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ABSTRACT

Quantizing weights, activations, and KV cache in large language models to 4-bit
without degrading generalizability is challenging due to outlier-induced activation
quantization errors. We propose ResQ, a post training quantization (PTQ) method
that uses principal component analysis to identify a low-rank subspace (in practice
1/8 of the hidden dimension) and keeps coefficients within this subspace in 8-
bit while quantizing the rest in 4-bit. Within each subspace, invariant random
rotation is applied to further suppress outliers. ResQ outperforms recent PTQ
methods on Llama and Qwen2.5, achieving up to 33% lower Wikitext perplexity
than SpinQuant and up to 3× speedup over 16-bit. Code is available at here1.

1 INTRODUCTION

Quantization enables efficient on-device large language model (LLM) inference by reducing storage
(weight quantization), memory usage (KV cache quantization), and compute complexity (activation
quantization). While post-training methods achieve 2-bit KV cache quantization (Liu et al., 2024b)
and low-precision weights (Frantar et al., 2022), activation quantization below 8-bit remains chal-
lenging due to activation outliers (Dettmers et al., 2022). Recent methods employ two key strategies:
(1) Differential treatment of outliers, where select channels are preserved in high precision, yield-
ing mixed-precision quantization (Dettmers et al., 2022; Zhao et al., 2024; Ashkboos et al., 2024b).
QUIK (Ashkboos et al., 2024b) and ATOM (Zhao et al., 2024) statically retain outlier channels in
8-bit. (2) Invariant random rotation, which suppresses activation outliers for uniform low-precision
quantization (Ashkboos et al., 2024c; Liu et al., 2024a). QuaRot (Ashkboos et al., 2024c) applies
Hadamard rotations to activations, while SpinQuant (Liu et al., 2024a) optimizes activation rotations
via gradient descent. Both types of activation quantization approaches reduce quantization error; yet
a notable model performance gap persists from the 16-bit baseline.

To address this gap, we introduce ResQ, a novel PTQ method for efficient 4-bit quantization of
activations, weights, and KV cache. Using offline principal component analysis (PCA), ResQ iden-
tifies a low-rank subspace capturing highest variance in activations, quantizing its coefficients in
8-bit while applying 4-bit quantization to the rest. ResQ then employs invariant random rotations
within each subspace to further suppress outliers, minimizing error with most projections fused into
adjacent weights for minimal overhead. Compared with related activation quantization approaches,
ResQ achieves highest quantization SNR (Figure 1(b)) with its provably optimal choice of compo-
nents in 8-bit. It supports KV cache quantization and integrates with GPTQ (Frantar et al., 2022),
enhancing LLM generalization. With only 1/8 channels in 8-bit, ResQ reduces perplexity by 4–33%
on Wikitext and improves 0-shot accuracy by 0.1–5.4% over SpinQuant (Liu et al., 2024a), without
requiring gradient-based optimization. Compared with 16-bit floating point model, ResQ achieves
upto 3× inference speedup which is only on an average 14% less than fully INT4 inference.

We claim the following contributions : (1) We propose ResQ, a mixed precision weight, activation,
and KV cache quantization method by keeping low-rank, high-variance components in high preci-
sion, in combination with random rotation-induced outlier suppression. (2) We theoretically analyze
the projection matrices in ResQ and show that using PCA-based projections minimizes quantization
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Figure 1: (a) Activation distribution before and after ResQ projections, (b) Quantization SNR for
Feed forward network layers (higher is better), (c) Mixed precision matrix multiplication.

error. (3) We conduct extensive experiments on various models and language tasks and show that
ResQ outperforms related state-of-the-art approaches. (4) We develop CUDA kernels and achieve
runtime speedup on NVIDIA GPUs with our quantized models.

2 RESQ

In this section, we present ResQ, a mixed-precision quantization method that preserves low-rank
components in 8-bit while quantizing the rest at lower precision, with theoretical guarantees and
efficient LLM deployment.

2.1 QUANTIZATION SCHEME AND PROJECTIONS

Given input activation X ∈ Rn×d and weight W ∈ Rd×d, we project them onto orthogonal basis
U ∈ Rd×d, then quantize the coefficients. High-precision components are captured by Uh ∈ Rd×r,
and low precision by Ul ∈ Rd×(d−r), ensuring UhU

⊤
h +UlU

⊤
l = UU⊤ = I . The rank r controls

the amount of components in high precision (in practice we typically choose r = d/8). Where Q(·)
is the quantization operator, the quantized activation and weights are,

Xq = QL(XUl) +QH(XUh), Wq = QL(U
⊤
l W ) +QH(U⊤

h W ) (1)

The layer output is given below and also demonstrated in Figure 1(c).

XqWq = QL(XUl)QL(U
⊤
l W ) +QH(XUh)QH(U⊤

h W ). (2)

Due to orthogonality, the projections preserve the original model output in absense of quantization.
The orthogonal basis U should (1) prioritize important components for high-precision quantization
and (2) minimize quantization error in both high- and low-precision groups. We construct U =

PR = [Pl Ph]

[
Rl 0
0 Rh

]
using two rotation matrices: P for importance based projections and R

to minimize quantization error. Inspired by prior work (Ashkboos et al., 2024c; Chee et al., 2024),
we make Rl,Rh random orthogonal matrices because random rotation reduces outliers, making
the rotated matrices easier to quantize. Furthermore, projection with a random orthogonal matrix
increases Gaussianity of activations and weights Tseng et al. (2024) within high- and low-precision
groups, conducive to the quantizations applied to these groups. To determine P , we minimize the
activation quantization error ∥X − Xq∥F . For activations quantized according to Equation 1, we
have,

∥X −Xq∥F = ∥XUl −QL(XUl)∥F + ∥XUh −QH(XUh)∥F . (3)
Theorem 2.1. For any matrix X quantized to Xq according to method described in Equation 1,
assuming the values to be quantized in X are normally distributed, we have

E∥X −Xq∥F ≤
√
πlog(d− r)

