
ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

RESQ : MIXED PRECISION QUANTIZATION OF LARGE
LANGUAGE MODELS WITH LOW-RANK RESIDUALS

Utkarsh Saxena1
∗
, Sayeh Sharify2, Kaushik Roy1, Xin Wang2

1Purdue University, West Lafayette, USA
2d-Matrix, Santa Clara, USA

ABSTRACT

Quantizing weights, activations, and KV cache in large language models to 4-bit
without degrading generalizability is challenging due to outlier-induced activation
quantization errors. We propose ResQ, a post training quantization (PTQ) method
that uses principal component analysis to identify a low-rank subspace (in practice
1/8 of the hidden dimension) and keeps coefficients within this subspace in 8-
bit while quantizing the rest in 4-bit. Within each subspace, invariant random
rotation is applied to further suppress outliers. ResQ outperforms recent PTQ
methods on Llama and Qwen2.5, achieving up to 33% lower Wikitext perplexity
than SpinQuant and up to 3× speedup over 16-bit. Code is available at here1.

1 INTRODUCTION

Quantization enables efficient on-device large language model (LLM) inference by reducing storage
(weight quantization), memory usage (KV cache quantization), and compute complexity (activation
quantization). While post-training methods achieve 2-bit KV cache quantization (Liu et al., 2024b)
and low-precision weights (Frantar et al., 2022), activation quantization below 8-bit remains chal-
lenging due to activation outliers (Dettmers et al., 2022). Recent methods employ two key strategies:
(1) Differential treatment of outliers, where select channels are preserved in high precision, yield-
ing mixed-precision quantization (Dettmers et al., 2022; Zhao et al., 2024; Ashkboos et al., 2024b).
QUIK (Ashkboos et al., 2024b) and ATOM (Zhao et al., 2024) statically retain outlier channels in
8-bit. (2) Invariant random rotation, which suppresses activation outliers for uniform low-precision
quantization (Ashkboos et al., 2024c; Liu et al., 2024a). QuaRot (Ashkboos et al., 2024c) applies
Hadamard rotations to activations, while SpinQuant (Liu et al., 2024a) optimizes activation rotations
via gradient descent. Both types of activation quantization approaches reduce quantization error; yet
a notable model performance gap persists from the 16-bit baseline.

To address this gap, we introduce ResQ, a novel PTQ method for efficient 4-bit quantization of
activations, weights, and KV cache. Using offline principal component analysis (PCA), ResQ iden-
tifies a low-rank subspace capturing highest variance in activations, quantizing its coefficients in
8-bit while applying 4-bit quantization to the rest. ResQ then employs invariant random rotations
within each subspace to further suppress outliers, minimizing error with most projections fused into
adjacent weights for minimal overhead. Compared with related activation quantization approaches,
ResQ achieves highest quantization SNR (Figure 1(b)) with its provably optimal choice of compo-
nents in 8-bit. It supports KV cache quantization and integrates with GPTQ (Frantar et al., 2022),
enhancing LLM generalization. With only 1/8 channels in 8-bit, ResQ reduces perplexity by 4–33%
on Wikitext and improves 0-shot accuracy by 0.1–5.4% over SpinQuant (Liu et al., 2024a), without
requiring gradient-based optimization. Compared with 16-bit floating point model, ResQ achieves
upto 3× inference speedup which is only on an average 14% less than fully INT4 inference.

We claim the following contributions : (1) We propose ResQ, a mixed precision weight, activation,
and KV cache quantization method by keeping low-rank, high-variance components in high preci-
sion, in combination with random rotation-induced outlier suppression. (2) We theoretically analyze
the projection matrices in ResQ and show that using PCA-based projections minimizes quantization

∗corresponding author : Utkarsh Saxena (saxenau@purdue.edu)
1https://github.com/utkarsh-dmx/project-resq

1

https://github.com/utkarsh-dmx/project-resq
https://github.com/utkarsh-dmx/project-resq

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Figure 1: (a) Activation distribution before and after ResQ projections, (b) Quantization SNR for
Feed forward network layers (higher is better), (c) Mixed precision matrix multiplication.

error. (3) We conduct extensive experiments on various models and language tasks and show that
ResQ outperforms related state-of-the-art approaches. (4) We develop CUDA kernels and achieve
runtime speedup on NVIDIA GPUs with our quantized models.

2 RESQ

In this section, we present ResQ, a mixed-precision quantization method that preserves low-rank
components in 8-bit while quantizing the rest at lower precision, with theoretical guarantees and
efficient LLM deployment.

2.1 QUANTIZATION SCHEME AND PROJECTIONS

Given input activation X ∈ Rn×d and weight W ∈ Rd×d, we project them onto orthogonal basis
U ∈ Rd×d, then quantize the coefficients. High-precision components are captured by Uh ∈ Rd×r,
and low precision by Ul ∈ Rd×(d−r), ensuring UhU

⊤
h +UlU

⊤
l = UU⊤ = I . The rank r controls

the amount of components in high precision (in practice we typically choose r = d/8). Where Q(·)
is the quantization operator, the quantized activation and weights are,

Xq = QL(XUl) +QH(XUh), Wq = QL(U
⊤
l W) +QH(U⊤

h W) (1)

The layer output is given below and also demonstrated in Figure 1(c).

XqWq = QL(XUl)QL(U
⊤
l W) +QH(XUh)QH(U⊤

h W). (2)

Due to orthogonality, the projections preserve the original model output in absense of quantization.
The orthogonal basis U should (1) prioritize important components for high-precision quantization
and (2) minimize quantization error in both high- and low-precision groups. We construct U =

PR = [Pl Ph]

[
Rl 0
0 Rh

]
using two rotation matrices: P for importance based projections and R

to minimize quantization error. Inspired by prior work (Ashkboos et al., 2024c; Chee et al., 2024),
we make Rl,Rh random orthogonal matrices because random rotation reduces outliers, making
the rotated matrices easier to quantize. Furthermore, projection with a random orthogonal matrix
increases Gaussianity of activations and weights Tseng et al. (2024) within high- and low-precision
groups, conducive to the quantizations applied to these groups. To determine P , we minimize the
activation quantization error ∥X − Xq∥F . For activations quantized according to Equation 1, we
have,

∥X −Xq∥F = ∥XUl −QL(XUl)∥F + ∥XUh −QH(XUh)∥F . (3)
Theorem 2.1. For any matrix X quantized to Xq according to method described in Equation 1,
assuming the values to be quantized in X are normally distributed, we have

E∥X −Xq∥F ≤
√
πlog(d− r)

2L−1 − 1
E∥X∥F −

[√
πlog(d− r)

2L−1 − 1
−

√
πlog r

2H−1 − 1

]
E∥XPh∥F . (4)

Full proof of Theorem 2.1 is in Appendix B. Theorem 2.1 bounds the quantization error, which
can be minimized by maximizing ∥XPh∥F . This occurs when Ph consists of top eigenvectors
of covariance matrix of activations XX⊤. Thus, the low rank space for high precision quan-
tization can be obtained by means of PCA. To facilitate that, we obtained XX⊤ using a cal-
ibration dataset and perform PCA to obtain Ph. Note that this is done offline and once ob-
tained, Ph does not change. The subspace for low-precision quantization can be obtained using

2

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Figure 2: Model inference with ResQ incorporating the projection matrices. (a) UA modifies the
inputs across blocks enabling better quantization. (b) UB ,UC enables mixed precision quantization
of KV cache. (c) UD projects the activations and weights of down proj layer.

