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ABSTRACT

The rapid advancement of audio and multimodal large language models has un-
locked transformative speech understanding capabilities, yet evaluation frame-
works remain predominantly English-centric, leaving Southeast Asian (SEA) lan-
guages critically underrepresented. We introduce SEA-SPEECHBENCH, the first
large-scale multitask benchmark that evaluates speech understanding in 11 SEA
languages through more than 97,000 samples and 597 hours of curated audio data.
Our benchmark comprises 9 diverse tasks across 3 categories: speech processing
(automatic speech recognition, speech translation, spoken question answering),
paralinguistic analysis (emotion, gender, age, speaker recognition), and tempo-
ral understanding, a novel dimension featuring timestamped content queries and
temporal localization within extended audio sequences up to 3 minutes. We imple-
ment multilingual prompting in both native SEA languages and English to reflect
user interactions with audio-language models. Evaluation of leading open-source
and proprietary systems reveals marked performance gaps. Across all models,
performance remains underwhelming on temporal reasoning, emotion recogni-
tion, and speech translation, with most scores falling below 20. Prompting in
low-resource languages such as Burmese, Lao, Tamil, and Khmer lag behind En-
glish by over 5%. Our findings expose critical model limitations and underscore
the need for inclusive model development. We will release datasets and the evalu-
ation framework upon paper publication to facilitate reproducible benchmarking.

1 INTRODUCTION

Recent advancement in audio large language models (AudioLLMs) has led to transformative appli-
cations in voice assistants, transcription, accessibility technologies, and multimodal reasoning (Wu
et al., 2024; Gemini Team, 2025; Zhang et al., 2023). Despite these advances, research in speech
understanding has been disproportionately concentrated on high-resource languages, particularly
English and a small number of European or East Asian languages (Yang et al., 2021; Wang et al.,
2021; Bu et al., 2017). While recent benchmarking efforts (Sakshi et al., 2024; Wang et al., 2024;
Yang et al., 2024) have made significant strides in evaluating audio-language models across diverse
tasks and modalities, they universally overlook Southeast Asian (SEA) languages, leaving an entire
linguistic region underexplored despite representing over 650 million speakers worldwide.

Developing comprehensive benchmarks for SEA languages also presents unique technical chal-
lenges. The region’s speech landscape is characterized by extraordinary linguistic diversity, rich
tonal and phonetic structures, and substantial resource disparities across languages: factors that
create evaluation complexities absent from English-centric benchmarks. Many SEA languages op-
erate in low-resource contexts with limited annotated data and sparse digital representation, making
robust evaluation both methodologically challenging and critically important for equitable techno-
logical development. While recent initiatives, such as MERaLiON (MERaLiON Team, 2024) which
targets Singapore’s multilingual context, Typhoon2-Audio (Pipatanakul et al., 2024) which focuses
on Thai, and SeaLLMs-Audio (Liu et al., 2025) which extends capabilities to selected SEA lan-
guages, have begun to build general-purpose speech-language models for the SEA region, these
efforts remain limited in both scope and linguistic coverage. Crucially, they lack comprehensive
evaluation frameworks necessary to systematically assess capabilities across the full spectrum of
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Input SEA Language Audio Clip

Can you estimate the speaker's age from 
the audio sample? Select an age category.

ANSWER: I would estimate the speaker's 
age to be in the adult (20-59) range.

Can you tell the speaker's gender 
from the audio (Male or Female)?

ANSWER: The speaker is female.

What emotion best characterizes 
the speaker's tone and delivery? 

ANSWER: Based on the audio, 
the speaker's tone is neutral.

The two audio clips provided are 
separated by a beep. Are the speakers in 
the two audio clips the same?

ANSWER: Yes, the speakers are the 
same.

Please give me the start and end time (in seconds) of the 
following content in the audio clip: “英语为主要工作语言”.

ANSWER: The time range for the spoken content is 00:04 
to 00:07.

Please help me transcribe the speech, for the audio between 
00:04 and 00:07 seconds.

ANSWER: 英语为主要工作语言.

Please transcribe.

ANSWER:新加坡是一个多语言社会，英
语为主要工作语言，华语、马来语和泰米
尔语同为官方语言。

Please help me translate the speech into text in English.

ANSWER: Singapore is a multilingual society; English is the 
primary working language, and Mandarin Chinese, Malay, and 
Tamil are co-official languages.

What are the official languages in Singapore?

ANSWER: English, Malay, Mandarin 
Chinese, Tamil.

