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ABSTRACT

We introduce GraphGPT, a novel model for Graph learning by self-supervised
Generative Pre-training Transformers. Our model transforms each graph or sam-
pled subgraph into a sequence of tokens representing the node, edge and attributes
reversibly using the Eulerian path first. Then we feed the tokens into a standard
transformer decoder and pre-train it with the next-token-prediction (NTP) task.
Lastly, we fine-tune the GraphGPT model with the supervised tasks. This intu-
itive, yet effective model achieves superior or close results to the state-of-the-art
methods for the graph-, edge- and node-level tasks on the large scale molecu-
lar dataset PCQM4Mv2, the protein-protein association dataset ogbl-ppa and the
ogbn-proteins dataset from the Open Graph Benchmark (OGB). Furthermore, the
generative pre-training enables us to train GraphGPT up to 400M+ parameters
with consistently increasing performance, which is beyond the capability of GNNs
and previous graph transformers. The source code and pre-trained checkpoints
will be released soon to pave the way for the graph foundation model research,
and also to assist the scientific discovery in pharmaceutical, chemistry, material
and bio-informatics domains, etc.

1 INTRODUCTION

After the breakthrough of deep learning in 2012 (Krizhevsky et al., 2012), the computer vision
(CV) and natural language processing (NLP) communities prosper till now. Graph community also
benefits from this paradigm shifting from traditional machine learning to deep learning with the
proposal of various graph neural networks (GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017;
Zhang & Chen, 2018; Wu et al., 2020).

Nowadays, both CV (Dosovitskiy et al., 2021; Liu et al., 2021) and NLP (Devlin et al., 2019; Rad-
ford et al., 2018) adopt the transformer backbone as the canonical architecture, and expand the
model scale to billions or even hundreds of billions of parameters (Liu et al., 2021; Brown et al.,
2020). These large models are trained with web-scale data (Schuhmann et al., 2022; Touvron et al.,
2023), and achieve performance superior to human beings in many benchmark datasets (Deng et al.,
2009; Wang et al., 2019b;a). These works also boost the commercial applications like Midjourney
(Midjourney, 2023) and ChatGPT (Open-AI, 2023). However, GNNs are still suffering from the
over-smoothing (Rusch et al., 2023) and over-squashing (Alon & Yahav, 2021) problems, which
limit them to be expanded to larger scale and trained with larger amount of graph data.

In recent years, there are many works that tried to utilize transformers to model the graph data,
and obtained good performance in certain graph datasets (Ying et al., 2021; Kim et al., 2022; Luo
et al., 2023; Müller et al., 2023). Nevertheless, they often use complex tricks to handcraft features
to encode structure information explicitly, and then inject them into either the input or the attention
layers. These tricks restrain the generalization beyond specific datasets. In addition, these graph
transformers (GTs) often perform well in graph-level tasks, but not applicable for the edge-/node-
level tasks (Müller et al., 2023). Last but not least, self-supervised generative pre-training is the key
of the success of GPTs (Radford et al., 2018), but it is hardly incorporated in the GTs (Min et al.,
2022; Müller et al., 2023).

In this work, we propose GraphGPT, a novel model for graph learning. It consists of three non-trivial
components: 1) transforming the (sub)graphs into a reversible sequence of tokens via the Eulerian
path, 2) pre-training a transformer decoder using the NTP task, and 3) fine-tuning the transformer
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with any supervised graph tasks. GraphGPT is able to overcome the disadvantages of GNNs and
Graph Transformers, and obtains state-of-the-art (SOTA) results in graph-/edge-/node-level tasks.
Our contributions are summarized as follows:

• GraphGPT employs (semi-)Eulerian path1 to transform the graphs into the sequences of
tokens, which ensures the transformation is lossless, reversible and optimal. Together with
subgraph sampling and node identity encoding techniques, we can transform graphs of
various sizes into sequences of tokens.

• GraphGPT is generatively pre-trained with the NTP task, which brings 3 advantages: a)
learning the graph’s structural and semantic information without relying on handcrafted
features or tailored transformer architectures; b) scaling up to 400M+ parameters with con-
sistent performance improvement; c) possessing the capability to generate graphs.