UhU
⊤
h +UlU

⊤
l = PhP

⊤
h + PlP

⊤
l = I (because Ri is orthogonal). If we construct P by taking

eigenvectors of XX⊤ arranged in increasing order of eigenvalues, the last r columns of such a P
would correspond to Ph and the first d − r columns would correspond to Pl. The distribution of
activation after before and after projection is given in Figure 1(a).

2.2 INFERENCE COMPUTATION WITH OPTIMIZED PROJECTIONS

Once projection matrices are obtained, activations and weights are projected using U . Weights are
projected and quantized offline, while activation projections are merged into the previous layer’s
weights for efficiency. Decoder-based LLMs require four projections (Figure 2): UA (hidden dim),
UB ,UC (attention head dim), and UD (FFN hidden dim). Block Boundary Projections Acti-
vations for attention and feed forward network block are projected via UA by right-multiplying the
final linear layer weights (o proj in attention, down proj in FFN), incurring no extra inference
cost. To ensure numerical invariance, the first linear layers (q proj|k proj|v proj in attention,
up proj|gate proj in FFN) are pre-multiplied with U⊤

A . Embedding and final head weights
are also adjusted for residual stream projection. Attention Block Projections UB ,UC project
activations within the attention block (Figure 2b). Post-multiplying the value projection layer by
UB ensures optimal KV cache quantization, requiring o proj weights to be pre-multiplied by U⊤

B
for numerical invariance. UC optimally quantizes keys by projecting both query and key, preserving
the attention dot product: qprojK

⊤
proj = (qUC)(U

⊤
C K⊤) = qK⊤. Since UC cannot be merged

due to RoPE, the projection is explicitly computed at runtime, but made more efficient by applying
uniform precision quantization to UC and corresponding inputs. FFN Block Projections UD

improves FFN activation quantization (Figure 2c). While U⊤
D is fused with down proj weights,

activation functions prevent merging UD with preceding layers, requiring runtime computation.
Given the large FFN hidden dimension (dFFN), direct multiplication is costly. To mitigate this, UD

is a Hadamard matrix for efficient transforms. And down proj weights and activations are kept
entirely in 4-bit.

3 EXPERIMENTS

Llama-3.2-3B Meta-

Llama-3-8B
Qwen2.5-32B Meta-

Llama-3-70B
Qwen2.5-72B

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
p
ee

d
u
p

Figure 3: Decoder block speedup of ResQ and
INT4 kernel on NVIDIA RTX 3090 over 16-bit
floating point baseline for batch size of 1.

Models, Tasks, Datasets, and Baselines We
evaluate ResQ on Llama 3 (Meta, 2024b),
Llama 3.2 (Meta, 2024a), Qwen2.5 (Yang et al.,
2024a), and multi-modal Qwen2 VL mod-
els (Wang et al., 2024). Baselines include
GPTQ (Frantar et al., 2022), QuaRot (Ashk-
boos et al., 2024c), QUIK (Ashkboos et al.,
2024b), SpinQuant (Liu et al., 2024a), and
SmoothQuant+, a stronger baseline created by
combining SmoothQuant (Xiao et al., 2023)
with GPTQ following Sharify et al. (2024).
We assess quantization on language modeling

3

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 1: Perplexity on Wikitext, average 0-shot
common sense reasoning accuracy, and average
0-shot MMLU accuracy at W/A/KV = 4-bit. *:
Mixed precision with 1/8 channels in 8-bit for
W/A/KV = 4.5-bit. ↑: higher is better, ↓: lower
is better. Full results in Appendix D.

Llama 3

Method
Meta-Llama-3-8B Meta-Llama-3-70B

Wiki Reasoning MMLU Wiki Reasoning MMLU
(↓) (↑) (↑) (↓) (↑) (↑)

16-bit 6.1 67.1 63.1 2.9 73.1 75.9
RTN 218.9 39.3 23.6 452.7 45.5 23.2

GPTQ 166.3 39.8 23.3 1.2e4 34.9 25.5
SQ+ 78.2 42.5 24.7 - - -

QUIK* 14.2 51.6 32.7 8.0 58.2 51.1
QuaRot 7.8 62.1 53.2 5.7 67.6 65.3

SpinQuant 7.4 63.8 56.2 6.2 65.7 59.4
ResQ* 7.1 63.9 57.2 4.1 71.1 73.9

Llama 3.2

Method
Llama-3.2-1B Llama-3.2-3B

Wiki Reasoning MMLU Wiki Reasoning MMLU
(↓) (↑) (↑) (↓) (↑) (↑)

16-bit 9.8 54.9 36.9 7.8 62.7 54.8
RTN 329.1 38.1 23.8 268.8 38.7 25.7

GPTQ 108.9 38.0 24.9 178.3 40.3 24.8
SQ+ 228.9 38.0 24.1 96.1 39.0 25.9

QUIK* 21.8 44.3 25.1 15.8 48.8 31.1
QuaRot 14.3 49.0 25.5 10.1 56.1 42.0

SpinQuant 13.6 48.8 25.6 9.2 57.9 44.2
ResQ* 12.4 50.1 29.4 8.8 59.0 49.8

Qwen2.5

Method
Qwen2.5-3B Qwen2.5-72B

Wiki Reasoning MMLU Wiki Reasoning MMLU
(↓) (↑) (↑) (↓) (↑) (↑)

16-bit 8.0 63.8 66.1 3.9 73.4 84.3
RTN 3.9e4 35.1 23.4 4.5e4 34.3 24.0

GPTQ 9.9e3 35.1 23.2 3.8e4 34.5 23.3
SQ+ 7.3e4 34.8 23.9 - - -

QUIK* 15.5 51.2 39.4 8.3 61.9 69.3
QuaRot 68.8 47.7 28.9 4.9 70.3 80.1
ResQ* 9.0 61.1 61.2 4.6 72.0 81.5

Table 2: Comparison of performance of quan-
tization approaches on generative tasks at pre-
cisions of W/A/KV = 4-bit. *: Mixed precision
with 1/8 channels in 8-bit for W/A/KV = 4.5-bit.
↑: higher is better.

GSM8K 5-shot (↑) LongBench (↑)Model Method flexible-e strict-m qmsum samsum repo-p
16-bit 51.0 50.6 23.9 44.8 66.4

QUIK* 2.3 0.0 10.5 25.2 37.6
QuaRot 27.6 27.1 22.0 43.8 60.6

SpinQuant 29.8 29.6 23.0 43.9 62.6

Meta-
Llama
-3-8B

ResQ* 33.6 33.2 23.1 44.1 62.3
16-bit 25.1 24.9 23.1 43.0 64.4

QUIK* 2.5 0.0 15.9 31.7 30.9
QuaRot 10.1 9.1 20.6 39.5 56.8

SpinQuant 11.6 11.4 21.7 41.9 59.1
Llama

-3.2-8B
ResQ* 17.1 16.7 21.7 43.0 61.5

Table 3: 0-shot MMMU accuracy (higher is bet-
ter) of vision language models when quantized
using various approaches. *: Mixed precision
with 1/8 channels in 8-bit and rest in 4-bit.

