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Summary
Average-reward Markov decision processes (MDPs) provide a foundational framework for

sequential decision-making under uncertainty. However, average-reward MDPs have remained
largely unexplored in reinforcement learning (RL) settings, with the majority of RL-based ef-
forts having been allocated to discounted MDPs. In this work, we study a unique structural
property of average-reward MDPs and utilize it to introduce Reward-Extended Differential (or
RED) reinforcement learning: a novel RL framework that can be used to effectively and ef-
ficiently solve various learning objectives, or subtasks, simultaneously in the average-reward
setting. We introduce a family of RED learning algorithms for prediction and control, includ-
ing proven-convergent algorithms for the tabular case. We then showcase the power of these
algorithms by demonstrating how they can be used to learn a policy that optimizes, for the first
time, the well-known conditional value-at-risk (CVaR) risk measure in a fully-online manner,
without the use of an explicit bi-level optimization scheme or an augmented state-space.

Contribution(s)
1. We provide a general-purpose framework and a corresponding set of prediction/control al-

gorithms for solving an arbitrary number of learning objectives, or subtasks, simultane-
ously in the average-reward setting with only a TD error-based update, including proven-
convergent algorithms for the tabular case.
Context: Our work builds on (and can be viewed as a generalization of) Wan et al. (2021),
which proposed proven-convergent average-reward RL algorithms that are able to learn
and/or optimize the value function and average-reward simultaneously using only the TD
error. In particular, the focus in Wan et al. (2021) was on proving the convergence of such
algorithms, without exploring the underlying structural properties of the average-reward
MDP that made such a process possible to begin with. In this work, we formalize these
underlying properties, and utilize them to show that if one modifies, or extends, the reward
from the MDP with various learning objectives, then these objectives, or subtasks, can be
solved simultaneously using a modified, or reward-extended, version of the TD error.

2. We provide the first RL algorithm that optimizes the well-known conditional value-at-risk
(CVaR) risk measure (Rockafellar and Uryasev, 2000) in a fully-online manner without the
use of an explicit bi-level optimization or an augmented state-space.
Context: Several prior works have looked at CVaR optimization in the discounted setting
(e.g. Bäuerle and Ott (2011) and Chow et al. (2015)). However, no prior work has developed
an algorithm for CVaR optimization that does not require either an augmented state-space or
an explicit bi-level optimization, which can, for example, involve solving multiple MDPs.
In the average-reward setting, Xia et al. (2023) proposed a set of algorithms for optimizing
the CVaR risk measure, however their methods require the use of an augmented state-space
and a sensitivity-based bi-level optimization. By contrast, our work, to the best of our
knowledge, is the first to optimize CVaR in an MDP-based setting without the use of an
explicit bi-level optimization scheme or an augmented state-space.
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Abstract

Average-reward Markov decision processes (MDPs) provide a foundational framework1
for sequential decision-making under uncertainty. However, average-reward MDPs2
have remained largely unexplored in reinforcement learning (RL) settings, with the ma-3
jority of RL-based efforts having been allocated to discounted MDPs. In this work, we4
study a unique structural property of average-reward MDPs and utilize it to introduce5
Reward-Extended Differential (or RED) reinforcement learning: a novel RL framework6
that can be used to effectively and efficiently solve various learning objectives, or sub-7
tasks, simultaneously in the average-reward setting. We introduce a family of RED8
learning algorithms for prediction and control, including proven-convergent algorithms9
for the tabular case. We then showcase the power of these algorithms by demonstrating10
how they can be used to learn a policy that optimizes, for the first time, the well-known11
conditional value-at-risk (CVaR) risk measure in a fully-online manner, without the use12
of an explicit bi-level optimization scheme or an augmented state-space.13

1 Introduction14

Markov decision processes (MDPs) (Puterman, 1994) are a long-established framework for sequen-15
tial decision-making under uncertainty. Discounted MDPs, which aim to optimize a potentially-16
discounted sum of rewards over time, have enjoyed success in recent years when utilizing rein-17
forcement learning (RL) solution methods (Sutton and Barto, 2018) to tackle certain problems of18
interest in various domains. Despite this success however, these MDP-based methods have yet to19
be fully embraced in real-world applications due to the various intricacies and implications of real-20
world operation that often trump the ability of current state-of-the-art methods (Dulac-Arnold et al.,21
2021). We therefore turn to the less-explored average-reward MDP, which aims to optimize the re-22
ward received per time-step, to see how its unique structural properties can be leveraged to tackle23
challenging problems that have evaded its discounted counterpart.24

In particular, we present results that show how the average-reward MDP’s unique structural prop-25
erties can be leveraged to enable a more subtask-driven approach to reinforcement learning, where26
various learning objectives, or subtasks, are solved simultaneously (and in a fully-online manner) to27
help solve a larger, central learning objective. Importantly, we find a compelling case-study in the28
realm of risk-aware decision-making that illustrates how this subtask-driven approach can alleviate29
some of the computational challenges and non-trivialities that can arise in the discounted setting.30

More formally, we introduce Reward-Extended Differential (or RED) reinforcement learning: a31
first-of-its-kind RL framework that makes it possible to solve various subtasks simultaneously in the32
average-reward setting. At the heart of this framework is the novel concept of the reward-extended33
temporal-difference (TD) error, an extension of the celebrated TD error (Sutton, 1988), which we34
derive by leveraging a unique structural property of average-reward MDPs, and utilize to solve35
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various subtasks simultaneously. We first present the RED RL framework in a generalized way, then36
adopt it to successfully tackle a problem that has exceeded the capabilities of current state-of-the-art37
methods in risk-aware decision-making: learning a policy that optimizes the well-known conditional38
value-at-risk (CVaR) risk measure (Rockafellar and Uryasev, 2000) in a fully-online manner without39
the use of an explicit bi-level optimization scheme or an augmented state-space.40

Our work is organized as follows: In Section 2, we provide a brief overview of related work. In Sec-41
tion 3, we give an overview of the fundamental concepts related to average-reward RL and CVaR.42
In Section 4, we motivate the need and opportunity for a subtask-driven approach to RL through43
the lens of CVaR optimization. In Section 5, we introduce the RED RL framework, including the44
concept of the reward-extended TD error. We also introduce a family of RED RL algorithms for45
prediction and control, and highlight their convergence properties (with full convergence proofs in46
Appendix B). In Section 6, we use the RED RL framework to derive a subtask-driven approach for47
CVaR optimization, and provide empirical results which show that this approach can be used to suc-48
cessfully learn a policy that optimizes the CVaR risk measure. Finally, in Section 7, we emphasize49
our framework’s potential usefulness towards tackling other challenging problems outside the realm50
of risk-awareness, highlight some of its limitations, and suggest some directions for future research.51

2 Related Work52

Average-Reward Reinforcement Learning: Average-reward (or average-cost) MDPs, despite be-53
ing one of the most well-studied frameworks for sequential decision-making under uncertainty (Put-54
erman, 1994), have remained relatively unexplored in reinforcement learning (RL) settings. To date,55
notable works on the subject (in the context of RL) include Schwartz (1993), Tsitsiklis and Van Roy56
(1999), Abounadi et al. (2001), Gosavi (2004), Bhatnagar et al. (2009), and Wan et al. (2021). Most57
relevant to our work is Wan et al. (2021), which provided a rigorous theoretical treatment of average-58
reward MDPs in the context of RL, and proposed the proven-convergent ‘Differential Q-learning’59
and ‘Differential TD-learning’ algorithms. Our work builds on the methods from Wan et al. (2021)60
to develop a theoretical framework for solving various learning objectives simultaneously.61

We note that these learning objectives, or subtasks, as explored in our work, are different to that of62
hierarchical RL (e.g. Sutton et al. (1999)). In particular, in hierarchical RL, the focus is on using63
temporally-abstracted actions, known as ‘options’ (or ‘skills’), such that the agent learns a policy for64
each option, as well as an inter-option policy. By contrast, in our work we learn a single policy, and65
the subtasks are not part of the action-space. Similarly, the notion of solving multiple objectives in66
parallel has been widely-explored in the discounted setting (e.g. McLeod et al. (2021)). However,67
much of this work focuses on learning multiple state representations (or ‘features’), options, policies,68
and/or value functions. By contrast, in our work we learn a single policy and value function, and the69
subtasks are not part of the state or action-spaces. To the best of our knowledge, our work is the first70
to explore solving subtasks simultaneously in the average-reward setting.71

Risk-Aware Learning and Optimization in MDPs: The notion of risk-aware learning and opti-72
mization in MDP-based settings has been long-studied, from the well-established expected utility73
framework (Howard and Matheson, 1972), to the more contemporary framework of coherent risk74
measures (Artzner et al., 1999). To date, these risk-based efforts have almost exclusively focused75
on the discounted setting. Importantly, optimizing the CVaR risk measure in these settings typi-76
cally requires augmenting the state-space and/or having to utilize an explicit bi-level optimization77
scheme, which can, for example, involve solving multiple MDPs. Seminal works that have looked at78
CVaR optimization in the standard discounted setting include Bäuerle and Ott (2011) and Chow et al.79
(2015); Hau et al. (2023a). In the distributional setting, works such as Dabney et al. (2018) have pro-80
posed a CVaR optimization approach that does not require an augmented state-space or an explicit81
bi-level optimization, however it was later shown by Lim and Malik (2022) that such an approach82
converges to neither the optimal dynamic-CVaR nor the optimal static-CVaR policies (Lim and Ma-83
lik (2022) then proposed a valid approach that utilizes an augmented state-space). Some works have84
looked at optimizing a time-consistent (Ruszczyński, 2010) interpretation of CVaR, however this85
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only approximates CVaR, as CVaR is not a time-consistent risk measure (Boda and Filar, 2006).86
Other works have looked at optimizing similar objectives to CVaR that are more computationally87
tractable, such as the entropic value-at-risk (Hau et al., 2023b).88

Most similar to our work (in non-average-reward settings) is Stanko and Macek (2019), where the89
authors used a vaguely similar update to the one derived in our work. However, all of the methods90
proposed in Stanko and Macek (2019) require either an augmented state-space or an explicit bi-91
level optimization. In the average-reward setting, Xia et al. (2023) proposed a set of algorithms92
for optimizing the CVaR risk measure, however their methods require the use of an augmented93
state-space and a sensitivity-based bi-level optimization. By contrast, our work, to the best of our94
knowledge, is the first to optimize CVaR in an MDP-based setting without the use of an explicit95
bi-level optimization scheme or an augmented state-space. We note that other works have looked at96
optimizing other risk measures in the average-reward setting, such as the exponential cost (Murthy97
et al., 2023), and variance (Prashanth and Ghavamzadeh, 2016).98

3 Preliminaries99

3.1 Average-Reward Reinforcement Learning100

A finite average-reward MDP is the tupleM .
= ⟨S,A,R, p⟩, where S is a finite set of states, A is101

a finite set of actions, R ⊂ R is a bounded set of rewards, and p : S × A × R × S → [0, 1] is102
a probabilistic transition function that describes the dynamics of the environment. At each discrete103
time step, t = 0, 1, 2, . . ., an agent chooses an action, At ∈ A, based on its current state, St ∈ S,104
and receives a reward, Rt+1 ∈ R, while transitioning to a (potentially) new state, St+1, such that105
p(s′, r | s, a) = P(St+1 = s′, Rt+1 = r | St = s,At = a). In an average-reward MDP, an agent106
aims to find a policy, π : S → A, that optimizes the long-run (or limiting) average-reward, r̄, which107
is defined as follows for a given policy, π:108

r̄π(s)
.
= lim

n→∞

1

n

n∑
t=1

E[Rt | S0 = s,A0:t−1 ∼ π]. (1)

In this work, we limit our discussion to stationary Markov policies, which are time-independent109
policies that satisfy the Markov property.110

When working with average-reward MDPs, it is common to simplify Equation (1) into a more work-111
able form by making certain assumptions about the Markov chain induced by following policy π. To112
this end, a unichain assumption is typically used when doing prediction (learning) because it ensures113
the existence of a unique limiting distribution of states, µπ(s)

.
= limt→∞ P(St = s | A0:t−1 ∼ π),114

that is independent of the initial state, thereby simplifying Equation (1) to the following:115

r̄π =
∑
s∈S

µπ(s)
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a)r. (2)

Similarly, a communicating assumption is typically used for control (optimization) because it en-116
sures the existence of a unique optimal average-reward, r̄∗, that is independent of the initial state.117

To solve an average-reward MDP, solution methods such as dynamic programming or RL can be118
used in conjunction with the following Bellman (or Poisson) equations:119

vπ(s) =
∑
a

π(a | s)
∑
s′

∑
r

p(s′, r | s, a)[r − r̄π + vπ(s
′)], (3)

qπ(s, a) =
∑
s′

∑
r

p(s′, r | s, a)[r − r̄π +max
a′

qπ(s
′, a′)], (4)

where, vπ(s) is the state-value function and qπ(s, a) is the state-action value function for a given120
policy, π. Solution methods for average-reward MDPs are typically referred to as differential meth-121
ods because of the reward difference (i.e., r− r̄π) operation that occurs in Equations (3) and (4). We122
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note that solution methods typically find solutions to Equations (3) and (4) up to a constant, c. This123
is typically not a concern, given that the relative ordering of policies is usually what is of interest.124

In the context of RL, Wan et al. (2021) proposed the tabular ‘Differential TD-learning’ and ‘Dif-125
ferential Q-learning’ algorithms, which are able to learn and/or optimize the value function and126
average-reward simultaneously using only the TD error. The ‘Differential TD-learning’ algorithm127
is shown below:128

Vt+1(St)
.
= Vt(St) + αtρtδt (5a)

Vt+1(s)
.
= Vt(s), ∀s ̸= St (5b)

δt
.
= Rt+1 − R̄t + Vt(St+1)− Vt(St) (5c)

R̄t+1
.
= R̄t + ηαtρtδt (5d)

where, Vt : S → R is a table of state-value function estimates, αt is the step size, δt is the TD error,129
ρt

.
= π(At | St) /B(At | St) is the importance sampling ratio (with behavior policy, B), R̄t is an130

estimate of the average-reward, r̄π , and η is a positive scalar.131

3.2 Conditional Value-at-Risk (CVaR)132

Consider a random variable X with a finite mean on a probability space (Ω,F ,P), and with a133
cumulative distribution function F (x) = P(X ≤ x). The (left-tail) value-at-risk (VaR) of X with134
parameter τ ∈ (0, 1) represents the τ -quantile of X , such that VaRτ (X) = sup{x | F (x) ≤ τ}.135
The (left-tail) conditional value-at-risk (CVaR) of X with parameter τ is defined as follows:136

CVaRτ (X) =
1

τ

∫ τ

0

VaRu(X)du. (6)

When F (X) is continuous at x = VaRτ (X), CVaRτ (X) can be interpreted as the expected value of137
the τ left quantile of the distribution of X , such that CVaRτ (X) = E[X | X ≤ VaRτ (X)].138

Importantly, CVaR can be formulated as the following optimization (Rockafellar and Uryasev,139
2000):140

CVaRτ (X) = sup
y∈R

E[y − 1

τ
(y −X)+] = E[VaRτ (X)− 1

τ
(VaRτ (X)−X)+], (7)

where, (u)+ = max(u, 0). Existing MDP-based methods typically leverage the above formulation141
when optimizing for CVaR, by augmenting the state-space with a state that corresponds (either142
directly or indirectly) to an estimate of VaRτ (X) (in this case, y), and solving the following bi-level143
optimization:144

sup
π

CVaRτ (X) = sup
π

sup
y∈R

E[y − 1

τ
(y −X)+] = sup

y∈R
(y − 1

τ
sup
π

E[(y −X)+]), (8)

where the ‘inner’ optimization problem can be solved using standard MDP solution methods.145

In discounted MDPs, the random variable X corresponds to a (potentially-discounted) sum of re-146
wards. In average-reward MDPs, X corresponds to the limiting per-step reward. In other words,147
the natural interpretation of CVaR in the average-reward setting is that of the CVaR of the limiting148
reward distribution, as shown below (for a given policy, π) (Xia et al., 2023):149

CVaRτ,π(s)
.
= lim

n→∞

1

n

n∑
t=1

CVaRτ [Rt | S0 = s,A0:t−1 ∼ π]. (9)

As with the average-reward (i.e., Equation (1)), a unichain assumption (or similar) makes this CVaR150
objective independent of the initial state. In recent years, CVaR has emerged as a popular risk151
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measure, in-part because it is a ‘coherent’ risk measure (Artzner et al., 1999), meaning that it satisfies152
key mathematical properties which can be meaningful in safety-critical and risk-related applications.153

Figure 1 depicts the agent-environment interaction in an average-reward MDP, where following154
policy π yields a limiting average-reward and reward CVaR.155

Figure 1: Illustration of the agent-environment interaction in an average-reward MDP. As t →
∞, following policy π yields a limiting per-step reward distribution with an average-reward, r̄π ,
and a conditional value-at-risk, CVaRπ . Standard average-reward RL methods aim to optimize the
average-reward, r̄π . By contrast, in our work we aim to optimize CVaRπ .

