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Abstract

Causal discovery seeks to learn a network de-
scribing the causal dependencies between ob-
served variables. Constraint-based causal dis-
covery makes use of conditional independence
properties to narrow the space of possible causal
networks down to a Markov equivalence class,
which consists of adjacency information (e.g., A
causes B or B causes A, but we might not know
the direction). Score-based causal discovery dif-
fers algorithmically, but also relies on statistical
properties of the observed distribution to deter-
mine adjacency. A critical assumption for both
approaches is faithfulness — a requirement that
causally linked variables exhibit statistical depen-
dence. Previous works have shown faithfulness to
be a strong and restrictive assumption, especially
in the finite sample regime. While interventions
are usually utilized to orient causal edges, the re-
sults of these orientations also contain adjacency-
specific information that is generally not utilized.
In particular, we show that faithfulness violations
can be resolved using interventions. To formalize
this notion, we provide a mild assumption that
we call intervention-adjacency (IA) faithfulness
and build intervention-only causal discovery al-
gorithms that are provably consistent under this
assumption. We also specify equivalence classes
when the identification criteria are not met due to
limitations in the scope of interventions, which
may be further resolved via conditional indepen-
dence testing. Our results provide new insights
into the power of online learning and learning by
doing.
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1. Introduction
Structural Causal Models Structural Causal Models
(SCMs), popularized by Pearl (1998; 2009), graphically
describe causal networks. Causal discovery is the task of
recovering the underlying causal structure from data in the
form of a directed acyclic graph (DAG) or a representa-
tion of an equivalence class of DAGs (see Squires & Uhler
(2023) for a review). One approach to causal discovery
involves a constraint-based search guided by conditional in-
dependence (“CI-tests”), e.g., the PC-algorithm from Spirtes
et al. (2000). Constraint-based approaches use the observa-
tion that variables without a direct causal link can be made
independent by conditioning on intermediary causal paths.
This is known as the causal Markov condition (Pearl, 2009).

The formulation of structural causal models under causal
sufficiency (no unobserved confounding) implies the causal
Markov condition, but the converse is not necessarily true
(Ramsey et al., 2012). A causal path between two vari-
ables does not necessarily require that they be statistically
dependent under all condition sets. “Faithfulness” is the
assumption that causal links imply statistical dependencies,
which gives a two-way correspondence between CI-tests
and graphical properties.

Motivation The set of unfaithful distributions has
Lebesgue measure 0 (Meek, 2013). Hence, faithfulness is
a mild assumption under exact statistics. However, success
under finite sample uncertainty requires a stronger notion,
referred to as λ-strong faithfulness (Zhang & Spirtes, 2012),
to ensure that stochastic deviations towards faithfulness vi-
olations are unlikely. Under this perspective, faithfulness
becomes a strong assumption due the manifold of violations
behaving like a “space filling curve.” In particular, Uhler
et al. (2013) showed that the majority of distributions gener-
ated by linear structural equations with additive Gaussian
noise are “close”1 to a faithfulness violation.

Evidently, λ-strong faithfulness violations are highly likely
in both real-world and simulated datasets. To resolve these
violations, we turn to interventions. Information about a
causal structure can be decomposed into skeletal (adjacency)

1A distribution is “close” to a violation of faithfulness if, e.g.,
two causally connected variables are almost independent. For
Gaussian noise, this corresponds to a near-zero covariance.
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information and orientation information. Causal adjacency
corresponds to the existence of a direct causal connection,
agnostic of the direction. For example, A,B are causally
adjacent if A → B or B → A. Orientation then specifies
the direction of these causal adjacencies.

Constraint-based causal discovery recovers a Markov Equiv-
alence Class (MEC) corresponding to all of the adjacency
information, but generally only part of the orientation in-
formation. Further information about causal orientation
is often obtained by utilizing asymmetric intervention re-
sponses, i.e., interventions on causes change effects, but
interventions on effects do not change causes.

