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Abstract

On some data, machine learning displays anti-learning; this means, in the most surprising
scenario, that the more examples you place in the training set, the worse the accuracy
becomes, until it becomes 0% on the test set. We produce a framework in which this kind of
anti-learning can be reproduced and studied theoretically. We deduce a formula estimating
anti-learning when decision trees (one of the most important tools of machine learning) solve
the parity bit problem (one of the most famously tricky problems of machine learning). Our
estimation formula (deduced under certain mathematical assumptions) agrees very well with
experimental results (produced on random data without these assumptions).

1 Anti-learning, the parity bit problem, and decision trees

Let f be a function. For the purposes of this study, one can assume that the domain domf is finite, and the
image imf = {0, 1}. Split domf into two sets, domf = R ∪S, R ∩S = ∅. Machine learning can be described
as the art of using algorithms to predict the values of f on S when the values of f on R are given. In this
context, R is called the training set, and S is called the test set. The percentage of the correct predictions of
the values of f on S is called accuracy. A random predictor has accuracy 50%. The assumption of machine
learning is that after inspecting the values of f on R, one can achieve a more than 50% accuracy. In some
examples, researchers observed anti-learning Kowalczyk & Chapelle (2005); Kowalczyk (2007); Roadknight
et al. (2018), that is, after learning on the values of f on R, accuracy becomes less than 50%.

It can be useful to say that anti-learning should not be confused with overfitting, which is an important
but different phenomenon in machine learning. Overfitting can be briefly described as accuracy decreasing
towards 50%, whereas anti-learning means that accuracy paradoxically decreases below 50%.

As we started exploring anti-learning, one phenomenon that attracted our attention was that in some sce-
narios, as we vary the size |R| from slightly more than 0 to slightly less than |domf |, accuracy monotically
decreases from 50% to 0%. For example, Figure 1 shows how accuracy (shown on the vertical axis) changes
when we use random forests to predict the parity of a permutation (that is, to predict if a given permutation
is odd or even) and vary the size |R| (shown on the horizontal axis as the percentage of the size |domf |).
This paper is our attempt to explain the monotonically decreasing shape of the curve.

To study anti-learning using mathematics, we concentrate on a combination of the parity bit problem and
decision trees. Denote the two-element field GF(2) by F , and fix a positive integer n. The parity bit of
a vector (x1, . . . , xn) ∈ F n is the sum x1 + · · · + xn, with the addition performed in F . The parity bit is
used in many applications; in the context of machine learning, it is an example of a famously hard problem,
see Examples 1, 2 below. Exploring what it takes to successfully solve the parity bit problem always leads
to fruitful research discussions in machine learning; examples stretch from the 1960s discussion of what
perceptrons can calculate the parity bit Minsky & Papert (1969) to the very recent discovery that bees seem
to be able to learn parity Howard et al. (2022).
Example 1. Let n = 2, and let R = {(0, 0)(1, 1)} and S = {(0, 1)(0, 1)}. The parity bit of every vector
in the training set R is 0, therefore, one predicts that the parity bit of every vector is 0. If we test this
prediction on the test set S, it is wrong on all vectors of S; indeed, the parity bit of every vector in S is 1.
Thus, accuracy is 0%.

1



Under review as submission to TMLR

0 20 40 60 80
0

10

20

30

40

50

Figure 1: Accuracy when random forests predict permutation parity

Example 2. Let n = 2, and let R = {(0, 0)(0, 1)} and S = {(1, 0)(1, 1)}. The parity bit of every vector
(x1, x2) in the training set R coincides with x2, therefore, one predicts that the parity bit of every vector is
x2. If we test this prediction on the test set S, it is wrong on all vectors of S; indeed, the parity bit of every
vector in S is not x2. Thus, accuracy is 0%.
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Figure 2: A decision tree calculating the parity bit of (x1, x2)

Constructions used in Examples 1, 2 are rudimentary examples of a model called a decision tree. Figure 2
shows a decision tree calculating the parity bit of (x1, x2). The nodes in the tree which are not leaves instruct
us to inspect the value of one position in the vector, and the leaves contain a prediction. Note that this tree
is intentionally constructed to calculate the parity bit correctly for every vector (x1, x2); unlike Examples 1,
2 this tree is not produced by training on a subset R ⊂ F 2. This tree is balanced, that is, all paths from the
root to a leaf have the same length. By a leaf set we will mean the set of vectors defined by the conditions
written along one path from the root to a leaf; for example, the rightmost path in the tree defines a leaf
set described by equalities x1 = 1, x2 = 1; in this example, the leaf set consists of one vector {(1, 1)}. By
the support of a leaf set we mean the positions in the vector which feature in the equalities defining the leaf
set; for example, in this tree all leaf sets have the same support x1, x2. The size of a tree is defined as the
number of its nodes; for example, the trees in Figure 2, Example 1 and Example 2 have sizes 7, 1, 3.