4 A Subtask-Driven Approach156

In this section, we motivate the need and opportunity for a subtask-driven approach to RL through157
the lens of CVaR optimization. Let us begin by considering the standard approach used by existing158
MDP-based methods for CVaR optimization. This approach, which is described in Equation (8),159
requires that we pick a wide range of guesses for the optimal value-at-risk, VaR, and that for each160
guess, y, we solve an MDP. Then, out of all of the MDP solutions, we pick the best one as our final161
solution (which corresponds to y = VaR). Moreover, to further compound the computational costs,162
this approach requires that the state-space be augmented with a state that corresponds (either directly163
or indirectly) to the VaR guess, y (e.g. see Bäuerle and Ott (2011)). Hence, this approach requires164
the use of both an explicit bi-level optimization scheme, and an augmented state-space. Importantly165
however, this computationally-expensive process would not be needed if we somehow knew what166
the optimal value for y (i.e., VaR) was. In fact, in the average-reward setting, if we know this optimal167
value, VaR, then optimizing for CVaR ultimately amounts to optimizing an average (as per Equation168
(7)), which can be done trivially using the standard average-reward MDP.169

As such, it would appear that, to optimize CVaR, we are stuck between two extremes: a significantly170
computationally-expensive process if we do not know the optimal value-at-risk, VaR, and a trivial171
process if we do. But what if we could estimate VaR along the way? That is, keep some sort of172
running estimate of VaR that we optimize simultaneously as we optimize CVaR. Indeed, such an173
approach has been proposed in the discounted setting (e.g. Stanko and Macek (2019)), however,174
no approach has been able to successfully remove both the augmented state-space and the explicit175
bi-level optimization requirements. The primary difficulty lies in how one updates the estimate of176
VaR along the way.177

Critically, this is where the findings from Wan et al. (2021) come into play. In particular, Wan et al.178
(2021) proposed proven-convergent algorithms for the average-reward setting that can learn and/or179
optimize the value function and average-reward simultaneously using only the TD error. In other180
words, these algorithms are able to solve two learning objectives simultaneously using only the TD181
error. Yet, the focus in Wan et al. (2021) was on proving the convergence of such algorithms, without182
exploring the underlying structural properties of the average-reward MDP that made such a process183
possible to begin with. In this work, we formalize these underlying properties, and utilize them to184
show that if one modifies, or extends, the reward from the MDP with various learning objectives185
that satisfy certain key properties, then these objectives, or subtasks, can be solved simultaneously186
using a modified, or reward-extended, version of the TD error. Consequently, in terms of CVaR187
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optimization, this allows us to develop appropriate learning updates for the VaR and CVaR estimates188
based solely on the TD error, such that we no longer need to augment the state-space or perform an189
explicit bi-level optimization.190

In Section 5, we present the theoretical framework that enables the aforementioned subtask-driven191
approach. Then, in Section 6, we adapt this general-purpose framework for CVaR optimization.192

5 Reward-Extended Differential (RED) Reinforcement Learning193

In this section, we present our primary contribution: a framework for solving various learning ob-194
jectives, or subtasks, simultaneously in the average-reward setting. We call this framework reward-195
extended differential (or RED) reinforcement learning. The ‘differential’ part of the name comes196
from the use of the differential algorithms from average-reward MDPs. The ‘reward-extended’ part197
of the name comes from the use of the reward-extended TD error, a novel concept that we will198
introduce shortly. Through this framework, we show how the average-reward MDP’s unique struc-199
tural properties can be leveraged to solve (i.e., learn or optimize) any given subtask using only a200
TD error-based update. We first provide a formal definition for a (generic) subtask, then proceed201
to derive a framework that allows us to solve any given subtask that satisfies this definition. In the202
subsequent section, we utilize this framework to tackle the CVaR optimization problem.203

Definition 5.1 (Subtask). A subtask, zi, is any scalar prediction or control objective belonging to204
a corresponding bounded set Zi ⊂ R, such that there exists a linear or piecewise linear subtask205
function, f : R × Z1 × Z2 × · · · × Zi × · · · × Zn → R̃, whereR is the bounded set of observed206
per-step rewards from the MDPM, R̃ ⊂ R is a bounded set of ‘extended’ per-step rewards whose207
long-run average is the primary prediction or control objective of the MDP, M̃ .

= ⟨S,A, R̃, p̃⟩, and208
Z = {z1 ∈ Z1, z2 ∈ Z2, . . . , zn ∈ Zn} is the set of n subtasks that we wish to solve, such that:209

i) f is invertible with respect to each input given all other inputs; and210

ii) each subtask zi ∈ Z in f is independent of the states and actions, and hence independent of211
the observed per-step reward, Rt ∈ R, such that P(St+1 = s′, R̃t+1 = f(r, z1, . . . , zn) | St =212
s,At = a) = P(St+1 = s′, Rt+1 = r | St = s,At = a), and E[fj(Rt, z1, z2, . . . , zn)] =213
fj(E[Rt], z1, z2, . . . , zn), where fj denotes the jth segment of a piecewise linear subtask function,214
and E denotes any expectation taken with respect to the states and actions.215

In essence, the above definition states that a subtask is some constant, zi, that we wish to learn and/or216
optimize. From an algorithmic perspective, this means that we will start with some initial estimate217
(or guess) for the subtask, Zi,t, then update this estimate at every time step, such that Zi,t → zi or218
Zi,t → z∗i , depending on whether we are doing prediction or control (where z∗i denotes the optimal219
subtask value). But how can we derive an appropriate update rule that accomplishes this? In the220
following section, we will introduce the reward-extended TD error, through which we can derive221
such an update rule for any subtask that satisfies Definition 5.1, such that Zi,t → zi when doing222
prediction and Zi,t → z∗i when doing control.223

5.1 The Reward-Extended TD Error224

In this section, we introduce and derive the reward-extended TD error. In particular, we derive225
a generic, subtask-specific, TD-like error, βi,t, through which we can learn and/or optimize any226
subtask that satisfies Definition 5.1 via the update rule: Zi,t+1 = Zi,t + ηαtβi,t, where Zi,t is an227
estimate of subtask zi, ηαt is the step size, and βi,t is the reward-extended TD error for subtask zi.228

Importantly, we will show that the reward-extended TD error satisfies the following property:229
Eπ[βi,t] → 0 ∀i = 1, 2, . . . , n as Eπ[δt] → 0, where δt is the regular TD error, such that min-230
imizing the regular TD error allows us to solve all subtasks simultaneously. This motivates our231
naming of the reward-extended TD error, given that it is intrinsically tied to the regular TD error.232
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Let us begin by considering the common RL update rule of the form: NewEstimate← OldEstimate233
+ StepSize [Target − OldEstimate] (Sutton and Barto, 2018; Naik, 2024). Our aim is to find an234
appropriate set of subtask-specific ‘targets’, {ϕi,t}ni=1, such that Eπ[βi,t] = Eπ[ϕi,t − Zi,t] →235
0 ∀i = 1, 2, . . . , n as Eπ[δt] → 0. To this end, let us consider a generic piecewise linear subtask236
function with m piecewise segments:237

R̃t =


b1rRt + b10 + b11z1 + b12z2 + . . .+ b1nzn, r0 ≤ Rt < r1

b2rRt + b20 + b21z1 + b22z2 + . . .+ b2nzn, r1 ≤ Rt < r2
...
bmr Rt + bm0 + bm1 z1 + bm2 z2 + . . .+ bmn zn, rm−1 ≤ Rt ≤ rm

, (10)

where rk ∈ R ∀ k = 0, 1, . . . ,m, such that r0, rm represent the lower and upper bounds of the238
observed per-step reward, Rt, respectively, bjr, b

j
0 ∈ R, and bji ∈ R \ {0}, where bj denotes a239

(predefined) constant in the jth segment of the piecewise linear subtask function.240

Now, let us consider the TD error, δt, associated with (10) in the prediction setting. Let R̃j,t be241
shorthand for the jth segment of (10), such that the TD error at any time step can be expressed as:242

δj,t = R̃j,t+1 − R̄t + Vt(St+1)− Vt(St) (11a)

= bjrRt+1 + bj0 + bj1Z1,t + bj2Z2,t + . . .+ bjnZn,t − R̄t + Vt(St+1)− Vt(St), (11b)

where Vt : S → R denotes a table of state-value function estimates, R̄t denotes an estimate of the243
average-reward, r̄π , Zi,t denotes an estimate of subtask zi ∀i = 1, 2, . . . , n, and j corresponds to244
the piecewise condition, rj−1 ≤ Rt+1 ≤ rj , that is satisfied by the observed per-step reward, Rt+1.245

Hence, as learning progresses, different R̃j,t+1 values will be used to define the TD error based on246
which piecewise condition is satisfied at a given time step. Moreover, we know that the probability247
that δt = δj,t is equal to the probability that rj−1 ≤ Rt+1 < rj . This allows us to express the248
expected TD error associated with (10) as follows:249

Eπ[δt] =

m∑
j=1

P(rj−1 ≤ Rt+1 < rj)Eπ[δj,t]. (12)

Now, let us consider the implications of Eπ[δt] → 0 as it relates to Eπ[δj,t]. One possibility is250
that Eπ[δj,t] → 0 ∀j = 1, 2, . . . ,m. However, this may not necessarily be the case; it is possible251
that, for example, a pair of non-zero P(rj−1 ≤ Rt+1 < rj)Eπ[δj,t] terms cancel each other out,252
such that Eπ[δt] → 0 but Eπ[δj,t] → λj ∀j = 1, 2, . . . ,m, where λj ∈ R. In such a case, what253
we do know is that if Eπ[δt] → 0, then the Bellman equation (3) must be satisfied, such that:254
Vt(s) = Eπ[R̃t+1 − R̄t + Vt(St+1) | St = s]. As such, we can write the following expression for255
λj , and solve for an arbitrary subtask, zi, as follows:256

λj = Eπ[R̃j,t+1 − R̄t + Vt(St+1)− Vt(St)] (13a)

= Eπ

[
R̃j,t+1 − R̄t + Vt(St+1)−

(
R̃t+1 − R̄t + Vt(St+1)

)]
(13b)

= Eπ[R̃j,t+1]− Eπ[R̃t+1] (13c)

= Eπ[R̃j,t+1]− r̄π (See Remark 5.3) (13d)

= Eπ[b
j
rRt+1 + bj0 + . . .+ bji−1zi−1 + bji+1zi+1 + . . .+ bjnzn − r̄π] + bjizi (13e)

=⇒ zi = Eπ

[
− 1

bji

(
bjrRt+1 + bj0 + . . .+ bji−1zi−1 + bji+1zi+1 + . . .+ bjnzn − r̄π − λj

)]
(13f)

.
= Eπ[ϕi,j ], (13g)

where we used the fact that zi is independent of the states and actions to pull it out of the expectation.257
Here, we use ϕi,j to denote the expression inside the expectation in Equation (13f).258
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Hence, to learn zi from experience, we can utilize the common RL update rule, using the term inside259
the expectation in Equation (13g), ϕi,j , as the ‘target’, which yields the update:260

Zi,t+1 = Zi,t + ηαt


ϕi,1,t − Zi,t, r0 ≤ Rt+1 < r1
...
ϕi,m,t − Zi,t, rm−1 ≤ Rt+1 ≤ rm

(14a)

= Zi,t + ηαt


(−1/b1i )

(
R̃1,t+1 − R̄t − δt

)
, r0 ≤ Rt+1 < r1

...

(−1/bmi )
(
R̃m,t+1 − R̄t − δt

)
, rm−1 ≤ Rt+1 ≤ rm

(14b)

.
= Zi,t + ηαtβi,t, (14c)

where Zi,t is the estimate of subtask zi at time t, ϕi,j,t
.
= (−1/bji )(bjrRt+1+bj0+ . . .+bji−1Zi−1,t+261

bji+1Zi+1,t + . . .+ bjnZn,t − R̄t − δt), and ηαt is the step size.262

As such, we now have an expression for the reward-extended TD error for subtask zi, βi,t. We will263
now show that this term satisfies the desired property: Eπ[βi,t]→ 0 ∀i = 1, 2, . . . , n as Eπ[δt]→ 0,264
such that minimizing the regular TD error allows us to solve all the subtasks simultaneously:265

Theorem 5.1. Consider an average-reward MDP with a set of reward-extended TD errors,266
{βi,t}ni=1, as defined in Equation (14), corresponding to a subtask function with n subtasks that267
satisfy Definition 5.1. The set of reward-extended TD errors, {βi,t}ni=1, satisfies the following prop-268
erty: Eπ[βi,t] → 0 ∀i = 1, 2, . . . , n as Eπ[δt] → 0, where βi,t denotes the reward-extended TD269
error for subtask zi, and δt denotes the regular TD error.270

Proof. Let us consider the reward-extended TD error associated with an arbitrary jth segment of the271
piecewise linear subtask function for an arbitrary ith subtask: βi,j,t

.
= (−1/bji )(R̃j,t+1 − R̄t − δt).272

As Eπ[δt] → 0, R̄t → r̄π (by Theorem 3 of Wan et al. (2021)) and δt → λj for this jth segment.273
Hence, Eπ[βi,j,t]→ (−1/bji )(Eπ[R̃j,t+1]− r̄π − λj) = (−1/bji )(λj − λj) = 0. Now, because we274
chose j arbitrarily, we have, for all j ∈ {1, 2, . . . ,m}, that Eπ[βi,j,t] → 0. As such, and because275
we chose i arbitrarily, we can conclude that Eπ[βi,t] =

∑m
j=1 P(rj−1 ≤ Rt+1 < rj)Eπ[βi,j,t] →276

0 ∀i = 1, 2, . . . , n as Eπ[δt]→ 0. This completes the proof.277

As such, we have derived the desired update rule that we can use to solve any given subtask in278
the prediction setting. The same logic can be applied in the control setting to derive equivalent279
updates, where we note that it directly follows from Definition 5.1 that the existence of an optimal280
average-reward, r̄∗, implies the existence of corresponding optimal subtask values, z∗i ∀zi ∈ Z .281

282

Remark 5.1. In the case of a (non-piecewise) linear subtask function, the expression for the283
reward-extended TD error can be simplified to βi,t

.
= (−1/bi)δt by setting λ = 0 in Equation284

(13a), solving for the target, zi, and applying a similar process to the one described in Equation (14).285
286

Remark 5.2. Given Remark 5.1, it can be shown that if one treats the average-reward, r̄π , as a287
subtask, and derives the reward-extended TD error for it, the process yields the average-reward288
update (e.g. Equation (5d)) from the Differential algorithms proposed in Wan et al. (2021). Hence,289
our work can be viewed as a generalization of the work performed in Wan et al. (2021).290

291

Remark 5.3. Strictly speaking, r̄π = Eπ[R̃t+1] + c, c ∈ R. This is because average-reward292
solution methods typically find the solutions to the Bellman equations (3) and (4) up to an additive293
constant, c. This means that, like the average-reward estimate, our subtask estimates converge to294
the actual subtask values, up to an additive constant. For simplicity, we omit this additive constant295
in our work, unless strictly necessary, given that it is commonplace to assume that solutions in the296
average-reward setting are correct up to an additive constant.297
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5.2 The RED Algorithms298