Automatic Speech Recognition Speech Translation Spoken Question Answering

Temporal Localization Timestamped Content Query

Age Recognition Gender Recognition Speaker RecognitionEmotion Recognition

Figure 1: Overview of SEA-SPEECHBENCH task suite.The suite covers nine tasks in three cate-
gories. Speech processing, Paralinguistic, and Temporal understanding.

Southeast Asian speech understanding tasks. Meanwhile, fragmented data collection efforts across
research groups have yielded heterogeneous SEA datasets (Lovenia & et al., 2024; Pham et al.,
2023; Bustamin et al., 2024; Magic Data Technology, 2025), but without unified frameworks for
task definitions, prompting, and normalization, standardized comparison remains difficult.

In this work, we introduce the first ever comprehensive benchmark for speech understanding in
Southeast Asian languages, designed to evaluate the capabilities of general-purpose speech-text
LLMs. We focus on the official languages of Southeast Asian countries, as summarized in Table 1,
to ensure broad regional coverage and practical relevance.

Table 1: Southeast Asian countries and their official language(s). Note: Several countries recognize
additional regional or minority languages at sub-national levels; this table lists state-level official
languages corresponding to the language codes used in our benchmark.

Country Official language(s) ISO 639-1 Code(s)
Singapore English, Malay, Mandarin Chinese, Tamil en, ms, zh, ta
Malaysia Malay (Bahasa Melayu) ms
Indonesia Indonesian (Bahasa Indonesia) id
Philippines Filipino / Tagalog, English tl, en
Thailand Thai th
Cambodia Khmer (Cambodian) km
Lao PDR Lao lo
Myanmar Burmese (Myanmar) my
Vietnam Vietnamese vi

Our benchmark encompasses 11 SEA languages with over 597 hours of audio data, curated from
existing sources and synthesized into new tasks and datasets through systematic processing. The
benchmark spans 9 diverse tasks across 3 broad categories: speech processing, paralinguistics,
and temporal understanding. We introduce two temporal understanding tasks that evaluate mod-
els’ capacity for temporal reasoning and localization within audio streams, addressing a previously
unexplored dimension in audio LLM evaluation. These tasks test models’ ability to navigate time-
dependent information and extract content from specific temporal locations. The complete task suite
is illustrated in Figure 1. To better reflect authentic usage scenarios, we evaluate each task using both
English and native language text prompts.

The main contributions of this paper are threefold. First, we present SEA-SPEECHBENCH, the
first ever large-scale multitask benchmark that systematically evaluates speech processing, paralin-
guistic analysis, and temporal understanding across Southeast Asian languages. It comprises a total
of 99 evaluation sets with more than 97,000 audio samples. Second, we introduce temporal under-
standing tasks that assess models’ ability to navigate and reason about time-dependent information
in extended audio sequences. Finally, we conduct a comprehensive evaluation of both open-source
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and proprietary models, offering critical insights into their strengths, limitations, and areas requiring
further research.

2 RELATED WORKS

Audio/Multimodal LLMs. Recent language models have evolved to process spoken audio
alongside text through diverse architectural approaches. Early work established key paradigms:
alignment-based models (Tang et al., 2024; Zhang et al., 2023; Wu et al., 2023) connect speech en-
coders to LLMs via lightweight adaptors, while unified decoders (Rubenstein et al., 2023; Nguyen
et al., 2024) share token spaces for joint speech-text modeling. Contemporary systems demon-
strate varied innovations: Phi-4 (Microsoft, 2025) employs mixture-of-LoRAs for multimodality,
Qwen2.5-Omni (Xu et al., 2025) advances temporal understanding through time-aligned position
encoding, and Voxtral (Voxtral Team, 2025) handles extended recordings up to 40 minutes without
separate ASR. Commercial systems like GPT-4o (OpenAI, 2024) and Gemini (Gemini Team, 2025)
provide end-to-end audio understanding within unified frameworks. For Southeast Asian languages,
MERaLiON (MERaLiON Team, 2024) targets Singapore’s multilingual context while SeaLLMs-
Audio (Liu et al., 2025) extends capabilities to five major SEA languages. However, these efforts
remain limited in scope, overlooking lower-resource languages and lacking comprehensive evalua-
tion frameworks for the region’s full linguistic diversity.
Audio/Multimodal LLM Benchmarks. Audio-language evaluation has evolved from basic
speech recognition to comprehensive multimodal assessment. While early efforts like SU-
PERB (Huang et al., 2024) aggregated speech tasks universally, newer benchmarks (Wang et al.,
2024; Yang et al., 2024) emphasize instruction-following across diverse audio types. Advanced
benchmarks (Sakshi et al., 2024; Kumar et al., 2025) introduce complex reasoning with extended
audio and multi-stream processing, while specialized evaluations target instruction-following (Gao
et al., 2025) and domain-specific tasks (Ma et al., 2025). However, existing benchmarks remain pre-
dominantly English-centric with minimal Southeast Asian language coverage, creating a significant
evaluation gap for low-resource linguistic contexts. This bias fundamentally limits understanding
of model performance across the global linguistic landscape where inclusive deployment is most
critically needed.

