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Abstract

Missing values imputation is often evaluated on
some similarity measure between actual and im-
puted data. However, it may be more meaningful
to evaluate downstream algorithm performance
after imputation than the imputation itself. We de-
scribe a straightforward unsupervised imputation
algorithm, a minimax approach based on optimal
recovery, and derive probabilistic error bounds
on downstream non-negative matrix factorization
(NMF). We also comment on fair imputation.

1. Introduction
The performance of missing values imputation is typically
measured by how similar imputed data is to original data,
but Tuikkala et al. (2008) claim it is more meaningful to mea-
sure the accuracy of downstream analysis (e.g. clustering
accuracy) after imputation. Several groups have evaluated
the effects of different imputation methods on clustering and
classification accuracy (Chiu et al., 2013; de Souto et al.,
2015). We (2019) extended this to quantify non-negative
matrix factorization (NMF) accuracy after imputation, and
introduced a new imputation technique. In this paper, we
find a probabilistic bound for NMF error.

NMF is a popular clustering algorithm used by scientists
because of its identifiability, or model uniqueness, and its
interpretability, with resulting latent factors being intuitive
(Li & Ngom, 2013; Qi et al., 2009). NMF has been used
for speech and audio separation, community detection, and
topic modeling. In biology, NMF of gene count matrices
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can discover cell groups and lower-dimensional manifolds
(latent factors) describing gene count ratios for different cell
types. However, due to channel noise, incomplete survey
data, or biological limitations, data matrices are usually
incomplete and matrix imputation is often needed before
further analysis (Li & Ngom, 2013). In particular, “newer
MF algorithms that model missing data are essential for
[single-cell RNA] data” (Stein-O’Brien et al., 2018).

We took up this challenge using optimal recovery (Golomb
& Weinberger, 1959; Micchelli & Rivlin, 1976; 1985), an
estimation-theoretic approach used for signal and image in-
terpolation (Donoho, 1994; Muresan & Parks, 2004; Shenoy
& Parks, 1992). We previously found a tight worst-case
bound on NMF error following our minimax imputation,
and experiments showed competitive performance with
more complicated imputation techniques (Chen & Varsh-
ney, 2019). In this paper, we find several probabilistic error
bounds, which would better characterize experimental re-
sults and serve as useful benchmarks for algorithms. We
made no assumptions on the missingness pattern for the
worst-case bound (Little & Rubin, 2002), but we assume
samples are missing completely at random (MCAR) for our
probabilistic bounds. Finally, we discuss how our minimax
approach aligns with certain notions of fairness.

2. Related Work
2.1. Non-negative matrix factorization (NMF)

When used to perform cluster analysis, NMF outputs latent
factors that characterize the clusters. Donoho & Stodden
(2004) interpret NMF as the problem of finding cones in
the positive orthant which contain clouds of data points.
Liu & Tan (2017) show that a rank-one NMF gives a good
description of near-separable data and provide an upper
bound on the relative reconstruction error. Given certain
biological data is often linearly separable on some manifold-
or high-dimensional space (Clarke et al., 2008), the bound
given by rank-one NMF is valid. We describe this conical
model below (Donoho & Stodden, 2004; Fu et al., 2019;
Liu & Tan, 2017).

Let V ∈ RF×N
+ be a matrix of N sample points with F

non-negative observations. Suppose the columns in V are
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generated from K clusters. There exist W ∈ RF×K
+ and

H ∈ RK×N
+ such that V = WH. This is the NMF of V

(Lee & Seung, 1999).

Suppose the N data points originate from K cones. We
define a circular cone C(u, α) by a direction vector u and
an angle α:

C(u, α) :=

{
x ∈ RF \{0} :

x · u
‖x‖2

≥ cosα

}
. (1)

We truncate the circular cones to be in the non-negative
orthant P . All x’s belonging to Ck can be considered as
noisy versions of uk, where k = 1, . . . ,K. We call the
angle between cones βij := arccos(ui · uj). Assume that

min
i,j∈[K],i6=j

βij > max
i,j∈[K],i6=j

{max{αi + 3αj , 3αi + αj}}.