In this paper we build a theoretical model of anti-learning when a decision tree solves the parity bit problem
and compare it with experimental data.

The paper Bengio et al. (2010) also studies performance of decision trees at solving the parity bit problem.
Theorem 1 in Bengio et al. (2010) can be re-formulated as stating that accuracy is in the interval between 0%
and 50%. Our approach is much more nuanced; our work culminates in producing a formula which estimates
an expected value of accuracy as a function of two variables, |S| and the size of the tree.

It should be noted that although the parity bit problem and decision trees are important in themselves in the
study of machine learning, our research interests spread far beyond them. As we have said, we first observed
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anti-learning resulting in monotonically decreasing accuracy (as shown in Figure 1) when we used random
forests to predict the parity of a permutation. We also applied feed-forward neural networks to predict the
parity of a permutation; we observed some anti-learning, but results were so noisy and unpredictable that
we could not form any conclusions or conjectures. Studying how neural networks cope with predicting the
parity of permutations and with similar problems is a subject of our current research. But as to decision trees
and random forests, anti-learning reliably shows itself in the shape of monotonically decreasing accuracy, as
in Figures 1 and 3. We are certain that the model presented in this paper will help us and other researchers
to better understand anti-learning when it occurs in various scenarios.

2 Linear-algebraic constructions

By definition, every leaf set is a hyperplane in F n. Denote by P0 (or P1) the set of all vectors in F n whose
parity bit is 0 (or 1). Both P0 and P1 are hyperplanes in F n. These observations suggest that we can use
linear algebra to estimate performance of decision trees at solving the parity bit problem. To proceed, we
make two assumptions: (A1) we assume that the test set S is a hyperplane, and (A2) we assume that the tree
is balanced, therefore, each leaf set has the same dimension. The assumptions (A1) and (A2) are chosen as
a delicate compromise which, on the one hand, ensures that our mathematical model covers a wide range of
examples and, on the other hand, makes it feasible to use linear algebra and probability theory to estimate
accuracy. As we will see in Figure 3, a mathematical model built under these assumptions predicts well
accuracy in experiments produced without these assumptions.

From now on, we write vectors as columns. Let the test set S be a hyperplane of F n defined by a matrix
equation Av = b. The training set is R = F n \ S. When we consider an individual leaf set, we denote it by
L; let L be a hyperplane defined by a matrix equation Cv = d. Let us denote the number of rows in A (in
C) by a (by c); we will assume that the rows of A are linearly independent, and the rows of C are linearly
independent. Thus, c is the size of the support of L, the dimension of S is n − a, and the dimension of L is
n − c.

Recall that in machine learning, training is performed to maximise the rate of correct predictions on the
training set R; therefore, for each leaf of the tree, the prediction made by the leaf is chosen to maximise the
rate of correct predictions on R ∩ L, where L is this leaf’s leaf set.

Denote by 1 a vector in F n consisting of 1s. Obviously, P0 (or P1) is the set of all vectors v such that
1Tv = 0 (such that 1Tv = 1).
Proposition 3. The vector 1T is a linear combination of rows of A and C if and only if S ∩ L is a subset
of P0 or P1.

Proof. In the notation introduced above, S ∩ L is a hyperplane defined by a matrix equation
[

A
C

]
v =[

b
d

]
. Suppose 1T is a linear combination of rows of A and C, that is, for some vector t ∈ F a+c we have

tT
[

A
C

]
= 1T. Hence, for every v ∈ S ∩ L we have tT

[
A
C

]
v = tT

[
b
d

]
. As to tT

[
b
d

]
, it is a scalar,

that is, either 0 or 1, and it does not depend on v. Thus, we have either 1Tv = 0 for every v ∈ S ∩ L or
1Tv = 1 for every v ∈ S ∩ L. Hence, either every v ∈ S ∩ L is in P0 or every v ∈ S ∩ L is in P1.

Conversely, suppose that S ∩ L is a subset of P0 or P1. Then 1T is contained in the orthogonal complement
of the hyperplane S ∩ L. The rows of A and C form a spanning set of the orthogonal complement of S ∩ L.
Therefore, 1T is a linear combination of rows of A and C.

Proposition 4. If c < n then L contains vectors with both values of the parity bit.