3 SEA-SPEECHBENCH: TASK, DATASET AND EVALUATION SUITE

3.1 TASK SUITE

SEA-SPEECHBENCH comprises 9 core tasks across 3 categories: speech processing, paralinguistic
analysis, and temporal understanding. All tasks require models to produce textual responses given
an audio input and a text query.

Speech processing covers three fundamental capabilities: Automatic Speech Recognition (ASR),
Speech Translation (ST) from Southeast Asian languages to English, and Spoken Question Answer-
ing (SQA) based on SEA speech inputs.

Paralinguistic analysis examines vocal cues beyond linguistic content. It includes four tasks: Emo-
tion Recognition (ER), which classifies emotional states; Gender Recognition (GR), which predicts
gender from voice characteristics; Age Recognition (AgeR), which categorizes speakers as teens
(10–19), adults (20–59), or seniors (60–100); and Speaker Recognition (SpkR), which determines
whether two clips belong to the same speaker.

Temporal understanding introduces two novel tasks designed for extended audio, motivated by “skip
to the content” and “what’s said at this time” use cases. Timestamped Content Query (TCQ) requires
extracting content within a specified interval [ts, te], testing temporal grounding and localized re-
trieval. Temporal Localization (TLoc) asks models to predict the exact time span ŷ = [t̂s, t̂e] where
queried information appears, evaluating boundary detection and alignment. Together, these tasks
formalize time-referenced retrieval and support fine-grained navigation across recordings.

The first two categories use short clips ( 30s) to align with current model input limits. As real-
world audio applications increasingly involve longer recordings where users require temporal nav-
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Table 2: Summary of curated datasets for SEA-SPEECHBENCH. For multilingual datasets, each
language-specific sub-dataset is counted separately in #Datasets.

Task Languages #Datasets #Samples Total L (h) Min L (s) Max L (s)

ASR en tl id km lo
ms my ta vi zh th

33 26,863 52.88 0.47 30.00

ST en tl id km lo
ms my vi th

9 7,189 26.46 3.06 30.00

SQA en zh id th vi 7 5,462 40.57 20.00 30.00

ER zh id th en ta 7 5,356 5.33 0.12 29.86

GR zh id th en ta
vi km my

16 13,599 22.02 0.12 29.90

AgeR zh th en ta vi 5 4,608 6.55 0.58 20.78

SpkR zh th en ta vi my 8 7,827 19.72 2.10 30.38

TCQ zh en th id vi 7 13,145 211.98 20.00 180.00

TLoc zh en th id vi 7 13,145 211.98 20.00 180.00

Total – 99 97,194 597.49 – –

igation, SEA-SPEECHBENCH introduces the temporal understanding tasks to assess model ability
to perform reasoning and localization over extended sequences of up to 3 minutes.

3.2 DATA CURATION

(a) Sample distribution by language.
Colors match Table 2 language tags.

(b) Sample distribution by task. (c) Audio duration distribution
overview.

Figure 2: SEA-SPEECHBENCH composition: (a) language distribution by audio hours, (b) task
distribution by sample count, and (c) audio duration distribution. (Upper: short audios ( 30s) with
fine-grained histogram. Lower: long audios (> 30s) aggregated into three duration ranges.)

Dataset Statistics: As shown in Table 2, SEA-SPEECHBENCH is a comprehensive benchmark
comprising of over 97,000 samples across 9 tasks and 11 Southeast Asian languages.

Traditional speech processing tasks span the broadest linguistic coverage with standard 30-second
clips, while our novel temporal understanding tasks focus on 5 key languages with extended record-
ings up to 180 seconds. Detailed information for each source dataset is provided in Appendix A.

