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Abstract

Fine-tuning pre-trained models has gained significant success in delivering SOTA
results across various NLP tasks. In the absence of centralized data, Federated
Learning (FL) helps the model to benefit from clients’ private data for fine-tuning.
However, due to the limited communication, computation, and storage capabil-
ities of edge devices and the huge sizes of popular pre-trained models, efficient
fine-tuning is crucial. This work explores the opportunities and challenges of
applying parameter-efficient fine-tuning (PEFT) methods in FL for language tasks.
Specifically, our investigations reveal that with increasing data heterogeneity across
users, the gap between fully fine-tuning the model and employing PEFT methods
widens. To bridge this performance gap, we propose a method, SLoRA, which over-
comes the key limitations of LoRA in high heterogeneous data scenarios through a
novel data-driven initialization technique. Our experimental results demonstrate
that SLoRA achieves performance comparable to full fine-tuning, with significant
sparse updates with ∼ 1% density while reducing training time by up to 90%.

1 Introduction

With the popularity of smartphones and personal gadgets, valuable user data is distributed more than
ever. This data can help different companies and service providers improve their products and make
them more efficient and personalized. However, privacy is a growing and crucial concern that is
inevitable to avoid. Users care about the performance of their applications but do not want their
private data to be accessed by everyone. To solve both problems we can benefit from Federated
Learning (FL) [25, 18]; users collaboratively train a common model locally and only share their
model update with a server that orchestrates the training process over multiple training rounds.

Although FL has already proven beneficial in various domains [15], such as next-word prediction and
healthcare, it still has critical challenges to be deployed on large scales. Here we mainly focus on the
efficiency of FL for clients with heterogeneous data distribution in pre-trained language models.
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Large pre-trained language models have proven to perform very well even in the zero-shot setting
[5]. However, as the tasks get more specialized, these models require fine-tuning to enhance their
performance [14]. FL is a promising solution to provide privacy for fine-tuning, but asking the
clients to fine-tune the models and communicate the update has downsides. In particular, fine-tuning
can be computationally expensive, especially for larger models. Besides, language models are not
used in one application, and clients need to fine-tune them on several tasks. As a result, supporting
multi-tasks is also challenging, especially in memory-constrained scenarios (e.g., edge devices),
because the required memory for the fine-tuned models grows linearly with the number of tasks.

The next concern of shifting the fine-tuning to the client side is overhead. Edge devices usually have
very little bandwidth (especially up-link) as multiple users share the same resource. Furthermore,
both communicating and training can be highly energy-consuming. Therefore, the direct use of FL
for NLP tasks may limit its applicability.

Recently, Parameter Efficient Fine Tuning (PEFT) [14, 24, 21] has emerged as an alternative training
strategy that does not require fine-tuning of all parameters of the pre-trained model but only updates
a small portion of the parameters (task-specific parameters) while freezing most of the pre-trained
weights of the model to their initial pre-trained values. This approach has been shown to maintain
task performance while reducing the parameter budget needed in the centralized setting.

In this work, we first explore the performance of the existing PEFT method in FL. We observe that
the gap between Full Fine Tuning (FFT) and PEFT increases with clients’ data heterogeneity. To this
aim, we propose a new algorithm, SLoRA, designed for FL that can achieve first parameter efficiency,
second, reduce training and communication cost, and finally close the gap between PEFT and FFT.

2 Related Work

Parameter Efficient Fine Tuning (PEFT). In general, PEFT methods can be broadly classified into
two main categories based on the nature of the tuned parameter. The first category fine-tunes a subset
of existing parameters within the original pre-trained model for each task [10]. The second category
is module-based fine-tuning, where an additional set of parameters (e.g., modules) are added for each
task. These modules are fine-tuned while freezing the entire pre-trained model.

Different methods have been proposed depending on where the modules are inserted into the model.
Adapter and its variants add bottleneck trainable modules serially to the model components [13, 27,
11]. Another approach is to add modules in parallel to model parameters such as LoRA [14] and
prefix or prompt tuning added in parallel to the attention heads [24] or embeddings [21].

