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Abstract

Most Graph Neural Networks are based on the principle of message-passing, where all
neighboring nodes exchange messages with each other simultaneously. We want to chal-
lenge this paradigm by introducing the Flood and Echo Net, a novel architecture that
aligns neural computation with the principles of distributed algorithms. In our method,
nodes sparsely activate upon receiving a message, leading to a wave-like activation pattern
that traverses the graph. Through these sparse but parallel activations, the Net becomes
more expressive than traditional MPNNs which are limited by the 1-WL test and also is
provably more efficient in terms of message complexity. Moreover, the mechanism’s ability
to generalize across graphs of varying sizes positions it as a practical architecture for the
task of algorithmic learning. We test the Flood and Echo Net on a variety of synthetic
tasks and find that the algorithmic alignment of the execution improves generalization to
larger graph sizes.
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1. Introduction

The message-passing paradigm is central to graph learning as many proposed architectures
are captured under the framework of Message Passing Neural Networks (MPNNs). In these
networks, all nodes simultaneously update their states based on their neighbors’ states
through message exchange. While flexible, this approach requires considerable computation,
as messages are sent over all edges in every round, even when many nodes may not actively
participate in the computation.

We challenge this paradigm by proposing the Flood and Echo Net (FE Net), a new
execution framework inspired by the flooding and echo pattern in distributed computing.
The computation is initiated by an origin node, which starts a phase that consists of flooding
and echo parts. During flooding, messages propagate away from the root, with nodes only
sending messages farther from the origin. In the echo part, the flow reverses, with nodes
sending messages closer to the origin. Crucially, the FE Net activates only a subset of nodes
at each step, resulting in a sparse yet parallel activation pattern. As a result, this approach
offers three key advantages over regular MPNNs: efficiency through message complexity,
expressivity, and generalization to larger graph sizes.

While standard MPNNs exchange O(m) messages with their one-hop neighborhood in
each round, a complete phase of a FE Net exchanges O(m) messages but can incorporate
information beyond the immediate local neighborhood. Moreover, by implicitly leveraging
distance information, the FE Net’s expressiveness goes beyond the 1-WL test. In the
context of algorithm learning, where GNNs should generalize across graph sizes, MPNNs
typically need to scale the number of rounds with graph size. In contrast, the FE Net’s
execution naturally involves the entire graph, potentially allowing better generalization to
larger graphs through direct alignment on the execution level. We hypothesize that this
algorithmic alignment makes the FE Net particularly suitable for algorithm learning and
provide evidence for this through empirical validation on a variety of algorithmic tasks.

© 2024 .



Extended Abstract Track
2. Flood and Echo Net

Algorithm 1 Flood and Echo Net

1. D ← distances(G, origin)
2. x← Encoder(x)
3. For t = 1 to phases:

(a) For d = 1 to max(D): flooding

i. x[d]← FConvt(d− 1→ d)

ii. x[d]← FCrossConvt(d→ d)

(b) For d = max(D) to 1: echo

i. x[d]← ECrossConvt(d→ d)

ii. x[d− 1]← EConvt(d→ d− 1)

(c) x← Update(x)

4. x← Decoder(x)

Figure 1: On the left, an algorithm describing the FE Net . First, the distances are pre-
computed to activate and update the proper nodes. The convolutions a→ b send messages
from nodes at distance a to nodes at distance b, with only the nodes at distance b updating
their state, indicated by x[b]. On the right, a single phase of a FE Net . At every update
step, only a subset of nodes is active. The origin is the top node of the graph, and the blue
arrows depict the information flow in the flooding, while the red arrows represent the echo
part. Note that a single phase activates all nodes in the graph, regardless of the graph size.

The fields of distributed computing and Graph Neural Networks are tightly connected
(Papp and Wattenhofer, 2022; Sato et al., 2019; Loukas, 2020). Moreover, it was shown that
aligning the architecture with the underlying learning objective (Xu et al., 2020; Dudzik
and Veličković, 2022) can be beneficial in terms of performance and sample complexity. his
raises the question of whether we could transfer other insights from distributed computing
to the field of graph learning. Note in MPNNs all nodes exchange messages with all their
neighbors in every round. We challenge this paradigm by taking inspiration from a design
pattern called flooding and echo (Chang, 1982). This pattern is a common building block in
distributed algorithms (Kuhn et al., 2007) to first broadcast (flooding) (Dalal and Metcalfe,
1978) messages throughout the entire graph and then gather back (echo) information from
all nodes.