• GraphGPT utilizes a novel approach to format graph-/edge-/node-level tasks, making them
compatible with the transformer decoder architecture and enabling them to fully benefit
from the generative pre-training.

• Through extensive experiments on the public OGB datasets, GraphGPT achieves SOTA
results in graph-level and edge-level tasks, and the performance in node-level tasks ap-
proaches the SOTA level.

2 APPROACH
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Figure 1: Model overview. The left part shows the procedure to convert a (sub)graph into a sequence
of tokens. The dashed line indicates the duplicated edge added to the original graph to make it (semi-
)Eulerian. The right part shows the pre-training with the self-supervised NTP task and fine-tuning on
the supervised graph-/edge-/node-level tasks. We use edge (A,D) as an example for the edge-level
task, and node C for the node-level task.

2.1 OVERVIEW

In our GraphGPT model, we transform the given graph into a sequence of tokens in a reversible
manner, ensuring that the graph and the resulting sequence are equivalent. Then we utilize a standard
transformer backbone, such as Llama from Touvron et al. (2023), to process the sequence data and
train it using the self-supervised NTP task. Finally, we fine-tune the transformer with the supervised
tasks such as graph classification/regression, link prediction and node classification.

2.2 GRAPH TO SEQUENCE OF TOKENS

In this section, we show how to convert a graph into a sequence of tokens. For small graphs, e.g.,
molecular graphs, we convert them to sequences as in Sec. 2.2.1. Big graphs, e.g., graphs with hun-
dreds of thousands of nodes, millions or even billions of edges and many node or edge attributes, are
processed differently. We first sample subgraphs (see Sec. 2.2.2) with the node identity information
preserved (see Sec. 2.2.3), and then transform them into sequences in accordance with Sec. 2.2.1.

1For a quick recap, a graph with every node of even degree is Eulerian, and with exactly two nodes of odd
degree is semi-Eulerian.
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2.2.1 SERIALIZING GRAPHS WITH (SEMI-)EULERIAN PATH

We aim to find a lossless and reversible method to serialize (sub)graphs into sequences of tokens.
This requires all the nodes and edges shall be represented in the sequence. Therefore, a path that
transverses all the edges and nodes at least once would be a candidate.

This type of path is studied in the literature as the Chinese Postman Problem six decades ago, and
it can be solved in polynomial time (Mei-Ko, 1962; Edmonds & Johnson, 1973). In precise, if
the graph has a (semi-)Eulerian path, that path is an optimal solution. Otherwise, we need to find
the smallest number of existing edges to duplicate so that the resulting multigraph does have an
(semi-)Eulerian path.

Given a (sub)graph, we can easily check whether it is (semi-)Eulerian (West et al., 2001). If it is not,
we can always convert it to be a (semi-)Eulerian graph by duplicating some existing edges, which
is defined as Eulerization (Edmonds & Johnson, 1973; Daubechies & Hughes, 2009). Then, we can
obtain the (semi-)Eulerian path for the given graph. Since there are often more than one path for the
(semi-)Eulerian graph, we randomly sample one of the paths for training. This can be regarded as
data augmentation, which has been proven to be very helpful in CV (Perez & Wang, 2017).

We then re-index the nodes with 1, 2, · · · , n according to the order of their appearance in the path,
where n is the total number of nodes. As in the example of the Fig. 1, n of the path i is 6, and the
node F is re-indexed as ‘1’ and A is re-indexed as ‘2’.

For graphs with node attributes, and edge weights/attributes/directions (i.e., directed graphs), we
represent the discrete attributes with tokens, and split the continuous numbers into individual dig-
its as the tokens. We assign two tokens to represent the incoming and outgoing edge directions
respectively. The tokens of a node’s attributes are appended right after the node token (e.g., ‘1’,
‘2’), and the tokens of the edge’s attributes are put in between the source and destination nodes (see
Appendices D to F for detailed examples).

For the graph with disconnected components, we connect them by adding edges between the ran-
domly picked nodes from different components. We use the token <edge jump> as those edges’
attributes.