PEFT in FL. Recent studies [31, 33] have investigated the performance of various PEFT methods
within the context of FL for vision and NLP tasks considering different aspects, such as client stability,
data distribution, and differential privacy settings. The findings indicated that PEFT could replace
FFT without compromising performance while significantly reducing communication costs.

Our study differs from the prior works in several key aspects. Firstly, we specifically study PEFT
for language models and additionally examine the effect of data heterogeneity across clients on the
performance of PEFT for NLP tasks. Secondly, our work extends beyond benchmarking different
PEFT methods in the federated setting to propose an approach that yields comparable performance to
FFT even in extreme non-IID settings.

Efficient Training in FL. Efficient training in FL has been extensively studied in the literature
[7, 12, 1, 26, 16, 23, 22]. Efficient training in FL employs sparse training at different levels. Some
approaches only apply sparse training at the client side to update a full-size model retained at the
server [7, 12, 1, 26]. Other approaches utilize sparse training to optimize a model that is sparse both
at the client and server sides [4, 3, 28, 22].

Given efficient learning and PEFT, both share a common goal of reducing the training complexity for
the clients; they may seem very similar at first glance. However, PEFT also focuses on the unique
aspect of storage load for multiple tasks. Applying efficient sparse training methods on (pre-trained)
large language models typically can only retain good performance with a moderate level of sparsity
[8, 9, 6]. This can result in a huge storage penalty as sparsity patterns can differ across different tasks.
On the other hand, PEFT retains the full pre-trained model but applies extremely sparse with (∼ 1%)
density updates [14, 13, 32, 27, 11] to the pre-trained model per task, which allows for substantial
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storage savings and significant reduction on the communication cost. Importantly, PEFT does this
while providing a strong comparable performance to the fully fine-tuned model.

3 Preliminaries

3.1 PEFT Baselines in Centralized Learning

We investigate Pfieffer, LoRA, Holusby, and BitFit as state-of-the-art PEFT methods. The first
three methods add a separate bottleneck module (a down projection dense layer followed by an up
projection) with a dimension r to the model, differing on where the module is added. Holusby [13]
places a bottleneck module after the multi-head attention and feed-forward block in each Transformer
layer. Pfieffer [27] places a bottleneck module only after the feed-forward block in each Transformer
layer. In LoRA [14], the bottleneck module can be parallel to any dense layer in the model. Finally,
BitFit [32] is a simple method that only allows fine-tuning the bias terms.

3.2 Observation: PEFT is challenged when data distribution gets non-IID

One of the challenges in FL is performance degradation caused by heterogeneous data distributions
[15]. While this is a well-documented phenomenon reflected in FFT in FL, we observe that the
performance penalty is even more substantial when using PEFT. In particular, after benchmarking
different models and datasets, we observe that the higher the level of heterogeneity, the more
significant the performance gap between FFT and PEFT methods. Thus, a simple naive adaptation of
applying PEFT methods locally in an FL setting can lead to potentially huge performance loss.

Our focus in the remainder of the paper is on developing approaches to reduce the gap between
FFT and PEFT while efficiently using clients’ resources regarding communication and storage loads.
Before proposing our approach in Section 4, we summarize the approach that shows the greatest
promise, which is the SOTA PEFT approach, LoRA.

3.3 Low-Rank Adaption: LoRA

Here, we present Low-Rank Adaptation (LoRA) [14] since it’s the SOTA method for PEFT
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Figure 1: LoRA Block

of large pre-trained language models, and our proposed algorithm
adopts this method. The key idea of LoRA is that instead of fully
fine-tuning the pre-trained weight matrix W0 ∈ Rd×d, its update is
constrained with a low-rank decomposition W0 +∆W = W0 +
BA, where B ∈ Rd×r, A ∈ Rr×d, and r << d, and only B and A
are trained (W0 is frozen).

Fig. 1 shows LoRA implementation, where a parallel module of a
down projection matrix B followed by the up projection matrix A in
parallel to the original pre-trained weight matrix. A random Gaussian
initialization for A and zero for B are used to ensure the modified
model and the original model are equivalent (i.e., ∆W = BA is
zero at the beginning of training). The modified forward pass after
adding the LoRA module is given below where r is LoRA rank and
β is a constant in r.

h = W0x+
β

r
BAx, (1)

According to eq. 1, the output from the LoRA module is added coordinate-wise to the output of the
original model. The scaling β

r is used to reduce the need to re-tune hyper-parameters when varying r.