(2)
This is a common assumption used to guarantee cluster-
ing performance (Bu et al., 2017; Liu & Tan, 2017; Ng
et al., 2001). We can then partition V into k sets, denoted
Vk := {vn ∈ Ck ∩ P}, and rewrite Vk as the sum of
a rank-one matrix Ak (parallel to uk) and a perturbation
matrix Ek (orthogonal to uk). For any vector z ∈ Vk,
z = ‖z‖2(cosβ)uk + y, where ‖y‖2 = ‖z‖2(sinβ) ≤
‖z‖2(sinαk). This rank-one approximation is used to find
error bounds (Liu & Tan, 2017).

2.2. Optimal recovery imputation

When there are missing values in clustered data, local impu-
tation approaches, or those based on local patterns (such as
cluster membership or closest neighboring points), can be
used to impute values. Popular algorithms that utilize local
structure include k-nearest neighbors, local least squares,
and bicluster Bayesian component analysis (Hastie et al.,
1999; Kim et al., 2005; Meng et al., 2014).

Optimal recovery imputation minimizes NMF error under
certain geometric assumptions on data and enables error
bound derivation (Chen & Varshney, 2019). Suppose we
are given an unknown signal v that lies in some signal class
Ck. The optimal recovery estimate v̂ minimizes the maxi-
mum error between v̂ and all signals in the feasible signal
class. Given well-clustered non-negative data V, we impute
missing samples in V so the maximum error is minimized
over feasible clusters, regardless of the missingness pattern.

Suppose there are missing values in V. Let Ω ∈ {0, 1}F×N
be a matrix of observed values indicators with Ωij = 1 if
vij is observed and 0 otherwise. We define the projection
operator of a matrix Y onto an index set Ω by

[PΩ(Y)]ij =

{
Yij if Ωij = 1
0 if Ωij = 0

.

We use the subscripted vector (·)fo to denote fully-observed
data points (columns), or data points with no missing values,

Figure 1. Feasible set of estimators.

and we use the subscripted vector (·)po to denote partially-
observed data points. We use a subscripted matrix (·)fo
or (·)po to denote the set of all fully-observed or partially-
observed data columns in the matrix.

We can impute a partially-observed vector vpo by see-
ing where its observed samples intersect with the clusters
C1, ..., Ck, as shown in Fig. 1. Let the missing values plane
be the restriction set over RF that satisfies the constraints
on the observed values of vpo. We call this intersection the
feasible set W :

W =

K⋃
k=1

{v̂po ∈ Ck : PΩ(v̂po) = PΩ(vpo)}. (3)

For some norm or error function, ‖ · ‖, the optimal recov-
ery estimator v̂∗po minimizes the maximum error over the
feasible set of estimates:

v̂∗po = arg min
v̂po∈Ck

max
v∈Ck

‖v̂po − v‖. (4)

If W contains estimators belonging to more than one Ck,
W can be partitioned into disjoint setsWk. Feasible clusters
are those for which Wk is not empty.

If the columns in V come from K circular cones defined as
(1), there is a pair of factor matrices W∗ ∈ RF×K

+ ,H∗ ∈
RK×N

+ , such that

‖V −W∗H∗‖F
‖V‖F

≤ max
k∈[K]

{sinαk}. (5)

The optimal recovery estimator v̂∗po would minimize αk in
(1), which is equivalent to:

v̂∗po = arg max
v̂po∈Ck

{(v̂po · uk)2 − (v̂po · v̂po) cos2(αk)}. (6)

If the geometric assumption (2) holds, a greedy clustering
algorithm (Alg. 1) returns correct clustering of partially
observed data under certain conditions, and error is bounded
as