To resolve adjacency errors due to strong-faithfulness vio-
lations, we will study the use of interventions beyond edge
orientation. For example, if X,Y are not causally adjacent
and also not connected by any directed paths, then interven-
ing on X does not change Y , and intervening on Y does not
change X . If such interventions must be performed to orient
causal graphs after determining Markov equivalence, this
information might as well be incorporated at earlier points.
A concrete goal of this work is to quantify the skeletal in-
formation encoded in interventions relative to how many
variables are intervened on at once.

1.1. Contributions

In Section 3, we provide a definition of intervention-
adjacency (IA) faithfulness that is milder than the stan-
dard (conditional independence/CI) faithfulness used for
constraint-based causal discovery. IA faithfulness only re-
quires nontrivial coefficients, i.e., the structural equations
used to generate each variable from its causes have nontriv-
ial partial derivatives (see Definition 3.1). This notion of
faithfulness is also milder than previous notions of interven-
tion faithfulness, which require changes in all of the causal
descendants of an intervention. We argue the mildness of
this condition by proving that the volume of distributions
that are “close” to violating IA faithfulness is significantly
less than the volume of distributions that are “close” to
violating CI faithfulness.

In Section 4, we develop “change sets,” which form the
building blocks of causal discovery algorithms that we sum-
marize in Section 4.1 and present in Appendix C. These
algorithms succeed under our new, milder, λ-strong IA faith-
fulness. In this setting, identifiability depends on the number
of variables on which we can intervene simultaneously (k)
relative to the minimum vertex cut κ of the graph.

Theorem 1.1 (informal). A causal graph G = (V,E) with
vertex connectivity κ is identifiable using O(|V|2|E|) do-
interventions on up to k = κ + 1 nodes, so long as λ-IA
faithfulness is paired with “significant”2 interventions.

2In Theorem 1.1 and the following Theorem 1.2, “significant”

We also define the “k-robust transitive closure” of G, which
corresponds to adding edges that follow topological order
that cross any two vertices that cannot be separated into
two connected components using a vertex cut of < k. Un-
der limited cardinality of interventions, DAGs that have
the same k-robust transitive closure form an equivalence
class, which we cannot distinguish between using ⩽ k-node
interventions.

Theorem 1.2 (informal). A causal graph G = (V,E) is
identifiable up to its k-robust transitive closure using do-
interventions on up to k nodes, so long as λ-IA faithfulness
is paired with sufficiently “significant” interventions.

The equivalence classes provide insight into the adjacency
information held by do-interventions. In Section 5, we
perform an empirical study on synthetic data to verify the
relative mildness of our new type of faithfulness and the
relative robustness of intervention-only causal discovery. In
the absence of real datasets with large-scale interventions,
our results serve as motivation to develop new ways to
perform these multi-node interventions to help improve the
accuracy of causal discovery.

2. Preliminaries
2.1. Notation

We will use the capital Roman alphabet to denote random
variables (e.g., A,B,C, V ) and the lowercase Roman al-
phabet to denote assignments to those random variables
(e.g., A = a or just a). Bold will indicate a set of random
variables, e.g., V = (V1, V2, . . .)

⊤, and v is an assignment
to V. Parents (PA), children (CH), ancestors (AN), and
descendants (DE) in graphs will also follow these conven-
tions, e.g., PA(V ) = pav(v), where the assignments to
those parents come from values specified in v. We use
subscripts to indicate the relevant graph structure for the
parents, e.g., PAG(V ). We will generally use the Greek
alphabet (e.g., α, β) to represent parameters for structural
equations and thresholds to quantify faithfulness.

2.2. Conditional Independence Faithfulness

D-separation provides a graphical criterion that constitutes
a necessary but not sufficient condition for conditional in-
dependence under the causal Markov condition, which is
satisfied in standard structural equation models that exclude
unobserved confounding. We say that two variables Vi, Vj

are d-separated, denoted Vi ⊥⊥ dVj if there is no active path
between Vi and Vj in the causal graph. See Pearl (2009) for
a more detailed description of active paths and d-separation.