We claim that the conversion of the graph to the sequence of tokens is lossless and reversible, because
one can always recover the original graph by connecting the adjacent tokens. For example, in the
sequence i of Fig. 1, by linking ‘1’ to ‘2’, ‘2’ to ‘3’ and so on, we obtain all the edges as ensured
by the Eulerian Path Theorem. With all the edges, we are able to construct a graph equivalent to the
original one except for the notations of the nodes. More rigorously, they are isomorphic (Grohe &
Schweitzer, 2020).

2.2.2 SUBGRAPH SAMPLING

Serializing a large graph as in Sec. 2.2.1 leads to an extremely long sequence, which cannot be fed
into the transformer. To tackle the problem, one way is to convert the whole graph into a sequence
first, and then divide it into segments that can be fed into the transformer. The other way involves
sampling subgraphs and then converting them into sequences. Both Eulerizing a big graph and
finding its Eulerian path are quite time-consuming. Additionally, it causes the inconsistency between
the sequences in pre-training and fine-tuning. Therefore, we adopt the second way to serialize a large
graph.

To be more specific, we sample a subgraph randomly around the central edge or node using the
ShaDowKHop sampler introduced in Zeng et al. (2021). To ensure the resulting sequences to fit
into the context window, we pre-calculate the depth and number of neighbors of the ShaDowKHop
sampler. They vary across different datasets and context windows (see App. A.1 for more).

2.2.3 NODE IDENTITY ENCODING

When sampling subgraphs from a large graph, we need to preserve the nodes’ global identity, oth-
erwise much information will be lost. One straightforward method is to represent each node as a
unique token in the transformer’s vocabulary, i.e., to encode each node with a learnable embedding
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vector. However, when the number of nodes in the graph is huge, the vocabulary size becomes
enormous, causing the model size to increase significantly, and making the training difficult.

To avoid the problem, we propose to encode each node with multiple tokens. For example, given
a graph with 10 billion (1010) nodes, we can encode each node uniquely with two tokens, and
each token ranges from 1 to 105. As a result, this encoding would utilize 105 instead of previous
1010 tokens in the vocabulary. It can be implemented with METIS (Karypis & Kumar, 1997) to
partition the graph into 105 partitions, and each partition roughly has 105 nodes. To further reduce
the vocabulary size, we can encode each node with more tokens. For instance, encoding with five
tokens results in a vocabulary size of 100. However, note that encoding each node with more tokens
would increase the length of the resulting graph sequence.

The above encoding schema is in analogy with the coding of characters in computing. We can
encode any characters with variable numbers of bytes in utf-8 (Allen et al., 2012, Chapter 2), and
the resulting vocabulary is 256, which is the count of all possible bytes.

Through encoding each node uniquely with multiple tokens, we guarantee that the nodes’ identity
information is preserved during the subgraph extraction process. We show later in the ablation study
in Sec. 3.5.3 that it does improve the results.

2.3 MODELING WITH THE TRANSFORMER DECODER

In this section, we show that we can model various graph tasks with the pre-training and fine-tuning
paradigm using the transformer decoder architecture on the graph sequence of tokens.

2.3.1 PRE-TRAINING WITH THE NTP TASK

Self-supervised pre-training has been shown very beneficial for various NLP tasks (Devlin et al.,
2019; Radford et al., 2019). The next-token-prediction (NTP) and masked-token-prediction tasks are
two widely adopted self-supervised tasks. The NTP helps various models attain the SOTA results in
many NLP tasks, and it enables the resulting model with strong generation capability (Brown et al.,
2020). So we choose the NTP as our pre-training task.

As shown in the right part of Fig. 1, the NTP predicts the next node to connect in the context of
graph sequence. The next node can be a new node, one of the previous nodes, or the end (i.e., the
<eos> token). For example, in the semi-Eulerian path i, given the node sequence ‘1’, ‘2’ and ‘3’,
we predict that the next node is a new node and assign the notation ‘4’ to it. Subsequently, we predict
to connect to the previous node ‘2’, and so on. Finally, after we arrive at node ‘6’, we predict the
end. In the presence of node and edge attributes, the NTP also predicts the corresponding discretized
tokens encoded in the graph sequence.