‖V −W∗
poH

∗
po‖F

‖V‖F
≤ max

k∈[K]
{sin 2αk}, (7)

where W∗
po and H∗po are found by Alg. 2. Experiments show

that this algorithm performs well on biological and imaging
data in comparison to more complex methods (Chen &
Varshney, 2019).
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Algorithm 1 Greedy Clustering with Missing Values

Input V ∈ RF×N
+ , K ∈ N, Ω ∈ {0, 1}F×N

Output J ∈ {0, 1, ...,K}N ; α ∈ (0, π/2)K ; u ∈ RF×K
+

1: Partition columns in V into subsets Vfo and Vpo,
where Vfo contains data columns for which

∑
i rij =

F , and Vpo contains remaining columns.
2: Normalize Vfo so that all columns have unit `2-norm.

Let V′fo be the normalized matrix
3: Cluster items in V′fo using greedy clustering (See Alg.

1 from (Liu & Tan, 2017)) to obtain cluster indices J
and obtain minimax centers u1, ..., uk from W ∗.

4: for vpo ∈ Vpo do
5: Let Ωj correspond to observed entries of vpo. Find

k = arg maxj∈[K] cos−1
(

PΩ(zj)·PΩ(v)
‖PΩ(zj)‖‖PΩ(v)‖

)
. If this

condition is maximized by more than one k, choose
one at random. Add the index of vpo to Jk.

6: end for
7: for k ∈ [K] do
8: αk = maxvpo cos−1

(
PΩ(vpo)·PΩ(uk)
‖PΩ(vpo)‖‖PΩ(uk)‖

)
9: end for

10: Return cone indices J , u, α

Algorithm 2 Rank-1 NMF with Missing Values

Input V ∈ RF×N
+ , Ω ∈ {0, 1}F×N , K ∈ N

Output Ŵ∗ ∈ RF×K
+ and Ĥ∗ ∈ RK×N

+

1: Cluster data using Alg. 1
2: Impute data using (4)
3: Perform rank-1 NMF on imputed data using Alg. 2

from (Liu & Tan, 2017)

3. Probabilistic error
We now make some probabilistic assumptions on our data
and missingness patterns to calculate the expected maximum
error of optimal recovery imputation. First, consider a cone
C in an F -dimensional space defined by u and α. Let us
ignore the length of the vectors in C and preserve only
the angles of the vectors from u. We can then represent
vectors of an F -dimensional cone as points in an (F − 1)-
dimensional ball. For example, a 3-dimensional cone can
be represented as points in a circle.

Let there be N points {x1, . . . , xN} ∈ RF , drawn uni-
formly at random from K F -dimensional balls, labeled
B1, . . . , BK . Let d(xi, xj) be the Euclidean distance be-
tween xi and xj . We assume there is at least one data point
in each ball, and that

max
i,j∈Bk

d(xi, xj) < min
i∈Bk,j /∈Bk

d(xi, xj), for all k = 1, . . . ,K.

This is equivalent to the geometric assumption in (2), and
we can correctly cluster any points drawn from such balls

using Alg. 1. After obtaining the clusters, we compute
the minimum covering sphere (MCS) on the points in each
cluster (Hopp & Reeve, 1996). This gives us K balls with
Nk points in each ball.

Now suppose we have partially observed entries in our data.
Let the missingness of a point be a Bernoulli(γ) random
variable. That is, x is fully observed with probability γ and
partially observed with probability 1−γ. There is now some
uncertainty about the position of partially observed data
points, so we find the MCS for only the fully observed points.
This is analogous to step 3 in Alg. 2. By calculating the
expected change in the radius of the MCS, we can calculate
the expected change in its corresponding cone.
Theorem 1 (Probabilistic bound on NMF error). Given the
setting described above, and assuming that the N points
are drawn uniformly at random from the K balls. Suppose
the points are randomly distributed along the radius of the
F -ball and we pick points to be partially observed uniformly
at random. Then after imputing with Alg. 1, we can tighten
the bound in (7) to

‖V −W∗
poH

∗
po‖F

‖V‖F
≤ max

k∈[K]
{sinαk}. (8)

Proof. If the N points are drawn uniformly at random from
the K balls, then E[Nk] = N/k, and the expected num-
ber of fully observed and partially observed points in each
cluster is E[|Xk,fo|] = γNk and E[|Xk,po|] = (1− γ)Nk.