Faithfulness generally refers to the assumption that causal

interventions perturb variables some minimum amount from their
expectation (see Definition 4.2 in Section 4).
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linkage always carries statistical dependence, making d-
separation both necessary and sufficient for conditional in-
dependence. To emphasize the difference between this form
of faithfulness and others, we will call (regular) faithfulness
conditional independence (CI) faithfulness.

For linear structural equation models with additive Gaus-
sian noise, CI faithfulness with respect to a causal graph
G corresponds to nonzero covariance/correlation, e.g.,
Cov(Vi, Vj) ̸= 0 for all Vi ̸⊥⊥ dVj . Consider the following
example with N1, N2, N3 independent unbiased Gaussians
with variance 1.

X1 = N1

X2 = α12X1 +N2

X3 = α13X1 + α23X2 +N3

(1)

If we write X3 in terms of N1, we can express the covariance
between X1, X3 as a function of coefficients

Cov(X1, X3) = α13 + α23α12.

Notice that a monomial of parameters emerges from each
active path between X1 and X3. When α13 + α23α12 = 0
we have Cov(X1, X3) = 0, which corresponds to a CI
faithfulness violation. Notice that this is also a violation
of “adjacency faithfulness” as defined in Zhang & Spirtes
(2008) because X1, X3 are adjacent. CI-faithfulness vi-
olations occur in two ways: (1) trivial coefficients, e.g.,
αij = 0, and (2) the “cancelation” of monomial terms from
multiple paths (an example of which is given above).

λ-strong faithfulness (Uhler et al., 2013) requires
|Cov(Vi, Vj)| > λ

√
Var(Vi)Var(Vj) for all Vi, Vj that are

d-connected. Geometrically, violations in λ-strong faith-
fulness correspond to distributions that are close to the hy-
persurfaces formed by the polynomial equations describing
regular CI faithfulness.

The argument for λ-strong faithfulness primarily stems from
uncertainty in finite-sample settings, where conditional in-
dependence tests are done on empirical covariance matrix
estimates. As such, even when Cov(X1, X3) ̸= 0, it is
unlikely that its empirical estimate ˜Cov(X1, X3) will also
be nonzero. λ-faithfulness ensures that causally linked vari-
ables can be distinguished from unlinked ones exhibiting
this “accidental” dependence by forcing true causal links to
have some minimum strength. This, in turn, allows condi-
tional independence tests to be “thresholded” to handle this
noise. In general, Uhler et al. (2013) showed that λ-strong
CI faithfulness is a relatively strong assumption.

3. Intervention Adjacency Faithfulness
Chevalley et al. (2025) introduced a notion of “ε-strong
intervention faithfulness” that formalizes the requirement

that intervening on a variable must induce a change on all
of its descendants. Such an assumption is still vulnerable to
a “cancellation of paths” or decay of dependence between
variables that are linked by a long causal chain. For example,
notice that the model described by Equations 1 exhibits both
a CI faithfulness violation and an intervention faithfulness
violation when α13 + α23α12 = 0, because pertubing X1

will elicit no change in X3. In this section, we will develop
λ-strong intervention adjacentcy faithfulness (IA faithful-
ness) as a milder and more robust assumption for causal
discovery in finite sample settings.

We will weaken other notions of intervention faithfulness to
only require nontrivial coefficients. As with conditional in-
dependence faithfulness, we can introduce a stronger notion
of such faithfulness that ensures this change is detectable.
Definition 3.1 (λ-strong IA faithfulness). For a linear struc-
tural equation model with additive Gaussian noise, we say
that the model is λ-strong IA faithful if all coefficients αij

for Vi → Vj are lower bounded by |αij | > λ.

Return to the example given in Equation (1), where λ-strong
IA faithfulness requires |α12|, |α13|, |α23| > λ. In contrast,
λ-strong CI faithfulness requires six correlation terms to be
greater than λ, three of which simplify to α12, α13, α23. No-
tice that setting any of the αij coefficients to 0 automatically
results in a λ (and regular) CI-faithfulness violation. The
converse is not true, as exemplified by setting the coefficient
to large values with α12(α13 + α12α23) + α23 = 0, e.g.
α12 = α23 = λ = 1 and α13 = −2λ. Such an assignment
of coefficients gives Cov(X2, X3) = 0.