2.3.2 FINE-TUNING ON DOWNSTREAM GRAPH TASKS

As shown in Fig. 1, we append a special token <gsum> at the end of the graph sequence, and feed
its embedding output to a multilayer perceptron (MLP) for the supervised graph-level task. The
parameters of the transformer are initialized from the pre-trained checkpoint, while the MLP layers
are randomly initialized. All the parameters are updated during the fine-tuning stage.

For the supervised edge-level task, we append the tokens of the source and destination nodes of the
target edge at the end of the sequence. The output of the last token from the transformer is then fed
to a MLP layer for the task. Similarly, for the node-level task, we append the target node’s token at
the end of the graph sequence and utilize its output for the task’s MLP layer.

By reformatting the graph-/edge-/node-level tasks as above, our pre-training and fine-tuning are
aligned in an elegant manifestation. The alignment allows the fine-tuning tasks to better exploit
the competency of pre-training, which is verified by many NLP literature (Brown et al., 2020; Wei
et al., 2021). Moreover, one can eliminate the task-specific MLP layer and convert the supervised
task labels into tokens. Then the model is fine-tuned to generate these tokens, in analogy to the
approach employed by GPT-3 for many NLP tasks (Brown et al., 2020).2

2We do not investigate it in this work, and leave it for future study.
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3 EXPERIMENTS

3.1 DATASETS

Applying AI to accelerate scientific discovery has been prevailing recently (Hassabis, 2023), which
motivates us to validate our proposal on the large-scale graph datasets from physical, chemical,
pharmaceutical and bio-informatics domains. Also, we aim to demonstrate that our GraphGPT is
applicable in the mainstream graph tasks, including graph-/edge-/node-level tasks. Therefore, we
choose PCQM4Mv2 and ogbg-molpcba for the graph-level task, and ogbl-ppa for the edge-level
task and ogbn-proteins for the node-level task (Hu et al., 2020; 2021). Their statistics are shown in
Tab. 8 of App. A.

The PCQM4Mv2 is a quantum chemistry dataset of more than 3.7 million small organic molecules
from the PubChemQC project (Nakata & Shimazaki, 2017). The ogbg-molpcba is a much small
molecular dataset (Wu et al., 2017). In these 2D molecular graphs, nodes are atoms, and edges are
chemical bonds. The node attributes are 9-dimensional, containing atomic number, chirality and
other atom features. The edge attributes are 3-dimensional, i.e., bond type, bond stereochemistry
and conjugation.

In the ogbl-ppa dataset, the nodes are proteins from 58 different species, and edges represent bio-
logically meaningful associations between proteins (Szklarczyk et al., 2019). It is a large graph of
over 30 millions edges.

The ogbn-proteins dataset is an undirected, weighted, and typed dense graph. The nodes are proteins
from 8 species, and the edges’ 8-dimensional attributes represent 8 types of association strengths. It
has nearly 40 millions edges. See more implementation details in App. C.

3.2 GRAPH-LEVEL TASKS

Table 1: Results of the graph classification task on the ogbg-molpcba dataset. All the baseline
results are from the OGB leaderboard and the corresponding papers. The best results are in bold,
and second-best are underlined.

Models Average Precision (AP) ParamsTest Valid

GCN 0.2020±0.0024 0.2059±0.0033 0.57M
GIN 0.2266±0.0028 0.2305±0.0027 1.92M
GINE+bot 0.2994±0.0019 0.3094±0.0023 5.51M
Nested GIN+virtual node 0.3007±0.0037 0.3059±0.0056 44.19M
PDF 0.3031±0.0026 0.3115±0.0020 3.84M

GraphGPT-mini 0.2385±0.0012 0.2777±0.0017 4.48M
GraphGPT-base 0.2517±0.0041 0.2857±0.0033 114.12M
GraphGPT-large 0.2722±0.0022 0.2966±0.0027 403.84M

For the two molecular datasets, the tasks are to predict quantum chemical property only from 2D
molecular graphs without their 3D equilibrium structures, which is practically favorable. We predict
128 binary molecular properties for ogbg-molpcba and the HOMO-LUMO gap for PCQM4Mv2.

We experiment 3 models of parameters from 4.48M to 403.84M for the ogbg-molpcba dataset. We
pre-train the models with 16B tokens, and then fine-tuned for 10 epochs. The results from the epoch
that maximizes the validation metric are reported in Tab. 1.