In this section, we introduce the RED RL algorithms, which integrate the update rules derived in the299
previous section into the average-reward RL framework from Wan et al. (2021). The full algorithms,300
including algorithms that utilize function approximation, are included in Appendix A.301

RED TD-learning algorithm (tabular): We update a table of estimates, Vt : S → R as follows:302

R̃t+1 = f(Rt+1, Z1,t, Z2,t, . . . , Zn,t) (15a)

δt = R̃t+1 − R̄t + Vt(St+1)− Vt(St) (15b)
Vt+1(St) = Vt(St) + αtρtδt (15c)
R̄t+1 = R̄t + η

r
αtρtδt (15d)

Zi,t+1 = Zi,t + ηziαtρtβi,t, ∀zi ∈ Z (15e)

where, Rt is the observed reward, Zi,t is an estimate of subtask zi, βi,t is the reward-extended TD303
error for subtask zi, αt is the step size, δt is the TD error, ρt is the importance sampling ratio, R̄t is304
an estimate of the long-run average-reward of R̃t, r̄π , and ηr , ηzi are positive scalars.305

Wan et al. (2021) showed for their Differential TD-learning algorithm that Rt converges to r̄π , and306
Vt converges to a solution of v in Equation (3) for a given policy, π. We now provide an equivalent307
theorem for our RED TD-learning algorithm, which also shows that Zi,t converges to zi,π ∀zi ∈ Z ,308
where zi,π denotes the subtask value induced when following policy π:309

Theorem 5.2 (informal). The RED TD-learning algorithm (15) converges, almost surely, R̄t to r̄π ,310
Zi,t to zi,π ∀zi ∈ Z , and Vt to a solution of v in the Bellman Equation (3), up to an additive311
constant, c, if the following assumptions hold: 1) the Markov chain induced by the target policy, π,312
is unichain, 2) every state–action pair for which π(a|s) > 0 occurs an infinite number of times under313
the behavior policy, 3) the step sizes are decreased appropriately, 4) the ratio of the update frequency314
of the most-updated state to the least-updated state is finite, 5) the subtasks are in accordance with315
Definition 5.1, and 6) the subtask step sizes are decreased appropriately.316

RED Q-learning algorithm (tabular): We update Qt : S × A → R as follows:317

R̃t+1 = f(Rt+1, Z1,t, Z2,t, . . . , Zn,t) (16a)

δt = R̃t+1 − R̄t +max
a

Qt(St+1, a)−Qt(St, At) (16b)

Qt+1(St, At) = Qt(St, At) + αtδt (16c)
R̄t+1 = R̄t + η

r
αtδt (16d)

Zi,t+1 = Zi,t + ηziαtβi,t, ∀zi ∈ Z (16e)

where, Rt is the observed reward, Zi,t is an estimate of subtask zi, βi,t is the reward-extended TD318
error for subtask zi, αt is the step size, δt is the TD error, R̄t is an estimate of the long-run average-319
reward of R̃t, r̄π , and η

r
, ηzi are positive scalars. Wan et al. (2021) showed for their Differential320

Q-learning algorithm that Rt converges to r̄∗, and Qt converges to a solution of q in Equation (4).321
We now provide an equivalent theorem for our RED Q-learning algorithm, which also shows that322
Zi,t converges to the corresponding optimal subtask value z∗i ∀zi ∈ Z:323

Theorem 5.3 (informal). The RED Q-learning algorithm (16) converges, almost surely, R̄t to r̄∗,324
Zi,t to z∗i ∀zi ∈ Z , r̄πt

to r̄∗, zi,πt
to z∗i ∀zi ∈ Z , and Qt to a solution of q in the Bellman325

Equation (4), up to an additive constant, c, where πt is any greedy policy with respect to Qt, if the326
following assumptions hold: 1) the MDP is communicating, 2) the solution of q in (4) is unique up327
to a constant, 3) the step sizes are decreased appropriately, 4) all the state–action pairs are updated328
an infinite number of times, 5) the ratio of the update frequency of the most-updated state–action329
pair to the least-updated state–action pair is finite, 6) the subtasks are in accordance with Definition330
5.1, and 7) the subtask step sizes are decreased appropriately.331

See Appendix B for the formal version of these theorems, along with the full convergence proofs.332
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6 Case Study: RED RL for CVaR Optimization333

In this section, we present a case-study which illustrates how the subtask-driven approach that was334
derived in Section 5 can be used to successfully tackle the CVaR optimization problem, without the335
use of an explicit bi-level optimization scheme (as in Equation (8)), or an augmented state-space.336

First, in order to leverage the RED RL framework for CVaR optimization, we need to derive a valid337
subtask function for CVaR that satisfies the requirements of Definition 5.1. It turns out that we can338
use Equation (7) as a basis for the subtask function. The details of the adaptation of Equation (7)339
into a subtask function are presented in Appendix C. Critically, as discussed in Appendix C, opti-340
mizing the long-run average of the extended reward (R̃t) from this subtask function corresponds to341
optimizing the long-run CVaR of the observed reward (Rt). Hence, we can utilize CVaR-specific342
versions of the RED algorithms presented in Equations (15) and (16) (or their non-tabular equiva-343
lents) to optimize VaR and CVaR, such that CVaR corresponds to the primary control objective (i.e.,344
the r̄π that we want to optimize), and VaR is the (single) subtask. We call the resulting algorithms,345
the RED CVaR algorithms. These algorithms, which are shown in full in Appendix C, update CVaR346
in an analogous way to the average-reward (i.e., CVaR corresponds to R̄t in Equations (15) or (16)),347
and update VaR using a VaR-specific version of Equation (15e) or (16e) as follows:348

VaRt+1 =

{
VaRt + ηαt (δt + CVaRt − VaRt) , Rt+1 ≥ VaRt

VaRt + ηαt

((
τ

τ−1

)
δt + CVaRt − VaRt

)
, Rt+1 < VaRt

, (17)

where, VaRt and CVaRt are estimates of VaR and CVaR, ηαt is the step size, τ is the CVaR param-349
eter, δt is the TD error, and Rt is the observed reward. As such, we are able to optimize VaR and350
CVaR without the use of an explicit bi-level optimization scheme or an augmented state-space.351

We now present empirical results obtained when applying the RED CVaR algorithms on two RL352
tasks. The full set of experimental details and results can be found in Appendix D.353

The first task corresponds to a two-state environment that we created for the purposes of testing our354
RED CVaR algorithms. It is called the red-pill blue-pill task (see Appendix E), where at every time355
step an agent can take either a ‘red pill’, which takes them to the ‘red world’ state, or a ‘blue pill’,356
which takes them to the ‘blue world’ state. Each state has its own characteristic per-step reward357
distribution, and in this case, for a sufficiently low CVaR parameter, τ , the red world state has a358
reward distribution with a lower (worse) mean but higher (better) CVaR compared to the blue world359
state. As such, this task allows us to answer the following question: can the RED CVaR algorithms360
successfully get the agent to learn a policy that prioritizes optimizing the reward CVaR over the361
average-reward? In particular, we would expect that the RED CVaR algorithms learn a policy that362
prefers to stay in the red world, and that the (risk-neutral) Differential algorithms (from Wan et al.363
(2021)) learn a policy that prefers to stay in the blue world. This task is illustrated in Figure 2.

Figure 2: a) The red-pill blue-pill environment. b) + c) Histograms showing the per-step reward
distribution of the b) ‘red world’, and c) ‘blue world’ states in the red-pill blue-pill environment.

364
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The second task is the well-known inverted pendulum task, where an agent learns how to optimally365
balance an inverted pendulum. We chose this task because it provides us with the opportunity to test366
our algorithms in an environment where: 1) we must use function approximation (given the high-367
dimensional state-space), and 2) where the optimal CVaR policy and the optimal average-reward368
policy is the same policy (i.e., the policy that best balances the pendulum will yield a limiting re-369
ward distribution with both the optimal average-reward and reward CVaR). This hence allows us to370
directly compare the performance of our RED algorithms to that of the regular Differential algo-371
rithms, as well as to gauge how function approximation affects the performance of our algorithms.372
For this task, we utilized a simple actor-critic architecture (Barto et al., 1983; Sutton and Barto,373
2018) as this allowed us to compare the performance of a (non-tabular) RED TD-learning algorithm374
with a (non-tabular) Differential TD-learning algorithm.375

In terms of empirical results, Figure 3 shows rolling averages of the average-reward and reward376
CVaR as learning progresses in both tasks when using the regular Differential learning algorithms377
(to optimize the average-reward) vs. the RED CVaR algorithms (to optimize the reward CVaR).378
As shown in the figure, in the red-pill blue-pill task, the RED CVaR algorithm is able to success-379
fully learn a policy that prioritizes maximizing the reward CVaR over the average-reward, thereby380
achieving a sort of risk-awareness. In the inverted pendulum task, both methods converge to the381
same policy, as expected.382

Figure 3: Rolling average-reward and reward CVaR as learning progresses when using the (risk-
neutral) Differential algorithms vs. the (risk-aware) RED CVaR algorithms in the a) red-pill blue-
pill, and b) inverted pendulum tasks. A solid line denotes the mean average-reward or reward CVaR,
and the corresponding shaded region denotes a 95% confidence interval over a) 50 runs , or b) 10
runs. As shown in the figure, the RED CVaR algorithms are able to successfully learn a policy that
prioritizes maximizing the reward CVaR, thereby achieving a sort of risk-awareness.

Figure 4: Typical convergence plots of the agent’s VaR and CVaR estimates as learning progresses
when using the RED CVaR algorithms in the a) red-pill blue-pill, and b) inverted pendulum tasks
with an initial guess of 0.0 for both estimates.
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Figure 4 shows typical convergence plots of the agent’s VaR and CVaR estimates as learning pro-383
gresses in both tasks when using the RED CVaR algorithms. As shown in the figure, the estimates384
converge in both tasks. In particular, the estimates converge to the correct VaR and CVaR values, up385
to an additive constant, thereby yielding the optimal CVaR policy, and hence, the results in Figure 3.386

7 Discussion, Limitations, and Future Work387

In this work, we introduced reward-extended differential (or RED) reinforcement learning: a novel388
reinforcement learning framework that can be used to solve various learning objectives, or subtasks,389
simultaneously in the average-reward setting. We introduced a family of RED RL algorithms for390
prediction and control, and then showcased how these algorithms could be utilized to effectively and391
efficiently tackle the CVaR optimization problem. More specifically, we were able to use the RED392
RL framework to derive a set of algorithms that can optimize the CVaR risk measure without using393
an explicit bi-level optimization scheme or an augmented state-space, thereby alleviating some of394
the computational challenges and non-trivialities that arise when performing risk-based optimization395
in the discounted setting. Empirically, we showed that the RED-based CVaR algorithms fared well396
in both tabular and linear function approximation settings.397

More broadly, our work has introduced a theoretically-sound framework that allows for a subtask-398
driven approach to reinforcement learning, where various learning objectives (or subtasks) are solved399
simultaneously to help solve a larger, central learning objective. In this work, we showed (both400
theoretically and empirically) how this framework can be utilized to predict and/or optimize any401
arbitrary number of subtasks simultaneously in the average-reward setting. Central to this result is402
the novel concept of the reward-extended TD error, which is utilized in our framework to develop403
learning rules for the subtasks, and satisfies key theoretical properties that make it possible to solve404
any given subtask in a fully-online manner by minimizing the regular TD error. Moreover, we405
built upon existing results from Wan et al. (2021) to show the almost sure convergence of tabular406
algorithms derived from our framework. While we have only begun to grasp the implications of our407
framework, we have already seen some promising indications in the CVaR case study: the ability408
to turn explicit bi-level optimization problems into implicit bi-level optimizations that can be solved409
in a fully-online manner, as well as the potential to turn certain states (that meet certain conditions)410
into subtasks, thereby reducing the size of the state-space.411

Nonetheless, while these results are encouraging, they are subject to a number of limitations. Firstly,412
by nature of operating in the average-reward setting, we are subject to the somewhat-strict assump-413
tions made about the Markov chain induced by the policy (e.g. unichain or communicating). These414
assumptions could restrict the applicability of our framework, as they may not always hold in prac-415
tice. Similarly, our definition for a subtask requires that the associated subtask function be linear or416
piecewise linear with respect to the subtasks, which may limit the applicability of our framework to417
simpler subtask functions. Finally, it remains to be seen empirically how our framework performs418
when dealing with multiple subtasks, when taking on more complex tasks, and/or when utilizing419
nonlinear function approximation.420

Future work should look to address these limitations, as well as explore how these promising results421
can be extended to other domains, beyond the risk-awareness problem. In particular, we believe that422
the ability to optimize various subtasks simultaneously, as well as the potential to reduce the size423
of the state-space, by converting certain states to subtasks (where appropriate), could help alleviate424
significant computational challenges in other areas moving forward.425
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A RED RL Algorithms499

In this appendix, we provide pseudocode for our RED RL algorithms. We first present tabular500
algorithms, whose convergence proofs are included in Appendix B, and then provide equivalent501
algorithms that utilize function approximation.502

Algorithm 1 RED TD-Learning (Tabular)

Input: the policy π to be evaluated, policy B to be used, piecewise linear subtask function f with
n subtasks, m piecewise segments, piecewise conditions rj−1 ≤ R < rj such that fj denotes the
jth segment of f that satisfies rj−1 ≤ R < rj , and constants bj1, b

j
2, . . . , b

j
n ∀j = 1, 2, . . . ,m

Algorithm parameters: step size parameters α, ηr , ηz1 , ηz2 , . . . , ηzn
Initialize V (s) ∀s; R̄ arbitrarily (e.g. to zero)
Initialize subtasks Z1, Z2, . . . , Zn arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by B for S
Take action A, observe R,S′

R̃ = f(R,Z1, Z2, . . . , Zn)
δ = R̃− R̄+ V (S′)− V (S)
ρ = π(A | S)/B(A | S)
V (S) = V (S) + αρδ
R̄ = R̄+ η

r
αρδ

for i = 1, 2, . . . , n do
βi =

∑m
j=1(−1/b

j
i )(fj − R̄− δ)1{rj−1 ≤ R < rj}

Zi = Zi + ηziαρβi

end for
S = S′

end while
return V

Algorithm 2 RED Q-Learning (Tabular)

Input: the policy π to be used (e.g., ε-greedy), piecewise linear subtask function f with n sub-
tasks, m piecewise segments, piecewise conditions rj−1 ≤ R < rj such that fj denotes the jth
segment of f that satisfies rj−1 ≤ R < rj , and constants bj1, b

j
2, . . . , b

j
n ∀j = 1, 2, . . . ,m

Algorithm parameters: step size parameters α, η
r
, ηz1 , ηz2 , . . . , ηzn

Initialize Q(s, a) ∀s, a; R̄ arbitrarily (e.g. to zero)
Initialize subtasks Z1, Z2, . . . , Zn arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by π for S
Take action A, observe R,S′

R̃ = f(R,Z1, Z2, . . . , Zn)
δ = R̃− R̄+maxa Q(S′, a)−Q(S,A)
Q(S,A) = Q(S,A) + αδ
R̄ = R̄+ η

r
αδ

for i = 1, 2, . . . , n do
βi =

∑m
j=1(−1/b

j
i )(fj − R̄− δ)1{rj−1 ≤ R < rj}

Zi = Zi + ηziαβi

end for
S = S′

end while
return Q
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Algorithm 3 RED TD-Learning (Function Approximation)

Input: the policy π to be evaluated, policy B to be used, a differentiable state-value function
parameterization: v̂(s,w), piecewise linear subtask function f with n subtasks, m piecewise
segments, piecewise conditions rj−1 ≤ R < rj such that fj denotes the jth segment of f that
satisfies rj−1 ≤ R < rj , and constants bj1, b

j
2, . . . , b

j
n ∀j = 1, 2, . . . ,m

Algorithm parameters: step size parameters α, ηr , ηz1 , ηz2 , . . . , ηzn
Initialize state-value weights w ∈ Rd arbitrarily (e.g. to 0)
Initialize subtasks Z1, Z2, . . . , Zn arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by B for S
Take action A, observe R,S′