While this model violates CI faithfulness, interventions can
still provide some information about the adjacency between
X2 and X3. Notice that shifting X2 by δ will elicit a propor-
tional change in X3 by δα23. In fact, nontrivial coefficients
guarantee a resulting change in all descendants that have
no additional directed paths (which could cause path can-
cellations). Conveniently, there is always at least one such
descendant or no descendants at all, since additional di-
rected paths must also go through descendants. This will be
used to develop an algorithm for learning causal structures.

4. Intervention-Only Models
In this section, we will formalize the notion of interventions
that we will use to develop our algorithm. We are motivated
by the experimental study of gene regulatory networks, on
which it is possible to perform a “knockout” intervention
(Guan et al., 2010). A knockout fixes the value of a variable
a to be 0. The resulting distribution on G,Pr(·) is given by
a do-intervention (Pearl, 2009),

Pr(v\a|do(a)) =
∏

v∈v\a

Pr(v| paGv(v)\A,PAG(V )∩a).

(2)
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Here, paGv(v) \ A and PAG(V ) ∩ a abuse notation. The
first takes the assignments paGv(v) and removes A and the
second takes the variables in A ∩PAG(V ) and gives them
assignments from a. A knockout replaces the structural
equations for A with a = 0. We will utilize the following
lemma that follows from λ-strong IA faithfulness.
Lemma 4.1. If a probability distribution Pr(·) is λ-strong
IA faithful to its DAG G, then for all Vi ∈ V, Vj ∈ CHG(Vi)
such that there are no other directed paths from Vi → . . . →
Vj , we have

|E[Vj ]− E[Vj | do(vi)]| > λ|E[Vi]− vi|. (3)

Lemma 4.1 follows from E[Vj ] − E[Vj | do(vi)] =
αij(E[Vi] − vi) and applying λ-strong IA faithfulness to
lower bound αij . To ensure that an intervention changes an
outcome significantly, we must quantify its strength.
Definition 4.2. We say that an intervention do(vi) is γ-
significant if |E[Vi]− vi| > γ.

These notions are used to formally develop change sets in
Appendix B, as well as a few of their important properties.
Definition 4.3 (Change Sets). We define the β-change set
for do(a) to be

CHGβ(a) := {V ∈ V : |E[V ]− E[V | do(a)]| > β}.

Definition 4.4 (Conditional Change Set). We define the
conditional change set for disjoint A ∈ V and C ⊆ V for
do/knockout interventions to be

CHGβ(a | do(c)) := {V ∈ V \C :

|E[V | do(a),do(c)]− E[V | do(c)]| > β}.

4.1. Algorithm

We provide two algorithms for causal discovery using only
interventions that use IA-faithfulness: (1) UIC, which does
not limit the cardinality of an intervention, and (2) k-RIC,
which does limit the cardinality. For both approaches, we
start by using the change-sets on single-node interventions
to find some of the causal relationships. Unfortunately,
change-sets need not contain every child of the intervened
node, since children with multiple causal paths may have
their effects canceled out. However, the change sets do
contain at least one child with only a single causal pathway.
By taking the transitive closure of our output, we obtain the
transitive closure of the true graph.

Both algorithms then proceed by refining this transitive
closure with edge-removals by searching for redundancy
between intervention sets that differ in one intervened ver-
tex (using conditional change-sets). While UIC is able to
efficiently compare interventions on large potential parent
sets, k-RIC must be slightly more efficient to refine certain
parts of the graph to reduce the required intervention size.
Further details are given in Appendix C.
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Figure 1. The precision of Order-PC vs k-RIC.

