg

image.

3 Experimental Results

Dataset Curation and Preprocessing: We curate a total of 720 subjects
from the HCP S1200 release [24]. The remaining HCP subjects are excluded due
to an inconsistent number of gradient directions at b = 1000 s/mm2. The DWI
is acquired on a Siemens 3T Connectome scanner at 3 shells (b = 1000, 2000 and
3000 s/mm2). Each shell has exactly 90 gradient directions sampled uniformly
on the sphere. The voxel size is 1.25×1.25×1.25 mm3. The data is preprocessed
with distortion/motion removal and registration to the 1.25 mm structural space.

Clinical diffusion imaging typically uses lower b-values with approximately
30 gradient directions [4]. To better accommodate this situation, we focus our
evaluation on the b = 1000 s/mm2 shell. From here, we construct low angular
resolution DWI data by subsampling the 90 gradient directions to 30 evenly
spaced ones that preserve the uniformity of the sphere [2]. The data for the
remaining 60 directions serve as the targets for model training and evaluation.

Each volume is broken down into 145 axial slices. The deep learning models
are trained to predict the image slices for each target direction. Based on this
scheme, we create 60 samples for each slice. Each sample consists of one 2D
slice for the target gradient direction and R reference slices corresponding to
the closest low resolution gradient directions. The distance between gradients is
defined by the geodesic distance on the sphere: d(b1,b2) = arccos(b1b

⊤
2 ) [3].

Finally, we use 576 HCP subjects for training, 72 for validation, and 30 for
testing. The original DWI scans are treated as the gold standard for evaluation.
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Table 1. Quantitative evaluation of the generated image quality (left) and FA estima-
tion quality (right) of QID2, the GAN models, and interpolation for different R. The
best performance of each metric is highlighted in bold.

Methods Image FID ↓ Image SSIM ↑ FA Error ↓ FA Map SSIM ↑

QID2 (R=3) 14.07 0.895 ± 0.045 0.027 ± 0.003 0.866 ± 0.043
qGAN(R=3) 24.85 0.893 ± 0.046 0.037± 0.002 0.792± 0.052
cGAN(R=3) 29.93 0.913 ± 0.039 0.099± 0.014 0.643± 0.159
Interp(R=3) 8.96 0.917 ± 0.038 0.057± 0.026 0.750± 0.110

QID2 (R=6) 16.29 0.900 ± 0.045 0.027 ± 0.003 0.863 ± 0.042
qGAN(R=6) 71.44 0.905 ± 0.042 0.040± 0.004 0.801± 0.045
cGAN(R=6) 36.33 0.915 ± 0.037 0.031± 0.004 0.851± 0.044
Interp(R=6) 21.46 0.933 ± 0.044 0.038± 0.006 0.815± 0.052

Comparing Reconstructed Image Quality: Fig. 2 presents qualitative re-
sults that compare the ground-truth DWIs to those generated by QID2 and the
baseline methods. The GAN models and Interp fail to preserve high-frequency
details in the synthesized DWI data, while QID2 succeeds in capturing the finer
details more accurately, as highlighted in the zoomed-in blue boxes.

Table 1 (left) reports the Fréchet inception distance (FID) [5] and the struc-
tural similarity index measure (SSIM) [27] of the synthesized DWI data. Specifi-
cally, FID measures the realism and diversity of images by comparing the feature
distributions between the generated and ground truth ones, while SSIM quan-
tifies the similarity based on luminance, contrast, and structural information.
We observe that QID2 achieves nearly a two-fold improvement (i.e., decrease)
in FID than the GAN models for both R = 3 and R = 6, which indicates that
the DWI data generated by diffusion possess higher quality and greater diver-
sity. Although the GAN models achieves a slightly higher SSIM than QID2, the
difference is not statistically significant using a two-sample (paired) t-test. Inter-
estingly, the simple interpolation technique achieves better FID than QID2 when
R = 3. This is likely because the interpolation tracks the closest reference image,
which is more akin to the original DWI distribution. However, the improved FID
does not generalize to better tensor estimation, as seen in the next section.