2L−1 − 1
E∥X∥F −

[√
πlog(d− r)

2L−1 − 1
−

√
πlog r

2H−1 − 1

]
E∥XPh∥F . (4)

Full proof of Theorem 2.1 is in Appendix B. Theorem 2.1 bounds the quantization error, which
can be minimized by maximizing ∥XPh∥F . This occurs when Ph consists of top eigenvectors
of covariance matrix of activations XX⊤. Thus, the low rank space for high precision quan-
tization can be obtained by means of PCA. To facilitate that, we obtained XX⊤ using a cal-
ibration dataset and perform PCA to obtain Ph. Note that this is done offline and once ob-
tained, Ph does not change. The subspace for low-precision quantization can be obtained using
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Figure 2: Model inference with ResQ incorporating the projection matrices. (a) UA modifies the
inputs across blocks enabling better quantization. (b) UB ,UC enables mixed precision quantization
of KV cache. (c) UD projects the activations and weights of down proj layer.

UhU
⊤
h +UlU

⊤
l = PhP

⊤
h + PlP

⊤
l = I (because Ri is orthogonal). If we construct P by taking

eigenvectors of XX⊤ arranged in increasing order of eigenvalues, the last r columns of such a P
would correspond to Ph and the first d − r columns would correspond to Pl. The distribution of
activation after before and after projection is given in Figure 1(a).

2.2 INFERENCE COMPUTATION WITH OPTIMIZED PROJECTIONS

Once projection matrices are obtained, activations and weights are projected using U . Weights are
projected and quantized offline, while activation projections are merged into the previous layer’s
weights for efficiency. Decoder-based LLMs require four projections (Figure 2): UA (hidden dim),
UB ,UC (attention head dim), and UD (FFN hidden dim). Block Boundary Projections Acti-
vations for attention and feed forward network block are projected via UA by right-multiplying the
final linear layer weights (o proj in attention, down proj in FFN), incurring no extra inference
cost. To ensure numerical invariance, the first linear layers (q proj|k proj|v proj in attention,
up proj|gate proj in FFN) are pre-multiplied with U⊤

A . Embedding and final head weights
are also adjusted for residual stream projection. Attention Block Projections UB ,UC project
activations within the attention block (Figure 2b). Post-multiplying the value projection layer by
UB ensures optimal KV cache quantization, requiring o proj weights to be pre-multiplied by U⊤

B
for numerical invariance. UC optimally quantizes keys by projecting both query and key, preserving
the attention dot product: qprojK

⊤
proj = (qUC)(U

⊤
C K⊤) = qK⊤. Since UC cannot be merged

due to RoPE, the projection is explicitly computed at runtime, but made more efficient by applying
uniform precision quantization to UC and corresponding inputs. FFN Block Projections UD

improves FFN activation quantization (Figure 2c). While U⊤
D is fused with down proj weights,

activation functions prevent merging UD with preceding layers, requiring runtime computation.
Given the large FFN hidden dimension (dFFN), direct multiplication is costly. To mitigate this, UD

is a Hadamard matrix for efficient transforms. And down proj weights and activations are kept
entirely in 4-bit.

3 EXPERIMENTS
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Figure 3: Decoder block speedup of ResQ and
INT4 kernel on NVIDIA RTX 3090 over 16-bit
floating point baseline for batch size of 1.

Models, Tasks, Datasets, and Baselines We
evaluate ResQ on Llama 3 (Meta, 2024b),
Llama 3.2 (Meta, 2024a), Qwen2.5 (Yang et al.,
2024a), and multi-modal Qwen2 VL mod-
els (Wang et al., 2024). Baselines include
GPTQ (Frantar et al., 2022), QuaRot (Ashk-
boos et al., 2024c), QUIK (Ashkboos et al.,
2024b), SpinQuant (Liu et al., 2024a), and
SmoothQuant+, a stronger baseline created by
combining SmoothQuant (Xiao et al., 2023)
with GPTQ following Sharify et al. (2024).
We assess quantization on language modeling
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Table 1: Perplexity on Wikitext, average 0-shot
common sense reasoning accuracy, and average
0-shot MMLU accuracy at W/A/KV = 4-bit. *:
Mixed precision with 1/8 channels in 8-bit for
W/A/KV = 4.5-bit. ↑: higher is better, ↓: lower
is better. Full results in Appendix D.

Llama 3

Method
Meta-Llama-3-8B Meta-Llama-3-70B

Wiki Reasoning MMLU Wiki Reasoning MMLU
(↓) (↑) (↑) (↓) (↑) (↑)

16-bit 6.1 67.1 63.1 2.9 73.1 75.9
RTN 218.9 39.3 23.6 452.7 45.5 23.2

GPTQ 166.3 39.8 23.3 1.2e4 34.9 25.5
SQ+ 78.2 42.5 24.7 - - -

QUIK* 14.2 51.6 32.7 8.0 58.2 51.1
QuaRot 7.8 62.1 53.2 5.7 67.6 65.3

SpinQuant 7.4 63.8 56.2 6.2 65.7 59.4
ResQ* 7.1 63.9 57.2 4.1 71.1 73.9

Llama 3.2

Method
Llama-3.2-1B Llama-3.2-3B

Wiki Reasoning MMLU Wiki Reasoning MMLU
(↓) (↑) (↑) (↓) (↑) (↑)

16-bit 9.8 54.9 36.9 7.8 62.7 54.8
RTN 329.1 38.1 23.8 268.8 38.7 25.7

GPTQ 108.9 38.0 24.9 178.3 40.3 24.8
SQ+ 228.9 38.0 24.1 96.1 39.0 25.9

QUIK* 21.8 44.3 25.1 15.8 48.8 31.1
QuaRot 14.3 49.0 25.5 10.1 56.1 42.0

SpinQuant 13.6 48.8 25.6 9.2 57.9 44.2
ResQ* 12.4 50.1 29.4 8.8 59.0 49.8

Qwen2.5

Method
Qwen2.5-3B Qwen2.5-72B

Wiki Reasoning MMLU Wiki Reasoning MMLU
(↓) (↑) (↑) (↓) (↑) (↑)