R̃ = f(R,Z1, Z2, . . . , Zn)
δ = R̃− R̄+ v̂(S′,w)− v̂(S,w)
ρ = π(A | S)/B(A | S)
w = w + αρδ∇v̂(S,w)
R̄ = R̄+ ηrαρδ
for i = 1, 2, . . . , n do
βi =

∑m
j=1(−1/b

j
i )(fj − R̄− δ)1{rj−1 ≤ R < rj}

Zi = Zi + ηziαρβi

end for
S = S′

end while
return w

Algorithm 4 RED Q-Learning (Function Approximation)

Input: the policy π to be used (e.g., ε-greedy), a differentiable state-action value function pa-
rameterization: q̂(s, a,w), piecewise linear subtask function f with n subtasks, m piecewise
segments, piecewise conditions rj−1 ≤ R < rj such that fj denotes the jth segment of f that
satisfies rj−1 ≤ R < rj , and constants bj1, b

j
2, . . . , b

j
n ∀j = 1, 2, . . . ,m

Algorithm parameters: step size parameters α, ηr , ηz1 , ηz2 , . . . , ηzn
Initialize state-action value weights w ∈ Rd arbitrarily (e.g. to 0)
Initialize subtasks Z1, Z2, . . . , Zn arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by π for S
Take action A, observe R,S′

R̃ = f(R,Z1, Z2, . . . , Zn)
δ = R̃− R̄+maxa q̂(S

′, a,w)− q̂(S,A,w)
w = w + αδ∇q̂(S,A,w)
R̄ = R̄+ η

r
αδ

for i = 1, 2, . . . , n do
βi =

∑m
j=1(−1/b

j
i )(fj − R̄− δ)1{rj−1 ≤ R < rj}

Zi = Zi + ηziαβi

end for
S = S′

end while
return w
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B Convergence Proofs503

In this appendix, we present the full convergence proofs for the tabular RED TD-learning and tabular504
RED Q-learning algorithms. Our general strategy is as follows: we first show that the results from505
Wan et al. (2021), which show the almost sure convergence of the value function and average-506
reward estimates of differential algorithms, are applicable to our algorithms. We then build upon507
these results to show that the subtask estimates of our algorithms converge as well.508

For consistency, we adopt similar notation as Wan et al. (2021) for our proofs:509

• For a given vector x, let
∑

x denote the sum of all elements in x, such that
∑

x
.
=

∑
i x(i).510

• Let r̄∗ denote the optimal average-reward.511

• Let zi∗ denote the corresponding optimal subtask value for subtask zi ∈ Z .512

B.1 Convergence Proof for the Tabular RED TD-learning Algorithm513

In this section, we present the proof for the convergence of the value function, average-reward, and514
subtask estimates of the RED TD-learning algorithm. Similar to what was done in Wan et al. (2021),515
we will begin by considering a general algorithm, called General RED TD. We will first define516
General RED TD, then show how the RED TD-learning algorithm is a special case of this algorithm.517
We will then provide necessary assumptions, state the convergence theorem of General RED TD,518
and then provide a proof for the theorem, where we show that the value function, average-reward,519
and subtask estimates converge, thereby showing that the RED TD-learning algorithm converges.520
We begin by introducing the General RED TD algorithm:521

Consider an MDPM .
= ⟨S,A,R, p⟩, a behavior policy, B, and a target policy, π. Given a state s ∈522

S and discrete step n ≥ 0, let An(s) ∼ B(· | s) denote the action selected using the behavior policy,523
let Rn(s,An(s)) ∈ R denote a sample of the resulting reward, and let S′

n(s,An(s)) ∼ p(·, · | s, a)524
denote a sample of the resulting state. Let {Yn} be a set-valued process taking values in the set525
of nonempty subsets of S, such that: Yn = {s : s component of the |S|-sized table of state-value526
estimates, V , that was updated at step n}. Let ν(n, s) .

=
∑n

j=0 I{s ∈ Yj}, where I is the indicator527
function, such that ν(n, s) represents the number of times that V (s) was updated up until step n.528

Now, let f be a valid subtask function (see Definition 5.1), such that R̃n(s,An(s))
.
=529

f(Rn(s,An(s)), Z1,n, Z2,n, . . . , Zk,n) for k subtasks ∈ Z , where R̃n(s,An(s)) is the extended530
reward, Z is the set of subtasks, and Zi,n denotes the estimate of subtask zi ∈ Z at step n. Consider531
an MDP with the extended reward: M̃ .

= ⟨S,A, R̃, p̃⟩, such that R̃n(s,An(s)) ∈ R̃. The update532
rules of General RED TD for this MDP are as follows, for n ≥ 0:533

Vn+1(s)
.
= Vn(s) + αν(n,s)ρn(s)δn(s)I{s ∈ Yn}, ∀s ∈ S, (B.1)

R̄n+1
.
= R̄n + η

r

∑
s

αν(n,s)ρn(s)δn(s)I{s ∈ Yn}, (B.2)

Zi,n+1
.
= Zi,n + ηzi

∑
s

αν(n,s)ρn(s)βi,n(s)I{s ∈ Yn}, ∀zi ∈ Z, (B.3)

where,534

δn(s)
.
= R̃n(s,An(s))− R̄n + Vn(S

′
n(s,An(s)))− Vn(s)

= f(Rn(s,An(s)), Z1,n, Z2,n, . . . , Zk,n)− R̄n + Vn(S
′
n(s,An(s)))− Vn(s),

(B.4)

and,535

βi,n(s)
.
= ϕi,n(s)− Zi,n, ∀zi ∈ Z. (B.5)
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Here, ρn(s)
.
= π(An(s) | s) /B(An(s) | s) denotes the importance sampling ratio (with behavior536

policy, B), R̄n denotes the estimate of the average-reward (see Equation (2)), δn(s) denotes the TD537
error, η

r
and ηzi are positive scalars, ϕi,n(s) denotes the (potentially-piecewise) subtask target, as538

defined in Section 5.1, and αν(n,s) denotes the step size at time step n for state s.539

We now show that the RED TD-learning algorithm is a special case of the General RED TD algo-540
rithm. Consider a sequence of experience from our MDP M̃: St, At(St), R̃t+1, St+1, . . . . Now541
recall the set-valued process {Yn}. If we let n = time step t, we have:542

Yt(s) =

{
1, s = St,

0, otherwise,

as well as S′
n(St, At(St)) = St+1, Rn(St, At) = Rt+1, R̃n(St, At(St)) = R̃t+1.543

544

Hence, update rules (B.1), (B.2), (B.3), (B.4), and (B.5) become:545

Vt+1(St)
.
= Vt(St) + αν(t,St)ρt(St)δt , and Vt+1(s)

.
= Vt(s),∀s ̸= St, (B.6)

R̄t+1
.
= R̄t + η

r
αν(t,St)ρt(St)δt, (B.7)

Zi,t+1
.
= Zi,t + ηziαν(t,St)ρt(St)βi,t, ∀zi ∈ Z, (B.8)

δt
.
= R̃t+1 − R̄t + Vt(St+1)− Vt(St),

= f(Rt+1, Z1,t, Z2,t, . . . , Zk,t)− R̄t + Vt(St+1)− Vt(St),
(B.9)

βi,t
.
= ϕi,t − Zi,t, ∀zi ∈ Z, (B.10)

which are RED TD-learning’s update rules with αν(t,St) denoting the step size at time t.546
547

We now specify the assumptions on General RED TD that are needed to ensure convergence. We548
refer the reader to Wan et al. (2021) for an in-depth discussion on Assumptions B.1 – B.5:549

550

Assumption B.1 (Unichain Assumption). The Markov chain induced by the target policy is551
unichain.552

553

Assumption B.2 (Coverage Assumption). B(a | s) > 0 if π(a | s) > 0 for all s ∈ S, a ∈ A.554
555

Assumption B.3 (Step Size Assumption). αn > 0,
∑∞

n=0 αn =∞,
∑∞

n=0 α
2
n <∞.556

557

Assumption B.4 (Asynchronous Step Size Assumption 1). Let [·] denote the integer part of (·). For558
x ∈ (0, 1),559

sup
i

α[xi]

αi
<∞

and560 ∑[yi]
j=0 αj∑i
j=0 αj

→ 1

uniformly in y ∈ [x, 1].561
562

Assumption B.5 (Asynchronous Step Size Assumption 2). There exists ∆ > 0 such that563

lim inf
n→∞

ν(n, s)

n+ 1
≥ ∆,

18



Burning RED: Unlocking Subtask-Driven RL and Risk-Awareness in Average-Reward MDPs

a.s., for all s ∈ S.564

Furthermore, for all x > 0, and565

N(n, x) = min

{
m ≥ n :

m∑
i=n+1

αi ≥ x

}
,

the limit566

lim
n→∞

∑ν(N(n,x),s)
i=ν(n,s) αi∑ν(N(n,x),s′)
i=ν(n,s′) αi

exists a.s. for all s, s′.567
568

Assumptions B.3, B.4, and B.5, which originate from Borkar (1998), outline the step size require-569
ments needed to show the convergence of stochastic approximation algorithms. Assumptions B.3570
and B.4 can be satisfied with step size sequences that decrease to 0 appropriately, including 1/n,571
1/(n log n), and log n/n (Abounadi et al., 2001). Assumption B.5 first requires that the limiting572
ratio of visits to any given state, compared to the total number of visits to all states, is greater than or573
equal to some fixed positive value. The assumption then requires that the relative update frequency574
between any two states is finite. For instance, Assumption B.5 can be satisfied with αn = 1/n (see575
page 403 of Bertsekas and Tsitsiklis (1996) for more information).576

577

Assumption B.6 (Subtask Function Assumption). The subtask function, f , is 1) linear or piecewise578
linear, and 2) is invertible with respect to each input given all other inputs.579

580

Assumption B.7 (Subtask Independence Assumption). Each subtask zi ∈ Z in f is in-581
dependent of the states and actions, and hence independent of the observed reward, Rn,582
such that p̃(s′, f(r, z1, . . . , zn)|s, a) = p(s′, r|s, a), and E[fj(Rn, Z1,n, Z2,n, . . . , Zk,n)] =583
fj(E[Rn], Z1,n, Z2,n, . . . , Zk,n), where fj denotes the jth segment of a piecewise linear subtask584
function, and E denotes any expectation taken with respect to the states and actions.585

586

Assumption B.8 (Subtask Step Size Assumption). If the subtask function is piecewise linear with587
at least two piecewise segments, the subtask step sizes, ηziαn, satisfy the following properties:588
ηziαn > 0,

∑∞
n=0 ηziαn =∞,

∑∞
n=0(α

2
n + η2ziα

2
n) <∞, and (ηziαn)/αn → 0, ∀zi ∈ Z .589

Assumptions B.6, B.7, and B.8 outline the subtask-related requirements. Assumption B.6 ensures590
that we can explicitly write out the update (B.3), and Assumption B.7 ensures that we do not break591
the Markov property in the process (i.e., we preserve the Markov property by ensuring that the592
subtasks are independent of the states and actions, and thereby also independent of the observed593
reward). Assumption B.8 ensures that the subtask step sizes decrease to 0 appropriately.594

595

We next point out that it is easy to verify that under Assumption B.1, the following system of596
equations:597

vπ(s) =
∑
a

π(a | s)
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ − r̄π + vπ(s
′)), for all s ∈ S,

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)(f(r, z1, z2, . . . , zk)− r̄π + vπ(s
′)),

(B.11)

and,598

r̄π − R̄0 = η
r

(∑
vπ −

∑
V0

)
, (B.12)

zi,π − Zi,0 = η
i

(∑
vπ −

∑
V0

)
, for all zi ∈ Z, (B.13)
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has a unique solution of vπ , where r̄π denotes the average-reward induced by following a given599
policy, π, and zi,π denotes the corresponding subtask value for subtask zi ∈ Z . Denote this unique600
solution of vπ as v∞.601

602

We are now ready to state the convergence theorem:603
604

Theorem B.1.1 (Convergence of General RED TD). If Assumptions B.1 – B.8 hold, then General605
RED TD (Equations (B.1) – (B.5)) converges a.s., R̄n to r̄π , Zi,n to zi,π ∀zi ∈ Z , and Vn to v∞.606

We prove this theorem in the following section. To do so, we first show that General RED TD is of607
the same form as General Differential TD from Wan et al. (2021), thereby allowing us to apply their608
convergence results for the value function and average-reward estimates of General Differential TD609
to General RED TD. We then build upon these results, using similar techniques as Wan et al. (2021),610
to show that the subtask estimates converge as well.611

B.1.1 Proof of Theorem B.1.1 (for Linear Subtask Functions)612

We first provide the proof for linear subtask functions, where the the reward-extended TD613
error can be expressed as a constant, subtask-specific fraction of the regular TD error, such that614
βi,n(s) = (−1/bi)δn(s). We consider the piecewise linear case in Section B.1.2.615

616

Convergence of the average-reward and state-value function estimates:617

Consider the increment to R̄n at each step. We can see from Equation (B.2) that the increment is ηr618
times the increment to Vn. As such, as was done in Wan et al. (2021), we can write the cumulative619
increment as follows:620

R̄n − R̄0 = η
r

n−1∑
j=0

∑
s

αν(j,s)ρj(s)δj(s)I{s ∈ Yj}

= ηr

(∑
Vn −

∑
V0

)

=⇒ R̄n = ηr

∑
Vn − ηr

∑
V0 + R̄0 = ηr

∑
Vn − cr, (B.14)

where cr
.
= η

r

∑
V0 − R̄0. (B.15)

Similarly, consider the increment to Zi,n (for an arbitrary subtask zi ∈ Z) at each step. As per621
Remark 5.1, we can write the increment in Equation (B.3) as some constant, subtask-specific fraction622
of the increment to Vn. Consequently, we can write the cumulative increment as follows:623

Zi,n − Zi,0 = ηzi

n−1∑
j=0

∑
s

αν(j,s)ρj(s)βi,j(s)I{s ∈ Yj}

= ηzi

n−1∑
j=0

∑
s

αν(j,s)ρj(s)(−1/bi)δj(s)I{s ∈ Yj}

= ηi

(∑
Vn −

∑
V0

)
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=⇒ Zi,n = η
i

∑
Vn − η

i

∑
V0 + Zi,0 = η

i

∑
Vn − ci, (B.16)

where,624

ci
.
= ηi

∑
V0 − Zi,0, and (B.17)

ηi

.
= (−1/bi)ηzi . (B.18)

Now consider the subtask function, f . At any given time step, the subtask function can be written625
as: fn = R̃n(s,An(s)) = brRn(s,An(s)) + b0 + b1Z1,n + . . . + bkZk,n, where br, b0 ∈ R and626
bi ∈ R \ {0}. Given Equation (B.16), we can write the subtask function as follows:627

fn = brRn(s,An(s)) + b0 + b1(η1

∑
Vn − c1) + . . .+ bk(ηk

∑
Vn − ck)

= brRn(s,An(s)) + η
f

∑
Vn − cf , (B.19)

628
where, η

f
=

∑k
j=1 bjηj and cf =

∑k
j=1 bjcj − b0.629

630

As such, we can substitute R̄n and Zi,n ∀zi ∈ Z in (B.1) with (B.14) and (B.19), respectively,631
∀s ∈ S, which yields:632

Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
brRn(s,An(s)) + Vn(S

′
n(s,An(s)))− Vn(s)− ηr

∑
Vn + cr + η

f

∑
Vn − c

f

)
I{s ∈ Yn}

Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
brRn(s,An(s)) + Vn(S

′
n(s,An(s)))− Vn(s)− η

T

∑
Vn + c

T

)
I{s ∈ Yn}

Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
R̂n(s,An(s)) + Vn(S

′
n(s,An(s)))− Vn(s)− η

T

∑
Vn

)
I{s ∈ Yn},

(B.20)

where η
T
= η

r
− η

f
, c

T
= cr − cf , and R̂n(s,An(s))

.
= brRn(s,An(s)) + c

T
.633

Equation (B.20) is now in the same form as Equation (B.37) (i.e., General Differential TD) from634
Wan et al. (2021), who showed that the equation converges a.s. Vn to v∞ as n → ∞. Moreover,635
from this result, Wan et al. (2021) showed that R̄n converges a.s. to r̄π as n → ∞. Given that636
General RED TD adheres to all the assumptions listed for General Differential TD in Wan et al.637
(2021), these convergence results apply to General RED TD.638

639

Convergence of the subtask estimates:640

Let f(Zi,n) be shorthand for the subtask function (i.e., R̃n(s,An(s))). We can substitute Zi,n in641
(B.1) with (B.16) ∀s ∈ S as follows:642
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Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
R̃n(s,An(s))− R̄n + Vn(S

′
n(s,An(s)))− Vn(s)

)
I{s ∈ Yn}

=⇒ Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
f(Zi,n)− R̄n + Vn(S

′
n(s,An(s)))− Vn(s)

)
I{s ∈ Yn}

=⇒ Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)

f(ηi

∑
Vn︸ ︷︷ ︸

Ẑi,n

−ci)− R̄n + Vn(S
′
n(s,An(s)))− Vn(s)

 I{s ∈ Yn}

=⇒ Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
f̂(Ẑi,n)− R̄n + Vn(S

′
n(s,An(s)))− Vn(s)

)
I{s ∈ Yn}

=⇒ Vn+1(s) = Vn(s) + . . .