Our GraphGPT produces results much better than the powerful GNNs like GCN and GIN (Kipf
& Welling, 2017; Xu et al., 2019). Our results also approach the SOTA from those sophisticated
GNNs. In addition, GraphGPT yields consistently improved results as we increase the model size
up to 400M. This verifies that GraphGPT does not suffer from the over-smoothing or over-squashing
problems common in GNNs. It suggests that GraphGPT can perform even better if pre-trained with
more data and more parameters.
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Table 2: Results of the graph regression task on the PCQM4Mv2 dataset. The metric is mean
absolute error (MAE), the smaller the better. We highlight the results that do not use 3D data.

Models Use 3D MAE ParamsValid Test

GNNs

GCN ✗ 0.1379 0.1398 2.0M
GIN ✗ 0.1195 0.1218 3.8M
GCN-VN ✗ 0.1153 0.1152 4.9M
GIN-VN ✗ 0.1083 0.1084 6.7M

GTs

TokenGT ✗ 0.0910 0.0919 48.5M
Graphformer ✗ 0.0864 N/A 48.3M
Transformer-M ✓ 0.0772 0.0782 69.0M
Uni-Mol+ ✓ 0.0693 0.0705 770.3M

Ours GraphGPT ✗ 0.0875 N/A 49.7M

As for PCQM4Mv2, we compare to two GTs that do not utilize the molecular 3D data, i.e., TokenGT
and Graphformer (Kim et al., 2022; Ying et al., 2021). We configure our transformer backbone the
same as theirs for a fair comparison. The resulting model has 49.7M parameters, and is pre-trained
with about 49.5B tokens.

The TokenGT uses the vanilla transformer backbone, and it serializes the graph into tokens by
directly unfolding all the nodes and edges. The serialization method prohibits it from being self-
supervised pre-trained. TokenGT also supplements the inputs with handcrafted structural features.

The Graphformer transforms the graph into the sequence of tokens using nodes only. The structural
information possessed in the edges are completely lost in the input sequence, so Graphformer has to
add them back through modifying the transformer’s attention layers and enhancing the inputs with
sophisticated tricks like centrality encoding and spatial encoding to handcraft structural information.
Same as TokenGT, Graphformer cannot adopt self-supervised pre-training.

In contrast, our GraphGPT does not require any handcrafted features, and obtains better results than
TokenGT on the valid dataset, i.e., 0.0875 versus 0.0910. Our result is comparable to Graphformer.
What’s more, GraphGPT surpasses all the GNNs by a large margin. The exceptional performance
of GraphGPT implies that our lossless serialization and the self-supervised generative pre-training
enable the model to fully capture the graph’s structural and semantic information. We are pre-
training larger GraphGPT with more compute budget in order to attain better results.

3.3 EDGE-LEVEL TASKS

The edge-level task of the dataset ogbl-ppa is link prediction. We use two tokens for the node
identity encoding introduced in Sec. 2.2.3. Specifically, we use the species to partition the nodes,
so the first token represents the species, and the second is the local indices of proteins inside each
species (see App. E for details).

We experiment 5 different model sizes ranging from 14.75M to 444.92M, and report 3 of them
in Tab. 3 (see App. E for more). GraphGPT-mini/base/large are pre-trained with 25.6B/39B/50B
tokens respectively, and then fine-tuned with the classification task. The fine-tuning data consists of
subgraphs induced by the positive edges for training and equal negative edges randomly sampled.

As in Tab. 3, GraphGPT performs much better than all kinds of models, including GNNs, Heuristic
and Latent Factor models. Our smallest model outperforms the strong GNNs like GCN, GraphSAGE
and SEAL a lot (Kipf & Welling, 2017; Hamilton et al., 2017; Zhang & Chen, 2018). Our best result
67.15 surpasses the current SOTA 63.22 by a large margin.

AGDN (Sun et al., 2020), the largest GNN in the leaderboard, has only 36.9M parameters. The
prevailing GNNs like GCN, GraphSAGE and SEAL have less than 1M parameters. They cannot be
further scaled up to achieve better results due to the over-smoothing and over-squashing problems.
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In contrast, GraphGPT is able to scale up to 400M+ with consistently increasing performance. This
motives further study on larger models and more data with more compute budget.