4 Our Proposed approach (Primed-LoRA)

In centralized learning, LoRA consistently shows promising performance in different tasks and
closely follows the FFT accuracy. This still holds in FL with homogeneous data distribution (larger
α) as shown in Fig. 2. However, in highly non-IID data distribution, LoRA fails to reach close to
the FFT performance and suffers from a slower convergence rate compared to FFT. We hypothesize
that the initialization of LoRA Blocks (Fig. 1, A with random noise and B with 0) can be one of the
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reasons behind this problem. While this initialization works in centralized settings where the data is
ample and concentrated, it can potentially slow down the fine-tuning process in FL.

Data-driven Priming of LoRA. Based on our hypothesis, a better starting point for LoRA might
improve its performance. Therefore, we propose a two-stage PEFT method, Primed-LoRA, based
on the LoRA algorithm. In Stage 1, clients collaboratively find a mature starting point to prime the
LoRA blocks. Then, in Stage 2, they use the LoRA algorithm with the learned initializers from Stage
1. In the remainder of the section, we discuss different ways of priming LoRA and their properties.

4.1 Full fine-tuning for priming LoRA

A straightforward approach for Stage 1 is to perform a full fine-tuning for a few rounds in Stage 1 of
Primed-LoRA and then use SVD matrix decomposition to extract a good initialization for Stage 2.
We call this variant of Primed-LoRA as FFT-LoRA or FLoRA.

Formally, we use ∆W to denote the accumulated change in the model parameters after Stage 1. This
weight difference is, conceptually, the same as what we have in each LoRA block, but ∆W ∈ Rd×d.
We use SVD to derive a low-rank approximation of ∆W = B×A, with B ∈ Rd×r, A ∈ Rr×d that
is used in Stage 2. A description of how we create A and B using SVD is delegated to Appendix A.

After converting ∆W into A and B, the training goes to stage 2, where clients only update the LoRA
blocks and share those parameters with the server. As shown in Fig. 3, FLoRA can improve the
global model’s performance, especially with more training rounds in Stage 1. However, as we discuss
next, using full fine-tuning to prime LoRA comes at a cost.
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Figure 2: Performance of PEFT methods with
different data distributions for 20News group
dataset.
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Figure 3: Impact of the number of FL rounds in
stage 1 on the final performance in FLoRA for
20News group dataset on Albert.

Cost of FLoRA In FLoRA, adding stage 1 successfully enhances the performance while achieving
parameter efficiency. However, the communication and computation cost of training at this stage is
the same as full fine-tuning. Therefore, while FLoRA shows that Primed-LoRA can meet our targets
in terms of parameter efficiency, one important question is yet to be answered. How to preserve this
performance but reduce the training costs? This is especially important during the training because,
in cross-device federated learning, clients have a limited budget.

One can observe that there are two parameters involved in cost of stage 1; the number of rounds and
the communication/computation cost of each round. As a result, one way to decrease the cost in
Stage 1 is to reduce the number of FFT rounds. However, as depicted in Fig. 3, the performance of
the model at the end of Stage 1 directly impacts the performance of the final model. Another way to
make FLoRA more efficient is to reduce the data processing and clients’ update size. Towards this
goal, in the following subsection, we propose Primed-LoRA with Sparse Fine-tuning or SLoRA,
where the clients only update a fraction of the parameters in Stage 1 instead of fully fine-tuning them.

4.2 Sparse Fine-tuning for priming LoRA

Sparse Fine-Tuning (SFT) [2, 32] aims to achieve parameter efficiency by sparsifying the updates.
We opt to employ the approach of [2], but all the works follow similar ideas. [2] propose to generate
sparse mask (binary mask such that 1’s indicates the position of trainable weights in each round) is to
find the top-K most important weights based on their contribution in FFT. The weights that change
the highest – from the original pre-trained values – in FFT are the most important one in SFT. Clearly,
to detect such weights, a new warm-up step is required to fine-tune the weight for several rounds.