In the Flood and Echo Net, the computation is initiated from an origin node. Then, T
phases, each consisting of a flooding and echo part, are executed. In Figure 1 we outline
the pseudo code for the FE Net . At the beginning, nodes are partitioned according to their
distance to the origin. Then, T phases are executed, in each phase a flooding followed by
an echo is performed. During the flooding part, messages propagate outwards, away from
the origin, by iterating through the distances in ascending order. We differentiate between
two types of edges in the convolutions. First, FConv sends messages from nodes at distance
d − 1 towards nodes at distance d. However, only the nodes at distance d update their
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state, indicated by the notation x[d]. Then, FCrossConv sends messages between nodes
that are at distance d. After the completion of the flooding part, the message flow reverses
and is echoed back towards the origin. Again, we iterate over the distances but now in
descending order. Similarly to above, we distinguish updates of nodes at the same distance
using ECrossConv and updating nodes at distance d−1, which receive messages from nodes
at distance d through EConv. Note, that only a subset of nodes, which are located at the
same distance, are activated simultaneously. Therefore, FE Net can make use of a sparse
but parallel activation pattern that propagates throughout the entire graph. Throughout
this work, we assume that the origin is given by the task at hand, however, we outline
different modes of operation, which we discuss in more detail in Appendix A, which also
contains a comparison to the computation of regular MPNNs. For a visual illustration of
an entire phase, we refer to Figure 1.

3. Theoretical Insights

Figure 2: Two regular graphs that
cannot be distinguished with stan-
dard MPNNs but the FE Net can.

First, we show that the FE Net not only matches the
expressiveness of MPNNs but also surpasses them in
terms of the 1-WL test.

Theorem 1 On connected graphs, the Flood and
Echo Net is at least as expressive as any MPNN . Fur-
thermore, it exchanges at most as many messages.

However, while MPNNs are limited by the 1-WL test, the FE Net is more expressive.
Although it also exchanges messages solely on the original graph topology, the mechanism
can implicitly leverage more information to distinguish nodes. This is achieved through the
alignment of message propagation with the distance to the origin in the graph.

Theorem 2 On connected graphs, Flood and Echo Net is strictly more expressive than
1-WL and, by extension, standard MPNNs.

In regular MPNNs, if any information needs to be propagated over a distance of D hops,
the total number of node updates is O(Dn) and exchanged messages is O(Dm). In a single
phase of a FE Net , which consists of one flooding followed by one echo part, each node is
activated a constant number of times, while there are also at most a constant number of
messages passed along each edge. Therefore, a single phase performs O(n) node updates and
exchanges O(m) messages. Crucially, if information needs to be exchanged over a distance
of D hops, this can be achieved with a constant number of phases, as each phase exchanges
information throughout the entire graph. Therefore, it is possible to exchange information
over a distance of D hops using only O(m) messages compared to O(Dm) messages used
by MPNNs. As a consequence, there exist tasks that can be solved much more efficiently
using the FE Net . Moreover, by Theorem 1, it also uses at most the same number of
messages. For a more detailed discussion on the runtime and message complexity, we refer
to Appendix C.

Lemma 3 There exist tasks that Flood Echo can solve using O(m) messages, whereas no
MPNN can solve them using less than O(nm) messages.

3



Extended Abstract Track
Table 1: Size generalization experiments on algorithmic tasks, all models were trained on
graphs of size 10 and tested on graphs of size 100. We compare the FE Net against a regular
GIN, which executes L rounds, PGN and RecGNN, which adapt the number of rounds. We
report both the node accuracy with n() and the graph accuracy with g().