What’s more, previously no GTs are listed in the ogbl-ppa’s leaderboard, and we show that trans-
former based models can excel in edge-level tasks.

Table 3: Results of the link prediction task on the ogbl-ppa dataset.

Models HR@100 (%) ParamsTest Valid

Heuristic
Common Neighbor 27.65±0.00 28.23±0.00 0
Adamic Adar 32.45±0.00 32.68±0.00 0
Resource Allocation 49.33±0.00 47.22±0.00 0

Latent Factor DeepWalk 28.88±1.53 - 150.14M
Matrix Factorization 32.29±0.94 32.28±4.28 147.66M

GNN

GCN 18.67±1.32 18.45±1.40 0.28M
GraphSAGE 16.55±2.40 17.24±2.64 0.42M
SEAL 48.80±3.16 51.25±2.52 0.71M
AGDN 41.23±1.59 43.32±0.92 36.90M
SIEG 63.22±1.74 65.33±2.34 1.99M

GraphGPT (Ours)
mini 55.56±1.14 54.87±0.66 14.75M
base 64.98±1.73 66.68±1.33 144.93M
large 67.15±1.36 68.60±1.40 444.92M

3.4 NODE-LEVEL TASKS

The task of the ogbn-proteins dataset is to predict 112 binary labels of proteins that each indicates
the presence of one type of function. The node identity is encoded with two tokens similar to the
ogbl-ppa in Sec. 3.3 (see App. F for details).

We pre-train 5 different models that scale from 10.76M to 428.94M with 51.2B tokens, and then
fine-tune them for 16 epochs. We pick the 3 consecutive epochs that maximize the metric of valid
data and then calculate the mean and variance. We report the results of 3 models in Tab. 4.

For this dataset, GNNs usually use random partition (Li et al., 2020) to sample subgraphs. The
resulting subgraphs usually have more than 20,000 nodes and 1 million edges. In contrast, our
subgraphs usually have about 10 nodes and 20 edges, because we limit the transformers’ context
window to be 256. It is remarkable that GraphGPT’s results surpass GCN and GraphSAGE, and
approach the SOTA with such a small neighborhood to gather information. We hypothesize that
during the pre-training, the global structural and semantic information of the big graph have been
encoded in the node tokens’ embeddings and the transformer’s parameters.

GNNs in the leaderboard are very small. For example, GCN and GraphSAGE has 0.1M to 0.2M
parameters, and even DeeperGCN does not exceed 2.37M (Li et al., 2020). The largest GNN model
RevGNN-wide has 68M parameters (Li et al., 2021). In contrast, our GraphGPT-large has 400M+
parameters and can be well trained. Compared to the only transformer based model UniMP in
the leaderboard (Shi et al., 2020), GraphGPT is able to train much larger transformers and attains
improved results.

Despite of the fine performance of GraphGPT, the small context window may restrain its capability.
Techniques like Flash Attention (Dao et al., 2022) and Positional Interpolation (Chen et al., 2023)
can be utilized to make the context window much longer.3

3We experimented with the context window of 1024, and observed some gains.
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Table 4: Results of the node classification task on the ogbn-proteins dataset.

Models ROC-AUC (%) ParamsTest Valid

GCN 72.51±0.35 79.21±0.18 0.10M
GraphSAGE 77.68±0.20 83.34±0.13 0.19M
DeeperGCN 85.80±0.17 91.06±0.16 2.37M
UniMP 86.42±0.08 91.75±0.06 1.91M
RevGNN-wide 88.24±0.15 94.50±0.08 68.47M
GIPA (Wide&Deep) 89.17±0.07 94.72±0.20 17.44M

GraphGPT-mini 75.61±1.37 80.47±0.94 10.76M
GraphGPT-base 83.37±0.15 87.68±0.25 132.94M
GraphGPT-large 84.80±0.18 89.35±0.24 428.94M

3.5 ABLATION STUDY

We present the ablation study on three key ingredients of GraphGPT, i.e., pre-training, node re-
indexing and node identity encoding.