Sparse Fine-tuning in Stage 1. [2] is designed for the centralized setting where the data can be
utilized in finding the mask. However, in the federated setting, the server cannot fine-tune the model
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Figure 4: Overview of SLoRA; First server initializes a mask, and clients only update the parameters
in the mask. Then, the updates are decomposed into LoRA blocks for the initialization in Stage 2.

because it does not have data. Clients can individually train the model and come up with personalized
masks, but differences in clients’ masks increase the density of the aggregated update and reduce
parameter efficiency. Alternatively, for clients to find the important weights together, they need to do
FFT, which is against our goal of reducing the cost and number of FFT communications. To solve
this problem, we propose the server generate a random data-independent binary mask with uniform
density for all layers at the beginning. Then, the clients only train the weights using this mask. Thus,
the update density does not change, and clients can benefit from reduced communication.

Primed-LoRA in Stage 2. Stage 2 in SLoRA follows the same procedure as discussed in Section 4.1.
Algorithm 4 in the Appendix C summarizes the different steps in SLoRA.

5 Experiments

Settings. We focus on two models, Albert [19], and DistilBERT [30], and two datasets, News Cate-
gory and 20News group [20]. Since we rely on non-IID label distribution, we focus on classification
tasks. Due to lack of space, more details and results can be found in the Appendix B. The total
number of clients is 100 in all the experiments. The number of participants in every round is 20
clients for News Category pathological non-IID and 10 otherwise. We used FedAvg [25] as our
aggregation method. We mainly focus on the accuracy of the final global model. All the experiments
are performed for 5 different seeds, and the average of the 3 best results are reported.

5.1 Baselines

In the following, we investigate LoRA, Holusby, Pfieffer, and BitFit to understand the impact of data
heterogeneity and update size. For data heterogeneity, we used LDA [29], with parameter α (smaller
α means more heterogeneity). Also, we added pathologically non-IID similar to [25].

Table 1: Parameter r, which we use to
calculate the density.

Method LoRA Holusby Pfieffer
Small 20 38 76
Large 190 384 768

The update size in BitFit is fixed and equal to the total
size of bias layers. For other algorithms, update size is
controlled by parameter r, which indicates the size of the
appended module and is summarized in Table 1. Here we
consider two different sizes, and the density of the smaller
update is approximately similar to BitFit’s. To explore
the impact of model size, we have also included a larger
update size with a higher density. Also, for the LoRA
algorithm, we can add the blocks in all the dense layers, but here we only select the 4 dense layers in
the multi-head attention layer, similar to the original paper. LoRA has an extra α parameter, which
we set to be equal to r.

6 Evaluation

Data Heterogeneity. Fig. 2 shows the impact of data heterogeneity on the performance 20New group
on Albert. The gap between PEFT and FFT grows by making the data more non-IID, which indicates
the necessity of a new PEFT algorithm tailored for FL. (More results in Appendix D).
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Stage 2

Stage 1

Figure 5: The performance of SLoRA.

Data Density LoRA Holusby Pfeiffer
Distribution (%) (%) % (%)

Centralized 10 65.9 66 66.5
1 65.5 66.3 66.2

α = 0.1
10 61.4 53.1 58
1 54.9 51.6 56.89

Pathological 10 40.2 38.8 21.1
1 9 13.22 18.6

Table 2: Impact of the density on the perfor-
mance for the 20News group dataset on Albert.

FFT LoRA SFT SLoRA
# Trainable

11.7M 0.14M 0.14M 0.14MParameter
Training Time

596.7 49.5 78.4 40.4(min)
Accuracy

58.17± 4 56.5± 1.2 57.6± 0.3 58.6± 1(%)
Communication

174 9.95 9.95 9.95(Gbits)

Table 3: Performance and training cost for the
20News group on Albert.

Method Computation time Total training
(sec/epoch) rounds

FFT 0.39 250
LoRA 0.43 1250
SFT 2 1250

SLoRA Stage1: 2.1
350Stage2: 0.43

SVD 15.4 —decomposition (one-time cost)

Table 4: The training time and # training rounds
for the 20news dataset on Albert.