αν(n,s)ρn(s)
(
R̂n − R̄n + Vn(S

′
n(s,An(s)))− Vn(s)

)
I{s ∈ Yn},

(B.21)

where R̂n
.
= f̂(Ẑi,n) = f(Zi,n + ci) = h(R̃n). Here, h(R̃n) corresponds to the change in R̃n due643

to shifting subtask Zi,n by ci. Denote the inverse of h(R̃n) (which exists given Assumption B.6) as644
h−1.645

646

Now consider an MDP, M̂, which has rewards, R̂, corresponding to rewards modified by h from the647
MDP, M̃, has the same state and action spaces as M̃, and has the transition probabilities defined as:648

p̂(s′, h(r̂) | s, a) .
= p̃(s′, r̃ | s, a), (B.22)

such that M̂ .
= ⟨S,A, R̂, p̂⟩. It is easy to check that the unichain assumption holds for the trans-649

formed MDP, M̂. As such, given Assumptions B.6 and B.7, the average-reward induced by follow-650
ing policy π for the MDP, M̂, ˆ̄rπ , can be written as follows:651

ˆ̄rπ = h(r̄π). (B.23)

Now, because652

v∞(s) =
∑
a

π(a | s)
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ + v∞(s′)− r̄π) (from (B.11))

=
∑
a

π(a | s)
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ + v∞(s′)− h−1(ˆ̄rπ)) (from (B.23))

=
∑
a

π(a | s)
∑
s′,r̃

p̃(s′, r̃ | s, a)(h(r̃) + v∞(s′)− ˆ̄rπ) (by linearity of h)

=
∑
a

π(a | s)
∑
s′,r̃

p̂(s′, r̃ | s, a)(r̃ + v∞(s′)− ˆ̄rπ) (from (B.22)),

22
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we can see that v∞ is a solution of not just the state-value Bellman equation for the MDP, M̃, but653
also the state-value Bellman equation for the transformed MDP, M̂.654

Next, we can write the subtask value induced by following policy π for the MDP, M̂, ẑi,π , as655
follows:656

ẑi,π = zi,π + ci. (B.24)

We can then combine Equations (B.13), (B.16), and (B.24), which yields:657

ẑi,π = η
i

∑
v∞. (B.25)

Next, we can combine Equation (B.16) with the result from Wan et al. (2021) which shows that658
Vn → v∞, which yields:659

Zi,n → η
i

∑
v∞ − ci. (B.26)

Moreover, because ẑi,π = η
i

∑
v∞ (Equation (B.25)), we have:660

Zi,n → ẑi,π − ci. (B.27)

Finally, because ẑi,π = zi,π + ci (Equation (B.24)), we have:661

Zi,n → zi,π a.s. as n→∞. (B.28)
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B.1.2 Proof of Theorem B.1.1 (for Piecewise Linear Subtask Functions)662

We now provide the proof for piecewise linear subtask functions, where the the reward-extended TD663
error can be expressed as follows: βi,n(s) = (−1/bi,n)(R̃n(s,An(s))− R̄n − δn(s)). Our general664
strategy in this case is to use a two-timescales argument, such that we leverage Theorem 2 in Section665
6 of Borkar (2009), along with the results from Theorem B.3 of Wan et al. (2021).666

To begin, let us consider Assumption B.8. In particular, (ηziαn)/αn → 0 implies that the subtask667
step sizes, ηziαn, decrease to 0 at a faster rate than the value function step size, αn. This implies668
that the subtask updates move on a slower timescale compared to the value function update. Hence,669
as argued in Section 6 of Borkar (2009), the (faster) value function update (B.1) views the (slower)670
subtask updates (B.3) as quasi-static, while the (slower) subtask updates view the (faster) value671
function update as nearly equilibrated (as we will show below, the results from Wan et al. (2021)672
imply the existence of such an equilibrium point).673

674

Convergence of the average-reward and state-action value function estimates:675

Given the two-timescales argument, Equation (B.1) can be viewed as being of the same form676
as Equation (B.30) (i.e., General Differential TD) from Wan et al. (2021), who showed that the677
equation converges a.s. Vn to v∞ as n→∞. Moreover, from this result, Wan et al. (2021) showed678
that R̄n converges a.s. to r̄π as n→∞. Given that General RED TD adheres to all the assumptions679
listed for General Differential TD in Wan et al. (2021), these convergence results apply to General680
RED TD.681

682

Convergence of the subtask estimates:683

Let us consider the asynchronous subtask updates (B.3). These updates are (each) of the same form684
as Equation 7.1.2 of Borkar (2009). As such, to show the convergence of the subtask estimates, we685
can apply the result in Section 7.4 of Borkar (2009), which shows the convergence of asynchronous686
updates of the same form as Equation 7.1.2. To apply this result, given Assumptions B.4 and B.5,687
we only need to show the convergence of the synchronous version of the subtask updates:688

Zi,n+1 = Zi,n + ηziαn

[
(−1/bi,n)

(
ρn(R̃n − R̄n)− (g(Vn) +Mn+1)

)]
∀zi ∈ Z (B.29)

where,689

g(Vn)(s)
.
=

∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ + Vn(s
′))− Vn(s)− R̄n

= T (Vn)(s)− Vn(s)− R̄n, and

Mn+1(s)
.
= ρn(s)

(
R̃n(s,An(s)) + Vn(S

′
n(s,An(s)))− Vn(s)− R̄n

)
− g(Vn)(s).

To show the convergence of the synchronous update (B.29) under the two-timescales argument, we690
can apply the result of Theorem 2 in Section 6 of Borkar (2009) to show that Zi,n → zi,π∀zi ∈ Z691
a.s. as n → ∞. This theorem requires that 3 assumptions be satisfied. As such, we will now show,692
via Lemmas B.1 - B.3, that these 3 assumptions are indeed satisfied.693

694

Lemma B.1. The value function update rule, Vn+1 = Vn + αn(g(Vn) + Mn+1), has a globally695
asymptotically stable equilibrium, v∞.696

Proof. This was shown in Theorem B.3 of Wan et al. (2021).697
698

Lemma B.2. The subtask update rules (B.29) each have a globally asymptotically stable equilib-699
rium, zi,π .700
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Proof. Applying the results of Theorem B.3 of Wan et al. (2021) under the two-timescales ar-701
gument, we have that g(Vn) → 0, R̄n → r̄π , that {Mn} is a martingale difference sequence,702
such that E[Mn+1 | Fn] = 0 a.s., n ≥ 0, and that {Mn} is square-integrable, such that703
E[||Mn+1||2 | Fn] ≤ K(1 + ||Qn||2) a.s., n ≥ 0, for some constant K > 0. Given these results,704
the remaining ρn(s)(R̃n(s,An(s)) − R̄n) = ρn(s)R̃n(s,An(s)) − r̄π term in the subtask updates705
(B.29) can be interpreted as a martingale difference sequence, {Mr

n}, such that E[Mr
n+1 | Fn] =706

E[ρn(s)(R̃n+1(s,An(s))− R̄n) | Fn] = E[ρn(s)R̃n+1(s,An(s)) | Fn]− r̄π = 0 a.s., n ≥ 0. As707
such, given Assumptions B.4, B.5, and B.8, to show that the subtask update rules (B.29) each have a708
globally asymptotically stable equilibrium, we only need to show that the martingale difference se-709
quence, {Mr

n}, is square-integrable, such that E[(Mr
n+1)

2 | Fn] <∞ a.s., n ≥ 0. Indeed, because710
R̃n(s,An(s)) is bounded, it directly follows that its mean, r̄π , is also bounded, and as such, we have711
that the martingale difference sequence, {Mr

n}, is square-integrable. Hence, we can conclude that712
the subtask update rules (B.29) each have a globally asymptotically stable equilibrium, zi,π .713

714

Lemma B.3. supn(||Vn||+ ||Zn||) <∞ a.s.715

Proof. It was shown in Theorem B.3 of Wan et al. (2021) that supn(||Vn||) < ∞ a.s. Hence, we716
only need to show that supn(||Zn||) <∞ a.s. To this end, we can apply Theorem 7 in Section 3 of717
Borkar (2009). This theorem requires 4 assumptions:718

• (A1) The function g is Lipschitz: ||g(x)− g(y)|| ≤ L||x− y|| for some 0 < L <∞.719

• (A2) The sequence {ηziαn} satisfies ηziαn > 0,
∑

ηziαn =∞, and
∑

η2ziα
2
n <∞.720

• (A3) {Mn} and {Mr
n} are martingale difference sequences that are square-integrable.721

• (A4) The functions gd(x)
.
= g(dx)/d, d ≥ 1, x ∈ Rk, satisfy gd(x) → g∞(x) as d → ∞,722

uniformly on compacts for some g∞ ∈ C(Rk). Furthermore, the ODE ẋt = g∞(xt) has the723
origin as its unique globally asymptotically stable equilibrium.724

Under the two-timescales argument, the results of Theorem B.3 of Wan et al. (2021) apply, thereby725
satisfying the above assumptions, except for the assumptions regarding {ηziαn} and {Mr

n}. In this726
regard, Assumptions B.4 and B.8 satisfy Assumption (A2). Moreover, we showed in Lemma B.2 that727
{Mr

n} is indeed a martingale difference sequence that is square-integrable. As such, Assumptions728
(A1) - (A4) are verified, meaning that we can apply the results of Theorem 7 in Section 3 of Borkar729
(2009) to conclude that supn(||Zn||) <∞ a.s., and hence, that supn(||Vn||+ ||Zn||) <∞ a.s.730

731

As such, we have now verified the 3 assumptions required by Theorem 2 in Section 6 of732
Borkar (2009), which means that we can apply the result of the theorem to conclude that733
Zi,n → zi,π∀zi ∈ Z a.s. as n→∞.734

735

This completes the proof of Theorem B.1.1.736
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B.2 Convergence Proof for the Tabular RED Q-learning Algorithm737

In this section, we present the proof for the convergence of the value function, average-reward,738
and subtask estimates of the RED Q-learning algorithm. Similar to what was done in Wan et al.739
(2021), we will begin by considering a general algorithm, called General RED Q. We will first define740
General RED Q, then show how the RED Q-learning algorithm is a special case of this algorithm.741
We will then provide necessary assumptions, state the convergence theorem of General RED Q,742
and then provide a proof for the theorem, where we show that the value function, average-reward,743
and subtask estimates converge, thereby showing that the RED Q-learning algorithm converges. We744
begin by introducing the General RED Q algorithm:745

Consider an MDPM .
= ⟨S,A,R, p⟩. Given a state s ∈ S , action a ∈ A, and discrete step n ≥ 0,746

let Rn(s, a) ∈ R denote a sample of the resulting reward, and let S′
n(s, a) ∼ p(·, · | s, a) denote a747

sample of the resulting state. Let {Yn} be a set-valued process taking values in the set of nonempty748
subsets of S × A, such that: Yn = {(s, a) : (s, a) component of the |S × A|-sized table of state-749
action value estimates, Q, that was updated at step n}. Let ν(n, s, a) .

=
∑n

j=0 I{(s, a) ∈ Yj},750
where I is the indicator function, such that ν(n, s, a) represents the number of times that the (s, a)751
component of Q was updated up until step n.752

Now, let f be a valid subtask function (see Definition 5.1), such that R̃n(s, a)
.
=753

f(Rn(s, a), Z1,n, Z2,n, . . . , Zn,k) for k subtasks ∈ Z , where R̃n(s, a) is the extended reward, Z754
is the set of subtasks, and Zi,n denotes the estimate of subtask zi ∈ Z at step n. Consider an MDP755
with the extended reward: M̃ .

= ⟨S,A, R̃, p̃⟩, such that R̃n(s, a) ∈ R̃. The update rules of General756
RED Q for this MDP are as follows, for n ≥ 0:757

Qn+1(s, a)
.
= Qn(s, a) + αν(n,s,a)δn(s, a)I{(s, a) ∈ Yn}, ∀s ∈ S, a ∈ A, (B.30)

R̄n+1
.
= R̄n + ηr

∑
s,a

αν(n,s,a)δn(s, a)I{(s, a) ∈ Yn}, (B.31)

Zi,n+1
.
= Zi,n + ηzi

∑
s,a

αν(n,s,a)βi,n(s, a)I{(s, a) ∈ Yn}, ∀zi ∈ Z (B.32)

where,758

δn(s, a)
.
= R̃n(s, a)− R̄n +max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)

= f(Rn(s, a), Z1,n, Z2,n, . . . , Zk,n)− R̄n +max
a′

Qn(S
′
n(s, a), a

′)−Qn(s, a),
(B.33)

and,759

βi,n(s, a)
.
= ϕi,n(s, a)− Zi,n, ∀zi ∈ Z. (B.34)

Here, R̄n denotes the estimate of the average-reward (see Equation (2)), δn(s, a) denotes the TD760
error, η

r
and ηzi are positive scalars, ϕi,n(s, a) denotes the (potentially-piecewise) subtask target, as761

defined in Section 5.1, and αν(n,s,a) denotes the step size at time step n for state-action pair (s, a).762

We now show that the RED Q-learning algorithm is a special case of the General RED Q algorithm.763
Consider a sequence of experience from our MDP M̃: St, At, R̃t+1, St+1, . . . . Now recall the764
set-valued process {Yn}. If we let n = time step t, we have:765

Yt(s, a) =

{
1, s = St and a = At,

0, otherwise,

as well as S′
n(St, At) = St+1, Rn(St, At) = Rt+1, and R̃n(St, At) = R̃t+1.766

767
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Hence, update rules (B.30), (B.31), (B.32), (B.33), and (B.34) become:768

Qt+1(St, At)
.
= Qt(St, At) + αν(t,St,At)δt; Qt+1(s, a)

.
= Qt(s, a),∀s ̸= St, a ̸= At, (B.35)

R̄t+1
.
= R̄t + η

r
αν(t,St,At)δt, (B.36)

Zi,t+1
.
= Zi,t + ηziαν(t,St,At)βi,t, ∀zi ∈ Z, (B.37)

δt
.
= R̃t+1 − R̄t +max

a′
Qt(St+1, a

′)−Qt(St, At),

= f(Rt+1, Z1,t, Z2,t, . . . , Zk,t)− R̄t +max
a′

Qt(St+1, a
′)−Qt(St, At),

(B.38)

βi,t
.
= ϕi,t − Zi,t, ∀zi ∈ Z, (B.39)

which are RED Q-learning’s update rules with αν(t,St,At) denoting the step size at time t.769
770

We now specify the assumptions on General RED Q that are needed to ensure convergence. We771
refer the reader to Wan et al. (2021) for an in-depth discussion on these assumptions:772

773

Assumption B.9 (Communicating Assumption). The MDP has a single communicating class. That774
is, each state in the MDP is accessible from every other state under some deterministic stationary775
policy.776

777

Assumption B.10 (State-Action Value Function Uniqueness). There exists a unique solution of q778
only up to a constant in the Bellman equation (4).779