Model Messages PrefixSum Distance Path Finding
n(10) n(100) g(100) n(10) n(100) g(100) n(10) n(100) g(100)

GIN O(Lm) 0.78 ± 0.01 0.53 ± 0.00 0.00 ± 0.00 0.97 ± 0.01 0.91 ± 0.01 0.04 ± 0.06 0.99 ± 0.01 0.70 ± 0.05 0.00 ± 0.00
PGN O(nm) 0.94 ± 0.12 0.52 ± 0.01 0.00 ± 0.00 0.99 ± 0.01 0.89 ± 0.01 0.01 ± 0.02 1.00 ± 0.00 0.77 ± 0.03 0.00 ± 0.00
RecGNN O(nm) 1.00 ± 0.00 0.93 ± 0.07 0.66 ± 0.31 1.00 ± 0.00 0.99 ± 0.02 0.93 ± 0.15 1.00 ± 0.00 0.95 ± 0.04 0.45 ± 0.33

Flood and Echo Net O(m) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

4. Empirical Results

One key challenge for generalization to larger graph sizes is how to adapt the architecture.
If it does not adjust at all, the information might be not present in the same receptive
field, but located farther away. Therefore, a common strategy is to adjust the number of
rounds, according to the increase of the problem size. However, the FE Net generalizes
to larger sizes in a different way compared to regular MPNNs. In fact, during a single
phase, messages already propagate throughout the entire graph and can, therefore, be
updated using information beyond the immediate neighborhood. Previous work has already
indicated that changes in the architecture or so-called “algorithmic alignment” (Engelmayer
et al., 2023; Dudzik and Veličković, 2022; Xu et al., 2020) can be beneficial for learning and
generalization. Based on these insights, we hypothesize that the FE Net can significantly
improve size generalization for algorithm learning. In the following, we empirically validate
our hypothesis on a variety of algorithmic tasks: PrefixSum, Distance and Path Finding.
For a detailed description we refer to the Appendix, all tasks can be defined on graphs of
various sizes and require information exchange beyond the immediate neighborhood. All
models are trained on small graphs of size 10 and tested on graphs of size 100. From the
results in Table 1, we observe that the baseline using a fixed number of layers already
struggles to fit the training data and deteriorates on larger instances. The other models
exhibit better generalization when considering the node accuracy. Further, we report graph
accuracy, measuring instances where all nodes are correctly labeled. This metric is crucial,
as a single incorrect node can cause the entire algorithm to fail. There, the overall model
performance of the baselines drop significantly compared to the FE Net.

5. Conclusion

We challenge the standard message-passing paradigm commonly used in graph learning and
introduce the Flood and Echo Net. Our approach aligns its execution with a design pattern
from distributed algorithms, propagating messages in a wave-like activation throughout the
entire graph. The sparse node activations of the FE Net result in greater expressiveness and
improved efficiency in terms of message complexity, facilitating message propagation across
the entire graph more effectively. A key advantage of the FE Net is its natural ability to
generalize to graphs of varying sizes, which proves beneficial in algorithm learning tasks.
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Appendix A. Flood and Echo Net Definition

First, recall the standard execution of a message-passing-based GNN. Whenever we refer
to an MPNN throughout this paper, we will refer to a GNN that operates on the original
graph topology and exchanges messages in the following way:

atv = AGGREGATEk({{xtu | u ∈ N(v)}})
xt+1
v = UPDATE(xtv, a

t
v)

Now, the mechanism for the Flood and Echo Net. Let r be the origin of the computation
phase and let d(v) denote the shortest path distance from v to r. Then, the update rule for
of the Flood and Echo Net looks is defined as follows, assume T phases are executed. At
the beginning of each phase t, the flooding is performed, where the nodes are sequentially
activated one after another depending on their distance towards the root. Each convolution
is either from nodes at distance d to d+ 1 (flood), from d+ 1 to d (echo) or between nodes
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at the same distance (floodcross, echocross). The term x[d] denotes that only nodes at
distance d update their state. For each distance d from 1 to the max distance in the graph
the following update is performed:

f t
v = AGGREGATEFlood({{xtu | d(u) = d− 1, u ∈ N(v)}})

xt+1
v [d] = UPDATEFlood(x

t
v, f

t
v)

fctv = AGGREGATEFloodCross({{xt+1
u | d(u) = d, u ∈ N(v)}})

xt+1
v [d] = UPDATEFloodCross(x

t+1
v , fctv)

And similarly for each distance d from max distance -1 to 0 the Echo phase

ectv = AGGREGATEEchoCross({{xtu | d(u) = d+ 1, u ∈ N(v)}})
xt+1
v [d] = UPDATEEchoCross(x

t
v, ec

t
v)

etv = AGGREGATEEcho({{xt+1
u | d(u) = d, u ∈ N(v)}})

xt+1
v [d] = UPDATEEcho(x

t+1
v , etv)

The phase is completed after another update for all nodes.

xt+1
v = UPDATE(xt+1

v )

Note that the node activations are done in a sparse way, therefore, for all updates that take
an empty neighborhood set as the second argument no update is performed and the state is
maintained. Furthermore, in practise we did not find a significant difference in performing
the last update step, which is why in the implementation we do not include it. In Figure
4 we outline the differences between the computation of an MPNN and a Flood and Echo
Net.