Clearly, the volume of the MCS can only decrease as |Xk,fo|
decreases. Let Rmax be the radius of MCS if there were
no missing values, and let R̂ be the radius of the MCS of
only the fully observed points. Then R̂ < Rmax only if any
x ∈ Xpo originally lay on the surface of MCSk,fo.

Let
Npo = d(1− γ)Ne. (9)

Assume xi are i.i.d. and uniformly distributed (without loss
of generality) on [0, 1]. This matches the assumption in
the probabilistic analysis in (Liu & Tan, 2017) that the
angles are drawn uniformly at random on [0, α] (see Fig. 2).
Assuming a continuous distribution, almost surely no two
points have exactly the same radius, and the probability of
picking the ` outermost points is

P(`) =

(
N − `
Npo − `

)/(
N

Npo

)
, where ` = 0, 1, ..., Npo .

(10)
This gives us

E[`] =

Npo∑
`=1

` · P[`] =
1(
N
Npo

) Npo∑
`=1

` ·
(
N − `
Npo − `

)
(11)

=

(
N−1
Npo−1

)
N(N + 1)(

N
Npo

)
(N −Npo + 1)(N −Npo + 2)

, (12)
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Figure 2. Assumption that points are uniformly random on the
radius.

Figure 3. Example of E[R̂] with N = 9 and ` = 3.

where Npo is dependent on γ, as defined in (9).

The radius of the resulting MCS is dependent on the dis-
tribution of points along the radius. We can determine R̂
using order statistics. If we assume uniform distribution
between 0 and 1, and order the points x1, . . . , xn so that x1

is closest to the center of the sphere and xn is farthest, the
radius of the nth point, Rn, is given by the beta distribution
Rn ∼ B(n, 1), and E[Rn] = n

n+1 .

Thus if ` of the outermost points are chosen to be missing,

E[R̂] = Rmax − (`/N)Rmax =

(
N − `
N

)
Rmax . (13)

We illustrate with an example in Fig. 3. We can substitute
E[`] for `, and since E[`] is a function of γ, we have derived
the expected radius of the MCS as a function of missingness:

E[R̂] =

(
N − E[`]

N

)
Rmax . (14)

Now we reverse the arrow in Fig. 2. Due to the random
distribution of points in the sphere, removing the ` outermost
points does not change the expected center u of the MCS.
Transitioning from spheres back to cones, we get

E[α̂] =

(
N − E[`]

N

)
α . (15)

Thus α − E[α̂] = E[`]
N · α, and the normalized Frobenius

distance between W∗
foH

∗
fo and W∗H∗ for a single cone

is:

‖W∗
foH

∗
fo −W∗H∗‖F
‖W∗H∗‖F

≤ sin

(
E[`]

N
· α
)
. (16)

If we assume vn ∈ V are MCAR, the statistical mean
of Vfo is the same as that of V. Since vn are uniformly
distributed, the range of vn remains centered on the mean,
so the expected center of the MCS does not change. Thus
the maximum difference between a point v ∈ Ck and its
imputed point v̂ is sinαk, and the theorem follows.

Theorem 2 (Probabilistic bound on NMF error with differ-
ent assumption). If instead we assume points are uniformly
distributed in the volume of the ball, we can find the corre-
sponding change in radius. The expected NMF error is

E
[
‖V −W∗H∗‖F
‖W∗H∗‖F

]
= sin

(
E[R̂] · α

)
. (17)

Proof. See Appendix A in supplemental materials.