Update Size. Table 2 shows the impact of update size for the 20News group dataset on the Albert
model on the final performance of the global model. As expected, larger update sizes improve
performance with the cost of an increased communication budget. Other results are in Appendix E

6.1 Performance of SLoRA

To show the efficacy of the proposed stages, we compare our method with stage 1 only (SFT) and
stage 2 only (LoRA). Here, we only consider pathologically non-IID as discussed earlier in this
setting; PEFT experiences a significant drop in its performance. For SLoRA, we train the model
in Stage 1 using an update sparsity of 10% to have a good model performance at Stage 1 that can
be utilized at Stage 2, yet with a minimal cost. In Stage 2, for SLoRA, we add the LoRA module
by utilizing the SVD decomposed model update from Stage 1 with a higher target update sparsity.
Specifically, the LoRA modules are added to each dense layer in the model, except for the embedding
and classification layers (r = 10 for the multi-head attention block and the feed-forward block and
r = 18 for the pre-classification layer). The size of the added module is 0.14M parameters compared
to 11.7M parameters of the original Albert model representing only 1.3% of the original model size.
For SFT, we train the model with a sparsity update of 1.3% to match the same target sparsity update
of SLoRA. We evaluate the performance of SLoRA for the 20News group dataset on Albert and
DistilBERT in Fig. 5 and Fig. 8. As shown in the figure, SLoRA converges to better accuracy and
requires smaller training rounds. This is particularly important for low-budget and resource-restricted
settings of FL. Regarding the model training time (i.e., computation time), we report the duration
based on a single GPU. Table 4 summarizes the average training time per epoch over 10 distinct runs
for various methods. We note that the time for SLoRA can be computed using the time for Stages 1
and 2. The SVD decomposition process is executed only once in Stage 2 by the server.

We analyze two aspects of the comparison. Firstly, we evaluate the performance of SLoRA while
matching the communication budget across different baselines. In particular, in Stage 1, SLoRA
communicates larger models compared to the other PEFT baselines (SFT and LoRA). To ensure a
fair comparison, we allow the PEFT baselines to be trained for a longer duration in order to match
the same communication budget as SLoRA. Table 4 summarizes the number of training rounds for
the baselines. Despite the baselines having even higher communication rounds, Table 3 demonstrates
that SLoRA still achieves comparable accuracy to FFT, with a slight marginal improvement. On
the other hand, LoRA and SFT show a performance drop of −1.67 and −0.57 in their maximum
accuracy, respectively. It’s worth noting that this is achieved with a longer training time compared to
SLoRA. Additionally, SLoRA exhibits higher stability than other baselines across different seeds.

In addition to the communication budget, the number of FL rounds is another crucial aspect, especially
when considering client availability. Therefore, we compare the performance of SLoRA to the
baselines with a fixed number of training rounds. As depicted in Fig. 5, the performance gap between
SLoRA and the baselines (SFT and LoRA) increases to 4% and 14.2%, respectively.
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Comparison with a Concurrent Work. A concurrent work[17] addresses a similar problem.
However, our study of PEFT under data heterogeneity is more comprehensive, covering two LLM
with models and two different datasets with different data distributions (pathological and LDA) and
the impact of update size compared to only LDA and one model. For the proposed methods, we
adopt LoRA compared to the Houlsby adapter. The benefit of using LoRA is the reparametrization
meaning that once the model is trained using PEFT, we can integrate the modules into the original
parameters without increasing the model size during inference. However, this is not possible for the
Holsuby adapters, as a nonlinear activation is used between the up and down projections. Also, [17]
assumes that each user trains a hypernetwork locally in each training round, which puts additional
costs on the training. In contrast, SLoRA does not have the extra computations, and the final model
has the same size as the original model without performance degradation. Finally, we were unable to
reproduce their results since the code and key aspects of the algorithms were missing.