Proof. Consider an arbitrarily chosen vector v ∈ L. Since c < n, there is a position i in v which is not in
the support of L. Construct a vector w which coincides with v at all positions except i, and whose entry
at position i is 0 (or 1) if the entry at position i is 1 (or 0) in the vector v. Since i is not in the support of
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L and v ∈ L and w coincides with v at all positions except i, we conclude that w ∈ L. At the same time,
since w and v differ at exactly one position, we have 1Tv ̸= 1Tw; in other words, one of the two vectors w
and v is in P0 and the other is in P1.

Proposition 4 shows that it is realistic to assume, as we will in Theorem 5, that a leaf set contains vectors
with both values of the parity bit. The only exception is c = n, when the leaf set contains exactly one vector.
This is achieved only if the tree size is unrealistically large, so we assume that c < n. (For comparison, in
Theorem 1 in Bengio et al. (2010) large unbalanced trees are used, and leaf sets with the support of size n
are explicitly considered.)
Theorem 5. Suppose a leaf set L has a non-empty intersection with both the training set R and the test set
S, and suppose L contains vectors with both values of the parity bit. Then accuracy on S ∩ L is either 0%
or 50%. Namely, it is 0% (it is 50%) if 1T is (is not) a linear combination of rows of A and C.

Proof. Each of the subsets L ∩ P0 and L ∩ P1 is non-empty, and each of them is an (n − c − 1)-dimensional
hyperplane in F n, therefore, |L ∩ P0| = |L ∩ P1|. Suppose 1T is a linear combination of rows of A and C.
By Proposition 3, (S ∩ L) ⊆ Pi , where i is 0 or 1. Hence, R ∩ L is a union of two non-overlapping subsets,
L ∩ P1−i and (L ∩ Pi) \ (S ∩ L). The former subset contains more elements than the latter, therefore, the
prediction chosen on this leaf is that every vector in L is in P1−i. This prediction is wrong on every vector
in S ∩ L, since (S ∩ L) ⊆ Pi. Therefore, accuracy on S ∩ L is 0%.

Now suppose 1T is not a linear combination of rows of A and C. By Proposition 3, S ∩ L has a non-empty
intersection with both P0 and P1. Thus, S ∩ L ∩ P0 and S ∩ L ∩ P1 are hyperplanes in F n having the same
dimension, therefore, |S ∩ L ∩ P0| = |S ∩ L ∩ P1|. Recall that R = F n \ S and |L ∩ P0| = |L ∩ P1|; hence,
|S ∩ R ∩ P0| = |S ∩ R ∩ P1|. Thus, the same number of elements of S ∩ R has parity 0 and parity 1; therefore,
the prediction on this leaf will be chosen 0 or 1 at random. Whichever it is, since |S ∩ L ∩ P0| = |S ∩ L ∩ P1|,
this prediction will be correct on exactly a half of the vectors in S ∩ L and wrong on the other half of the
vectors in S ∩ L. Therefore, accuracy on S ∩ L is 50%.

Theorem 5 enables us to start discussing informally what accuracy we are likely to expect if the test set is
small or large. If a, the number of rows in A, is small then it is ‘less likely’ that 1T is a linear combination of
rows of A and C, but if a is large then it is ‘more likely’. Recall that the test set S is an (n − a)-dimensional
hyperplane of F n, and the training set R is F n \ S. Thus, if the training set is small and the test set is large,
accuracy is ‘likely’ to be about 50%, whereas if the training set is large and the test set is small, accuracy is
‘likely’ to be about 0%. The next section refines this discussion by producing specific numerical values.

3 Estimating accuracy

The following construction will be useful. Let X be a set of size x, and let Y, Z be two randomly chosen
subsets of X having sizes y, z, respectively. Denote the probability of Y and Z having an empty intersection
by ξ(x, y, z). From probability theory, ξ(x, y, z) = (x−y)!(x−z)!

x!(x−y−z)! , and this value can be easily computed with
the help of Stirling’s approximation.

To produce an estimation of accuracy, we introduce one more assumption. Let ⟨A⟩ and ⟨C⟩ denote the spaces
(of row vectors) spanned by rows of A and C, respectively, where A and C are as defined in the previous
section. In other words, ⟨A⟩ and ⟨C⟩ are the orthogonal complements of S and L, respectively. Since we
are working with row vectors, for convenience, we shall treat F n as consisting of row vectors; thus, both ⟨A⟩
and ⟨C⟩ are subspaces of F n. Our new assumption (A3) is that ⟨A⟩ and ⟨C⟩ are randomly chosen subsets of
F n. This assumption can be described as a scenario in which an algorithm building the decision tree chooses
conditions at the nodes of the tree at random. When one considers other classification problems, this
assumption would not be justified because the algorithm tries to optimize the tree’s performance. However,
the parity bit problem, by its construction, is hopelessly hard for a decision tree, therefore, we feel that it is
justifiable to assume that the decision tree behaves as if it was chosen at random.
Proposition 6. Under the assumptions of Theorem 5 and (A3), expected accuracy on S ∩L can be estimated
as 1

2 ξ(2n, 2a, 2c).
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Proof. Let p be the probability that 1T is not a linear combination of rows of A and C. According to
Theorem 5, expected accuracy can be expressed as 0 · (1 − p) + 1

2 p. In the remaining part of the proof we
will show that p can be estimated as ξ(2n, 2a, 2c), hence the result follows.