780

Assumption B.11 (Asynchronous Step Size Assumption 3). There exists ∆ > 0 such that781

lim inf
n→∞

ν(n, s, a)

n+ 1
≥ ∆,

a.s., for all s ∈ S, a ∈ A.782
783

Furthermore, for all x > 0, and784

N(n, x) = min

{
m > n :

m∑
i=n+1

αi ≥ x

}
,

the limit785

lim
n→∞

∑ν(N(n,x),s,a)
i=ν(n,s,a) αi∑ν(N(n,x),s′,a′)
i=ν(n,s′,a′) αi

exists a.s. for all s, s′, a, a′.786
787

We next point out that it is easy to verify that under Assumption B.9, the following system of788
equations:789

qπ(s, a) =
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ − r̄π +max
a′

qπ(s, a)), ∀s ∈ S, a ∈ A,

=
∑
s′,r

p(s′, r | s, a)(f(r, z1, z2, . . . , zk)− r̄π +max
a′

qπ(s, a)),
(B.40)
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and,790

r̄∗ − R̄0 = η
r

(∑
qπ −

∑
Q0

)
, (B.41)

zi∗ − Zi,0 = η
i

(∑
qπ −

∑
Q0

)
, ∀zi ∈ Z, (B.42)

has a unique solution for qπ , where r̄∗ denotes the optimal average-reward, and zi∗ denotes the791
corresponding optimal subtask value for subtask zi ∈ Z . Denote this unique solution for qπ as q∗.792

793

We are now ready to state the convergence theorem:794
795

Theorem B.2.1 (Convergence of General RED Q). If Assumptions B.3, B.4, B.6, B.7, B.8, B.9, B.10,796
and B.11 hold, then the General RED Q algorithm (Equations B.30–B.34) converges a.s. R̄n to r̄∗,797
Zi,n to zi∗ ∀zi ∈ Z , Qn to q∗, r̄πt to r̄∗, and zi,πt to zi∗ ∀zi ∈ Z , where πt is any greedy policy798
with respect to Qt, and zi,πt denotes the subtask value induced by following policy πt.799

We prove this theorem in the following section. To do so, we first show that General RED Q is of800
the same form as General Differential Q from Wan et al. (2021), thereby allowing us to apply their801
convergence results for the value function and average-reward estimates of General Differential Q802
to General RED Q. We then build upon these results, using similar techniques as Wan et al. (2021),803
to show that the subtask estimates converge as well.804

B.2.1 Proof of Theorem B.2.1 (for Linear Subtask Functions)805

We first provide the proof for linear subtask functions, where the the reward-extended TD806
error can be expressed as a constant, subtask-specific fraction of the regular TD error, such that807
βi,n(s, a) = (−1/bi)δn(s, a). We consider the piecewise linear case in Section B.2.2.808

809

Convergence of the average-reward and state-action value function estimates:810

Consider the increment to R̄n at each step. We can see from Equation (B.31) that the increment is ηr811
times the increment to Qn. As such, as was done in Wan et al. (2021), we can write the cumulative812
increment as follows:813

R̄n − R̄0 = η
r

n−1∑
j=0

∑
s,a

αν(j,s,a)δj(s, a)I{(s, a) ∈ Yj}

= ηr

(∑
Qn −

∑
Q0

)

=⇒ R̄n = ηr

∑
Qn − ηr

∑
Q0 + R̄0 = ηr

∑
Qn − cr, (B.43)

where cr
.
= η

r

∑
Q0 − R̄0. (B.44)

Similarly, consider the increment to Zi,n (for an arbitrary subtask zi ∈ Z) at each step. As per Re-814
mark 5.1, we can write the increment in Equation (B.32) as some constant, subtask-specific fraction815
of the increment to Qn. Consequently, we can write the cumulative increment as follows:816
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Zi,n − Zi,0 = ηzi

n−1∑
j=0

∑
s,a

αν(j,s,a)βi,j(s, a)I{(s, a) ∈ Yj}

= ηzi

n−1∑
j=0

∑
s,a

αν(j,s,a)(−1/bi)δj(s, a)I{(s, a) ∈ Yj}

= η
i

(∑
Qn −

∑
Q0

)

=⇒ Zi,n = η
i

∑
Qn − η

i

∑
Q0 + Zi,0 = η

i

∑
Qn − ci, (B.45)

where,817

ci
.
= η

i

∑
Q0 − Zi,0, and (B.46)

η
i

.
= (−1/bi)ηzi . (B.47)

Now consider the subtask function, f . At any given time step, the subtask function can be written818
as: fn = R̃n(s, a) = brRn(s, a) + b0 + b1Z1,n + . . .+ bkZk,n, where br, b0 ∈ R and bi ∈ R \ {0}.819
Given Equation (B.45), we can write the subtask function as follows:820

fn = brRn(s, a) + b0 + b1(η1

∑
Qn − c1) + . . .+ bk(ηk

∑
Qn − ck)

= brRn(s, a) + η
f

∑
Qn − cf , (B.48)

where, η
f
=

∑k
j=1 bjηj

and cf =
∑k

j=1 bjcj − b0.821
822

As such, we can substitute R̄n and Zi,n ∀zi ∈ Z in (B.30) with (B.43) and (B.48), respectively,823
∀s ∈ S, a ∈ A, which yields:824

Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
brRn(s, a) + max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)− η
r

∑
Qn + cr + η

f

∑
Qn − cf

)
I{(s, a) ∈ Yn}

Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
brRn(s, a) + max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)− η
T

∑
Qn + c

T

)
I{(s, a) ∈ Yn}

Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
R̂n(s, a) + max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)− η
T

∑
Qn

)
I{(s, a) ∈ Yn},

(B.49)

where η
T
= ηr − η

f
, c

T
= cr − cf , and R̂n(s, a)

.
= brRn(s, a) + c

T
.825
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Equation (B.49) is now in the same form as Equation (B.14) (i.e., General Differential Q) from Wan826
et al. (2021), who showed that the equation converges a.s. Qn to q∗ as n→∞. Moreover, from this827
result, Wan et al. (2021) showed that R̄n converges a.s. to r̄∗ as n→∞, and that r̄πt

converges a.s.828
to r̄∗, where πt is a greedy policy with respect to Qt. Given that General RED Q adheres to all the829
assumptions listed for General Differential Q in Wan et al. (2021), these convergence results apply830
to General RED Q.831

832

Convergence of the subtask estimates:833

Let f(Zi,n) be shorthand for the subtask function (i.e., R̃n(s, a)). We can substitute Zi,n in (B.30)834
with (B.45) ∀s ∈ S, a ∈ A as follows:835

Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
R̃n(s, a)− R̄n +max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)
)
I{(s, a) ∈ Yn}

=⇒ Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
f(Zi,n)− R̄n +max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)
)
I{(s, a) ∈ Yn}

=⇒ Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

f(η
i

∑
Qn︸ ︷︷ ︸

Ẑi,n

−ci)− R̄n +max
a′

Qn(S
′
n(s, a), a

′)−Qn(s, a)

 I{(s, a) ∈ Yn}

=⇒ Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
f̂(Ẑi,n)− R̄n +max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)
)
I{(s, a) ∈ Yn}

=⇒ Qn+1(s, a) = Qn(s, a) + . . .

αν(n,s,a)

(
R̂n − R̄n +max

a′
Qn(S

′
n(s, a), a

′)−Qn(s, a)
)
I{(s, a) ∈ Yn},

(B.50)

where R̂n
.
= f̂(Ẑi,n) = f(Zi,n + ci) = h(R̃n). Here, h(R̃n) corresponds to the change in R̃n due836

to shifting subtask Zi,n by ci. Denote the inverse of h(R̃n) (which exists given Assumption B.6) as837
h−1.838

839

Now consider an MDP, M̂, which has rewards, R̂, corresponding to rewards modified by h from the840
MDP, M̃, has the same state and action spaces as M̃, and has the transition probabilities defined as:841

p̂ (s′, h(r̃) | s, a) .
= p̃(s′, r̃ | s, a), (B.51)

such that M̂ .
= ⟨S,A, R̂, p̂⟩. It is easy to check that the communicating assumption holds for the842

transformed MDP, M̂. As such, given Assumptions B.6 and B.7, the optimal average-reward for the843
MDP, M̂, ˆ̄r∗, can be written as follows:844

ˆ̄r∗ = h(r̄∗). (B.52)
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Now, because845

q∗(s, a) =
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ +max
a′

q∗(s
′, a′)− r̄∗) (from (B.40))

=
∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ +max
a′

q∗(s
′, a′)− h−1(ˆ̄r∗)) (from (B.52))

=
∑
s′,r̃

p̃(s′, r̃ | s, a)(h(r̃) + max
a′

q∗(s
′, a′)− ˆ̄r∗) (by linearity of h)

=
∑
s′,r̃

p̂(s′, r̃ | s, a)(r̃ +max
a′

q∗(s
′, a′)− ˆ̄r∗) (from (B.51)),

we can see that q∗ is a solution of not just the state-action value Bellman equation for the MDP, M̃,846
but also the state-action value Bellman equation for the transformed MDP, M̂.847

Next, we can write the optimal subtask value for the MDP, M̂, ẑi∗ , as follows:848

ẑi∗ = zi∗ + ci. (B.53)

We can then combine Equations (B.42), (B.45), and (B.53), which yields:849

ẑi∗ = η
i

∑
q∗. (B.54)

Next, we can combine Equation (B.45) with the result from Wan et al. (2021) which shows that850
Qn → q∗, which yields:851

Zi,n → η
i

∑
q∗ − ci. (B.55)

Moreover, because η
i

∑
q∗ = ẑi∗ (Equation (B.54)), we have:852

Zi,n → ẑi∗ − ci. (B.56)

Finally, because ẑi∗ = zi∗ + ci (Equation (B.53)), we have:853

Zi,n → zi∗ a.s. as n→∞. (B.57)

We conclude by considering zi,πt ∀zi ∈ Z , where πt is a greedy policy with respect to Qt. Given854
that Qt → q∗ and r̄πt

→ r̄∗ a.s., it directly follows from Definition 5.1 that zi,πt
→ zi∗ ∀zi ∈ Z855

a.s.856
857

B.2.2 Proof of Theorem B.2.1 (for Piecewise Linear Subtask Functions)858

We now provide the proof for piecewise linear subtask functions, where the the reward-extended TD859
error can be expressed as follows: βi,n(s, a) = (−1/bi,n)(R̃n(s, a)− R̄n − δn(s, a)). Our general860
strategy in this case is to use a two-timescales argument, such that we leverage Theorem 2 in Section861
6 of Borkar (2009), along with the results from Theorems B.1 and B.2 of Wan et al. (2021).862

To begin, let us consider Assumption B.8. In particular, (ηziαn)/αn → 0 implies that the subtask863
step sizes, ηziαn, decrease to 0 at a faster rate than the value function step size, αn. This implies864
that the subtask updates move on a slower timescale compared to the value function update. Hence,865
as argued in Section 6 of Borkar (2009), the (faster) value function update (B.30) views the (slower)866
subtask updates (B.32) as quasi-static, while the (slower) subtask updates view the (faster) value867
function update as nearly equilibrated (as we will show below, the results from Wan et al. (2021)868
imply the existence of such an equilibrium point).869
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Convergence of the average-reward and state-action value function estimates:870

Given the two-timescales argument, Equation (B.30) can be viewed as being of the same form as871
Equation (B.4) (i.e., General Differential Q) from Wan et al. (2021), who showed that the equation872
converges a.s. Qn to q∗ as n → ∞. Moreover, from this result, Wan et al. (2021) showed that873
R̄n converges a.s. to r̄∗ as n → ∞, and that r̄πt

converges a.s. to r̄∗, where πt is a greedy policy874
with respect to Qt. Given that General RED Q adheres to all the assumptions listed for General875
Differential Q in Wan et al. (2021), these convergence results apply to General RED Q.876

877

Convergence of the subtask estimates:878

Let us consider the asynchronous subtask updates (B.32). These updates are (each) of the same form879
as Equation 7.1.2 of Borkar (2009). As such, to show the convergence of the subtask estimates, we880
can apply the result in Section 7.4 of Borkar (2009), which shows the convergence of asynchronous881
updates of the same form as Equation 7.1.2. To apply this result, given Assumptions B.4 and B.11,882
we only need to show the convergence of the synchronous version of the subtask updates:883

Zi,n+1 = Zi,n + ηziαn

[
(−1/bi,n)

(
R̃n − R̄n − (g(Qn) +Mn+1)

)]
∀zi ∈ Z (B.58)

where,884

g(Qn)(s, a)
.
=

∑
s′,r̃

p̃(s′, r̃ | s, a)(r̃ +max
a′

Qn(s
′, a′))−Qn(s, a)− R̄n

= T (Qn)(s, a)−Qn(s, a)− R̄n, and

Mn+1(s, a)
.
= R̃n(s, a) + max

a′
Qn(S

′
n(s, a), a

′)− T (Qn)(s, a).

To show the convergence of the synchronous update (B.58) under the two-timescales argument, we885
can apply the result of Theorem 2 in Section 6 of Borkar (2009) to show that Zi,n → zi∗∀zi ∈ Z886
a.s. as n → ∞. This theorem requires that 3 assumptions be satisfied. As such, we will now show,887
via Lemmas B.4 - B.6, that these 3 assumptions are indeed satisfied.888

889

Lemma B.4. The value function update rule, Qn+1 = Qn + αn(g(Qn) +Mn+1), has a globally890
asymptotically stable equilibrium, q∗.891

Proof. This was shown in Theorem B.2 of Wan et al. (2021).892
893

Lemma B.5. The subtask update rules (B.58) each have a globally asymptotically stable equilib-894
rium, zi∗ .895

Proof. Applying the results of Theorems B.1 and B.2 of Wan et al. (2021) under the two-timescales896
argument, we have that g(Qn)→ 0, R̄n → r̄∗, that {Mn} is a martingale difference sequence, such897
that E[Mn+1 | Fn] = 0 a.s., n ≥ 0, and that {Mn} is square-integrable, such that E[||Mn+1||2 |898
Fn] ≤ K(1 + ||Qn||2) a.s., n ≥ 0, for some constant K > 0. Given these results, the remaining899
R̃n(s, a)−R̄n = R̃n(s, a)− r̄∗ term in the subtask updates (B.58) can be interpreted as a martingale900
difference sequence, {Mr

n}, such that E[Mr
n+1 | Fn] = E[R̃n+1(s, a)− r̄∗ | Fn] = E[R̃n+1(s, a) |901

Fn] − r̄∗ = 0 a.s., n ≥ 0. As such, given Assumptions B.4, B.8, and B.11, to show that the902
subtask update rules (B.58) each have a globally asymptotically stable equilibrium, we only need to903
show that the martingale difference sequence, {Mr

n}, is square-integrable, such that E[(Mr
n+1)

2 |904
Fn] < ∞ a.s., n ≥ 0. Indeed, because R̃n(s, a) is bounded, it directly follows that its variance,905
E[(R̃n(s, a) − r̄∗)

2], is bounded, and as such, we have that the martingale difference sequence,906
{Mr

n}, is square-integrable. Hence, we can conclude that the subtask update rules (B.58) each have907
a globally asymptotically stable equilibrium, zi∗ .908

909
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Lemma B.6. supn(||Qn||+ ||Zn||) <∞ a.s.910

Proof. It was shown in Theorem B.2 of Wan et al. (2021) that supn(||Qn||) < ∞ a.s. Hence, we911
only need to show that supn(||Zn||) <∞ a.s. To this end, we can apply Theorem 7 in Section 3 of912
Borkar (2009). This theorem requires 4 assumptions:913

• (A1) The function g is Lipschitz: ||g(x)− g(y)|| ≤ L||x− y|| for some 0 < L <∞.914

• (A2) The sequence {ηziαn} satisfies ηziαn > 0,
∑

ηziαn =∞, and
∑

η2ziα
2
n <∞.915

• (A3) {Mn} and {Mr
n} are martingale difference sequences that are square-integrable.916