Modes of Operation The computation of the Flood and Echo Net starts from an origin
node. This allows for different usages of the proposed method. In the following, we outline
three different strategies, which we will refer to as different modes of operations: fixed,
random and all. Across all modes of operation, once the origin is chosen, the same flooding
and echo parts are executed to compute node embeddings. These are directly used for node
classification tasks; for graph classification, we sum up the final predicted class probabilities
of the individual nodes.

In the fixed mode, the origin is given or defined by the problem instance, i.e. by a
marked source node specific to the task. Alternatively, in the random mode, an origin is
chosen amongst all nodes uniformly at random. In the all mode, we execute the Flood
and Echo Net once for every node. In every run, we keep only the node embedding for the
chosen origin. This can be seen as a form of ego graph prediction Zhao et al. (2021) for
each node. Although computationally more expensive, it could also be used for efficient
inference on tasks where only a subset of nodes is of interest.
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Figure 3: The Flood and Echo Net propagates messages in a wave-like pattern throughout
the entire graph. Starting from an origin (orange), messages are sent toward the origin’s
neighbors and then continuously sent or “flooded” farther away outwards (blue). Afterward,
the flow reverses, and messages are “echoed” back (red) toward the origin. Throughout the
computation, only a small subset of nodes is active at any given time, passing messages
efficiently throughout the entire graph. Moreover, the mechanism naturally generalizes to
graphs of larger sizes.
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Figure 4: Visualization of the computation executed on the same graph for a regular MPNN
and a Flood and Echo Net from the perspective of the red node. The top row shows the
computation for regular MPNN both for 1 and 2 layers of message-passing. Note that
executing l layers takes into account the l-Hop neighborhood. On the bottom row, the
computation from the perspective of the red node in a Flood and Echo net is shown. Note
that the origin of the Flood and Echo Net is the orange node. The two middle figures
illustrate the updates in the flood and the echo part respectively. Furthermore, the figure
on the right shows the combined computation for an entire phase.
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Appendix B. Related Work

Originally proposed by Scarselli et al. (2008), Graph Neural Networks have seen a resurgence
with applications across multiple domains (Veličković et al., 2017; Kipf and Welling, 2016;
Neun et al., 2022). Notably, this line of research has gained theoretical insights through
its connection to message-passing models from distributed computing (Sato et al., 2019;
Loukas, 2020; Papp and Wattenhofer, 2022). This includes strengthening existing archi-
tectures to achieve maximum expressiveness (Xu et al., 2018; Sato et al., 2021) or going
beyond traditional models by changing the graph topology (Papp et al., 2021; Alon and
Yahav, 2021b). In this context, multiple architectures have been investigated to combat in-
formation bottlenecks in the graph (Alon and Yahav, 2021a), i.e. using graph transformers
(Rampasek et al., 2022). Note that our work is orthogonal to this, as we focus on message-
passing on the original graph topology. Moreover, we investigate how specific information
can be exchanged throughout the entire graph, which might be challenging even if no bot-
tleneck is present. Similarly, higher order propagation mechanisms (Zhang et al., 2023b;
Maron et al., 2020; Zhao et al., 2022) have been proposed to tackle this issue or gain more
expressiveness. While some of these approaches also incorporate distance information, this
usually comes at the cost of higher-order message-passing. Whereas our work emphasizes
a simple execution mechanism on the original graph topology. In recent work, even the
synchronous message-passing among all nodes has been questioned (Martinkus et al., 2023;
Faber and Wattenhofer, 2023), giving rise to alternative neural graph execution models.