Model
W/A/KV Method Qwen2-VL

-2B-Instruct
Qwen2-VL

-7B-Instruct

16/16/16 Baseline 39.6 51.6
RTN 25.0 26.7

GPTQ 27.7 24.94/4/4
QuaRot 24.0 24.5
QUIK* 26.3 28.94.5/4.5/4.5 ResQ* 29.7 47.0

RTN 24.9 25.2
GPTQ 23.4 24.34/8/4

QuaRot 26.5 24.5
QUIK* 28.4 26.44.5/8/4.5 ResQ* 34.0 48.8

(Wikitext (Merity et al., 2016)), reasoning (average 0-shot accuracy on Arc-c/e (Clark et al., 2018),
BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), Openbook QA (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), WinoGrande (Sakaguchi et al., 2021)), under-
standing (MMLU (Hendrycks et al., 2021)), math (GSM8K (Cobbe et al., 2021)), summarization
(samsum, qmsum from LongBench (Bai et al., 2024)), code completion (repobench-p (Liu et al.,
2023b)), and multi-modal (MMMU (Yue et al., 2024)). More implementation details in App. C.

Language modeling, understanding, and reasoning tasks The results are presented in Table
1. We find that ResQ closes the gap to 16-bit performance and surpasses all quantization base-
lines across tasks and models. On Llama 3/3.2, ResQ achieves 4–33% lower Wikitext perplexity,
0.1–5.4% higher average 0-shot accuracy, and 1–14.5% better MMLU accuracy than SpinQuant,
without additional training. For Qwen-2.5, ResQ outperforms all baselines, which fail to achieve
competitive results. Compared to QUIK, another mixed precision approach, ResQ improves Wiki-
text perplexity by 42–50%, 0-shot accuracy by 5.8–12.3%, and MMLU accuracy by 4.3–24.5%. Full
results are in Appendix D. Generative tasks We evaluate ResQ on auto-regressive tasks, includ-
ing GSM8K (math), dialogue summarization (qmsum, samsum), and code completion (repobench-p,
Table 2), to assess generation across domains. On GSM8K, where QUIK fails, ResQ surpasses Spin-
Quant by 3.8% (8B) and 5.5% (3B), narrowing the gap to 16-bit. In LongBench tasks, ResQ outper-
forms SpinQuant without additional training. Multi-modal understanding We evaluate ResQ on
vision-language models (VLMs) by quantizing the Qwen2 VL family and testing on MMMU (Ta-
ble 3, Yue et al. 2024). Only the language model is quantized, as it contains most parameters (over
10× for Qwen2-VL-7B-Instruct). ResQ outperforms baselines on 2B and 7B models, demon-
strating superior accuracy and generalizability. Individual MMMU task results are in Appendix E.
Hardware Performance We implement mixed-precision quantization using CUDA 11.8 and Py-
Torch, leveraging CUTLASS Thakkar et al. (2023) for INT4/INT8 GEMM on TensorCore. On an
NVIDIA RTX 3090, ResQ achieves 1.61×–3.03× speedup over 16-bit for a single decoder block
(Figure 3), with greater gains on larger models and shorter sequences. ResQ is only 14% slower
than INT4, demonstrating minimal overhead from mixed precision and on-the-fly projections.

4

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

4 CONCLUSION

We introduce ResQ, a mixed-precision PTQ method for 4-bit LLM quantization. ResQ projects
weights, activations, and KV cache to subspaces spanned by principal components, preserving high-
variance components (1/8 of hidden dimension) in 8-bit and quantizing the rest to 4-bit. It outper-
forms both uniform and mixed-precision baselines, demonstrating effectiveness across diverse tasks
on Llama and Qwen models. Compared to SpinQuant, ResQ reduces WikiText perplexity by up to
33% without retraining and achieves up to 3× speedup over 16-bit.

REFERENCES

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. SliceGPT: Compress large language models by deleting rows and columns.
arXiv:2401.15024, 2024a.

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. QUIK: Towards end-to-end 4-bit inference on generative large lan-
guage models. In Proceedings of the 2024 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3355–3371. Association for Computational Linguistics, 2024b. doi:
10.18653/v1/2024.emnlp-main.197. URL https://aclanthology.org/2024.em
nlp-main.197/.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference
in rotated llms. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and
C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp. 100213–
100240. Curran Associates, Inc., 2024c. URL https://proceedings.neurips.cc/p
aper_files/paper/2024/file/b5b939436789f76f08b9d0da5e81af7c-Pap
er-Conference.pdf.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3119–3137.
Association for Computational Linguistics, 2024. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-long.172.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 34, pp. 7432–7439, 2020.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv:2407.21118, 2024.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. QuIP: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36, 2024.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srini-
vasan, and Kailash Gopalakrishnan. PACT: Parameterized clipping activation for quantized neural
networks. arXiv:1805.06085, 2018.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv:1905.10044, 2019. URL https://arxiv.org/abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457, 2018.

5

https://aclanthology.org/2024.emnlp-main.197/
https://aclanthology.org/2024.emnlp-main.197/
https://proceedings.neurips.cc/paper_files/paper/2024/file/b5b939436789f76f08b9d0da5e81af7c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b5b939436789f76f08b9d0da5e81af7c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b5b939436789f76f08b9d0da5e81af7c-Paper-Conference.pdf
https://aclanthology.org/2024.acl-long.172
https://arxiv.org/abs/1905.10044

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv:2110.14168,
2021.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. SpQR: A sparse-quantized repre-
sentation for near-lossless llm weight compression. arXiv:2306.03078, 2023.

Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. QAQ: Quality adaptive quantization for llm
kv cache. arXiv:2403.04643, 2024.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Alis-
tarh. Extreme compression of large language models via additive quantization. arXiv:2401.06118,
2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
quantization for generative pre-trained transformers. arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for
few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/1
2608602.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Ziyi Guan, Hantao Huang, Yupeng Su, Hong Huang, Ngai Wong, and Hao Yu. APTQ: Attention-
aware post-training mixed-precision quantization for large language models. In Proceedings of
the 61st ACM/IEEE Design Automation Conference, pp. 1–6, 2024.

Yefei He, Luoming Zhang, Weijia Wu, Jing Liu, Hong Zhou, and Bohan Zhuang. ZipCache: Ac-
curate and efficient kv cache quantization with salient token identification. arXiv:2405.14256,
2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. KVQuant: Towards 10 million context length llm inference
with kv cache quantization. arXiv:2401.18079, 2024.

Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Xianglong Liu, Luca Benini, Michele Magno,
and Xiaojuan Qi. SliM-LLM: Salience-driven mixed-precision quantization for large language
models. arXiv:2405.14917, 2024.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training
quantization with small calibration sets. In International Conference on Machine Learning, pp.
4466–4475, 2021.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference of
llm. arXiv:2403.05527, 2024.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. SqueezeLLM: Dense-and-sparse quantization. arXiv:2306.07629,
2023.