Impact on Tensor Estimation: We estimate the fractional anisotropy (FA)
using the standard single-tensor model [1]. Fig. 3 shows the fiber direction and
FA value maps among the ground-truth, QID2 and baseline methods for R = 3
and R = 6. Similarly to the finding in the reconstructed image, we observe that
the qGAN and cGAN methods capture the general FA trends but fail to capture
the high frequency features. Conversely, the diffusion-generated image by QID2

more closely resembles the ground-truth data by capturing finer details more
accurately. This shows that the visual differences in the reconstructed images
in Fig. 2 are important when estimating tensors. The Interp method fails to
generate realistic FA maps for R = 3. Empirically, we also observe quality issues
with Interp for R = 6 even though they are less evident in the figure.
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Fig. 3. Qualitative comparison between the ground truth and estimated images. Row
1/3: Colored fiber orientation maps with minimal visually detectable differences among
the images. Zoomed-out regions show the estimated tensors in the orange box area.
Row 2/4: FA value maps, where brighter colors indicate higher FA values. Significant
differences compared to the ground truth are zoomed-out with orange boxes.

Table 1 (right) reports the mean absolute error and SSIM, as compared to
the FA computed from the ground-truth high angular resolution DWI. As seen,
QID2 consistently outperforms the GAN-based model and the Interp method
for both R = 3 and R = 6. Specifically for R = 3, the error in FA is roughly
three times lower for QID2 than for the GANs. QID2 also achieves significantly
higher SSIM values. These trends persist when the number of reference images
increases to R = 6, i.e., even when more prior information is provided. However,
the relative performance gain over the GANs shrink. Additionally, although the
image-based metrics are better for the interpolation-generated (Interp) images,
QID2 outperforms this baseline by a large margin when estimating FA. Taken
together, these results suggest that QID2 is particularly effective in scenarios
where the images are scarce and distributed sparsely, i.e., smaller values of R.

Fewer Available Initial Directions: As a final evaluation, we apply the
models trained when assuming 30 initial gradient directions to testing data for
which fewer gradient directions are available. Table 2 compares the performance
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Table 2. Quantitative evaluation of the generated image quality (left) and FA estima-
tion quality (right) of each model when only 20 and 10 initial gradient directions are
available at test time. The best performance of each metric is highlighted in bold.

Methods Image FID ↓ Image SSIM ↑ FA Error ↓ FA Map SSIM ↑

20
in

it
ia

ld
ir

ec
ti

on
s QID2(R=3) 15.28 0.883±0.048 0.029±0.003 0.851±0.048

qGAN(R=3) 24.75 0.886±0.04 0.056±0.003 0.624±0.067
cGAN(R=3) 29.75 0.904±0.042 0.102±0.014 0.622±0.153
Interp(R=3) 9.91 0.934±0.042 0.083±0.033 0.676±0.123

QID2(R=6) 16.91 0.887±0.049 0.030±0.003 0.843±0.048
qGAN(R=6) 71.94 0.896±0.045 0.100±0.025 0.580±0.086
cGAN(R=6) 36.31 0.906±0.041 0.073±0.011 0.591±0.096
Interp(R=6) 19.86 0.911±0.041 0.050±0.011 0.757±0.074

10
in

it
ia

ld
ir

ec
ti

on
s QID2(R=3) 14.68 0.882±0.054 0.037±0.004 0.798±0.069

qGAN(R=3) 23.74 0.881±0.054 0.060±0.004 0.591±0.078
cGAN(R=3) 30.27 0.899±0.048 0.111±0.019 0.552±0.143
Interp(R=3) 10.65 0.914±0.051 0.112±0.033 0.613±0.127