How GNNs can generalize across graph sizes (Yehudai et al., 2021) and especially their
generalization capabilities for algorithmic tasks, attributed to their structurally aligned
computation (Xu et al., 2020) has been of much interest. This has led to investigations into
the proper alignment of parts of the architecture (Dudzik and Veličković, 2022; Engelmayer
et al., 2023; Dudzik et al., 2023). A central focus has been on how these networks learn to
solve algorithms (Veličković et al., 2022; Ibarz et al., 2022; Minder et al., 2023). Moreover,
the ability to extrapolate (Xu et al., 2021) and dynamically adjust the computation in order
to reason for longer when confronted with more challenging instances remains a key aspect
(Schwarzschild et al., 2021; Grötschla et al., 2022; Tang et al., 2020).

A variety of GNNs that do not follow the 1 hop neighborhood aggregation scheme
have been unified under the view of so-called Subgraph GNNs. The work of Zhang et al.
(2023a) analyses these models in terms of their expressiveness and gives the following general
definition:

Definition 4 A general subgraph GNN layer has the form

h
(l+1)
G (u, v) = σ(l+1)(op1(u, v,G, h

(l)
G ), · · · , opr(u, v,G, h

(l)
G )),

where σ(l+1) is an arbitrary (parameterized) continuous function, and each atomic operation
opi(u, v,G, h) can take any of the following expressions:

• Single-point: h(u, v), h(v, u), h(u, u), or h(v, v);

• Global:
∑

w∈VG
h(u,w) or

∑
w∈VG

h(w, v);

• Local:
∑

w∈NGu (v) h(u,w) or
∑

w∈NGv (u) h(w, v).

We assume that h(u, v) is always present in some opi.
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This allows us to capture a more general class of Graph Neural Networks, i.e., the work
of Zhang et al. (2023b), which can incorporate distance information into the aggregation
mechanism this way. Note that the proposed mechanism of the Flood and Echo Net differs
from that of this particular notion of subgraph GNNs. At each update step, only a subset
of nodes is active. This allows nodes to take into account nodes that are activated earlier,
which is not directly comparable to subgraph GNNs where the node updates still happen
simultaneously for the nodes in question.

Another important issue that GNNs often struggle with is the so-called phenomenon
of oversquashing (Alon and Yahav, 2021a). In simple terms, if too much information has
to be propagated through the graph using a few edges, a bottleneck occurs, squashing
the relevant information together, leading to information loss and subsequent problems for
learning. Recent work of (Giovanni et al., 2023) theoretically analyses the reasons leading
to the oversquashing phenomena and identifies the width and depth of the network but also
the graph topology as key contributors. Note that the proposed Flood and Echo Net is not
designed to tackle the problem of oversquashing. Rather, it tries to facilitate information
throughout the graph, assuming that there is no inherent (topological) bottleneck. It only
affects the aforementioned depth aspect of the network. However, as outlined by (Giovanni
et al., 2023), the depth is likely to have a marginal effect compared to the graph topology.

The works of Martinkus et al. (2023), namely AgentNet, and Faber and Wattenhofer
(2023), who proposes AMP (Asynchronous Message Passing), also draw inspiration from
the field of distributed computing. Although they share some aspects in their mechanisms,
their respective settings differ quite a bit. In AgentNet, there exist agents which traverse
the graph which gives them the possibility to solve problems on the graph in sublinear
time. In contrast, our approach tries to enable communication throughout the whole graph,
especially in the context of different graph sizes. On the other hand, AMP activates nodes
one at a time, benefiting from a similar computational sparsity as our method. However,
note that the Flood and Echo Net’s execution is more structured. On one side, this leads to
less flexible activation patterns, however, on the other hand, it translates naturally across
graph sizes. Whereas AMP has to additionally learn a termination criteria which must
generalize.

Appendix C. Runtime

C.1. Runtime Complexity

We denote n the number of nodes, m the number of edges and D the diameter of the graph.
Furthermore, let T be the number of phases for a Flood and Echo Net and L be the number
of layers for an MPNN.

A single round of regular message-passing exchanges O(m) messages. Therefore, exe-
cuting L such rounds results in O(L) steps and O(Lm) messages. Note that in order for
communication between any two nodes L has to be in the order of O(D).