Language and Task Distribution: Figure 2 reveals the linguistic and task composition of our
benchmark. The language distribution (Figure 2a) demonstrates substantial coverage across South-
east Asian languages, with English (18.9%), Thai (17.2%) and Chinese (16.8%) representing the
largest segments, followed by Vietnamese (11.0%) and Indonesian (10.5%). We also include low-
resource languages such as Khmer and Lao to ensure representation of the region’s full linguistic
spectrum. Figure 2b shows balanced coverage across evaluation task families.
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Audio Length Distribution: We cover both short and long audios to enable more comprehensive
and realistic evaluation. As shown in Figure 2c, our benchmark encompasses a broad distribution
of utterances spanning 0–30 seconds, with natural concentration around sentence-length segments
for traditional tasks. For temporal understanding evaluation, we systematically curate extended
recordings through strategic segmentation of long-form datasets, creating stratified duration bins of
30–60s, 60–120s, and 120–180s, totaling over 10,000 samples for long audios.

We applied uniform data processing across all datasets and synthesized additional evaluation sets for
tasks lacking suitable existing data. Processing and synthesis details are provided in Appendix B.

3.3 METRICS

Table 3 presents each task’s output format and primary evaluation metric. For ASR and TCQ, where
the expected outputs are text transcripts, we employ script-dependent error rates: Character Error
Rate (CER) for languages without explicit word boundaries (Chinese (zh), Thai (th), Khmer (km),
Lao (lo), and Burmese (my)), and Word Error Rate (WER) for the other space-delimited languages.
For ST, we use the BLEU score to measure n-gram overlap between generated translations and
reference texts. For TLoc, given a actual time span y = [ts, te] and a prediction ŷ = [t̂s, t̂e], define
the intersection I =

⇥
min(t̂e, te)�max(t̂s, ts)

⇤
+

with [x]+ = max(x, 0). Coverage and purity are
C = I

te�ts
and P = I

t̂e�t̂s
, and the metric is F1 = 2CP

C+P for C + P > 0 (otherwise F1 = 0).

For the other tasks, due to the inherent variability of free-form outputs, we employ an LLM-based
judge for consistent evaluation, adapted based on the methodology proposed in Wang et al. (2024).
For SQA, the judge assigns a 0–5 quality score; we report this as a percentage via a linear scaling
sSQA = 20 ⇥ score, score 2 Z[0,5]. For paralinguistic tasks (ER, GR, AgeR, SpkR), the judge
canonicalizes outputs and renders binary correctness, reported as accuracy in percent. Detailed
judging prompts are provided in the Appendix F.

To enable aggregation across heterogeneous metrics, we transform error rates WER/CER into
higher-is-better scores on the range [0, 1] via the monotone reciprocal mapping: sWER = 1

1+WER ,
sCER = 1

1+CER . This transformation preserves relative ordering while ensuring well-defined
scores even when excessive insertions yield WER/CER > 1. All remaining metrics in our
evaluation framework are inherently higher-is-better, requiring no additional transformation. For
presentation clarity, we report all metrics as percentages throughout our analysis. This aggregation
facilitates direct comparison of overall model performance across tasks. Nonetheless, aggregated
scores should be viewed as a high-level summary, and readers are encouraged to consult the indi-
vidual metrics for detailed performance insights.

Table 3: Outputs and metrics by task. For ASR and TCQ, error-based metrics (WER/CER) are
transformed into higher-is-better scores for comparability. † Judge-provided metrics: scores are
produced by a LLM serving as an external judge.

Task Expected Output Metric(s)
ASR Text transcript sWER/sCER

ST Text translation BLEU
SQA Short textual answer Scaled judge score sSQA

†

AgeR Age bin 2 {teens, adults, seniors}
Judge-based classification Acc †ER Emotion label

GR Gender label 2 {male, female}
SpkR Speaker identity match or mismatch

TCQ Text transcript at given time sWER/sCER

TLoc Time span [ts, te] F1 score

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETTING

Evaluated Models. We conduct extensive evaluation across several state-of-the-art open-source au-
dio/multimodal LLMs with multiple size variants ranging from 2B to 10B parameters: MERaLiON-
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2 (MERaLiON Team, 2024), SeaLLMs-audio (Liu et al., 2025), Phi-4-multimodal-instruct (Mi-
crosoft, 2025), Qwen2-Audio-Instruct (Chu et al., 2024), Qwen2.5-Omni (Xu et al., 2025), Gemma-
3n-it (Gemma Team, 2025), Voxtral (Voxtral Team, 2025), and Kimi-audio (KimiTeam, 2025). All
models are evaluated using their official released checkpoints with recommended inference con-
figurations to ensure fair comparison. To establish comprehensive performance baselines, we also
evaluate two leading commercial models: Gemini 2.0 Flash (Gemini Team, 2025) and GPT-4o (Ope-
nAI, 2024). For GPT-4o, we employ the specialized Whisper-based transcription API for ASR tasks
and the general audio understanding model for all other tasks, ensuring optimal performance.