16-bit 8.0 63.8 66.1 3.9 73.4 84.3
RTN 3.9e4 35.1 23.4 4.5e4 34.3 24.0

GPTQ 9.9e3 35.1 23.2 3.8e4 34.5 23.3
SQ+ 7.3e4 34.8 23.9 - - -

QUIK* 15.5 51.2 39.4 8.3 61.9 69.3
QuaRot 68.8 47.7 28.9 4.9 70.3 80.1
ResQ* 9.0 61.1 61.2 4.6 72.0 81.5

Table 2: Comparison of performance of quan-
tization approaches on generative tasks at pre-
cisions of W/A/KV = 4-bit. *: Mixed precision
with 1/8 channels in 8-bit for W/A/KV = 4.5-bit.
↑: higher is better.

GSM8K 5-shot (↑) LongBench (↑)Model Method flexible-e strict-m qmsum samsum repo-p
16-bit 51.0 50.6 23.9 44.8 66.4

QUIK* 2.3 0.0 10.5 25.2 37.6
QuaRot 27.6 27.1 22.0 43.8 60.6

SpinQuant 29.8 29.6 23.0 43.9 62.6

Meta-
Llama
-3-8B

ResQ* 33.6 33.2 23.1 44.1 62.3
16-bit 25.1 24.9 23.1 43.0 64.4

QUIK* 2.5 0.0 15.9 31.7 30.9
QuaRot 10.1 9.1 20.6 39.5 56.8

SpinQuant 11.6 11.4 21.7 41.9 59.1
Llama

-3.2-8B
ResQ* 17.1 16.7 21.7 43.0 61.5

Table 3: 0-shot MMMU accuracy (higher is bet-
ter) of vision language models when quantized
using various approaches. *: Mixed precision
with 1/8 channels in 8-bit and rest in 4-bit.

Model
W/A/KV Method Qwen2-VL

-2B-Instruct
Qwen2-VL

-7B-Instruct

16/16/16 Baseline 39.6 51.6
RTN 25.0 26.7

GPTQ 27.7 24.94/4/4
QuaRot 24.0 24.5
QUIK* 26.3 28.94.5/4.5/4.5 ResQ* 29.7 47.0

RTN 24.9 25.2
GPTQ 23.4 24.34/8/4

QuaRot 26.5 24.5
QUIK* 28.4 26.44.5/8/4.5 ResQ* 34.0 48.8

(Wikitext (Merity et al., 2016)), reasoning (average 0-shot accuracy on Arc-c/e (Clark et al., 2018),
BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), Openbook QA (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), WinoGrande (Sakaguchi et al., 2021)), under-
standing (MMLU (Hendrycks et al., 2021)), math (GSM8K (Cobbe et al., 2021)), summarization
(samsum, qmsum from LongBench (Bai et al., 2024)), code completion (repobench-p (Liu et al.,
2023b)), and multi-modal (MMMU (Yue et al., 2024)). More implementation details in App. C.

Language modeling, understanding, and reasoning tasks The results are presented in Table
1. We find that ResQ closes the gap to 16-bit performance and surpasses all quantization base-
lines across tasks and models. On Llama 3/3.2, ResQ achieves 4–33% lower Wikitext perplexity,
0.1–5.4% higher average 0-shot accuracy, and 1–14.5% better MMLU accuracy than SpinQuant,
without additional training. For Qwen-2.5, ResQ outperforms all baselines, which fail to achieve
competitive results. Compared to QUIK, another mixed precision approach, ResQ improves Wiki-
text perplexity by 42–50%, 0-shot accuracy by 5.8–12.3%, and MMLU accuracy by 4.3–24.5%. Full
results are in Appendix D. Generative tasks We evaluate ResQ on auto-regressive tasks, includ-
ing GSM8K (math), dialogue summarization (qmsum, samsum), and code completion (repobench-p,
Table 2), to assess generation across domains. On GSM8K, where QUIK fails, ResQ surpasses Spin-
Quant by 3.8% (8B) and 5.5% (3B), narrowing the gap to 16-bit. In LongBench tasks, ResQ outper-
forms SpinQuant without additional training. Multi-modal understanding We evaluate ResQ on
vision-language models (VLMs) by quantizing the Qwen2 VL family and testing on MMMU (Ta-
ble 3, Yue et al. 2024). Only the language model is quantized, as it contains most parameters (over
10× for Qwen2-VL-7B-Instruct). ResQ outperforms baselines on 2B and 7B models, demon-
strating superior accuracy and generalizability. Individual MMMU task results are in Appendix E.
Hardware Performance We implement mixed-precision quantization using CUDA 11.8 and Py-
Torch, leveraging CUTLASS Thakkar et al. (2023) for INT4/INT8 GEMM on TensorCore. On an
NVIDIA RTX 3090, ResQ achieves 1.61×–3.03× speedup over 16-bit for a single decoder block
(Figure 3), with greater gains on larger models and shorter sequences. ResQ is only 14% slower
than INT4, demonstrating minimal overhead from mixed precision and on-the-fly projections.
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4 CONCLUSION

We introduce ResQ, a mixed-precision PTQ method for 4-bit LLM quantization. ResQ projects
weights, activations, and KV cache to subspaces spanned by principal components, preserving high-
variance components ( 1/8 of hidden dimension) in 8-bit and quantizing the rest to 4-bit. It outper-
forms both uniform and mixed-precision baselines, demonstrating effectiveness across diverse tasks
on Llama and Qwen models. Compared to SpinQuant, ResQ reduces WikiText perplexity by up to
33% without retraining and achieves up to 3× speedup over 16-bit.
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A RELATED WORKS