• (A4) The functions gd(x)
.
= g(dx)/d, d ≥ 1, x ∈ Rk, satisfy gd(x) → g∗(x) as d → ∞,917

uniformly on compacts for some g∗ ∈ C(Rk). Furthermore, the ODE ẋt = g∗(xt) has the origin918
as its unique globally asymptotically stable equilibrium.919

Under the two-timescales argument, the results of Theorems B.1 and B.2 of Wan et al. (2021) apply,920
thereby satisfying the above assumptions, except for the assumptions regarding {ηziαn} and {Mr

n}.921
In this regard, Assumptions B.4 and B.8 satisfy Assumption (A2). Moreover, we showed in Lemma922
B.5 that {Mr

n} is indeed a martingale difference sequence that is square-integrable. As such, As-923
sumptions (A1) - (A4) are verified, meaning that we can apply the results of Theorem 7 in Section 3924
of Borkar (2009) to conclude that supn(||Zn||) <∞ a.s., and hence, that supn(||Qn||+||Zn||) <∞925
a.s.926

927

As such, we have now verified the 3 assumptions required by Theorem 2 in Section 6 of Borkar928
(2009), which means that we can apply the result of the theorem to conclude that Zi,n → zi∗∀zi ∈ Z929
a.s. as n→∞.930

931

Finally, as was done in the proof for linear subtask functions, we conclude the proof by considering932
zi,πt

∀zi ∈ Z , where πt is a greedy policy with respect to Qt. Given that Qt → q∗ and r̄πt
→ r̄∗933

a.s., it directly follows from Definition 5.1 that zi,πt
→ zi∗ ∀zi ∈ Z a.s.934

935

This completes the proof of Theorem B.2.1.936
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C Leveraging the RED RL Framework for CVaR Optimization937

This appendix contains details regarding the adaptation of the RED RL framework for CVaR opti-938
mization. We first derive an appropriate subtask function, then use it to adapt the RED RL algorithms939
(see Appendix A) for CVaR optimization. In doing so, we arrive at the RED CVaR algorithms, which940
are presented in full at the end of this appendix. These RED CVaR algorithms allow us to optimize941
CVaR (and VaR) without the use of an augmented state-space or an explicit bi-level optimization.942
We also provide a convergence proof for the tabular RED CVaR Q-learning algorithm, which shows943
that the VaR and CVaR estimates converge to the optimal long-run VaR and CVaR, respectively.944

C.1 A Subtask-Driven Approach for CVaR Optimization945

In this section, we use the RED RL framework to derive a subtask-driven approach for CVaR op-946
timization that does not require an augmented state-space or an explicit bi-level optimization. To947
begin, let us consider Equation (7), which is displayed below as Equation (C.1) for convenience:948

CVaRτ (Rt) = sup
y∈R

E[y − 1

τ
(y −Rt)

+] (C.1a)

= E[VaRτ (Rt)−
1

τ
(VaRτ (Rt)−Rt)

+], (C.1b)

where τ ∈ (0, 1) denotes the CVaR parameter, and Rt denotes the observed per-step reward.949

We can see from Equation (C.1) that CVaR can be interpreted as an expectation (or average) of950
sorts, which suggests that it may be possible to leverage the average-reward MDP to optimize this951
expectation, by treating the reward CVaR as the average-reward, r̄π , that we want to optimize.952
However, this requires that we know the optimal value of the scalar, y, because the expectation in953
Equation (C.1b) only holds for this optimal value (which corresponds to the per-step reward VaR).954
Unfortunately, this optimal value is typically not known beforehand, so in order to optimize CVaR,955
we also need to optimize y.956

Importantly, we can utilize RED RL framework to turn the optimization of y into a subtask, such957
that CVaR is the primary control objective (i.e., the r̄π that we want to optimize), and VaR (y in958
Equation (C.1)), is the (single) subtask. This is in contrast to existing MDP-based methods, which959
typically leverage Equation (C.1) when optimizing for CVaR by augmenting the state-space with a960
state that corresponds (either directly or indirectly) to an estimate of VaRτ (Rt) (in this case, y), and961
solving the bi-level optimization shown in Equation (8), thereby increasing computational costs.962

To utilize the RED RL framework, we first need to derive a valid subtask function for CVaR that963
satisfies the requirements of Definition 5.1. Let us consider Equation (C.1). We can see that if964
we treat the expression inside the expectation in Equation (C.1) as our subtask function, f (see965
Definition 5.1), then we have a piecewise linear subtask function that is invertible with respect to966
each input given all other inputs, where the subtask, VaR, is independent of the observed per-step967
reward. Hence, we can adapt Equation (C.1) as our subtask function (given that is satisfies Definition968
5.1), as follows:969

R̃t = VaR− 1

τ
(VaR−Rt)

+, (C.2)

where Rt is the observed per-step reward, R̃t is the extended per-step reward, VaR is the value-970
at-risk of the observed per-step reward, and τ is the CVaR parameter. Importantly, this is a valid971
subtask function with the following properties: the average (or expected value) of the extended972
reward corresponds to the CVaR of the observed reward, and the optimal average of the extended973
reward corresponds to the optimal CVaR of the observed reward. This is formalized as Corollaries974
C.1 - C.4 below:975
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Corollary C.1. The function presented in Equation (C.2) is a valid subtask function.976

Proof. The function presented in Equation (C.2) is clearly a piecewise linear function that is invert-977
ible with respect to each input given all other inputs. Moreover, the subtask, VaR, is independent of978
the observed per-step reward. Hence, this function satisfies Definition 5.1 for the subtask, VaR.979

Corollary C.2. If the subtask, VaR (from Equation (C.2)) is estimated, and such an estimate is equal980
to the long-run VaR of the observed reward, then the average (or expected value) of the extended981
reward, R̃t, from Equation (C.2) is equal to the long-run CVaR of the observed reward.982

Proof. This follows directly from Equation (C.1b).983

Corollary C.3. If the subtask, VaR (from Equation (C.2)) is estimated, and the resulting average984
of the extended reward from Equation (C.2) is equal to the long-run CVaR of the observed reward,985
then the VaR estimate is equal to the long-run VaR of the observed reward.986

Proof. This follows directly from Equation (C.1b).987

Corollary C.4. A policy that yields an optimal long-run average of the extended reward, R̃t, from988
Equation (C.2) is a CVaR-optimal policy. In other words, the optimal long-run average of the989
extended reward corresponds to the optimal long-run CVaR of the observed reward.990

Proof. For a given policy, we know from Equation (C.1a) that, across a range of VaR estimates, the991
best possible long-run average of the extended reward for that policy corresponds to the long-run992
CVaR of the observed reward for that same policy. Hence, the best possible long-run average of the993
extended reward that can be achieved across various policies and VaR estimates, corresponds to the994
optimal long-run CVaR of the observed reward.995

As such, we now have a valid subtask function with a subtask, VaR, and an extended reward whose996
average, when optimized, corresponds to the optimal CVaR of the observed reward. We are now997
ready to apply the RED RL framework. First, we can derive the reward-extended TD error update998
for our subtask, VaR, using the methodology outlined in Section 5.1, where, in this case, we have a999
piecewise linear subtask function with two segments. The resulting subtask update is as follows:1000

VaRt+1 =

{
VaRt + ηαt (δt + CVaRt − VaRt) , Rt+1 ≥ VaRt

VaRt + ηαt

((
τ

τ−1

)
δt + CVaRt − VaRt

)
, Rt+1 < VaRt

, (C.3)

where δt is the regular TD error, and ηαt is the step size.1001

With this update, we now have all the components needed to utilize the RED algorithms in Appendix1002
A to optimize CVaR (where CVaR corresponds to the r̄π that we want to optimize). We call these1003
CVaR-specific algorithms, the RED CVaR algorithms. The full algorithms are included at the end of1004
this appendix.1005

We now present the tabular RED CVaR Q-learning algorithm, along with a convergence proof which1006
shows that the VaR and CVaR estimates converge to the optimal long-run VaR and CVaR of the1007
observed reward, respectively:1008
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RED CVaR Q-learning algorithm (tabular): We update a table of estimates, Qt : S × A → R1009
as follows:1010

R̃t+1 = VaRt −
1

τ
(VaRt −Rt+1)

+ (C.4a)

δt = R̃t+1 − CVaRt +max
a

Qt(St+1, a)−Qt(St, At) (C.4b)

Qt+1(St, At) = Qt(St, At) + αtδt (C.4c)
Qt+1(s, a) = Qt(s, a), ∀s, a ̸= St, At (C.4d)
CVaRt+1 = CVaRt + ηCVaRαtδt (C.4e)

VaRt+1 =

{
VaRt + ηVaRαt (δt + CVaRt − VaRt) , Rt+1 ≥ VaRt

VaRt + ηVaRαt

((
τ

τ−1

)
δt + CVaRt − VaRt

)
, Rt+1 < VaRt

, (C.4f)

where Rt is the observed reward, VaRt is the VaR estimate, CVaRt is the CVaR estimate, αt is the1011
step size, δt is the TD error, and ηCVaR , ηVaR are positive scalars.1012

1013

Theorem C.1.1. The RED CVaR Q-learning algorithm (C.4) converges, almost surely, CVaRt to1014
CVaR∗, VaRt to VaR∗, CVaRπt

to CVaR∗, VaRπt
to VaR∗, and Qt to a solution of q in the Bellman1015

Equation (4), up to an additive constant, c, where πt is any greedy policy with respect to Qt, if the1016
following assumptions hold: 1) the MDP is communicating, 2) the solution of q in (4) is unique up1017
to a constant, 3) the step sizes are decreased appropriately as per Assumptions B.3 and B.4, 4) all1018
the state–action pairs are updated an infinite number of times, 5) the ratio of the update frequency1019
of the most-updated state–action pair to the least-updated state–action pair is finite, 6) the subtask1020
function outlined in Equation (C.2) is in accordance with Definition 5.1, and 7) ηVaRαt decreases to1021
0 appropriately, as per Assumption B.8.1022

Proof. By definition, the RED CVaR Q-learning algorithm (C.4) is of the form of the generic RED1023
Q-learning algorithm (16), where CVaRt corresponds to R̄t and VaRt corresponds to Zi,t for a single1024
subtask. We also know from Corollary C.1 that the subtask function used is valid. Hence, Theorem1025
5.3 applies, such that:1026

i) CVaRt and CVaRπt
converge a.s. to the optimal long-run average, r̄∗, of the extended reward1027

from the subtask function (i.e., the optimal long-run average of R̃t),1028

ii) VaRt and VaRπt
converge a.s. to the corresponding optimal subtask value, z∗, and1029

iii) Qt converges to a solution of q in the Bellman Equation (4),1030

all up to an additive constant, c.1031

Hence, to complete the proof, we need to show that r̄∗ = CVaR∗ and z∗ = VaR∗:1032

From Corollary C.4 we know that the optimal long-run average of the extended reward corresponds1033
to the optimal long-run CVaR of the observed reward, hence we can conclude that r̄∗ = CVaR∗.1034
Finally, from Corollary C.3 we can deduce that since CVaRt converges a.s. to CVaR∗, then z∗ must1035
correspond to VaR∗.1036

This completes the proof.1037

As such, with the RED CVaR Q-learning algorithm, we now have a way to optimize the long-run1038
CVaR (and VaR) of the observed reward without the use of an augmented state-space, or an explicit1039
bi-level optimization. See Section 6 and Appendix D for empirical results obtained when using the1040
RED CVaR algorithms.1041
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C.2 Additional Commentary1042

We now provide additional commentary on the subtask-driven approach for CVaR optimization:1043
1044

Remark C.1. A natural question to ask would be whether we can extend these convergence1045
results to the prediction case. In other words, can we show that a tabular RED CVaR TD-learning1046
algorithm will converge to the long-run VaR and CVaR of the observed reward induced by following1047
a given policy? It turns out that, because we are not optimizing the expectation in Equation (C.1a)1048
when doing prediction (we are only learning it), we cannot guarantee that we will eventually find the1049
optimal VaR estimate, which implies that we may not recover the CVaR value (since Equation (C.1b)1050
only holds to the optimal VaR value). However, this is not to say that a RED CVaR TD-learning1051
algorithm has no use. In fact, we do use such an algorithm as part of an actor-critic architec-1052
ture for optimizing CVaR in the inverted pendulum experiment (see Appendix D). Empirically, as1053
discussed in Section 6, we find that this actor-critic approach is able to find the optimal CVaR policy.1054

1055

Remark C.2. It should be noted that in the risk measure literature, risk measures are typically1056
classified into two categories: static or dynamic. This classification is based on the time consistency1057
of the risk measure that one aims to optimize Boda and Filar (2006). Curiously, in our case the CVaR1058
that we aim to optimize does not fit into either category perfectly. One could make the argument that1059
the CVaR that we aim to optimize most closely matches the static category, given that there is some1060
time inconsistency before t → ∞. Conversely, one could make a different argument that the CVaR1061
that we aim to optimize most closely resembles the dynamic category since the sum over t for the1062
average-reward is outside of the CVaR operator (see Theorem 1 of Xia et al. (2023)), such that an1063
optimal deterministic stationary policy exists (unlike the static case; see Bäuerle and Ott (2011)).1064
This does not affect the significance of our results, but rather suggests that a third category of risk1065
measures may be needed to capture such nuances that occur in the average-reward setting.1066
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C.3 RED CVaR Algorithms1067

Below is the pseudocode for the RED CVaR algorithms.1068

Algorithm 5 RED CVaR Q-Learning (Tabular)

Input: the policy π to be used (e.g., ε-greedy)
Algorithm parameters: step size parameters α, ηCVaR , ηVaR , CVaR parameter τ
Initialize Q(s, a) ∀s, a (e.g. to zero)
Initialize CVaR arbitrarily (e.g. to zero)
Initialize VaR arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by π for S
Take action A, observe R,S′

R̃ = VaR− 1
τ max{VaR−R, 0}

δ = R̃− CVaR +maxa Q(S′, a)−Q(S,A)
Q(S,A) = Q(S,A) + αδ
CVaR = CVaR + ηCVaRαδ
if R ≥ VaR then

VaR = VaR + ηVaRα(δ + CVaR− VaR)
else

VaR = VaR + ηVaRα
((

τ
τ−1

)
δ + CVaR− VaR

)
end if
S = S′

end while
return Q

Algorithm 6 RED CVaR Actor-Critic

Input: a differentiable state-value function parameterization v̂(s,w); a differentiable policy pa-
rameterization π(a | s,θ)
Algorithm parameters: step size parameters α, ηπ , ηCVaR , ηVaR , CVaR parameter τ
Initialize state-value weights w ∈ Rd and policy weights θ ∈ Rd′

(e.g. to 0)
Initialize CVaR arbitrarily (e.g. to zero)
Initialize VaR arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A ∼ π(· | S,θ)
Take action A, observe R,S′

R̃ = VaR− 1
τ max{VaR−R, 0}

δ = R̃− CVaR + v̂(S′,w)− v̂(S,w)
w = w + αδ∇v̂(S,w)
θ = θ + ηπαδ∇lnπ(A | S,θ)
CVaR = CVaR + ηCVaRαδ
if R ≥ VaR then

VaR = VaR + ηVaRα(δ + CVaR− VaR)
else

VaR = VaR + ηVaRα
((

τ
τ−1

)
δ + CVaR− VaR

)
end if
S = S′

end while
return w, θ
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D Numerical Experiments1069

This appendix contains details regarding the numerical experiments performed as part of this work.1070
We discuss the experiments performed in the red-pill blue-pill environment (see Appendix E for1071
more details on the red-pill blue-pill environment), as well as the experiments performed in the1072
inverted pendulum environment.1073

Figure D.1: An illustration of the a) red-pill blue-pill, and b) inverted pendulum environments.