5. Empirical Verification
We use a two-population Student-t test to detect a change
in the distribution mean. We use the implementation from
scipy.stats with a significance level of .005 for step
1 (to avoid starting with a cyclic G′), and .05 for further
pruning of edges. This is compared to an implementation
of the PC-algorithm (Spirtes et al., 2000) that starts with
knowledge of the correct topological ordering and utilizes
the Fisher-Z conditional independence tests implemented
by Chandler Squires (2018). We call this comparison
“Order-PC.” Our k-RIC algorithm surpasses the topological-
ordering-informed PC algorithm at around k = 3-node
interventions. Figure 1 shows how the precision of k-RIC
scales relative to k. Full results are given in Appendix D.

6. Conclusion
While many algorithms for causal discovery use different
faithfulness assumptions whose failures correspond to a
Lebesgue-measure-0 set, these assumptions have different
geometries that give rise to varying levels of robustness to
finite-sample noise. This paper shows that we can still re-
cover causal structure with a much milder and well-behaved
notion of intervention faithfulness.

In practice, ignoring CI testing is unnecessary. However,
because CI and “change-set” detection have fundamentally
different data requirements, it is worth studying their relative
equivalence classes to isolate points of uncertainty that may
be resolved by the other. Future work should optimize
a balanced integration of both observational CI tests and
interventional change-sets.

Intervention-based discovery shares many similarities
with information-theoretic causal discovery (Janzing &
Schölkopf, 2010; Xu et al., 2025). Our results may shed
light on the relative stability of these approaches, and future
work should look into further developing this connection.
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.1. Related Works

Interventions in Causal Discovery Seminal work by Eberhardt & Scheines (2007) studied the integration of interventions
into causal discovery, particularly on orienting Markov equivalence classes. Shanmugam et al. (2015) studied the effect of
limiting the size of these interventions. Shanmugam et al. (2015) explored limited intervention size when orienting a Markov
equivalence class, but not learning the graph. Hauser & Bühlmann (2015) gave Markov equivalence classes after changes
from an intervention set. This provides a critical framework for utilizing an intervention-first approach to causal discovery.
Interventional data has also been incorporated to inform direction in causal discovery algorithms (Hauser & Bühlmann,
2012; Wang et al., 2017; Yang et al., 2018). Squires et al. (2020) utilized interventions to first establish a permutation
ordering before performing causal discovery.

Limiting Conditioning and Conditional Independence Shiragur et al. (2024) showed that incorporating topological
information in adjacency search can greatly reduces the number of conditional independencies needed to recover a DAG.
Kocaoglu (2023) characterized the equivalence classes of graphs with conditional independence tests with restricted
conditioning sets.

A. Faithfulness Volumes
A.1. CI Faithfulness

Uhler et al. (2013) showed that λ-strong CI faithfulness is a relatively strong assumption. Theorems 5.2 and 5.3 from Uhler
et al. (2013) are summarised in Theorem A.1.
Theorem A.1 (informal, (Uhler et al., 2013)). The volume of λ-strong CI faithfulness violations with linear structural
equations and additive Gaussian noise with all coefficients in [−1, 1] and λ ∈ (0, 1) is at least ω(λpoly(n)2|E|) in the worst
case.

A.2. IA Faithfulness

To formalize that IA faithfulness is milder than CI faithfulness, we show that the growth of λ-strong IA faithfulness violations
is linear in λ.
Theorem A.2. The volume of λ-strong intervention faithfulness violations with all coefficients in [−1, 1] and λ ∈ (0, 1) is
O(λ2|E|).

Proof. Observe that λ-strong intervention faithfulness violations correspond to the set of distributions with at least one
parameter < λ. For each parameter, this corresponds to the volume between two hyperplanes that are separated by a distance
2λ. Hence, the region of λ-strong intervention faithfulness violations corresponds to the sum of these regions for each
edge’s parameter.

This illustrates that using interventional information requires much milder assumptions than utilizing CI tests. Since some
skeletal information can be learned from interventions, we argue that interventions should precede the results of CI tests in
mixed intervention and observational data settings. In order to understand the limitations of the skeletal information from
interventions, we study intervention-only models.