A.1 QUANTIZATION OF LLMS

Quantization reduces model size and accelerates inference by lowering neural network bit preci-
sion (Choi et al., 2018; Hubara et al., 2021; Yao et al., 2022; Park et al., 2022; Gholami et al., 2022;
Xi et al., 2023). It is broadly categorized into two categories: uniform precision quantization (UPQ)
and mixed precision quantization (MPQ). Uniform precision quantization (UPQ) applies the same
bit-width across all layers, simplifying implementation but neglecting layer-specific sensitivity to
quantization. Weight-only UPQ methods reduce storage by compressing weights, using techniques
like Hessian-guided rounding (GPTQ, Frantar et al. 2022), adaptive rounding (QuIP, Chee et al.
2024), channel-wise scaling (AWQ, Lin et al. 2024c), and multi-codebook quantization (AQLM,
Egiazarian et al. 2024). However, these methods struggle with batch processing due to significant
activation memory overhead. Weight-activation UPQ compresses both weights and activations to
address this. Methods such as SmoothQuant (Xiao et al., 2023) and OmniQuant (Shao et al., 2023)
scale activations and weights to handle outliers, while RPTQ (Yuan et al., 2023a), QLLM (Liu et al.,
2023a), and QServe (Lin et al., 2024d) employ channel-level strategies like clustering and reorder-
ing. Rotation-based methods such as QuaRot (Ashkboos et al., 2024c), SpinQuant (Liu et al., 2024a)
and DuQuant Lin et al. (2024b) further enhance robustness in low-precision scenarios. KV cache
UPQ reduces memory for large batches or long contexts. FlexGen (Sheng et al., 2023) employs
4-bit quantization and memory offloading, while KIVI (Liu et al., 2024b) uses asymmetric 2-bit
quantization for compression, enabling efficient inference.
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Mixed precision quantization (MPQ) optimizes bit-widths by adapting to the sensitivity of
weights and activations, achieving better accuracy than UPQ at similar compression rates. Our pro-
posed method, ResQ, follows the MPQ approach. Weight-only MPQ has advanced efficiency for
memory-bound applications with minimal activation demands. Methods like OWQ (Lee et al., 2024)
and SpQR (Dettmers et al., 2023) mitigate activation outliers’ impact by retaining critical features
in full precision, while SqueezeLLM (Kim et al., 2023) employs Dense-and-Sparse decomposition
to efficiently store sensitive weights. Weight-activation MPQ enhances efficiency by addressing
activation outliers (e.g. Guan et al. 2024; Zeng et al. 2024). Methods like LLM.int8() (Dettmers
et al., 2022) and QUIK(Ashkboos et al., 2024b) preserve critical activations with mixed or low-
precision decompositions, while Atom (Zhao et al., 2024) and SliM-LLM (Huang et al., 2024) op-
timize quantization through channel reordering and salience-driven bit allocation. KV cache MPQ
reduces memory usage while preserving precision for critical tokens using techniques like non-
uniform quantization, importance-aware precision, and salient token compression (Hooper et al.,
2024; Yang et al., 2024b; Dong et al., 2024; He et al., 2024). Alternatively, GEAR quantizes all
tokens’ KV cache and maintains low-rank quantization error (Kang et al., 2024).

A.2 LOW-RANK DECOMPOSITION

Low-rank decomposition techniques have been widely used in model compression, reducing dimen-
sionality while maintaining performance. For instance, SliceGPT Ashkboos et al. (2024a) projects
weight matrices onto principal components for sparsification, while ESPACE Sakr & Khailany
(2024) reduces activation dimensionality via pre-calibrated projections, achieving inference-time ef-
ficiency. Similarly, ASVD Yuan et al. (2023b) introduces an activation-aware decomposition method
that incorporates activation distributions into weight decomposition. Additionally, low-rank decom-
position can be applied to reduce KV cache size. For example, Eigen Attention Saxena et al. (2024)
and ASVD Yuan et al. (2023b) employ low-rank approximations to reduce memory usage in KV
caches during attention operations. PALU Chang et al. (2024) introduces learnable projections to
adaptively compress KV caches based on the compression budget. Finally, Matryoshka KV Cache
refines this with hierarchical orthogonal projections and knowledge distillation Lin et al. (2024a).

B PROOF OF THEOREM 2.1

We begin the proof by introducing the following lemma.

Lemma B.1. For any tensor R quantized following the quantization described in equation ??,
assuming the values of R follows a normal distribution, we have

E∥R−Q(R)∥F ≤
√
π log [size(R)]

2n−1 − 1
E∥R∥F (5)

where size(R) denotes the number of elements in R.

Proof of lemma B.1 can be found in Li et al. (2024). From this lemma we obtain that the quantization
error ∥R −Q(R)∥F is bounded by the magnitude of the tensor quantized ∥R∥F . Now for our use
case of mixed precision quantization where the low-precision component is quantized to L bits and
high precision component is quantized to H bits, we write the quantization error again below,

E∥X −Xq∥F = E∥XUl −QL(XUl)∥F
+ E∥XUh −QH(XUh)∥F .

(6)
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The random rotation matrices R ensure that XUl and XUh are normally distributed by Lemma ??.
Applying Lemma B.1 to the quantization error in equation 6, we get,

∥X −Xq∥F ≤
√

log(size(XUl))π

2L−1 − 1
E||XUl||F

+

√
log(size(XUh))π

2H−1 − 1
E||XUh||F

=

√
log(size(XPl))π

2L−1 − 1
E||XPl||F

+

√
log(size(XPh))π

2H−1 − 1
E||XPh||F

=

√
log(size(XPl))π

2L−1 − 1
E||tr(XPlP

⊤
l X⊤)||F

+

√
log(size(XPh)π

2H−1 − 1
E||tr(XPhP

⊤
h X⊤)||F

(7)

We know size(XPl) = d − r and size(XPh) = r since r components are in high precision. With
PlP

⊤
L + PhP

⊤
h = I , we have

∥X −Xq∥F ≤
√

log(d-r)π
2L−1 − 1

(E∥X∥F − E∥XPh∥F )