Recall that we assume that that ⟨A⟩ and ⟨C⟩ are random subsets of F n. Hence, ⟨C⟩ + 1 also is a random
subset of F n. We can express the fact that 1 is not a linear combination of rows of A and C as saying that
⟨A⟩ and ⟨C⟩ + 1 do not intersect. Since ⟨A⟩ and ⟨C⟩ + 1 are two randomly chosen sets of sizes y = 2a and
z = 2c in F n, whose size is x = 2n, the probability of these sets not intersecting is ξ(2n, 2a, 2c).

Theorem 7. Expected accuracy can be estimated as
1
2ξ(2n, 2n − 2n−a, 2n−c) + 1

2
(
1 − ξ(2n, 2n − 2n−a, 2n−c)

)
· ξ(2n, 2a, 2c).

Proof. Consider a randomly chosen element v of S. Since the whole space F n is split into leaf sets, v lies
in a certain leaf set L. We have either R ∩ L = ∅ or R ∩ L ̸= ∅. In the former case, due to the absence of
any elements of R to base the prediction on, we assume that the prediction for the leaf corresponding to L
is made at random, as either 0 or 1. Hence, expected accuracy on S ∩ L is 50%. In the latter case, we are
in the conditions of Theorem 5, and expected accuracy is as expressed in Proposition 6.

Now estimate the probability that R ∩ L = ∅. For the purposes of this estimation, we treat R as a random
subset of F n of size x = 2n − 2n−a, and L as a random subset of F n of size x = 2n−c. Hence, the probability
is estimated as ξ(2n, 2n − 2n−a, 2n−c). By putting these fragments together, we obtain the formula in the
statement of the theorem.

To perform comparison with the results of experiments produced on random data, without the linearity
assumptions A1, A2 introduced in Section 2, we rewrite the formula in Theorem 7 as shown below, so it
does not refer to dimensions of S and leaf sets, but only refers to the size of S and the size of the tree.
Corollary 8. Expected accuracy can be estimated as

1
2ξ(2n, 2n − |S|, 2n+1

t + 1) + 1
2

(
1 − ξ(2n, 2n − |S|, 2n+1

t + 1)
)

· ξ(2n,
2n

|S|
,

t + 1
2 ),

where t is the number of nodes in the tree.

Proof. The formula is produced from the formula in Theorem 7 by substituting c = log(t + 1) − 1 and
a = n − log |S|, where log is the binary logarithm.

Using the formula in Corollary 8, we compare the estimation of Theorem 7 with the experimental results
produced using WEKA machine learning software Witten & Frank (2005). In Figure 3, the horizontal axis
is the size of a training set R, shown as percentage of the size of F n, n = 12. The vertical axis is accuracy.
In each experiment, the size |R| is fixed and then R is chosen as a random subset of F n of this size. Then
WEKA is used to produce a decision tree learning on R to predict the parity bit, and then accuracy on
S = F n\R is measured. Note that the tree size is not constant but is, in each experiment, chosen by WEKA’s
algorithm and varies; we do not show the tree size on this diagram, but you can view all data in the online
repository of the data of this paper [the weblink is temporarily removed for the time of reviewing]. Each
circle in the line with circles shows accuracy produced in an experiment, and the corresponding diamond in
the line with diamonds shows the estimation of accuracy produced by the formula in Corollary 8 based on the
same test set size and tree size as in the experiment. What both graphs in Figure 3 suggest is that accuracy
monotonically decreases from 50% to 0% as the size of the training set increases. The overall shape of the
two graphs is almost the same, so our estimation in Corollary 8 is surprisingly good, taking into account
how simple our model is.

In our experiments when we use random forests instead of decision trees, we also observe anti-learning, with
approximately the same shape of a graph as in Figure 3 (cf. Figure 1, showing anti-learning when a random
forest solves a slightly different parity problem). Of course, a mathematical model attempting to describe
anti-learning of an ensemble of decision trees would have to be considerably more complicated than of one
decision tree; this is why in this paper we have concentrated on modeling anti-learning of one decision tree.
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Figure 3: Comparison of accuracy
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