B. Change Sets
The graphical information gained from knockout interventions comes from the observation that “changing a variable will
change its effects, but not its causes.” For example, if we have A → B, then knocking out A will correspond to some change
in B, but knocking out B will correspond to no change in A. We will abstract the graphical information gained from a
knockout on a under IA faithfulness as a subset C ⊆ V of the variables for which E[C] ̸= E[C | do(a)] for all C ∈ C.
Definition B.1 (Change Sets). We define the β-change set for do(a) to be

CHGβ(a) := {V ∈ V : |E[V ]− E[V | do(a)]| > β}.

β-change sets always return some subset of the descendants, since do-interventions only change causally downstream
variables. It is not hard to see that 0-change sets are a query of descendants under stronger notions of intervention faithfulness
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that require changes in all descendants. Without this stronger notion of intervention faithfulness, β-change sets do not give
quite as much information, since there may be a decay in the change in the expected value of farther downstream variables,
or even canceling out of multiple paths.
Lemma B.2. Under λ-strong IA faithfulness and a γ-significant do-intervention on A ∈ V, if A → V with no other
directed paths from A to V then V ∈ CHGλγ(a).

Lemma B.2 is limited because of our mild faithfulness requirement, which does not require distance > 1 paths to exhibit
significant change, and does not even require distance 1 paths to exhibit change if other paths cancel out.

B.1. Conditional Change Sets

The nature of do interventions allows us to query slightly more than change sets because they can set variables to specific
values (e.g. 0, for knockout interventions).

This allows us to compare the distributions of two overlapping interventions to capture redundancies. For example, if

X1 = N1

X2 = α12X1 +N2

X3 = α13X1A+ α23X2 +N3

then if we compare a knockout on X2 and a knockout on X1, X2, the change X3 will only be different if α13 ̸= 0.
Definition B.3 (Conditional Change Set). We define the conditional change set for disjoint A ∈ V and C ⊆ V for
do/knockout interventions to be

CHGβ(a | do(c)) := {V ∈ V \C : |E[V | do(a),do(c)]− E[V | do(c)]| > β}.

As we have hinted at with our notation, one can think of a CHG(a | do(c)) as a “conditional intervention,” i.e., testing the
outcome of intervening on A after conditioning on C. Use G \C to denote the graph with all C removed as well as edges to
and from C, we have the following.
Lemma B.4. For DAG G, remove A → V (if it is there) to get G− and let C be a vertex cut that separates A, V ∈ V
into two different connected components in G−. Under λ-strong IA faithfulness and a γ-significant do-intervention on A,
V ∈ CHGλγ(a | do(c)) if and only if A → V is in G.

Proof. Let G int be G with all arrows coming in or out of C removed. The intervened distribution do(c) is Markovian in G int.
If A → V is not in G, then V is not a descendant of A in G int, meaning V will not change when adding an intervention in A.
If A → V is in G, then there are no other paths from A to V in G int, so by Lemma B.2, V is in the change set created by
intervening on A and C.

Lemma B.4 allows us to verify and disprove an adjacency between A and V by looking for a vertex cut C that separates
them. While this information may seem mild, conditional change-sets are sufficient to recover the complete causal structure

C. Algorithm
We will now provide an algorithm that makes use of IA faithfulness and change sets to learn a causal DAG. For this entire
section, G will denote the true graph with n vertices, and we will assume that the empirical distribution is λ-strong IA
faithful and all interventions are γ-significant.

A critical level of complexity is the “cardinality” of the interventions that we can perform, |A|. We can be very efficient if
the cardinality is unlimited, but real-world applications are rarely so flexible. As such, we will give less efficient algorithms
as we limit the cardinality of interventions, eventually proceeding into the regime where the full graph can only be narrowed
into equivalence classes, which may be further resolved by conditional independence testing.

C.0.1. UNRESTRICTED INTERVENTION CARDINALITY

When the cardinality of interventions is not limited, we can construct a very efficient set of interventions according to what
we will call the Unrestricted Intervention Cardinality (UIC) algorithm. The correct graph is G = (V,E).