6

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. OWQ: Outlier-aware
weight quantization for efficient fine-tuning and inference of large language models. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 13355–13364, 2024.

Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng,
Jun-Yan Zhu, and Song Han. SVDQuant: Absorbing outliers by low-rank components for 4-bit
diffusion models. arXiv:2411.05007, 2024. URL https://arxiv.org/abs/2411.050
07.

Bokai Lin, Zihao Zeng, Zipeng Xiao, Siqi Kou, Tianqi Hou, Xiaofeng Gao, Hao Zhang, and
Zhijie Deng. MatryoshkaKV: Adaptive kv compression via trainable orthogonal projection.
arXiv:2410.14731, 2024a.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quan-
tized llms. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024b.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of Machine Learning and Systems,
6:87–100, 2024c.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and
Song Han. QServe: W4a8kv4 quantization and system co-design for efficient llm serving.
arXiv:2405.04532, 2024d.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. QLLM: Accu-
rate and efficient low-bitwidth quantization for large language models. arXiv:2310.08041, 2023a.

Tianyang Liu, Canwen Xu, and Julian McAuley. RepoBench: Benchmarking repository-level code
auto-completion systems. arXiv:2306.03091, 2023b. URL https://arxiv.org/abs/23
06.03091.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. SpinQuant: Llm quantiza-
tion with learned rotations. arXiv:2405.16406, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman,
Beidi Chen, and Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for kv cache.
arXiv:2402.02750, 2024b.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv:1609.07843, 2016.

Meta. Llama 3.2: Revolutionizing edge AI and vision with open, customizable models, 2024a. URL
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mob
ile-devices/.

Meta. Introducing Meta Llama 3: The most capable openly available LLM to date., 2024b. URL
https://ai.meta.com/blog/meta-llama-3/.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee.
nuQmm: Quantized matmul for efficient inference of large-scale generative language models.
arXiv:2206.09557, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

7

https://arxiv.org/abs/2411.05007
https://arxiv.org/abs/2411.05007
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2306.03091
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/meta-llama-3/

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An ad-
versarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Charbel Sakr and Brucek Khailany. ESPACE: Dimensionality reduction of activations for model
compression. arXiv:2410.05437, 2024.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social iqa: Common-
sense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4463–4473, 2019.

Utkarsh Saxena, Gobinda Saha, Sakshi Choudhary, and Kaushik Roy. Eigen attention: Attention
in low-rank space for KV cache compression. In Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 15332–15344. Association for Computational Linguistics, 2024.
doi: 10.18653/v1/2024.findings-emnlp.899. URL https://aclanthology.org/2024.
findings-emnlp.899.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. OmniQuant: Omnidirectionally calibrated quantization for
large language models. arXiv:2308.13137, 2023.

Sayeh Sharify, Utkarsh Saxena, Zifei Xu, Wanzin Yazar, Ilya Soloveychik, and Xin Wang. Post
training quantization of large language models with microscaling formats. In NeurIPS Efficient
Natural Language and Speech Processing Workshop, pp. 241–258. PMLR, 2024.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. FlexGen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao Lu, Ethan Yan, Jack Kosa-
ian, Mark Hoemmen, Haicheng Wu, Andrew Kerr, Matt Nicely, Duane Merrill, Dustyn Blasig,
Fengqi Qiao, Piotr Majcher, Paul Springer, Markus Hohnerbach, Jin Wang, and Manish Gupta.
CUTLASS, January 2023. URL https://github.com/NVIDIA/cutlass.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even
better llm quantization with hadamard incoherence and lattice codebooks. arXiv:2402.04396,
2024. URL https://arxiv.org/abs/2402.04396.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing
Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men,
Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-VL: Enhancing vision-
language model’s perception of the world at any resolution. arXiv:2409.12191, 2024. URL
https://arxiv.org/abs/2409.12191.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-
of-the-art natural language processing. arXiv:1910.03771, 2020.

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers.
Advances in Neural Information Processing Systems, 36:49146–49168, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv:2412.15115,
2024a.

8

https://aclanthology.org/2024.findings-emnlp.899
https://aclanthology.org/2024.findings-emnlp.899
https://github.com/NVIDIA/cutlass
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2409.12191

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No Token Left Behind: Reliable kv cache compression via
importance-aware mixed precision quantization. arXiv:2402.18096, 2024b.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. ZeroQuant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu Sun,
Qiang Wu, Jiaxiang Wu, and Bingzhe Wu. RPTQ: Reorder-based post-training quantization for
large language models. arXiv:2304.01089, 2023a.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. ASVD:
Activation-aware singular value decomposition for compressing large language models.
arXiv:2312.05821, 2023b.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
Wenhu Chen. MMMU: A massive multi-discipline multimodal understanding and reasoning
benchmark for expert agi. arXiv:2311.16502, 2024. URL https://arxiv.org/abs/
2311.16502.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? arXiv:1905.07830, 2019.

Chao Zeng, Songwei Liu, Yusheng Xie, Hong Liu, Xiaojian Wang, Miao Wei, Shu Yang, Fang-
min Chen, and Xing Mei. ABQ-LLM: Arbitrary-bit quantized inference acceleration for large
language models. arXiv:2408.08554, 2024.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. Proceedings of Machine Learning and Systems, 6:196–209, 2024.

A RELATED WORKS

A.1 QUANTIZATION OF LLMS

Quantization reduces model size and accelerates inference by lowering neural network bit preci-
sion (Choi et al., 2018; Hubara et al., 2021; Yao et al., 2022; Park et al., 2022; Gholami et al., 2022;
Xi et al., 2023). It is broadly categorized into two categories: uniform precision quantization (UPQ)
and mixed precision quantization (MPQ). Uniform precision quantization (UPQ) applies the same
bit-width across all layers, simplifying implementation but neglecting layer-specific sensitivity to
quantization. Weight-only UPQ methods reduce storage by compressing weights, using techniques
like Hessian-guided rounding (GPTQ, Frantar et al. 2022), adaptive rounding (QuIP, Chee et al.
2024), channel-wise scaling (AWQ, Lin et al. 2024c), and multi-codebook quantization (AQLM,
Egiazarian et al. 2024). However, these methods struggle with batch processing due to significant
activation memory overhead. Weight-activation UPQ compresses both weights and activations to
address this. Methods such as SmoothQuant (Xiao et al., 2023) and OmniQuant (Shao et al., 2023)
scale activations and weights to handle outliers, while RPTQ (Yuan et al., 2023a), QLLM (Liu et al.,
2023a), and QServe (Lin et al., 2024d) employ channel-level strategies like clustering and reorder-
ing. Rotation-based methods such as QuaRot (Ashkboos et al., 2024c), SpinQuant (Liu et al., 2024a)
and DuQuant Lin et al. (2024b) further enhance robustness in low-precision scenarios. KV cache
UPQ reduces memory for large batches or long contexts. FlexGen (Sheng et al., 2023) employs
4-bit quantization and memory offloading, while KIVI (Liu et al., 2024b) uses asymmetric 2-bit
quantization for compression, enabling efficient inference.