Model as Judge. We leverage Gemma-3 27B Instruct (Gemma Team, 2025) as our evaluation judge
to assign quality scores and correctness decisions for model outputs, chosen for its demonstrated re-
liability in canonicalizing free-form text responses across Southeast Asian languages. This approach
ensures scalable and standardized evaluation across the diverse range of audio understanding tasks
in our benchmark.

4.2 MAIN RESULTS

Table 4 presents our results grouped by task families. To allow fair comparison across models with
different maximum input audio length capacities, this table focuses on clips shorter than 30 seconds.
Results on >30 s audios for temporal reasoning tasks are discussed separately in Section 4.3.1.
Comprehensive per-language results are provided in the Appendix G.

Proprietary vs. Open-Source Models. Proprietary models maintain a performance lead across
tasks. Gemini 2.5 Flash achieves the highest overall scores across task categories, reflecting ad-
vantages in computational scale and proprietary training resources. Among open-source models,
MERaLiON-2-10B emerges as the strongest performer, demonstrating speech processing capabili-
ties that closely match GPT-4o’s performance while achieving the second-best performance among
open-source models on paralinguistic evaluations.

Table 4: Model performance across tasks under English (ENG) and SEA prompts. Category-average
scores (%) are unweighted macro-averages over constituent tasks.

Speech Processing Temporal Understanding
Model Size ASR ST SQA Average TCQ (30s) TLoc (30s) Average

ENG SEA ENG SEA ENG SEA ENG SEA ENG SEA ENG SEA ENG SEA

Gemma-3n-it 2B 33.23 28.53 8.97 8.72 65.93 65.91 36.24 35.20 12.01 11.49 11.82 11.89 11.92 11.69
Qwen2.5-omni 3B 59.70 47.31 7.60 6.27 67.50 56.64 44.94 40.1 10.27 14.34 30.49 25.45 20.38 19.90
MERaLiON-2 3B 70.92 69.93 7.56 7.42 60.08 62.47 46.19 46.61 17.32 17.83 18.82 17.47 18.07 17.65
Voxtral 3B 41.32 40.82 19.98 18.15 74.33 76.03 45.21 45.00 17.42 17.68 17.85 16.47 17.63 17.08
Gemma-3n-it 4B 44.04 30.46 10.98 13.58 71.85 74.51 42.29 39.52 12.89 12.70 13.25 13.98 13.07 13.34
Phi-4 5.6B 30.37 22.76 3.04 0.32 58.59 53.49 30.67 25.52 4.61 7.31 12.97 13.51 8.79 10.41
SeaLLMs-Audio 7B 60.72 57.32 10.74 10.11 75.20 63.16 47.27 47.54 15.44 15.92 11.57 12.94 13.50 14.43
Qwen2-Audio-it 7B 51.28 45.45 4.54 3.20 59.20 60.41 38.34 36.35 15.23 15.64 33.30 31.41 24.27 23.52
Qwen2.5-omni 7B 44.68 47.96 7.91 8.06 61.50 66.03 38.03 40.69 15.41 14.30 35.74 33.08 25.57 23.69
Kimi-Audio 7B 17.09 18.88 3.36 7.71 63.85 62.13 28.10 29.57 6.67 8.42 14.49 12.96 10.58 10.69
MERaLiON-2 10B 78.74 78.74 17.75 19.52 76.03 80.43 57.51 59.56 16.34 17.26 22.22 22.05 19.28 19.66

Gemini 2.5 Flash - 87.72 87.72 16.86 18.89 84.51 87.02 63.03 64.54 29.33 28.79 11.66 13.59 20.49 21.19
GPT-4o - 81.79 81.79 21.24 21.39 74.08 75.25 59.04 59.48 16.50 15.56 26.47 25.43 21.49 20.49

(a) Results on speech processing tasks (ASR, ST, SQA) and temporal understanding tasks (30 s) (TCQ, TLoc).