A single phase of a Flood and Echo Net, consisting of one starting node, exchanges
O(m) messages and does so in O(D) steps. Therefore, executing T phases of a Flood and
Echo Net results in O(Tm) messages exchanged in O(TD) steps. Note, that it is sufficient
for T to be constant O(1) in order to communicate throughout the whole graph and does
not necessarily have to be scaled according to the size of the graph.
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The variations fixed and random perform their executions only for a specific single node.

Contrary, the all variation performs such an execution for each of its nodes individually.
Therefore, both the number of messages and the number of steps is increased by a factor
of n.

Appendix D. Proofs and Derivations

Proof of Theorem 1 It has been shown by the work of Xu et al. (2018) that the Graph
Isomorphism Network (GIN) achieves maximum expressiveness amongst MPNN. In the
following, we will show that a Flood and Echo Net can simulate the execution of a GIN on
connected graphs, therefore matching it in its expressive power. Let GI be a GIN using a
node state vector hkv of dimension di.

h(k)v = MLP(k)((1 + ϵ)h(k−1)
v +

∑
u∈N (v)

h(k−1)
u )

Let GF be a Flood and Echo Net using node state vector q
(k)
v of dimension df = 2 · di.

We partition the vector q
(k)
v = o

(k)
v || n(k)

v into two vectors of dimension di. Initially, we

assume that the encoder gives us o
(0)
v = h

(0)
v and nv = 0di the zero vector. We now define the

updates of flood, floodcross, echo, and echocross in a special way, that after the flood and

echo part o
(k)
v is equal to h

(k)
v and n

(k)
v is equal to

∑
u∈N (v) h

(k−1)
u . If this is ensured, the final

update in a flood and echo phase can update q
(k)
v = MLP(k)((1 + ϵ)o

(k−1)
v + n

(k−1)
v ) || 0di ,

which exactly mimics the GIN update. It is easy to verify that if we set the echo and flood

updates to add the full sum of the o
(k)
v part of the incoming messages (and similarly half of

the sum of the incoming messages during the cross updates) to n
(k−1)
v the desired property

is fulfilled. Moreover, there are at most four messages exchanged over each edge of the
graph. Specifically, four is for cross edges and two is for all other edges. Therefore, a total
of O(m) messages are exchanged, which is asymptotically the same number of messages
GIN exchanges in a single update step. This enables a single phase of the Flood and Echo
Net to mimic the execution of a single GIN round. Repeating this process the whole GIN
computation can be simulated by the Flood and Echo Net.

Therefore, given a GIN network GI of width di, we can construct a Flood and Echo Net
GF of width O(d) that can simulate one round of GI in a single flood and echo phase using
O(m) messages.

Proof of Theorem 2
To show that the Flood and Echo Net goes beyond 1-WL, it suffices to find two different

graphs that are equivalent under the 1-WL test but can be distinguished by a Flood and
Echo Net. Observe that a Flood and Echo Net can calculate its distance, in number of
hops, to the root for each node. See the graphs illustrated in Figure 2 for a comparison.
On the left is a cycle with 11 nodes, which have additional connections to the nodes that
are at distance two away. Similarly, the graph on the right has additional connections at
a distance of three. Both graphs are four regular and can, therefore, not be distinguished
using the 1-WL test. However, no matter where the starting node for Flood and Echo is
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placed, it can distinguish that there are nodes which have distance four to the starting root
in one graph, which is not the case in the other graph. Therefore, Flood and Echo Net can
distinguish the two graphs and is more expressive than the 1-WL test. Moreover, due to
the Theorem 1 it matches the expressiveness of the 1-WL test on connected graphs by a
reduction to the graph isomorphism network.

Proof of Lemma 3 Consider either one of the Distance, or Path Finding tasks presented
in Appendix F.1. All of them require information that is O(D) apart and must be exchanged
according to Corollary 5. It follows that all MPNNs must execute at least O(D) rounds
of message-passing to facilitate this information. Moreover, in these graphs, the graph
diameter can be O(n). As in each round, there are O(m) messages exchanged, MPNNs
must use at least O(nm) messages to solve these tasks. Furthermore, from Lemma ??, it
follows that Flood and Echo Net can solve the task in a single phase using O(m) messages.

Corollary 5 Let D be the diameter of the graph. In order to correctly solve the Distance
or Path-finding tasks, nodes require information that is O(D) hops away.