9

https://arxiv.org/abs/2311.16502
https://arxiv.org/abs/2311.16502

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Mixed precision quantization (MPQ) optimizes bit-widths by adapting to the sensitivity of
weights and activations, achieving better accuracy than UPQ at similar compression rates. Our pro-
posed method, ResQ, follows the MPQ approach. Weight-only MPQ has advanced efficiency for
memory-bound applications with minimal activation demands. Methods like OWQ (Lee et al., 2024)
and SpQR (Dettmers et al., 2023) mitigate activation outliers’ impact by retaining critical features
in full precision, while SqueezeLLM (Kim et al., 2023) employs Dense-and-Sparse decomposition
to efficiently store sensitive weights. Weight-activation MPQ enhances efficiency by addressing
activation outliers (e.g. Guan et al. 2024; Zeng et al. 2024). Methods like LLM.int8() (Dettmers
et al., 2022) and QUIK(Ashkboos et al., 2024b) preserve critical activations with mixed or low-
precision decompositions, while Atom (Zhao et al., 2024) and SliM-LLM (Huang et al., 2024) op-
timize quantization through channel reordering and salience-driven bit allocation. KV cache MPQ
reduces memory usage while preserving precision for critical tokens using techniques like non-
uniform quantization, importance-aware precision, and salient token compression (Hooper et al.,
2024; Yang et al., 2024b; Dong et al., 2024; He et al., 2024). Alternatively, GEAR quantizes all
tokens’ KV cache and maintains low-rank quantization error (Kang et al., 2024).

A.2 LOW-RANK DECOMPOSITION

Low-rank decomposition techniques have been widely used in model compression, reducing dimen-
sionality while maintaining performance. For instance, SliceGPT Ashkboos et al. (2024a) projects
weight matrices onto principal components for sparsification, while ESPACE Sakr & Khailany
(2024) reduces activation dimensionality via pre-calibrated projections, achieving inference-time ef-
ficiency. Similarly, ASVD Yuan et al. (2023b) introduces an activation-aware decomposition method
that incorporates activation distributions into weight decomposition. Additionally, low-rank decom-
position can be applied to reduce KV cache size. For example, Eigen Attention Saxena et al. (2024)
and ASVD Yuan et al. (2023b) employ low-rank approximations to reduce memory usage in KV
caches during attention operations. PALU Chang et al. (2024) introduces learnable projections to
adaptively compress KV caches based on the compression budget. Finally, Matryoshka KV Cache
refines this with hierarchical orthogonal projections and knowledge distillation Lin et al. (2024a).

B PROOF OF THEOREM 2.1

We begin the proof by introducing the following lemma.

Lemma B.1. For any tensor R quantized following the quantization described in equation ??,
assuming the values of R follows a normal distribution, we have

E∥R−Q(R)∥F ≤
√
π log [size(R)]

2n−1 − 1
E∥R∥F (5)

where size(R) denotes the number of elements in R.

Proof of lemma B.1 can be found in Li et al. (2024). From this lemma we obtain that the quantization
error ∥R −Q(R)∥F is bounded by the magnitude of the tensor quantized ∥R∥F . Now for our use
case of mixed precision quantization where the low-precision component is quantized to L bits and
high precision component is quantized to H bits, we write the quantization error again below,

E∥X −Xq∥F = E∥XUl −QL(XUl)∥F
+ E∥XUh −QH(XUh)∥F .

(6)

10

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

The random rotation matrices R ensure that XUl and XUh are normally distributed by Lemma ??.
Applying Lemma B.1 to the quantization error in equation 6, we get,

∥X −Xq∥F ≤
√

log(size(XUl))π

2L−1 − 1
E||XUl||F

+

√
log(size(XUh))π

2H−1 − 1
E||XUh||F

=

√
log(size(XPl))π

2L−1 − 1
E||XPl||F

+

√
log(size(XPh))π

2H−1 − 1
E||XPh||F

=

√
log(size(XPl))π

2L−1 − 1
E||tr(XPlP

⊤
l X⊤)||F

+

√
log(size(XPh)π

2H−1 − 1
E||tr(XPhP

⊤
h X⊤)||F

(7)

We know size(XPl) = d − r and size(XPh) = r since r components are in high precision. With
PlP

⊤
L + PhP

⊤
h = I , we have

∥X −Xq∥F ≤
√

log(d-r)π
2L−1 − 1

(E∥X∥F − E∥XPh∥F)

+

√
log(r)π

2H−1 − 1
E∥XPh∥F

=

√
log(d-r)π

2L−1 − 1
E∥X∥F

− (

√
log(d-r)π

2L−1 − 1
−

√
log(r)π

2H−1 − 1
)E∥XPh∥F

(8)

Since
√

log(d-r)π
2L−1−1

−
√

log(r)π
2H−1−1

> 0 the quantization error is reduced by maximizing ∥XPh∥F

C ADDITIONAL IMPLEMENTATION DETAILS

We implement ResQ using the HuggingFace Transformers library Wolf et al. (2020) with PyTorch
Paszke et al. (2019). We share a single UA across all layers, while UB , UC and UD are generated
per layer. Following SpinQuant Liu et al. (2024a), we use per-token asymmetric quantization for
activations, per-channel symmetric quantization for weights, and per-head asymmetric quantization
for the KV cache. We fuse the projection matrices UA,UB ,UD into weights and apply GPTQ
Frantar et al. (2022) for weight quantization. To efficiently implement on-the-fly projections, UD is
a Hadamard matrix and UC and its activations are quantized to 8-bit.

In this work, obtaining the projection matrices and quantization of weights for all the models is
performed on a single NVIDIA A100 80GB GPUs. Time taken by ResQ compared with other
approaches is shown in Table ??. Evaluation on various benchmarks for all the models is also done
on a single NVIDIA A100 GPU with the sole exception of Meta-Llama-3-70b which requires
4 GPUs for evaluation. We use lm evaluation harness version 0.4.5 Gao et al. (2024) and
LongBench Bai et al. (2024) for all the evaluation tasks. For Arc-c/e, Hellaswag, OpenBook QA,
PIQA tasks we report acc norm while for BoolQ, SIQA and Winogrande we report acc.

For calibration data, we use 512 randomly choses samples for Wikitext to obtain the projection ma-
trices. While for GPTQ we use 128 randomly choses samples from Wiktiext following the original
work Frantar et al. (2022).

The KV cache, as well as the weights and activations of all Linear layers (except mlp.down proj),
are quantized to 4-bit precision, with 1

8 of channels retained in 8-bit precision. While, the weights
and activations within down proj are uniformly quantized to 4-bit precision. Following Ashkboos
et al. (2024c) and Liu et al. (2024a), we keep query vector in 16-bit.

11

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

D COMPLETE RESULTS OF MAIN RESULT TABLES

Detailed results of Table 1 in the main paper, including more models and task-by-task performance,
are shown in Tables 4 (Llama families) and 5 (Qwen2.5 family). As expected, ResQ achieves supe-
rior performance to baselines across the series of common sense reasoning and MMLU tasks.