Paralinguistic
Model Size AgeR ER GR SpkR Average

ENG SEA ENG SEA ENG SEA ENG SEA ENG SEA

Gemma-3n-it 2B 65.91 38.76 12.21 13.17 27.71 14.65 42.35 39.32 37.05 26.47
Qwen2.5-omni 3B 50.50 34.47 13.45 9.95 36.12 20.19 28.59 17.79 32.16 20.60
MERaLiON-2 3B 68.20 46.46 23.99 18.73 48.59 46.35 39.75 33.71 45.13 36.31
Voxtral 3B 75.71 52.61 10.62 5.35 27.65 9.89 42.90 36.09 39.22 25.99
Gemma-3n-it 4B 69.68 58.74 12.46 13.93 53.36 27.23 39.88 39.72 43.84 34.90
Phi-4 5.6B 43.45 41.98 20.87 9.20 44.21 32.60 23.27 27.48 32.95 27.82
SeaLLMs-Audio 7B 63.16 11.64 12.34 9.17 54.97 43.66 53.59 34.37 46.01 24.71
Qwen2-Audio-it 7B 20.21 23.13 24.47 19.36 92.25 66.31 49.85 36.56 46.70 36.34
Qwen2.5-omni 7B 20.15 23.13 16.33 10.45 50.46 34.58 14.63 11.44 25.39 19.90
Kimi-Audio 7B 47.91 48.42 36.86 42.55 90.97 79.23 54.16 48.16 57.48 54.59
MERaLiON-2 10B 66.24 57.31 18.73 20.34 59.93 46.28 53.25 46.12 49.54 42.51

Gemini 2.5 Flash – 76.00 79.40 19.50 16.79 92.50 90.06 71.13 71.75 64.78 64.50
GPT-4o – 76.60 61.20 17.00 19.50 46.13 31.63 10.50 8.38 37.56 30.18

(b) Results on paralinguistic tasks (AgeR, ER, GR, SpkR).
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Task Specialization. Within specific task categories, several models exhibit particular strengths:
Qwen2.5-omni-7B delivers the best open-source temporal localization performance, while Voxtral
and SeaLLMs-Audio excel in spoken question answering tasks. Kimi-Audio demonstrates robust
paralinguistic capabilities among open-source systems. Further details appear in Section 4.3.2.

Failure Cases Analysis. Temporal understanding tasks universally present the greatest challenge.
Even leading commercial models achieve only approximately 20% scoring on TCQ and TLoc, sub-
stantially lower than traditional speech processing performance. Details of this task will be discussed
separately in Section 4.3.1. Inadequate ST performance stems from two systematic failure modes.
First, task confusion: many models treat ST as ASR, returning source-language transcripts instead
of English translations. Second, target-language mismatch: outputs appear in non-English or code-
switched text despite explicit English requirements in prompts. These failures persist across our
standardized templates and bilingual prompting conditions, indicating weaknesses in cross-lingual
semantic grounding. For ER, we observe negative emotion clustering: anger, disgust, fear, and
sadness are frequently conflated, while low-arousal negative emotions are often collapsed to neu-
tral. This reflects the small inter-class separations and fuzzy boundaries within the negative emotion
family, compounded by limited training data for some languages, lead to elevated confusions. A
striking anomaly emerges in GPT-4o’s notably weak performance on speaker recognition (8.38-
10.50%), contrasting sharply with its competitive results across other paralinguistic tasks. This
underperformance will be discussed in Section 4.3.4.

Robustness to Multilingual Prompts. SEA language prompts consistently underperform relative
to English prompts. The SEA–ENG gap is largest for paralinguistic tasks, plausibly because strict
classification scoring penalizes parsing errors and refusals caused by weaker instruction-following
under SEA prompts, compounded by non-Latin script tokenization issues. Gemini 2.5 Flash and
Kimi-Audio prove most robust to prompt language variation, while SeaLLMs-Audio and Qwen2.5-
omni-3B are the least robust. By contrast, best performing ASR models Gemini 2.5 Flash and
MERaLiON-2-10B exhibit near-identical performance under both prompt languages, suggesting
ASR task is heavily trained and largely prompt-agnostic. We provide more detailed analysis of
cross-linguistic performance patterns and their underlying linguistic determinants in Section 4.3.3.

4.3 ANALYSIS AND INSIGHTS

4.3.1 TEMPORAL REASONING IN AUDIO LLMS

In this section, we provide detailed analysis of temporal understanding capabilities, stratifying per-
formance across four duration bins: [0,30), [30,60), [60,120), [120,180) seconds as shown in Ta-
ble 5a. Figure 5b presents coverage (C), purity (P ), and F1 of TLoc task across audio-duration
ranges, using MERaLiON-2-10B as a case study.