The aim of the experiments was to contrast and compare the RED RL algorithms (see Appendix C)1074
with the Differential learning algorithms from Wan et al. (2021) in the context of CVaR optimization.1075
In particular, we aimed to show how the RED RL algorithms could be utilized to optimize for1076
CVaR (without the use of an augmented state-space or an explicit bi-level optimization scheme),1077
and contrast the results to those of the Differential learning algorithms, which served as a sort of1078
‘baseline’ to illustrate how our risk-aware approach contrasts a risk-neutral approach. In other1079
words, we aimed to show whether our algorithms could successfully enable a learning agent to act1080
in a risk-aware manner instead of the usual risk-neutral manner.1081

In terms of the algorithms used, Algorithm 5 corresponds to the RED CVaR Q-learning algorithm1082
used in the red-pill blue-pill experiment, and Algorithm 6 corresponds to the RED CVaR Actor-1083
Critic algorithm used in the inverted pendulum experiment. In terms of the Differential learning1084
algorithms used for comparison (see Appendix D.3 for the full algorithms), Algorithm 7 corresponds1085
to the Differential Q-learning algorithm used in the red-pill blue-pill experiment, and Algorithm 81086
corresponds to the Differential Actor-Critic algorithm used in the inverted pendulum experiment.1087

D.1 Red-Pill Blue-Pill Experiment1088

In the first experiment, we consider a two-state environment that we created for the purposes of1089
testing our algorithms. It is called the red-pill blue-pill environment (see Appendix D), where at1090
every time step an agent can take either a ‘red pill’, which takes them to the ‘red world’ state, or a1091
‘blue pill’, which takes them to the ‘blue world’ state. Each state has its own characteristic per-step1092
reward distribution, and in this case, for a sufficiently low CVaR parameter, τ , the red world state1093
has a per-step reward distribution with a lower (worse) mean but higher (better) CVaR compared to1094
the blue world state. As such, this task allows us to answer the following question: can the RED1095
CVaR algorithms successfully get the agent to learn a policy that prioritizes optimizing the reward1096
CVaR over the average-reward? In particular, we would expect that the RED CVaR algorithms learn1097
a policy that prefers to stay in the red world, and that the (risk-neutral) Differential algorithms (from1098
Wan et al. (2021)) learn a policy that prefers to stay in the blue world. This task is illustrated in1099
Figure D.1a).1100
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For this experiment, we ran both algorithms using various combinations of step sizes for each algo-1101
rithm. We used an ε-greedy policy with a fixed epsilon of 0.1, and a CVaR parameter, τ , of 0.25.1102
We set all initial guesses to zero. We ran the algorithms for 100k time steps.1103

For the Differential Q-learning algorithm, we tested every combination of the value function step1104
size, α ∈ {2e-1, 2e-2, 2e-3, 2e-4, 1/n} (where 1/n refers to a step size sequence that decreases1105
the step size according to the time step, n), with the average-reward step size, ηα, where η ∈1106
{1e-4, 1e-3, 1e-2, 1e-1, 1.0, 2.0}, for a total of 30 unique combinations. Each combination was run1107
50 times using different random seeds, and the results were averaged across the runs. The resulting1108
(averaged) average-reward over the last 1,000 time steps is displayed in Figure D.2. As shown in1109
the figure, a value function step size of 2e-4 and an average-reward η of 1.0 resulted in the highest1110
average-reward in the final 1,000 time steps in the red-pill blue-pill task. These are the parameters1111
used to generate the results displayed in Figure 3a).1112

Figure D.2: Step size tuning results for the red-pill blue-pill task when using the Differential Q-
learning algorithm. The average-reward in the final 1,000 steps is displayed for various combinations
of value function and average-reward step sizes.

For the RED CVaR Q-learning algorithm, we tested every combination of the value function1113
step size, α ∈ {2e-1, 2e-2, 2e-3, 2e-4, 1/n}, with the average-reward (in this case CVaR)1114
η ∈ {1e-4, 1e-3, 1e-2, 1e-1, 1.0, 2.0}, and the VaR η ∈ {1e-4, 1e-3, 1e-2, 1e-1, 1.0, 2.0}, for a total1115
of 180 unique combinations. Each combination was run 50 times using different random seeds, and1116
the results were averaged across the runs. A value function step size of 2e-2, an average-reward1117
(CVaR) η of 1e-1, and a VaR η of 1e-1 yielded the best results and were used to generate the results1118
displayed in Figures 3a) and 4a).1119

1120

Follow-up Experiment: Varying the CVaR Parameter1121

Given the results shown in Figure 3a), we can see that, with proper hyperparameter tuning, the1122
tabular RED CVaR Q-learning algorithm is able to reliably find the optimal CVaR policy for a CVaR1123
parameter, τ , of 0.25. In the context of the red-pill blue-pill environment, this means that the agent1124
learns to stay in the red world state because the state has a characteristic reward distribution with1125
a better (higher) CVaR compared to the blue world state. By contrast, the risk-neutral differential1126
algorithm yields an average-reward optimal policy that dictates that the agent should stay in the blue1127
world state because the state has a better (higher) average reward compared to the red world state.1128

Now consider what would happen if we used the RED CVaR Q-learning algorithm with a τ of 0.99.1129
By definition, a CVaR corresponding to a τ ≈ 1.0 is equivalent to the average reward. Hence, with1130
a τ of 0.99, we would expect that the optimal CVaR policy corresponds to staying in the blue world1131
state (since it has the better average reward). This means that for some τ between 0.25 and 0.99,1132
there is a critical point where the CVaR-optimal policy changes from staying in the red world (let us1133
call this the red policy) to staying in the blue world state (let us call this the blue policy).1134

40



Burning RED: Unlocking Subtask-Driven RL and Risk-Awareness in Average-Reward MDPs

We can estimate this critical point using simple Monte Carlo (MC). We are able to use MC in this1135
case because both policies effectively stay in a single state (the red or blue world state), such that1136
the CVaR of the policies can be estimated by sampling the characteristic reward distribution of each1137
state, while accounting for the exploration ε. Figure D.3 shows the MC estimate of the CVaR of the1138
red and blue policies for a range of CVaR parameters, assuming an exploration ε of 0.1. Note that1139
we used the same distribution parameters listed in Appendix E for the red-pill blue-pill environment.1140
As shown in Figure D.3, this critical point occurs somewhere around τ ≈ 0.8.1141

Figure D.3: Monte Carlo estimates of the CVaR of the red and blue policies for a range of CVaR
parameters in the red-pill blue-pill environment.

Hence, one way that we can further validate the tabular RED CVaR Q-learning algorithm, is by1142
re-running the red-pill blue-pill experiment for different CVaR parameters, and seeing if the optimal1143
CVaR policy indeed changes at a τ ≈ 0.8. Importantly, this allows us to empirically validate1144
whether the algorithm actually optimizes at the desired risk level. When running this experiment,1145
we used the same hyperparameters used to generate the results in Figure 3a). We ran the experiment1146
for τ ∈ {0.1, 0.25, 0.5, 0.75, 0.85, 0.9}. For each τ , we performed 50 runs using different random1147
seeds, and the results were averaged across the runs.1148

Figure D.4: Rolling percent of time that the agent stays in the blue world state as learning progresses
when using the RED CVaR Q-learning algorithm in the red-pill blue-pill environment for a range of
CVaR parameters. A solid line denotes the mean percent of time spent in the blue world state, and
the corresponding shaded region denotes a 95% confidence interval over 50 runs.
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Figure D.4 shows the results of this experiment. In particular, the figure shows a rolling percent1149
of time that the agent stays in the blue world state as learning progresses (note that we used an1150
exploration ε of 0.1). From the figure, we can see that for τ ∈ {0.1, 0.25, 0.5, 0.75}, the agent1151
learns to stay in the red world state, and for τ ∈ {0.85, 0.9}, the agent learns to stay in the blue1152
world state. This is consistent with what we would expect, given that the critical point is τ ≈ 0.8.1153
Hence, these results further validate that our algorithm is able to optimize at the desired risk level.1154

D.2 Inverted Pendulum Experiment1155

In the second experiment, we consider the well-known inverted pendulum task, where an agent1156
learns how to optimally balance an inverted pendulum. We chose this task because it provides1157
us with the opportunity to test our algorithms in an environment where: 1) we must use function1158
approximation (given the high-dimensional state-space), and 2) where the optimal CVaR policy and1159
the optimal average-reward policy is the same policy (i.e., the policy that best balances the pendulum1160
will yield a limiting reward distribution with both the optimal average-reward and reward CVaR).1161
This hence allows us to directly compare the performance of our RED algorithms to that of the1162
regular Differential learning algorithms, as well as to gauge how function approximation affects the1163
performance of our algorithms. For this task, we utilized a simple actor-critic architecture (Barto1164
et al., 1983; Sutton and Barto, 2018) as this allowed us to compare the performance of a (non-tabular)1165
RED TD-learning algorithm with a (non-tabular) Differential TD-learning algorithm. This task is1166
illustrated in Figure D.1b).1167

For this experiment, we ran both algorithms using various combinations of step sizes for each algo-1168
rithm. We used a fixed CVaR parameter, τ , of 0.1. We set all initial guesses to zero. We ran the1169
algorithms for 100k time steps. For simplicity, we used tile coding (Sutton and Barto, 2018) for both1170
the value function and policy parameterizations, where we parameterized a softmax policy. For each1171
parameterization, we used 32 tilings, each with 8 X 8 tiles. By using a linear function approximator1172
(i.e., tile coding), the gradients for the value function and policy parameterizations can be simplified1173
as follows:1174

∇v̂(s,w) = x(s), (D.1)

∇lnπ(a | s,θ) = xh(s, a)−
∑
ξ∈A

π(ξ | s,θ)xh(s, ξ), (D.2)

where s ∈ S, a ∈ A, x(s) is the state feature vector, and xh(s, a) is the softmax preference vector.1175

For the Differential Actor-Critic algorithm, we tested every combination of the value function step1176
size, α ∈ {2e-2, 2e-3, 2e-4, 1/n}, with η’s for the average-reward and policy step sizes, ηα, where1177
η ∈ {1e-3, 1e-2, 1e-1, 1.0, 2.0}, for a total of 100 unique combinations. Each combination was1178
run 10 times using different random seeds, and the results were averaged across the runs. A value1179
function step size of 2e-3, a policy η of 2.0, and an average-reward η of 1e-2 yielded the best results1180
and were used to generate the results displayed in Figure 3b).1181

For the RED CVaR Actor-Critic algorithm, we tested every combination of the value function step1182
size, α ∈ {2e-2, 2e-3, 2e-4, 1/n} (where 1/n refers to a step size sequence that decreases the step1183
size according to the time step, n), with η’s for the average-reward, VaR, and policy step sizes, ηα,1184
where η ∈ {1e-3, 1e-2, 1e-1, 1.0, 2.0}, for a total of 500 unique combinations. Each combination1185
was run 10 times using different random seeds, and the results were averaged across the runs. A1186
value function step size of 2e-3, a policy η of 1e-1, an average-reward (CVaR) η of 1e-2, and a VaR1187
η of 1e-2 were used to generate the results displayed in Figures 3b) and 4b).1188
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D.3 Risk-Neutral Differential Algorithms1189

Below is the pseudocode for the risk-neutral differential algorithms used for comparison in our1190
experiments.1191

Algorithm 7 Differential Q-Learning (Tabular)

Input: the policy π to be used (e.g., ε-greedy)
Algorithm parameters: step size parameters α, η
Initialize Q(s, a) ∀s, a (e.g. to zero)
Initialize R̄ arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A← action given by π for S
Take action A, observe R,S′

δ = R− R̄+maxa Q(S′, a)−Q(S,A)
Q(S,A) = Q(S,A) + αδ
R̄ = R̄+ ηαδ
S = S′

end while
return Q

Algorithm 8 Differential Actor-Critic

Input: a differentiable state-value function parameterization v̂(s,w); a differentiable policy pa-
rameterization π(a | s,θ)
Algorithm parameters: step size parameters α, ηπ , η

R̄

Initialize state-value weights w ∈ Rd and policy weights θ ∈ Rd′
(e.g. to 0)

Initialize R̄ arbitrarily (e.g. to zero)
Obtain initial S
while still time to train do
A ∼ π(· | S,θ)
Take action A, observe R,S′

δ = R− R̄+ v̂(S′,w)− v̂(S,w)
w = w + αδ∇v̂(S,w)
θ = θ + ηπαδ∇lnπ(A | S,θ)
R̄ = R̄+ η

R̄
αδ

S = S′

end while
return w, θ
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E Red-Pill Blue-Pill Environment1192

This appendix contains a Python implementation of the red-pill blue-pill environment introduced in1193
this work. The environment consists of a two-state MDP, where at every time step an agent can take1194
either a ‘red pill’, which takes them to the ‘red world’ state, or a ‘blue pill’, which takes them to the1195
‘blue world’ state. Each state has its own characteristic per-step reward distribution, and in this case,1196
for a sufficiently low CVaR parameter, τ , the red world state has a per-step reward distribution with1197
a lower (worse) mean but higher (better) CVaR compared to the blue world state. More specifically,1198
the red world state reward distribution is characterized as a gaussian distribution with a mean of -0.71199
and a standard deviation of 0.05. The blue world state is characterized by a mixture of two gaussian1200
distributions with means of -1.0 and -0.2, and standard deviations of 0.05. We assume all rewards1201
are non-positive. The Python implementation of the environment is provided below:1202

import pandas as pd1203
import numpy as np1204

1205
c l a s s E n v i r o n m e n t R e d P i l l B l u e P i l l :1206

def _ _ i n i t _ _ ( s e l f , d i s t _ 2 _ m i x _ c o e f f i c i e n t = 0 . 5 ) :1207
# s e t d i s t r i b u t i o n p a r a m e t e r s1208
s e l f . d i s t _ 1 = { ’ mean ’ : −0 .7 , ’ s t d e v ’ : 0 . 0 5 }1209
s e l f . d i s t _ 2 a = { ’ mean ’ : −1 .0 , ’ s t d e v ’ : 0 . 0 5 }1210
s e l f . d i s t _ 2 b = { ’ mean ’ : −0 .2 , ’ s t d e v ’ : 0 . 0 5 }1211
s e l f . d i s t _ 2 _ m i x _ c o e f f i c i e n t = d i s t _ 2 _ m i x _ c o e f f i c i e n t1212

1213
# s t a r t s t a t e1214
s e l f . s t a r t _ s t a t e = np . random . c h o i c e ( [ ’ r e d w o r l d ’ , ’ b l u e w o r l d ’ ] )1215

1216
def e n v _ s t a r t ( s e l f , s t a r t _ s t a t e =None ) :1217

# r e t u r n i n i t i a l s t a t e1218
i f pd . i s n u l l ( s t a r t _ s t a t e ) :1219

re turn s e l f . s t a r t _ s t a t e1220
e l s e :1221

re turn s t a r t _ s t a t e1222
1223

def e n v _ s t e p ( s e l f , s t a t e , a c t i o n , t e r m i n a l = F a l s e ) :1224
i f a c t i o n == ’ r e d _ p i l l ’ :1225

n e x t _ s t a t e = ’ r e d w o r l d ’1226
e l i f a c t i o n == ’ b l u e _ p i l l ’ :1227

n e x t _ s t a t e = ’ b l u e w o r l d ’1228
1229

i f s t a t e == ’ r e d w o r l d ’ :1230
r eward = np . random . normal ( l o c = s e l f . d i s t _ 1 [ ’ mean ’ ] ,1231

s c a l e = s e l f . d i s t _ 1 [ ’ s t d e v ’ ] )1232
e l i f s t a t e == ’ b l u e w o r l d ’ :1233

d i s t = np . random . c h o i c e ( [ ’ d i s t 2 a ’ , ’ d i s t 2 b ’ ] ,1234
p =[ s e l f . d i s t _ 2 _ m i x _ c o e f f i c i e n t ,1235

1 − s e l f . d i s t _ 2 _ m i x _ c o e f f i c i e n t ] )1236
i f d i s t == ’ d i s t 2 a ’ :1237

r eward = np . random . normal ( l o c = s e l f . d i s t _ 2 a [ ’ mean ’ ] ,1238
s c a l e = s e l f . d i s t _ 2 a [ ’ s t d e v ’ ] )1239

e l i f d i s t == ’ d i s t 2 b ’ :1240
r eward = np . random . normal ( l o c = s e l f . d i s t _ 2 b [ ’ mean ’ ] ,1241

s c a l e = s e l f . d i s t _ 2 b [ ’ s t d e v ’ ] )1242
1243

re turn min ( 0 , r eward ) , n e x t _ s t a t e , t e r m i n a l1244
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