Proof of Lemma 3 For the Distance and Path Finding tasks we outline the proof as
follows: Assume for the sake of contradiction that this is not the case and only information
has to be exchanged, which is d′ = o(D) hops away to solve the task. Therefore, as
both tasks are node prediction tasks, the output of each node is defined by its d′-hop
neighborhood. For both tasks, we construct a star-like graph G, which consists of a center
node c and k paths of length n

k , which are connected to c for a constant k. For the Path
Finding task, let the center c be one marked node, and the end of path j be the other
marked node. Consider the nodes xi, i = 1, 2, ..., k which lie on the i-th path at distance
n
2k from c. Note that all xi are

n
2k away from both their end of the path and c the root.

Moreover, the diameter of the graph is 2n
k . This means that neither the end of the i-th

path nor the center c will ever be part of the d′hop neighborhood. Therefore, if we can only
consider the d′-hop neighborhood for each xi, they are all the same and as a consequence
will predict the same solution. However, xj lies on the path between the marked nodes while
the other xi’s do not. So they should have different solutions, a contradiction. A similar
argument holds for the Distance task. Again let c be the marked node in the graph and xi
for i = 1, 2, ..., k be the nodes which lie on the i-th path at distance n

2k for even i and n
2k +1

for odd i. Again, note that the d′-hop neighborhood of all xi is identical and therefore must
compute the same solution. However, the solution of even xi should be different from the
odd xi, a contradiction.

Appendix E. Algorithmic Tasks

We test performance on the different Flood and Echo Net modes: fixed, random and all. All
modes execute two phases, which results in O(m) messages exchanged per chosen origin.
Moreover, we choose the marked nodes in the tasks for the origin in the fixed mode. Note
that the all mode, requires n executions, one for each node, therefore, we only consider it
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Figure 5: Example graph from the PrefixSum task. The left graph represents the input
graph with a binary value associated with each node and the blue node being the starting
node. The right graph represents the ground truth solution, each node contains two values
the cumulative sum and the desired result which is the cumulative sum modulo 2.

for graphs of size at most one hundred. Nevertheless, the other modes can scale more easily
and we believe them to be better suited for the study of algorithm learning. We choose GIN
as a representative of a maximal expressive MPNN baseline which executes a fixed number
of rounds. More precisely, five rounds are executed as the model begins to destabilize for
more rounds. We also consider two recurrent baselines, which adapt the number of rounds
according to the graph size. Therefore, we consider RecGNN Grötschla et al. (2022) and
PGN (Veličković et al., 2020). We scale the number of rounds by 1.2n, where n denotes the
number of nodes in the graph.

Appendix F. Datasets

F.1. Algorithmic Datasets

For all the below tasks, we use train set, validation set, and test set sizes of 1024, 100,
and 1000, respectively. The sizes of the respective graphs in the train, validation, and test
sets are 10, 20, and 100. Performance on this test set demonstrates the model’s ability
to extrapolate to larger graph sizes. Note that many of the tasks only require the output
modulo 2. We reduce the problem to this specific setting so that all numbers involved in
the computation stay within the same range, as otherwise, the values have to be interpreted
almost in a symbolic way, which is very challenging for learning-based models.

PrefixSum Task(Grötschla et al., 2022) Each graph in this dataset is a path graph where
each node has a random binary label with one marked vertex at one end, which indicates
the starting point. The objective of this task is to predict whether the PrefixSum from the
marked node to the node in consideration is divisible by 2.

Distance Task (Grötschla et al., 2022) In this task every graph is a random graph of n
nodes with a source node being distinctly marked. The objective of this task is to predict
for each node whether its distance to the source node is divisible by 2.

Path Finding TaskGrötschla et al. (2022) In this task the dataset consists of random
trees of n nodes with two distinct vertices being marked separately. The objective of this
task is to predict for each node whether it belongs to the shortest path between the 2
marked nodes.
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Figure 6: Example graph from the distance task. The green node in the left graph (input
graph) represents the source node, and the remaining nodes are unmarked. On the right
graph (ground truth) all orange nodes are at an odd distance away from the source while
the blue nodes are at an even distance away from the source.

Figure 7: Example graph from the pathfinding task. The left graph represents the input
graph, where the blue nodes are the marked nodes. The right is the corresponding solution,
where the path between the marked nodes is highlighted in green.
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