+

√
log(r)π

2H−1 − 1
E∥XPh∥F

=

√
log(d-r)π

2L−1 − 1
E∥X∥F

− (

√
log(d-r)π

2L−1 − 1
−

√
log(r)π

2H−1 − 1
)E∥XPh∥F

(8)

Since
√

log(d-r)π
2L−1−1

−
√

log(r)π
2H−1−1

> 0 the quantization error is reduced by maximizing ∥XPh∥F

C ADDITIONAL IMPLEMENTATION DETAILS

We implement ResQ using the HuggingFace Transformers library Wolf et al. (2020) with PyTorch
Paszke et al. (2019). We share a single UA across all layers, while UB , UC and UD are generated
per layer. Following SpinQuant Liu et al. (2024a), we use per-token asymmetric quantization for
activations, per-channel symmetric quantization for weights, and per-head asymmetric quantization
for the KV cache. We fuse the projection matrices UA,UB ,UD into weights and apply GPTQ
Frantar et al. (2022) for weight quantization. To efficiently implement on-the-fly projections, UD is
a Hadamard matrix and UC and its activations are quantized to 8-bit.

In this work, obtaining the projection matrices and quantization of weights for all the models is
performed on a single NVIDIA A100 80GB GPUs. Time taken by ResQ compared with other
approaches is shown in Table ??. Evaluation on various benchmarks for all the models is also done
on a single NVIDIA A100 GPU with the sole exception of Meta-Llama-3-70b which requires
4 GPUs for evaluation. We use lm evaluation harness version 0.4.5 Gao et al. (2024) and
LongBench Bai et al. (2024) for all the evaluation tasks. For Arc-c/e, Hellaswag, OpenBook QA,
PIQA tasks we report acc norm while for BoolQ, SIQA and Winogrande we report acc.

For calibration data, we use 512 randomly choses samples for Wikitext to obtain the projection ma-
trices. While for GPTQ we use 128 randomly choses samples from Wiktiext following the original
work Frantar et al. (2022).

The KV cache, as well as the weights and activations of all Linear layers (except mlp.down proj),
are quantized to 4-bit precision, with 1

8 of channels retained in 8-bit precision. While, the weights
and activations within down proj are uniformly quantized to 4-bit precision. Following Ashkboos
et al. (2024c) and Liu et al. (2024a), we keep query vector in 16-bit.
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D COMPLETE RESULTS OF MAIN RESULT TABLES

Detailed results of Table 1 in the main paper, including more models and task-by-task performance,
are shown in Tables 4 (Llama families) and 5 (Qwen2.5 family). As expected, ResQ achieves supe-
rior performance to baselines across the series of common sense reasoning and MMLU tasks.

Table 4: Comparison of perplexity on Wikitext, accuracy on eight 0-shot common sense reason-
ing tasks including ARC-challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA, SIQA,
and WinoGrande, and 0-shot massive multitask language understanding tasks across four subjects:
STEM, Humanities, Social Sciences, and MMLU-other, for the Llama 2, Llama 3 and Llama 3.2
families when quantized to W/A/KV = 4/4/4 bits. Results of all techniques were obtained using
their official codebase. *: Mixed precision with 1/8 channels in 8-bit for W/A/KV = 4.5-bit. All
techniques except RTN use GPTQ Frantar et al. (2022). (↓): lower is better, (↑): higher is better.

Llama 2 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Llama-2-7b-hf

16-bit 5.5 46.3 74.6 77.8 75.9 44.2 79.2 46.1 69.1 64.1 38.9 45.9 46.0 33.4 41.1
RTN 1766.2 26.3 27.8 54.8 29.4 25.8 51.0 35.0 48.7 37.4 24.5 24.7 22.9 22.2 23.6

GPTQ 9600.0 24.8 31.4 55.4 30.6 25.6 55.8 34.2 53.3 38.9 24.7 24.5 22.7 23.2 23.8
SmoothQuant+ 15.4 29.3 47.1 56.8 48.6 31.8 65.5 37.2 52.4 46.1 25.0 24.5 24.1 23.4 24.2

QUIK* 7.5 39.8 63.7 68.9 68.3 37.8 72.9 42.1 62.4 57.0 26.9 29.6 28.8 25.8 27.8
QuaRot 6.1 41.5 71.4 73.2 73.2 40.6 76.9 43.6 65.6 60.7 31.2 35.1 34.6 28.2 32.3

SpinQuant 6.0 43.6 71.3 73.8 73.2 40.4 76.0 44.1 65.4 61.0 33.9 38.5 37.5 29.5 34.8
ResQ* 5.8 44.0 72.6 75.3 74.0 41.0 77.9 43.9 66.9 62.0 35.9 40.9 42.2 32.2 37.7

Llama-2-13b-hf

16-bit 4.9 49.1 77.4 80.5 79.4 45.2 80.7 47.2 72.1 66.5 47.9 59.3 61.0 42.4 52.7
RTN 3543.9 22.8 29.8 40.2 26.6 27.8 51.4 35.6 50.6 33.5 23.7 25.0 23.1 22.6 23.6

GPTQ 3120.0 23.6 31.1 38.7 27.2 26.8 53.6 35.8 49.8 33.8 25.0 25.4 23.7 25.1 24.8
SmoothQuant+ 11.2 34.5 55.6 62.9 62.5 32.4 70.1 38.7 55.6 51.0 25.7 26.1 27.3 27.3 26.6

QUIK* 6.8 43.7 68.0 71.3 73.3 40.0 75.7 45.1 64.6 60.2 34.7 40.6 39.8 31.8 36.7
QuaRot 5.4 46.9 74.9 76.6 75.8 42.6 79.1 45.5 69.0 63.8 43.8 53.6 54.0 39.4 47.7

SpinQuant 5.2 49.0 76.3 78.2 77.1 42.8 79.3 46.3 69.5 64.8 43.5 53.1 55.4 39.1 47.8
ResQ* 5.1 49.1 76.1 79.7 77.9 43.6 79.1 46.6 69.9 65.2 45.3 56.0 58.0 41.0 50.1