Table 5: Temporal understanding performance by duration.
(a) TCQ and TLoc results (%) by duration, averaged across SEA and English
prompts. A dash (–) indicates audio lengths for which the model is unable to perform
inference.

TCQ TLoc
Model Size 0–30 s 30–60 s 60–120 s 120–180 s 0–30 s 30–60 s 60–120 s 120–180 s
SeaLLMs-Audio 7B 12.26 - - - 15.67 - - -
Qwen2-Audio-it 7B 15.44 - - - 32.35 - - -
Qwen2.5-omni 3B 11.97 10.82 - - 27.97 17.02 - -
Gemma-3n-it 2B 11.75 11.82 - - 11.85 8.45 - -
Gemma-3n-it 4B 12.79 12.04 - - 13.61 8.95 - -
Phi-4 5.6B 5.66 6.99 6.02 - 13.24 6.58 3.76 -
MERaLiON-2 3B 17.57 9.73 8.57 - 18.14 9.77 4.92 -
Qwen2.5-omni 7B 14.84 13.08 10.42 - 34.41 20.54 11.02 -
Kimi-Audio 7B 7.44 5.59 4.12 2.40 13.88 8.53 3.31 3.00
Voxtral 3B 17.55 12.19 8.31 5.30 17.16 9.61 3.51 2.33
MERaLiON-2 10B 16.79 11.27 6.52 5.43 22.14 12.63 6.50 5.25
Gemini 2.5 Flash - 29.05 27.17 13.85 19.83 12.62 8.89 6.33 5.15
GPT-4o - 16.01 12.12 11.62 10.08 25.95 18.15 8.90 5.44

(b) TLoc metrics for
MERaLiON-2-10B.

/Coverage Purity (%)

F1 Score (%)

Metrics Analysis. First, we observe systematic over-coverage in temporal understanding across
models. In TCQ, models frequently produce content that extends beyond the queried time window.
In TLoc, as demonstrated in Figure 5b, coverage consistently exceeds purity across all durations,
which is a pattern we observe in most evaluated models. This asymmetry indicates weak temporal
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boundary localization and alignment, reflecting a recall-seeking strategy that favors longer spans,
and thus higher coverage, at the cost of precision. These motivate finer-grained temporal grounding,
boundary-aware training objectives, and decoding constraints that penalize span over-coverage.

Constraints on Audio Length. As shown in Table 5a, only a select subset of models sustains
inference availability across all duration bins. Among open models, Voxtral, Kimi-Audio, and
MERaLiON-2-10B demonstrate consistent availability, while commercial models handle the full
range. Meanwhile, both TCQ and TLoc exhibit performance degradation with increasing duration:
errors accumulate over longer contexts, manifesting as boundary drift and truncation, exposing cur-
rent architectural limits in context window, frame compression, and long-range memory.

These findings underscore that temporal grounding represents an unresolved challenge in current
audio-language architectures, with this deficiency becoming critically pronounced in long-form au-
dio contexts where existing architectures prove inadequate for practical deployment.

4.3.2 BEST-PERFORMING MODELS BY LANGUAGE AND TASK

To highlight model strengths across tasks and languages, we plot a winner map that marks, for
each task-language pair, the best-performing open-sourced model in Figure 3. Each cell shows
the top model and color-codes model identity. MERaLiON-2-10B establishes clear dominance in
speech processing tasks, consistently achieving top performance across multiple languages includ-
ing Indonesian, Vietnamese, and Filipino. Paralinguistic task leadership proves more distributed,
with Kimi-Audio and Qwen2-Audio-Instruct alternately excelling in different linguistic contexts.
Temporal understanding tasks reveal limited model coverage and inconsistent performance patterns,
suggests that model strengths are specialized rather than generalizable, with no single model demon-
strating comprehensive temporal reasoning proficiency.

Figure 3: Winner map for open-sourced models across tasks and languages. Each cell marks the top
model for a task–language pair; legend is ordered by overall win frequency.

4.3.3 EFFECT OF PROMPT LANGUAGE

We systematically investigate how prompt language choice: English versus native SEA language,
affects model performance across our benchmark.