7 Conclusion

We investigate employing PEFT methods for fine-tuning language models in the FL to reduce
communication/storage costs. After observing the poor performance of PEFT compared to FFT for
heterogeneous clients, we propose SLoRA to reduce the costs while maintaining the FFT performance.
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A Priming LODA from FFT using SVD

Singular Value Decomposition is a matrix decomposition method that helps us to rewrite a m× n
matrix M as a multiplication of three matrices, M = UΣVT , where M ∈ Rm×n, U ∈ Rm×m,
Σ ∈ Rm×n, V ∈ Rn×n and Σ is a rectangular diagonal matrix with descending diagonal terms 2.

The accurate decomposition is not parameter efficient and generates matrices with large dimensions.
Therefore, instead of the exact decomposition, we use an approximation that preserves most of the
information in M (Our ∆W of interest throughout the paper). A common way to approximate
a m × m matrix M ≈ ŨṼT (where Ũ ∈ Rm×r, Ṽ ∈ Rm×r and r ≪ m) is to take the
first r columns of U and V which are associated with the largest singular values in Σ, and then
constructing Ũ = U[1:m,1:r]Σ[1:r,1:r] and Ṽ = V[1:m,1:r]. Note that increasing the r value makes
this approximation more accurate as it approaches the true SVD but, at the same time, decreases the
saving in the parameters.

B Details of Datasets

The 20News group dataset includes 20 news topics with about 19K data points. We use a 60 % - 40
% split for train and test, respectively. The news category is another dataset about news, and it has 15
different labels. This dataset includes about 330K training data, but we only use a randomly sampled
10% for training. Clients only train for one epoch every round, and the batch size is always 32.

C Algorithm

Algorithm 1 Overview of Primed LoRA

1: Ri: FL rounds in stage i, N : Total # clients, K: Total # participant per round, E: Local epoch,
WR: Model weights in round R, r: LoRA parameter, di: update density in stage i, Algorithm
choice between FLoRA and SLoRA

2: # Stage 1
3: if Algorithm = SLoRA then
4: SFT_Mask = generateMask(W0, d1)
5: else
6: SFT_Mask = 1
7: end if
8: for R = 1 to R1 do
9: for k = 1 to K do

10: W k
R−1 = train(WR, SFT_Mask,E)

11: end for
12: WR = aggregate(W 0,..,k

R−1 )
13: end for
14: ∆W = WR −W0

15: [A,B]
0
= SV D(∆W, r)

16: # Stage 2
17: for R = 1 to R2 do
18: for k = 1 to K do
19: [A,B]

k
R = trainLoRA([A,B]R−1, E)

20: end for
21: [A,B]R = aggregate([A,B]

0,...,K
R−1 )

22: end for

2SVD decomposition is not unique, but we are concerned with the decomposition where the singular values
are organized in descending order
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D Impact of Data Heterogeneity on PEFT Methods

Here we repeat the experiments in the evaluation section for XX and News Category datasets on
Albert and DistilBERT models. A similar trend to Fig. 2 can be also observed in Fig. 6 and 7.
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(b) News Category dataset on DistilBERT

Figure 6: Performance of PEFT methods for different data distributions for News Category dataset.

Centralized LDA( =1000) LDA( =0.1) Pathological
Data Distribution

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y 
(%

)

FFT LoRA Pfeiffer Holusby BITFIT

(a) 20News group dataset on Albert
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(b) 20News group dataset on DistilBERT

Figure 7: Performance of PEFT methods for different data distributions for 20News group dataset.

E Impact of Update size.

In tables 5, 6, and 7, we show the impact of update size for different settings. In all the settings, as
we expected, updates with higher density have better performance and the performance considerably
drops by increasing the data heterogeneity.