Llama 3 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Meta-Llama-3-8B

16-bit 6.1 53.2 77.1 81.1 79.2 44.8 80.9 47.0 73.4 67.1 55.0 70.6 73.2 53.7 63.1
RTN 218.9 25.3 34.9 44.2 38.3 27.8 56.5 36.8 50.8 39.3 24.7 25.1 23.3 21.4 23.6

GPTQ 166.3 24.7 37.7 44.3 36.8 27.0 57.6 36.4 53.8 39.8 24.7 23.9 22.8 21.8 23.3
SmoothQuant+ 78.2 27.5 42.0 50.7 44.9 28.8 59.0 35.9 50.9 42.5 25.4 25.5 24.5 23.4 24.7

QUIK* 14.2 33.6 56.4 60.5 61.5 33.2 68.7 39.9 59.0 51.6 30.0 34.0 34.8 32.1 32.7
QuaRot 7.8 45.1 70.4 73.8 74.7 42.6 76.6 45.1 68.5 62.1 47.8 59.1 61.4 44.3 53.2

SpinQuant 7.4 48.0 75.4 75.8 75.4 43.8 77.5 45.0 69.2 63.8 49.8 63.3 65.0 46.8 56.2
ResQ* 7.1 49.2 75.0 72.5 76.5 43.0 78.3 45.8 71.0 63.9 50.6 64.4 65.8 48.1 57.2

Meta-Llama-3-70B

16-bit 2.9 64.2 85.9 85.3 84.9 48.6 84.4 50.8 80.6 73.1 67.6 81.5 86.8 68.4 76.1
RTN 452.7 32.6 50.3 54.2 41.3 31.6 64.8 35.9 53.2 45.5 24.5 23.8 22.3 22.1 23.2

GPTQ 11655.0 25.9 26.0 37.9 26.2 28.6 50.4 34.3 49.9 34.9 27.1 24.3 24.0 26.5 25.5
SmoothQuant+ - - - - - - - - - - - - - - -

QUIK* 8.0 44.5 68.9 60.7 75.0 36.4 76.1 43.2 60.4 58.2 46.6 56.4 58.0 43.6 51.1
QuaRot 5.7 53.7 74.5 81.6 81.1 46.6 81.0 46.8 75.2 67.6 55.7 72.5 75.8 57.3 65.3

SpinQuant 6.2 52.0 77.3 81.7 75.6 43.8 78.8 43.4 72.8 65.7 50.7 67.0 68.1 51.9 59.4
ResQ* 4.1 61.4 84.3 83.9 83.5 46.0 83.1 48.6 78.3 71.1 64.9 79.9 84.9 66.1 74.0

Llama 3.2 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Llama-3.2-1B

16-bit 9.8 36.5 60.6 63.4 63.6 37.4 74.5 42.8 60.1 54.9 34.8 41.1 39.9 32.0 36.9
RTN 329.1 22.4 29.9 53.4 31.4 29.4 54.8 34.9 48.5 38.1 24.8 25.2 22.4 22.7 23.8

GPTQ 108.9 24.7 32.7 52.3 30.7 23.6 54.3 34.4 51.1 38.0 24.7 25.1 25.5 24.5 24.9
SmoothQuant+ 228.9 23.3 30.1 52.9 31.3 26.6 54.2 34.5 51.2 38.0 23.9 24.1 25.0 23.5 24.1

QUIK* 21.8 27.4 46.0 55.0 46.0 26.4 62.4 38.6 52.6 44.3 25.6 25.6 24.6 24.5 25.1
QuaRot 14.3 30.0 51.4 59.1 54.0 34.2 66.7 39.6 57.1 49.0 25.4 26.9 25.4 24.4 25.5

SpinQuant 13.6 32.3 51.8 59.3 55.4 30.4 67.7 38.6 54.7 48.8 25.4 27.6 24.2 25.3 25.6
ResQ* 12.4 34.0 54.2 57.0 57.3 31.2 69.4 41.0 56.8 50.1 28.3 30.5 31.3 27.6 29.4

Llama-3.2-3B

16-bit 7.8 46.2 71.7 73.1 73.7 43.4 77.4 47.2 69.1 62.7 48.9 62.9 62.3 45.2 54.8
RTN 268.8 23.5 35.4 46.2 35.6 28.2 56.3 33.6 50.6 38.7 25.1 25.6 27.0 24.9 25.7

GPTQ 178.3 27.0 27.0 48.8 44.4 27.8 59.1 37.1 51.5 40.3 24.9 24.5 25.7 24.0 24.8
SmoothQuant+ 96.1 25.3 33.1 47.8 37.7 25.2 56.2 35.8 50.9 39.0 25.4 26.6 26.4 25.3 25.9

QUIK* 15.8 32.9 50.1 52.6 59.1 33.2 68.7 40.3 53.0 48.8 29.0 33.2 31.9 30.3 31.1
QuaRot 10.1 38.6 59.0 65.9 66.5 35.8 74.4 43.1 65.2 56.1 38.5 47.3 46.7 35.3 42.0

SpinQuant 9.2 38.9 64.8 68.0 69.1 39.4 74.9 45.1 62.9 57.9 37.0 49.4 50.5 39.9 44.2
ResQ* 8.8 43.1 65.6 68.8 70.5 38.4 75.1 45.6 64.8 59.0 44.7 57.0 56.5 41.0 49.8

E COMPLETE RESULTS OF THE MMMU BENCHMARK

This section presents task-by-task results for the MMMU benchmark across six subjects—Art &
Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engi-
neering—for the Qwen2 VL family when quantized to W/A/KV = 4/4/4 bits and W/A/KV = 4/8/4
bits of precision. On average, ResQ consistently outperforms all baselines across different models.
Notably, the advantage of ResQ becomes more pronounced with larger models. For instance, for
Qwen2-VL-7B-Instruct at W/A/KV = 4/8/4 bits of precision, ResQ achieves an average ac-
curacy score of 48.8, significantly outperforming the next-best method, QUIK, which scores 26.4,
representing an ∼ 85% relative improvement.
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Table 5: Comparison of perplexity score on Wikitext, accuracy on eight 0-shot common sense
reasoning tasks including ARC-challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA,
SIQA, and WinoGrande, and 0-shot massive multitask language understanding tasks across four
subjects: STEM, Humanities, Social Sciences, and MMLU-other, for the Qwen2.5 family when
quantized to W/A/KV = 4/4/4 bits. Results of all techniques were obtained using their official code-
base. *: Mixed precision with 1/8 channels in 8-bit for W/A/KV = 4.5-bit. All techniques except
RTN use GPTQ Frantar et al. (2022). (↓): lower is better, (↑): higher is better.