Figure 4 demonstrates a cross-linguistic hierarchy in prompt sensitivity. We define a Prompt Ad-
vantage Score (PAS) to quantify this effect, with its detailed formulation provided in Appendix C.
Higher PAS values indicate stronger local language prompt advantage, while negative scores sug-
gest English prompt superiority for that particular language. Indonesian (id) emerges as the sole
language showing consistent local prompt advantage (+0.3), while English (en) and Chinese (zh)
exhibit near-neutral behavior (0.0, -0.2). The remaining SEA languages display increasing English
preference across two distinct clusters: moderate disadvantages for Filipino, Vietnamese, Malay,
Thai, and Myanmar (ranging from -1.7 to -5.3), and severe English advantages for Lao, Tamil,
and Khmer (-8.7 to -20.8). This variation correlates strongly with orthographic and computational
factors that influence instruction parsing effectiveness:

Script Complexity and Tokenization. Non-Latin scripts create fundamental computational bar-
riers. Languages like Thai, Lao, and Khmer lack clear word boundaries and employ complex
grapheme clusters that disrupt standard tokenization processes. Abugida systems such as Myanmar
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and Tamil further complicate parsing through character-level ambiguities. These structural chal-
lenges impair instruction processing, while English prompts leverage well-established tokenization
patterns that avoid such complications.

Training Data Quality and Orthographic Consistency. Corpus quality directly affects local
prompt performance. Indonesian succeeds due to abundant Latin-script training data with consis-
tent orthographic standards and imperative constructions, supporting reliable instruction following.
In contrast, lower-resource languages suffer from limited, inconsistent training corpora marked by
orthographic variations and dialectal diversity, making local prompts less reliable than standardized
English alternatives.

These results expose a critical deployment gap: when users issue prompts in Southeast Asian lan-
guages, which is the natural interaction mode for regional populations, performance degrades sub-
stantially compared to English-prompted evaluation. This asymmetry underscores the urgent need
for multilingual instruction-tuning that aligns with authentic user interaction patterns throughout
model development and evaluation.

Figure 4: Cross-linguistic prompt sensitivity
measured by Prompt Advantage Score (PAS).

Prompt: The two audio clips provided are separated by a beep. 
Are the speakers in the two audio clips the same?

I cannot determine if it's the same person 
speaking in both audio clips.

I cannot determine if the speakers in the 
two audio clips are the same.

Based on the audio clips, it is not possible 
to determine whether it's the same person 
speaking.
…… Refuse to answer 

(89.5%)

Based on the audio clips, it is 
likely that the same person is 
speaking.

Based on the audio, it appears 
that the voices in the first and the 
second clips are different.

……
Correctly answered 

(10.5%)

Model Output

Figure 5: Speaker recognition failure examples
in GPT-4o responses.

4.3.4 REFUSAL BEHAVIOR: CAUSES AND PREVALENCE

From Table 4, GPT-4o attains only 10.50% accuracy on speaker recognition. Inspecting the error
breakdown shows that these “errors” are refusals rather than wrong predictions. As illustrated in
Figure 5, GPT-4o refuses to answer 89.5% of the queries. When the model does answer for 10.5%
of the queries, it is consistently correct (non-refusal accuracy = 100%). This pattern emerges on our
self-constructed SpkR dataset, which is likely out-of-distribution for GPT-4o, suggesting limited
task generalization. Concurrently, the model may adopt a conservative, uncertainty-aware strategy
rather than making overconfident predictions. By contrast, Qwen2.5-Omni-7B also attains low SpkR
performance with frequent refusals, but its accepted responses contain nontrivial mistakes, pointing
to weaker calibration and label grounding rather than abstention alone.

5 CONCLUSION

We present SEA-SPEECHBENCH, the first comprehensive benchmark for evaluating speech under-
standing across 11 Southeast Asian languages, comprising 97,000+ samples across 9 tasks in speech
processing, paralinguistics, and temporal understanding. Our standardized framework enables re-
producible, cross-linguistic comparisons through unified normalization and bilingual prompting.

Evaluation of leading commercial and open-source systems exposes systematic weaknesses: per-
formance collapses on long audio (temporal brittleness), English prompts consistently outperform
native languages (linguistic inequity), and tasks such as temporal reasoning, emotion recognition,
and speech translation remain far below usability thresholds. These findings underscore persistent
scalability and generalization gaps. By surfacing these limitations, SEA-SPEECHBENCH seeks to
establishe a rigorous baseline for developing temporally robust, linguistically inclusive, and practi-
cally deployable speech technologies for Southeast Asia’s diverse communities.
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