QID2(R=6) 17.48 0.883±0.056 0.038±0.004 0.783±0.072
qGAN(R=6) 72.55 0.890±0.052 0.120±0.030 0.521±0.113
cGAN(R=6) 36.45 0.898±0.048 0.083±0.014 0.507±0.120
Interp(R=6) 15.73 0.880±0.057 0.091±0.023 0.643±0.110

of QID2 and the baseline methods for 20 (top) and 10 (bottom) uniformly-
distributed gradient directions at test time. Intuitively, we observe that the per-
formance of all models worsens as the number of initial gradient directions de-
creases. However, QID2 remains relatively stable from 20 to 10 directions, while
baseline models experience a sharper drop. Similar to Table 1, QID2 achieves
comparable (but not the best) performance in reconstructed image quality, but
it leads by a large margin with respect to tensor estimation. This result fur-
ther highlights the benefits of QID2, as even though QID2 is trained on a dense
gradient distribution, it can generalize effectively when applied to a sparser one.

4 Discussion and Future Work

Our proposed image-conditioned diffusion model, named QID2, is designed to
upsample a low angular resolution DWI acquisition to have a higher angular res-
olution. One key innovation is our use of the automatically identified neighboring
gradient directions in the low angular resolution DWI as prior information to
improve the generation of images associated with new directions. We also pro-
pose an efficient way to encode this prior information (images and corresponding
gradient directions) that ensures the effective attention and integration between
the two. Our real-world experiments demonstrate that QID2 outperforms two
baseline GAN models in both image quality and tensor estimation.
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However, our study is not without limitations. A notable one is that the mod-
els are trained and validated on a single dataset, namely HCP. While the HCP
dataset provides a large number of subjects and a state-of-the-art acquisition
protocol that can be used to create both low and high angular resolution DWI
for model training, it may not fully capture the types of imaging acquisitions
used in a clinical setting. To address this issue, future work should train and
test QID2 on additional datasets with different scanning protocols and patient
characteristics (e.g., brain lesions). An example that can be used in future work
is the CDMRI Quantitative Connectivity (QuantConn) challenge dataset [20].

A second limitation of our study is the focus on a single-shell reconstruction,
and correspondingly, a single tensor estimation. While the use of b = 1000 s/mm2

images in this work aligns with common clinical practices [4], it only enables
us to fit a basic tensor model and is insufficient for more sophisticated fODF
estimation and tractography analysis. Though it is not standard in many clinical
workflows due to the difficulties of acquisition, tractography is still a useful
tool to optimize surgical planning and postoperative assessment for tumors and
vascular malformations [4]. Our current QID2 can be adapted to multi-shell
image upsampling, but it would require training a separate model for each shell.
Future work will incorporate the b-value as an auxiliary input to QID2 to enhance
efficiency and streamline the upsampling process across multiple shells.

Despite these limitations, we believe that QID2 has promise in clinical appli-
cations. Here, clinical deployment would follow a two-step procedure. First, we
can pretrain QID2 on a large collection of publicly available datasets, from HCP
to the QuantConn challenge dataset to UK Biobank. Second, individual sites can
opt to fine-tune this base model using their in-house datasets in order to match
the specific MRI scanning protocols and patient conditions under evaluation. On
the user (clinician) end, a typical workflow using the deployed model includes
performing a standard low angular DWI scan, specifying target directions (not
necessarily uniform), followed by processing the data with QID2 to generate
high-angular images, and combining the outputs for downstream analysis. This
approach will help reduce scan times and mitigate patient discomfort, which are
both significant challenges in the clinical use of DWI [21].

5 Conclusion

We introduce an image-conditioned diffusion model (QID2) that can generate
high angular resolution DWI from low angular resolution data, effectively esti-
mating high-quality imaging with limited initial scan directions. Our approach
takes advantage of similar DWI data as prior information to predict the data
for any user-specified gradient direction. The results demonstrate that diffusion-
generated DWIs by QID2 achieve superior quality and significantly outperform
those generated by baseline models in downstream tensor modeling tasks. QID2

only shows a slight performance drop when applying to a sparser initial di-
rections distribution during testing, demonstrating its superior generalizability.
Although our method currently exhibits longer training times due to the denois-
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ing characteristics of DDPMs, this limitation could be mitigated by employing
more efficient sampling techniques [19] and one-shot training [18] in future work.
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