Qwen2.5 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Qwen2.5-0.5B

16-bit 13.1 31.9 58.4 62.1 52.1 35.0 69.7 44.3 57.1 51.3 42.2 53.2 55.5 41.5 48.1
RTN 23204.3 26.2 27.0 39.3 26.0 24.0 50.7 34.5 51.5 34.9 24.8 24.0 22.8 24.3 23.9

GPTQ 16302.3 23.7 26.9 39.0 26.5 26.4 50.2 33.4 49.6 34.5 24.1 24.8 23.5 23.0 23.9
SmoothQuant+ 10053.9 25.9 26.3 39.9 27.2 25.4 47.1 35.9 49.6 34.7 24.5 24.7 21.5 22.1 23.2

QUIK* 38.6 24.5 38.6 48.0 36.9 28.4 58.1 36.4 51.9 40.4 26.3 25.9 23.6 24.2 25.0
QuaRot 219.9 25.4 36.6 45.0 28.9 28.6 54.1 32.9 51.7 37.9 24.4 24.0 23.0 23.5 23.7
ResQ* 29.6 27.1 44.2 53.2 38.8 28.0 61.9 34.4 51.3 42.4 26.1 27.5 25.3 26.0 26.2

Qwen2.5-1.5B

16-bit 9.3 45.1 72.1 72.9 67.7 40.2 76.3 48.8 63.7 60.8 53.5 65.5 70.6 52.8 60.6
RTN 14518.9 23.1 27.2 43.9 26.8 25.6 51.3 33.4 52.5 35.5 23.8 24.5 23.8 22.7 23.7

GPTQ 25769.7 23.9 26.9 43.9 26.1 27.6 49.7 32.1 51.5 35.2 24.6 24.7 23.7 23.8 24.2
SmoothQuant+ 31655.9 25.0 26.2 39.9 26.0 26.0 50.8 32.1 49.0 34.4 25.5 24.4 22.7 22.4 23.8

QUIK* 6613.5 21.8 31.9 40.9 27.9 27.4 52.8 35.2 48.6 35.8 24.6 24.0 21.9 21.7 23.1
QuaRot 6599.9 23.6 37.3 46.2 28.6 27.0 56.3 35.2 52.4 38.3 24.5 24.3 23.0 22.4 23.5
ResQ* 12.5 38.7 64.1 65.7 61.4 37.8 71.6 42.7 60.1 55.3 43.2 54.4 54.9 41.5 48.5

Qwen2.5-3B

16-bit 8.0 47.4 73.0 77.5 73.6 42.0 78.7 49.9 68.4 63.8 56.6 71.0 76.3 60.6 66.1
RTN 39033.0 25.6 25.8 41.7 26.3 27.4 49.5 33.1 51.4 35.1 24.5 24.4 22.8 21.9 23.4

GPTQ 9977.8 26.0 26.7 41.5 26.7 28.2 51.5 31.9 48.3 35.1 24.3 23.8 22.8 21.8 23.2
SmoothQuant+ 73306.7 25.4 24.5 41.0 26.4 29.8 48.4 32.4 50.4 34.8 25.6 24.7 23.1 22.4 23.9

QUIK* 15.5 36.1 55.4 61.4 57.2 36.2 67.1 40.8 55.3 51.2 36.4 42.8 42.4 36.1 39.4
QuaRot 68.8 32.4 53.1 51.6 49.2 33.4 66.7 39.3 56.4 47.7 28.1 32.0 28.9 26.6 28.9
ResQ* 9.0 45.3 70.5 72.7 70.2 42.4 76.8 46.7 64.4 61.1 53.1 66.5 70.5 54.8 61.2

Qwen2.5-7B

16-bit 6.8 51.2 77.6 84.7 78.9 47.2 80.0 54.8 73.2 68.4 62.6 76.7 82.6 70.1 73.0
RTN 24382.1 24.5 26.3 37.8 26.0 29.0 51.0 34.1 50.1 34.9 24.9 24.3 23.4 24.9 24.4

GPTQ 13593.7 25.2 25.6 37.8 26.3 28.2 52.4 34.4 48.9 34.8 24.4 24.3 22.8 22.6 23.5
SmoothQuant+ 19088.7 26.3 25.2 39.8 26.4 27.6 52.7 33.5 52.0 35.4 25.1 25.4 22.6 24.1 24.3

QUIK* 260.3 29.5 42.4 51.7 36.3 28.2 59.6 34.5 49.6 41.5 24.3 26.9 23.1 23.8 24.6
QuaRot 4035.9 25.9 41.0 39.1 29.1 27.6 57.9 35.7 50.6 38.4 24.8 24.4 24.4 22.7 24.1
ResQ* 8.2 49.0 74.7 81.4 75.7 45.0 78.9 49.4 68.2 65.3 57.8 74.4 79.3 64.5 69.0

Qwen2.5-14B

16-bit 5.3 58.8 79.4 85.4 82.9 45.4 81.9 55.3 75.8 70.6 69.9 81.9 86.2 76.5 78.6
RTN 2715 21.6 32.7 51.5 29.6 25.8 52.6 33.2 51.7 37.3 25.3 23.2 26.0 25.3 24.9