Table 5: Impact of update density of PEFT methods for the 20News group dataset on DistilBERT.
Data Density LoRA Holusby Pfeiffer

Distribution (%) (%) % (%)

Centralized 10 70.0 70.0 69.5
1 69.8 69.6 68.7

α = 0.1
10 66.3 65.3 65.3
1 65.8 65.0 64.8

Pathological 10 58.6 55.1 55.7
1 57.2 54.7 54.2

F Performance of SLoRA on DistilBERT

Fig. 8 shows the performance of SLoRA, LoRA and SFT for 20News group dataset on DistilBERT.
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Table 6: Impact of update density of PEFT methods for the News category dataset on Albert.
Data Density LoRA Holusby Pfeiffer

Distribution (%) (%) % (%)

Centralized 10 76.0 76.0 76.0
1 76.0 75.9 75.9

α = 0.1
10 72.3 68.54 70.6
1 71 68.17 70.27

Pathological 10 60.7 33.6 57.0
1 41.96 27.78 50.8

Table 7: Impact of update density of PEFT methods for the News category dataset on DistilBERT.
Data Density LoRA Holusby Pfeiffer

Distribution (%) (%) % (%)

Centralized 10 78.4 78.0 78.15
1 77.99 77.94 77.85

α = 0.1
10 73.55 72.2 71.6
1 71.6 71.6 71.362

Pathological 10 49.39 38.03 37.4
1 33.9 33.9 28.2

G Performance and cost of 20News group on DistilBERT

Table 8 shows the training cost (time) of different baselines and components of SLoRA for the
20News group dataset on the DistilBERT model. As expected, the cost of Stage 1 is similar to SFT,
and the cost of Stage 2 is equal to that in LoRA.

Table 8: The training time (i.e., computation time) of different methods and # training rounds for the
Distilbert model on the 20news dataset.

FFT LoRA SFT SLoRA SVD-
decomposition

Computation time 0.19 0.20 1.02 Stage 1: 1.1 15.4
(sec/epoch) Stage 2: 0.20 (one-time cost)

Total training rounds 250 1250 1250 300 —

Table 9 summarizes the performance of different methods for the 20News group dataset on the
DistilBERT model. As mentioned earlier, to have a fair comparison, we trained different methods for
different rounds of federated learning and only fixed the communication cost. As shown in the table,
SLoRA enjoys better performance compared to FFT and still has better training time.

The results for the News category dataset on Albert and DistilBERT are summarized in Table 10 and
Table 11, respectively. As depicted in the tables, the same observations still hold for this dataset as
well.

12



Stage 2
Stage 1

Figure 8: The performance of SLoRA using for 20News group dataset on DistilBERT.

Table 9: Performance and training cost of different algorithm for the 20News group dataset on
DistilBERT model.

# Trainable Training Accuracy Communication
Parameter Time (min) (%) (Gbits)

FFT 67.0M 3407 64.4± 2 997
LoRA 0.7M 203 63.1± 0.5 57.5
SFT 0.7M 220 62.3± 0.9 57.5

SLoRA 0.7M 186 64.8± 0.4 57.5

Table 10: Performance and training cost of different algorithms for the News category dataset on
Albert model.

# Trainable Training Accuracy Communication
Parameter Time (min) (%) (Gbits)

FFT 11.7M 559 65.2± 0.6 174
LoRA 0.14M 39.5 56.8± 5 9.95
SFT 0.14M 140 55.1± 0.6 9.95

SLoRA 0.14M 41.5 62.8± 3 9.95

Table 11: Performance and training cost of different algorithms for the News category dataset on
DistilBERT model. We train SLoRA on Stage 2 for only 50 rounds.

# Trainable Training Accuracy Communication
Parameter Time (min) (%) (Gbits)

FFT 67.0M 3406 61.6± 1.5 997
LoRA 0.7M 161 50.2± 5 45.5
SFT 0.7M 177 55.8± 0.1 45.5

SLoRA 0.7M 160 56.1± 1 45.5

13


	Introduction
	Related Work
	Preliminaries
	PEFT Baselines in Centralized Learning
	Observation: PEFT is challenged when data distribution gets non-IID
	Low-Rank Adaption: LoRA

	Our Proposed approach (Primed-LoRA)
	Full fine-tuning for priming LoRA
	Sparse Fine-tuning for priming LoRA

	Experiments
	Baselines

	Evaluation
	Performance of SLoRA

	Conclusion
	Priming LODA from FFT using SVD
	Details of Datasets
	Algorithm
	Impact of Data Heterogeneity on PEFT Methods
	Impact of Update size.
	Performance of SLoRA on DistilBERT
	Performance and cost of 20News group on DistilBERT