Table 4: Comparison of perplexity on Wikitext, accuracy on eight 0-shot common sense reason-
ing tasks including ARC-challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA, SIQA,
and WinoGrande, and 0-shot massive multitask language understanding tasks across four subjects:
STEM, Humanities, Social Sciences, and MMLU-other, for the Llama 2, Llama 3 and Llama 3.2
families when quantized to W/A/KV = 4/4/4 bits. Results of all techniques were obtained using
their official codebase. *: Mixed precision with 1/8 channels in 8-bit for W/A/KV = 4.5-bit. All
techniques except RTN use GPTQ Frantar et al. (2022). (↓): lower is better, (↑): higher is better.

Llama 2 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Llama-2-7b-hf

16-bit 5.5 46.3 74.6 77.8 75.9 44.2 79.2 46.1 69.1 64.1 38.9 45.9 46.0 33.4 41.1
RTN 1766.2 26.3 27.8 54.8 29.4 25.8 51.0 35.0 48.7 37.4 24.5 24.7 22.9 22.2 23.6

GPTQ 9600.0 24.8 31.4 55.4 30.6 25.6 55.8 34.2 53.3 38.9 24.7 24.5 22.7 23.2 23.8
SmoothQuant+ 15.4 29.3 47.1 56.8 48.6 31.8 65.5 37.2 52.4 46.1 25.0 24.5 24.1 23.4 24.2

QUIK* 7.5 39.8 63.7 68.9 68.3 37.8 72.9 42.1 62.4 57.0 26.9 29.6 28.8 25.8 27.8
QuaRot 6.1 41.5 71.4 73.2 73.2 40.6 76.9 43.6 65.6 60.7 31.2 35.1 34.6 28.2 32.3

SpinQuant 6.0 43.6 71.3 73.8 73.2 40.4 76.0 44.1 65.4 61.0 33.9 38.5 37.5 29.5 34.8
ResQ* 5.8 44.0 72.6 75.3 74.0 41.0 77.9 43.9 66.9 62.0 35.9 40.9 42.2 32.2 37.7

Llama-2-13b-hf

16-bit 4.9 49.1 77.4 80.5 79.4 45.2 80.7 47.2 72.1 66.5 47.9 59.3 61.0 42.4 52.7
RTN 3543.9 22.8 29.8 40.2 26.6 27.8 51.4 35.6 50.6 33.5 23.7 25.0 23.1 22.6 23.6

GPTQ 3120.0 23.6 31.1 38.7 27.2 26.8 53.6 35.8 49.8 33.8 25.0 25.4 23.7 25.1 24.8
SmoothQuant+ 11.2 34.5 55.6 62.9 62.5 32.4 70.1 38.7 55.6 51.0 25.7 26.1 27.3 27.3 26.6

QUIK* 6.8 43.7 68.0 71.3 73.3 40.0 75.7 45.1 64.6 60.2 34.7 40.6 39.8 31.8 36.7
QuaRot 5.4 46.9 74.9 76.6 75.8 42.6 79.1 45.5 69.0 63.8 43.8 53.6 54.0 39.4 47.7

SpinQuant 5.2 49.0 76.3 78.2 77.1 42.8 79.3 46.3 69.5 64.8 43.5 53.1 55.4 39.1 47.8
ResQ* 5.1 49.1 76.1 79.7 77.9 43.6 79.1 46.6 69.9 65.2 45.3 56.0 58.0 41.0 50.1

Llama 3 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Meta-Llama-3-8B

16-bit 6.1 53.2 77.1 81.1 79.2 44.8 80.9 47.0 73.4 67.1 55.0 70.6 73.2 53.7 63.1
RTN 218.9 25.3 34.9 44.2 38.3 27.8 56.5 36.8 50.8 39.3 24.7 25.1 23.3 21.4 23.6

GPTQ 166.3 24.7 37.7 44.3 36.8 27.0 57.6 36.4 53.8 39.8 24.7 23.9 22.8 21.8 23.3
SmoothQuant+ 78.2 27.5 42.0 50.7 44.9 28.8 59.0 35.9 50.9 42.5 25.4 25.5 24.5 23.4 24.7

QUIK* 14.2 33.6 56.4 60.5 61.5 33.2 68.7 39.9 59.0 51.6 30.0 34.0 34.8 32.1 32.7
QuaRot 7.8 45.1 70.4 73.8 74.7 42.6 76.6 45.1 68.5 62.1 47.8 59.1 61.4 44.3 53.2

SpinQuant 7.4 48.0 75.4 75.8 75.4 43.8 77.5 45.0 69.2 63.8 49.8 63.3 65.0 46.8 56.2
ResQ* 7.1 49.2 75.0 72.5 76.5 43.0 78.3 45.8 71.0 63.9 50.6 64.4 65.8 48.1 57.2

Meta-Llama-3-70B

16-bit 2.9 64.2 85.9 85.3 84.9 48.6 84.4 50.8 80.6 73.1 67.6 81.5 86.8 68.4 76.1
RTN 452.7 32.6 50.3 54.2 41.3 31.6 64.8 35.9 53.2 45.5 24.5 23.8 22.3 22.1 23.2

GPTQ 11655.0 25.9 26.0 37.9 26.2 28.6 50.4 34.3 49.9 34.9 27.1 24.3 24.0 26.5 25.5
SmoothQuant+ - - - - - - - - - - - - - - -

QUIK* 8.0 44.5 68.9 60.7 75.0 36.4 76.1 43.2 60.4 58.2 46.6 56.4 58.0 43.6 51.1
QuaRot 5.7 53.7 74.5 81.6 81.1 46.6 81.0 46.8 75.2 67.6 55.7 72.5 75.8 57.3 65.3

SpinQuant 6.2 52.0 77.3 81.7 75.6 43.8 78.8 43.4 72.8 65.7 50.7 67.0 68.1 51.9 59.4
ResQ* 4.1 61.4 84.3 83.9 83.5 46.0 83.1 48.6 78.3 71.1 64.9 79.9 84.9 66.1 74.0

Llama 3.2 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Llama-3.2-1B

16-bit 9.8 36.5 60.6 63.4 63.6 37.4 74.5 42.8 60.1 54.9 34.8 41.1 39.9 32.0 36.9
RTN 329.1 22.4 29.9 53.4 31.4 29.4 54.8 34.9 48.5 38.1 24.8 25.2 22.4 22.7 23.8

GPTQ 108.9 24.7 32.7 52.3 30.7 23.6 54.3 34.4 51.1 38.0 24.7 25.1 25.5 24.5 24.9
SmoothQuant+ 228.9 23.3 30.1 52.9 31.3 26.6 54.2 34.5 51.2 38.0 23.9 24.1 25.0 23.5 24.1

QUIK* 21.8 27.4 46.0 55.0 46.0 26.4 62.4 38.6 52.6 44.3 25.6 25.6 24.6 24.5 25.1
QuaRot 14.3 30.0 51.4 59.1 54.0 34.2 66.7 39.6 57.1 49.0 25.4 26.9 25.4 24.4 25.5

SpinQuant 13.6 32.3 51.8 59.3 55.4 30.4 67.7 38.6 54.7 48.8 25.4 27.6 24.2 25.3 25.6
ResQ* 12.4 34.0 54.2 57.0 57.3 31.2 69.4 41.0 56.8 50.1 28.3 30.5 31.3 27.6 29.4