Theorem 3 (Probabilistic bound on NMF error with normal-
ized data). If the data is normalized such that each vector
has an L2 norm of 1,

E
[
‖V −W∗H∗‖F
‖W∗H∗‖F

]
= sin (E[αpo]) . (18)

Proof. See Appendix B in supplemental materials.

4. Discussion
We gave a probabilistic error analysis of a clustering algo-
rithm after minimax imputation. This analysis style can be
extended to other clustering and imputation algorithms; var-
ious applications may require different model assumptions.

We now discuss the minimax approach and its implications
on fairness. Missingness patterns themselves may carry
information (Ghorbani & Zou, 2018), and statistics-based
imputation methods may introduce unfairness (Martinez-
Plumed et al., 2019). In certain social contexts, biases in
algorithms can lead to unfair policy-making (Williams et al.,
2018). Researchers attempt to mitigate some of these biases
using multiple imputation (Azur et al., 2011) or weighted
estimators (Chen et al., 2019). Philosopher John Rawls
argues that in an effort to provide all individuals with equal
opportunities, inequalities should only exist if they result in
the worst off being better off (Rawls, 1971). In a scenario
where one’s place in society is chosen at random (including
social status and other assets), one would prefer to land in a
society that plays by a minimax rule, where the disadvantage
of the worst off is minimized.

Future work aims to study how minimax imputation impacts
fairness in decision-making and clustering (Chierichetti
et al., 2017).
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Appendix A
Theorem: Probabilistic bound on NMF error with dif-
ferent assumption

If instead we assume points are uniformly distributed in the
volume of the ball, we find the change in radius as follows.
the expected NMF error is

E
[
‖V −W∗H∗‖F
‖W∗H∗‖F

]
= sin

(
E[R̂] · α

)
. (1)

Proof. If points are uniformly distributed in the volume
of the ball, we find the change in radius as follows. First,
calculate the volume of a F -dimensional ball of radius R =
1:

VF (R) =
πF/2

Γ(F/2 + 1)
RF . (2)

Then we calculate radius R̂ of an F -dimensional ball as:

R̂F (V̂ ) =
Γ(F/2 + 1)1/F√

π
V̂ 1/F , (3)

where volume V̂ =
(
1−`
N

)
VF (1).

The probability that a point x is in MCSpo is V (R̂)
V (Rmax)

.

Thus the expected radius given a missing parameter γ is
given by

E[R̂] = R̂F

(
1− E[`]

N
VF (1)

)
, (4)

where E[`] is a function of γ, and the expected NMF error
is

E
[
‖V −W∗H∗‖F
‖W∗H∗‖F

]
= sin

(
E[R̂] · α

)
. (5)

Appendix B
Theorem: Probabilistic bound on NMF error with nor-
malized data

If the data is normalized such that each vector has an L2

norm of 1,

E
[
‖V −W∗H∗‖F
‖W∗H∗‖F

]
= sin (E[αpo]) . (6)

Proof. If the data is normalized such that each vector has
an L2 norm of 1, all the points will fall on the surface
of a sphere. Let there be N points {x1, . . . , xN} ∈ RF ,
drawn at random from K F -dimensional spherical caps of
a radius R F -ball, labeled C1, . . . , CK . Let d(xi, xj) be
some distance between xi and xj . Assume there is at least
one data point in each spherical cap, and that our geometric
assumption holds.

The area of an F -dimensional spherical cap is

A(R, h) =
1

2
AFR

F−1I2rh−h2/r2
(
F − 1

2
,

1

2

)
, (7)

where 0 ≤ h ≤ R,An = 2πn/2/Γ[n/2] is the area of
the unit n-ball, h is the height of the cap, which can be
calculated as a function of the angle α between the center
and the edge of the cap, and Ix(a, b) is the regularized
incomplete beta function. Using the same style of analysis
from the previous section, we can find the expected angle
E[αpo] given a parameter γ for partially observed points.
Thus,

E
[
‖V −W∗H∗‖F
‖W∗H∗‖F

]
= sin (E[αpo]) . (8)