7



Faithfulness and Intervention-Only Causal Discovery

1. For all Vi ∈ V, intervene on Vi ∈ V and add Vi → Vj if Vj ∈ CHGγλ(vi). Find the transitive closure and call the
resulting graph G′.

2. Start with G′′ = G′ and iterate through each Vj ∈ V according to a topological order and then iterate through
Vi ∈ PAG′(Vj), remove Vi → Vj from G′′ if Vj ̸∈ CHGγλ(vi | do(paG′′(Vj) \ {vi})).

To prove correctness, we will first show that step one gives us the transitive closure of the true graph.
Lemma C.1. G′ is the transitive closure of G at the end of step 1.

Proof. Every vertex Vi has at least one Vj ∈ CHG(Vi) with no other directed paths between Vi, Vj (the next vertex in the
topological order). These edges are detected by Lemma B.4, which are then chained together by the transitive closure.

We now only need to show that step 2 removes all incorrect edges and does not remove correct edges.
Lemma C.2. For every Vi, Vj with Vj ̸∈ CHGγλ(vi | PAG′′(Vj) \ {Vi}) if and only if Vi → Vj ̸∈ E.

Proof. We know that PAG(Vi) ⊆ PAG′′(Vi) and PAG(Vj) \ {Vi} is a vertex-cut for Vi, Vj if Vi → Vj is not in G. This
allows us to apply Lemma B.4.

Theorem C.3. For a distribution that is λ-strong IA faithful in G, the UIC algorithm learns G in using O(n2) γ-significant
interventions of cardinality of up to n− 1.

Step 1 does one intervention per vertex, and step 2 does a maximum of one intervention per parent in G′ per vertex, which is
O(n2).

C.0.2. MINIMUM INTERVENTION CARDINALITY

The UIC algorithm potentially requires simultaneous interventions on n−1 nodes of the graph, which might be unrealistic in
applied settings. Hence, we will now limit |A| ⩽ k. The following k-Restricted Intervention Cardinality (k-RIC) algorithm
shows that we can still get identifiability when κ ⩽ k < n− 1, where κ is the vertex connectivity of the true DAG G. The
first step is the same as UIC, with the following modification for the second step:

2. Start with G′′ = G′ and iterate through each Vj ∈ V according to a topological order and then iterate through
Vi ∈ PAG′(Vj):

– Now let G− be G′′ with Vi → Vj removed. Find the smallest Z ⊂ PAG′(Vi) \ {Vi} with |Z| < k that forms a
vertex cut in G− separating Vi and Vj .

– Test whether Vj ∈ CHGγλ(vi | do(z)) and remove Vi → Vj if not.

The k-RIC algorithm is identical to the UIC algorithm, but searches for a smaller vertex cut that separates Vi, Vj instead of
using PAG′′(Vj) \ {Vi}. Such a set must be in ANG(Vj) = PAG′(Vj), so the algorithm will return the correct G so long
as a small-enough Z exists.
Theorem C.4. For a distribution that is λ-strong IA faithful in G with vertex connectivity κ, the k-RIC algorithm with
k ⩾ κ+ 1 learns G using O(n2) γ-significant interventions.

Theorem 1.1 is a direct corollary of Theorem C.4.

Proof. First, we observe that the first Vj considered correctly is a source (no incoming edges), since we know from
Lemma C.1 that the topological ordering is correct. We will now induct on the iteration through Vjs, assuming all ancestors
have correctly specified all incoming edges (and lack of incoming edges) in G′′. Notice that this assumption means that the
edges between vertices in PA(Vj) are the same in both G′′ and G.