GPTQ 5100.3 23.8 29.1 47.7 30.1 27.6 51.3 34.6 51.2 36.9 25.1 24.7 25.1 24.3 24.8
SmoothQuant+ 1375.7 27.0 26.3 38.0 26.8 29.2 51.6 32.4 49.3 35.1 25.9 24.5 22.2 22.2 23.7

QUIK* 10.5 45.0 67.1 64.7 68.9 37.6 74.8 43.9 59.3 57.6 48.9 61.1 64.7 51.5 56.6
QuaRot 6.8 54.8 79.6 79.9 78.7 44.0 79.5 49.9 70.7 67.1 60.9 75.1 80.2 67.3 70.9
ResQ* 6.2 57.6 82.1 84.9 81.1 44.8 80.5 51.7 70.6 69.2 65.2 78.4 83.4 71.5 74.6

Qwen2.5-32B

16-bit 5.0 55.7 78.0 87.4 84.1 44.4 82.3 56.4 75.2 70.4 73.1 83.6 89.6 81.2 81.9
RTN 1847.4 24.3 35.3 51.4 31.9 27.0 52.8 34.1 51.4 38.5 24.5 25.1 25.3 24.3 24.8

GPTQ 3891.1 25.4 35.4 48.5 31.8 27.0 53.8 35.8 50.5 38.5 25.9 24.8 23.6 24.0 24.6
SmoothQuant+ - - - - - - - - - - - - - - -

QUIK* 9.6 41.0 64.6 74.9 72.0 39.6 75.8 44.5 60.2 59.1 54.7 66.8 71.3 58.8 62.9
QuaRot 6.1 54.5 76.1 85.1 81.5 44.2 80.1 51.3 70.4 67.9 68.5 80.0 86.0 76.0 77.6
ResQ* 5.6 55.1 78.4 86.0 82.5 45.4 81.1 53.9 74.0 69.5 70.3 82.3 87.9 78.9 79.8

Qwen2.5-72B

16-bit 3.9 62.6 83.2 89.2 86.0 46.6 83.6 58.4 77.7 73.4 77.2 86.9 90.6 82.4 84.3
RTN 45412.7 25.9 26.3 38.0 25.9 25.2 50.0 34.2 48.7 34.3 25.5 24.2 23.0 23.2 24.0

GPTQ 37967.2 25.4 25.8 38.1 25.6 26.6 51.2 34.2 49.4 34.5 25.1 24.0 21.9 22.2 23.3
SmoothQuant+ - - - - - - - - - - - - - - -

QUIK* 8.3 45.1 68.1 77.2 77.2 39.0 77.4 45.6 65.6 61.9 60.2 74.3 77.5 65.3 69.3
QuaRot 4.9 55.8 81.1 87.5 84.0 45.2 81.7 52.5 74.5 70.3 71.4 84.2 87.7 77.1 80.1
ResQ* 4.6 58.4 80.9 88.4 84.9 48.2 82.6 55.5 77.0 72.0 72.8 84.6 89.0 79.5 81.5
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Table 6: Accuracy (higher is better) on 0-shot massive multi-discipline multimodal understanding
and reasoning tasks across six subjects: Art & Design, Business, Science, Health & Medicine,
Humanities & Social Science, and Tech & Engineering for the Qwen2 VL Instruct family. Results
of all techniques were obtained using their official codebase. Our work ResQ and QUIK Ashkboos
et al. (2024b) keep 1/8 of channels in 8-bit for average of 4.5-bit. All techniques except RTN use
GPTQ Frantar et al. (2022).

Qwen2-VL-2B-Instruct

W/A/KV (bit) Method 0-shot MMMU tasks
Art-Design Business Science Health Humanities Tech Avg.

16/16/16 Baseline 56.7 36.0 37.3 50.8 26.0 31.0 39.6

4/4/4
RTN 28.3 18.7 26.0 26.7 21.3 29.1 25.0

GPTQ 28.3 27.3 27.0 29.0 26.7 27.6 27.7
QuaRot 24.2 23.3 20.7 26.7 26.0 22.9 24.0

4.5/4.5/4.5 QUIK 25.8 26.0 26.7 29.2 26.0 24.3 26.3
ResQ 38.3 21.3 28.7 45.0 21.3 23.3 29.7

4/8/4
RTN 27.5 21.3 27.3 24.2 21.3 27.6 24.9

GPTQ 24.2 23.3 24.0 18.3 21.3 29.5 23.4
QuaRot 20.0 24.7 30.0 26.7 26.0 31.4 26.5

4.5/8/4.5 QUIK 33.3 28.7 32.0 32.5 26.0 18.1 28.4
ResQ 37.5 32.0 32.7 47.5 26.7 27.6 34.0

Qwen2-VL-7B-Instruct

W/A/KV (bit) Method 0-shot MMMU tasks
Art-Design Business Science Health Humanities Tech Avg.

16/16/16 Baseline 68.3 41.3 54.7 68.3 38.7 38.1 51.6

4/4/4
RTN 24.2 28.0 29.3 22.5 29.3 27.1 26.7

GPTQ 21.7 26.0 25.3 28.3 24.7 23.3 24.9
QuaRot 21.7 21.3 28.7 25.0 20.7 29.5 24.5

4.5/4.5/4.5 QUIK 30.8 30.0 32.0 26.7 28.0 26.2 28.9
ResQ 65.0 39.3 45.3 61.7 34.0 36.7 47.0

4/8/4
RTN 23.3 28.7 27.3 25.0 22.7 24.3 25.2

GPTQ 20.8 23.3 30.0 19.2 24.0 28.6 24.3
QuaRot 20.8 26.0 30.0 19.2 24.7 26.2 24.5

4.5/8/4.5 QUIK 25.0 23.3 31.3 26.7 25.3 26.7 26.4
ResQ 67.5 39.3 51.3 64.2 36.7 33.8 48.8
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