Llama-3.2-3B

16-bit 7.8 46.2 71.7 73.1 73.7 43.4 77.4 47.2 69.1 62.7 48.9 62.9 62.3 45.2 54.8
RTN 268.8 23.5 35.4 46.2 35.6 28.2 56.3 33.6 50.6 38.7 25.1 25.6 27.0 24.9 25.7

GPTQ 178.3 27.0 27.0 48.8 44.4 27.8 59.1 37.1 51.5 40.3 24.9 24.5 25.7 24.0 24.8
SmoothQuant+ 96.1 25.3 33.1 47.8 37.7 25.2 56.2 35.8 50.9 39.0 25.4 26.6 26.4 25.3 25.9

QUIK* 15.8 32.9 50.1 52.6 59.1 33.2 68.7 40.3 53.0 48.8 29.0 33.2 31.9 30.3 31.1
QuaRot 10.1 38.6 59.0 65.9 66.5 35.8 74.4 43.1 65.2 56.1 38.5 47.3 46.7 35.3 42.0

SpinQuant 9.2 38.9 64.8 68.0 69.1 39.4 74.9 45.1 62.9 57.9 37.0 49.4 50.5 39.9 44.2
ResQ* 8.8 43.1 65.6 68.8 70.5 38.4 75.1 45.6 64.8 59.0 44.7 57.0 56.5 41.0 49.8

E COMPLETE RESULTS OF THE MMMU BENCHMARK

This section presents task-by-task results for the MMMU benchmark across six subjects—Art &
Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engi-
neering—for the Qwen2 VL family when quantized to W/A/KV = 4/4/4 bits and W/A/KV = 4/8/4
bits of precision. On average, ResQ consistently outperforms all baselines across different models.
Notably, the advantage of ResQ becomes more pronounced with larger models. For instance, for
Qwen2-VL-7B-Instruct at W/A/KV = 4/8/4 bits of precision, ResQ achieves an average ac-
curacy score of 48.8, significantly outperforming the next-best method, QUIK, which scores 26.4,
representing an ∼ 85% relative improvement.

12

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 5: Comparison of perplexity score on Wikitext, accuracy on eight 0-shot common sense
reasoning tasks including ARC-challenge, ARC-easy, BoolQ, HellaSwag, Openbook QA, PIQA,
SIQA, and WinoGrande, and 0-shot massive multitask language understanding tasks across four
subjects: STEM, Humanities, Social Sciences, and MMLU-other, for the Qwen2.5 family when
quantized to W/A/KV = 4/4/4 bits. Results of all techniques were obtained using their official code-
base. *: Mixed precision with 1/8 channels in 8-bit for W/A/KV = 4.5-bit. All techniques except
RTN use GPTQ Frantar et al. (2022). (↓): lower is better, (↑): higher is better.

Qwen2.5 family

Model Method
Perplexity 0-shot common sense reasoning tasks 0-shot MMLU tasks

Wiki ARC-c ARC-e BoolQ HellaS OBQA PIQA SIQA WinoG Avg. humanities Other SocialS STEM Avg.
(↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

Qwen2.5-0.5B

16-bit 13.1 31.9 58.4 62.1 52.1 35.0 69.7 44.3 57.1 51.3 42.2 53.2 55.5 41.5 48.1
RTN 23204.3 26.2 27.0 39.3 26.0 24.0 50.7 34.5 51.5 34.9 24.8 24.0 22.8 24.3 23.9

GPTQ 16302.3 23.7 26.9 39.0 26.5 26.4 50.2 33.4 49.6 34.5 24.1 24.8 23.5 23.0 23.9
SmoothQuant+ 10053.9 25.9 26.3 39.9 27.2 25.4 47.1 35.9 49.6 34.7 24.5 24.7 21.5 22.1 23.2

QUIK* 38.6 24.5 38.6 48.0 36.9 28.4 58.1 36.4 51.9 40.4 26.3 25.9 23.6 24.2 25.0
QuaRot 219.9 25.4 36.6 45.0 28.9 28.6 54.1 32.9 51.7 37.9 24.4 24.0 23.0 23.5 23.7
ResQ* 29.6 27.1 44.2 53.2 38.8 28.0 61.9 34.4 51.3 42.4 26.1 27.5 25.3 26.0 26.2

Qwen2.5-1.5B

16-bit 9.3 45.1 72.1 72.9 67.7 40.2 76.3 48.8 63.7 60.8 53.5 65.5 70.6 52.8 60.6
RTN 14518.9 23.1 27.2 43.9 26.8 25.6 51.3 33.4 52.5 35.5 23.8 24.5 23.8 22.7 23.7

GPTQ 25769.7 23.9 26.9 43.9 26.1 27.6 49.7 32.1 51.5 35.2 24.6 24.7 23.7 23.8 24.2
SmoothQuant+ 31655.9 25.0 26.2 39.9 26.0 26.0 50.8 32.1 49.0 34.4 25.5 24.4 22.7 22.4 23.8

QUIK* 6613.5 21.8 31.9 40.9 27.9 27.4 52.8 35.2 48.6 35.8 24.6 24.0 21.9 21.7 23.1
QuaRot 6599.9 23.6 37.3 46.2 28.6 27.0 56.3 35.2 52.4 38.3 24.5 24.3 23.0 22.4 23.5
ResQ* 12.5 38.7 64.1 65.7 61.4 37.8 71.6 42.7 60.1 55.3 43.2 54.4 54.9 41.5 48.5

Qwen2.5-3B

16-bit 8.0 47.4 73.0 77.5 73.6 42.0 78.7 49.9 68.4 63.8 56.6 71.0 76.3 60.6 66.1
RTN 39033.0 25.6 25.8 41.7 26.3 27.4 49.5 33.1 51.4 35.1 24.5 24.4 22.8 21.9 23.4

GPTQ 9977.8 26.0 26.7 41.5 26.7 28.2 51.5 31.9 48.3 35.1 24.3 23.8 22.8 21.8 23.2
SmoothQuant+ 73306.7 25.4 24.5 41.0 26.4 29.8 48.4 32.4 50.4 34.8 25.6 24.7 23.1 22.4 23.9

QUIK* 15.5 36.1 55.4 61.4 57.2 36.2 67.1 40.8 55.3 51.2 36.4 42.8 42.4 36.1 39.4
QuaRot 68.8 32.4 53.1 51.6 49.2 33.4 66.7 39.3 56.4 47.7 28.1 32.0 28.9 26.6 28.9
ResQ* 9.0 45.3 70.5 72.7 70.2 42.4 76.8 46.7 64.4 61.1 53.1 66.5 70.5 54.8 61.2

Qwen2.5-7B

16-bit 6.8 51.2 77.6 84.7 78.9 47.2 80.0 54.8 73.2 68.4 62.6 76.7 82.6 70.1 73.0
RTN 24382.1 24.5 26.3 37.8 26.0 29.0 51.0 34.1 50.1 34.9 24.9 24.3 23.4 24.9 24.4

GPTQ 13593.7 25.2 25.6 37.8 26.3 28.2 52.4 34.4 48.9 34.8 24.4 24.3 22.8 22.6 23.5
SmoothQuant+ 19088.7 26.3 25.2 39.8 26.4 27.6 52.7 33.5 52.0 35.4 25.1 25.4 22.6 24.1 24.3