We know that there exists some minimum vertex cut with cardinality |Z| = κ that separates Vi from Vj in G with Vi → Vj

removed. In order for Z to not be a vertex cut in G′′ at this step, we would need to have a directed path from Vi through
some vertices in PA(Vj) ∩DE(Vi) that ends at Vj . By the inductive assumption, there are no additional edges that can
create such a path. We deduce that the minimum vertex cut that separates Vi and Vj in G (with Vi → Vj removed) is also a
minimum vertex cut in G′′ (with Vi → Vj removed). This ensures that Vi → Vj edges are correctly removed or added for all
Vi.
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C.0.3. PARTIAL IDENTIFICATION

When restricting |Z| < k, we lose identifiability. To see this, consider the following two graphs: (1) A → B → C and
(2) A → B → C, A → C. Suppose we run the 1-RIC algorithm on single-node interventions. For both causal graphs,
(i) do(a) changes B,C, (ii) do(b) changes C, and (iii) do(c) changes nothing. Hence, we cannot recover the difference
between these two causal graphs without a CI test or a double-node (i.e., cardinality 2) intervention.

Generally, any two graphs with the same transitive closure are (potentially) indistinguishable under single-node interventions.
With higher cardinality interventions, we can partially prune extra children using conditional change sets. However, with
a limitation on the cardinality of interventions, all pairs of non-adjacent vertices Vi, Vj that cannot be separated using a
vertex-cut of cardinality k − 1 could be connected with orientation determined by the topological order.

Definition C.5. The k-robust transitive closure of G involves adding edges Vi → Vj whenever the minimum vertex cut that
separates Vi and Vj has cardinality greater than k − 1.

Theorem C.6. For a distribution that is λ-strong IA faithful in G = (V,E), the k-RIC algorithm recovers a G up to its
k-robust transitive closure using O(n2) γ-significant interventions.

Proof. For all Vi → Vj not in G that can be separated by a cardinality k − 1 vertex cut, the k-RIC algorithm will find that
vertex cut during step 2 and remove that edge. For all other non-adjacencies, the edge will not be removed.

Theorem 1.2 is a corollary of Theorem C.6.

D. Empirical Study Details and Results
When implementing intervention-based causal discovery, we can use a two-population Student-t test to detect a change
in the distribution mean. We use the implementation from scipy.stats with a significance level of .005 for step 1
(to avoid starting with a cyclic G′), and .05 for further pruning of edges. This is compared to an implementation of the
PC-algorithm (Spirtes et al., 2000) that starts with knowledge of the correct topological ordering and utilizes the Fisher-Z
conditional independence tests implemented by Chandler Squires (2018).

We used g-castle (Zhang et al., 2021) to generate 20 random DAGs that are expected to have 25 edges on 10 nodes via
Erdós-Reñyi with random edge weights between 0 and 1. We report both the precision and recall of the recovered edges.
We sample 1000 points from the observational distribution and 1000 points for each knockout to the value 0.

Intervention-based causal discovery is a type of online learning that requires gathering additional (perturbed) data. With this
in mind, we first run the k-RIC algorithm and keep track of how many samples it requires. We then compare k-RIC to the
ordered PC algorithm on the total number of data points used by the k-RIC algorithm. Note that this provides significantly
more data for each conditional independence test than is obtained for each perturbation. Furthermore, the PC algorithm is
given a significant advantage by receiving a perfect topological ordering that would normally be obtained by interventions,
while k-RIC receives noisy topological ordering information and no conditional independence information.

The results are shown in Figure 2. Despite the advantages given to the order-informed PC-algorithm, the intervention-based
k-RIC performs significantly better with respect to recall. For precision, the intervention-based approach begins slightly
worse than PC when we are limited to single-node interventions. However, with k ⩾ 3-node interventions, the k-RIC
algorithm matches and then exceeds the performance of the PC algorithm.

An arguably fairer comparison would be to give order-informed PC the same amount of observational data that k-RIC
utilizes for its empty-set interventions. In this setting, k-RIC vastly outperforms PC, which struggles in recall without
sufficient data to resolve violations in strong faithfulness. PC appears to perform well in precision with less data because it
has removed too many edges.
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(a) Precision and recall for 20 random DAGs when giving Order-PC the same amount of data as k-RIC utilizes in total.
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(b) Precision and recall for 20 random DAGs when comparing equal amounts of observational data.

Figure 2. Each choice of k is tested on the same 20 randomly drawn DAGs with random edge weights between 0 and 1 and additive noise
in N(1, .5). Experiments take a few minutes to run on one CPU.
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