QUIK* 260.3 29.5 42.4 51.7 36.3 28.2 59.6 34.5 49.6 41.5 24.3 26.9 23.1 23.8 24.6
QuaRot 4035.9 25.9 41.0 39.1 29.1 27.6 57.9 35.7 50.6 38.4 24.8 24.4 24.4 22.7 24.1
ResQ* 8.2 49.0 74.7 81.4 75.7 45.0 78.9 49.4 68.2 65.3 57.8 74.4 79.3 64.5 69.0

Qwen2.5-14B

16-bit 5.3 58.8 79.4 85.4 82.9 45.4 81.9 55.3 75.8 70.6 69.9 81.9 86.2 76.5 78.6
RTN 2715 21.6 32.7 51.5 29.6 25.8 52.6 33.2 51.7 37.3 25.3 23.2 26.0 25.3 24.9

GPTQ 5100.3 23.8 29.1 47.7 30.1 27.6 51.3 34.6 51.2 36.9 25.1 24.7 25.1 24.3 24.8
SmoothQuant+ 1375.7 27.0 26.3 38.0 26.8 29.2 51.6 32.4 49.3 35.1 25.9 24.5 22.2 22.2 23.7

QUIK* 10.5 45.0 67.1 64.7 68.9 37.6 74.8 43.9 59.3 57.6 48.9 61.1 64.7 51.5 56.6
QuaRot 6.8 54.8 79.6 79.9 78.7 44.0 79.5 49.9 70.7 67.1 60.9 75.1 80.2 67.3 70.9
ResQ* 6.2 57.6 82.1 84.9 81.1 44.8 80.5 51.7 70.6 69.2 65.2 78.4 83.4 71.5 74.6

Qwen2.5-32B

16-bit 5.0 55.7 78.0 87.4 84.1 44.4 82.3 56.4 75.2 70.4 73.1 83.6 89.6 81.2 81.9
RTN 1847.4 24.3 35.3 51.4 31.9 27.0 52.8 34.1 51.4 38.5 24.5 25.1 25.3 24.3 24.8

GPTQ 3891.1 25.4 35.4 48.5 31.8 27.0 53.8 35.8 50.5 38.5 25.9 24.8 23.6 24.0 24.6
SmoothQuant+ - - - - - - - - - - - - - - -

QUIK* 9.6 41.0 64.6 74.9 72.0 39.6 75.8 44.5 60.2 59.1 54.7 66.8 71.3 58.8 62.9
QuaRot 6.1 54.5 76.1 85.1 81.5 44.2 80.1 51.3 70.4 67.9 68.5 80.0 86.0 76.0 77.6
ResQ* 5.6 55.1 78.4 86.0 82.5 45.4 81.1 53.9 74.0 69.5 70.3 82.3 87.9 78.9 79.8

Qwen2.5-72B

16-bit 3.9 62.6 83.2 89.2 86.0 46.6 83.6 58.4 77.7 73.4 77.2 86.9 90.6 82.4 84.3
RTN 45412.7 25.9 26.3 38.0 25.9 25.2 50.0 34.2 48.7 34.3 25.5 24.2 23.0 23.2 24.0

GPTQ 37967.2 25.4 25.8 38.1 25.6 26.6 51.2 34.2 49.4 34.5 25.1 24.0 21.9 22.2 23.3
SmoothQuant+ - - - - - - - - - - - - - - -

QUIK* 8.3 45.1 68.1 77.2 77.2 39.0 77.4 45.6 65.6 61.9 60.2 74.3 77.5 65.3 69.3
QuaRot 4.9 55.8 81.1 87.5 84.0 45.2 81.7 52.5 74.5 70.3 71.4 84.2 87.7 77.1 80.1
ResQ* 4.6 58.4 80.9 88.4 84.9 48.2 82.6 55.5 77.0 72.0 72.8 84.6 89.0 79.5 81.5

13

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 6: Accuracy (higher is better) on 0-shot massive multi-discipline multimodal understanding
and reasoning tasks across six subjects: Art & Design, Business, Science, Health & Medicine,
Humanities & Social Science, and Tech & Engineering for the Qwen2 VL Instruct family. Results
of all techniques were obtained using their official codebase. Our work ResQ and QUIK Ashkboos
et al. (2024b) keep 1/8 of channels in 8-bit for average of 4.5-bit. All techniques except RTN use
GPTQ Frantar et al. (2022).

Qwen2-VL-2B-Instruct

W/A/KV (bit) Method 0-shot MMMU tasks
Art-Design Business Science Health Humanities Tech Avg.

16/16/16 Baseline 56.7 36.0 37.3 50.8 26.0 31.0 39.6

4/4/4
RTN 28.3 18.7 26.0 26.7 21.3 29.1 25.0

GPTQ 28.3 27.3 27.0 29.0 26.7 27.6 27.7
QuaRot 24.2 23.3 20.7 26.7 26.0 22.9 24.0

4.5/4.5/4.5 QUIK 25.8 26.0 26.7 29.2 26.0 24.3 26.3
ResQ 38.3 21.3 28.7 45.0 21.3 23.3 29.7

4/8/4
RTN 27.5 21.3 27.3 24.2 21.3 27.6 24.9

GPTQ 24.2 23.3 24.0 18.3 21.3 29.5 23.4
QuaRot 20.0 24.7 30.0 26.7 26.0 31.4 26.5

4.5/8/4.5 QUIK 33.3 28.7 32.0 32.5 26.0 18.1 28.4
ResQ 37.5 32.0 32.7 47.5 26.7 27.6 34.0

Qwen2-VL-7B-Instruct

W/A/KV (bit) Method 0-shot MMMU tasks
Art-Design Business Science Health Humanities Tech Avg.

16/16/16 Baseline 68.3 41.3 54.7 68.3 38.7 38.1 51.6

4/4/4
RTN 24.2 28.0 29.3 22.5 29.3 27.1 26.7

GPTQ 21.7 26.0 25.3 28.3 24.7 23.3 24.9
QuaRot 21.7 21.3 28.7 25.0 20.7 29.5 24.5

4.5/4.5/4.5 QUIK 30.8 30.0 32.0 26.7 28.0 26.2 28.9
ResQ 65.0 39.3 45.3 61.7 34.0 36.7 47.0

4/8/4
RTN 23.3 28.7 27.3 25.0 22.7 24.3 25.2

GPTQ 20.8 23.3 30.0 19.2 24.0 28.6 24.3
QuaRot 20.8 26.0 30.0 19.2 24.7 26.2 24.5

4.5/8/4.5 QUIK 25.0 23.3 31.3 26.7 25.3 26.7 26.4
ResQ 67.5 39.3 51.3 64.2 36.7 33.8 48.8

14

	Introduction
	ResQ
	Quantization Scheme and Projections
	Inference computation with optimized projections

	Experiments
	Conclusion
	Related Works
	Quantization of LLMs
	Low-rank decomposition

	Proof of Theorem 2.1
	Additional implementation details
	Complete results of main result tables
	Complete results of the MMMU benchmark