3.5.1 PRE-TRAINING

Pre-training with the NTP task is the key to the success of our GraphGPT. Experiment results on
graph/edge/node-level tasks in Tab. 5 show that pre-training can boost the performance a lot. The lift
of metrics ranges from 30% to 100%. This implies that pre-training enables the model to understand
both the graph structure and the semantics possessed in the node and edge attributes.

Table 5: Ablation study of pre-training on the datasets of various types of tasks.

Task Type Datasets Params Metrics Pre-training Test Valid

Graph
ogbg-molpcba 4.48M AP ✗ 0.1280 0.1331

✓ 0.2385 0.2777

PCQM4Mv2 49.7M MAE ✗ N/A 0.1086
✓ N/A 0.0875

Edge ogbl-ppa 14.75M HR@100 ✗ 41.28 40.14
✓ 55.56 54.87

Node ogbn-proteins 10.76M ROC-AUC ✗ 57.52 61.19
✓ 75.61 80.47

3.5.2 NODE RE-INDEXING

As shown in Fig. 1, we re-index the nodes according to their order in the (semi-)Eulerian path. We
conduct experiments using the ogbg-molpcba dataset to assess its effectiveness. As shown in Tab.
6, node re-indexing improves the downstream tasks for different model sizes, although it increases
the pre-training loss. This is because node re-indexing can be regarded as data augmentation. It
prevents the model from memorizing the unimportant information of the graph, i.e., the notation of
the nodes, and leads to better generalization performance. In addition, the re-indexing allows us to
restrict the decoding space of node tokens when generating graphs with GraphGPT.

3.5.3 NODE IDENTITY ENCODING

As illustrated in Sec. 2.2.3, we encode each node in a big graph uniquely with multiple tokens. Here
we show its importance for edge-/node-level tasks. We use GraphGPT-mini to conduct the ablation
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Table 6: Ablation study of node re-indexing on the ogbg-molpcba dataset with two model sizes.

Params Metrics Re-index Pre-training Loss Test Valid

114.12M AP ✗ 0.0689 0.2270 0.2621
✓ 0.0750 0.2517 0.2857

4.48M AP ✗ 0.0844 0.2310 0.2525
✓ 0.0874 0.2385 0.2777

study to save time and compute budget. Node identity encoding can obviously improve the results
as in Tab. 7. For more details, see appendices A and E.

Table 7: Ablation study of node identity encoding on the ogbl-ppa and ogbn-proteins datasets.

Task Type Datasets Params Metrics Node ID encoding Test Valid

Edge ogbl-ppa 14.75M HR@100 ✗ 44.38 45.08
✓ 55.56 54.87

Node ogbn-proteins 10.76M ROC-AUC ✗ 60.22 65.66
✓ 75.61 80.47

4 RELATED WORKS

Graph Neural Networks (GNNs) GNNs have been dominating the graph learning in the past
decades. They have many variants, and gain excellent performance in various graph tasks (Wu
et al., 2020). However, most GNNs suffer from the over-smoothing and over-squashing problems,
which restrict them from scaling up (Rusch et al., 2023; Alon & Yahav, 2021).

Graph Transformers (GTs) Inspired by the success of transformers in NLP and CV, graph com-
munity starts to embrace transformer architectures in recent years (Ying et al., 2021; Rampásek
et al., 2022; Müller et al., 2023). The various GTs have attained some good results, especially in
graph-level tasks with large-scale datasets (Müller et al., 2023). Nevertheless, they have to employ
handcrafted features or GNN modules to encode the structure information in the inputs (Ying et al.,
2021; Kim et al., 2022), and/or in the self-attention layers (Ying et al., 2021; Chen et al., 2022;
Luo et al., 2023). In addition, they mostly adopt the transformer encoder instead of the decoder,
preventing them from being pre-trained in a self-supervised manner.

Pre-training and fine-tuning After the invention of the transformer (Vaswani et al., 2017), the self-
supervised pre-training and supervised fine-tuning paradigm starts to flourish in NLP and brings sig-
nificant improvements across various tasks (Devlin et al., 2019; Radford et al., 2018). Pre-training
with web-scale text data (Brown et al., 2020) and followed by instruction tuning (Wei et al., 2021)
or reinforcement learning from human feedback (Ouyang et al., 2022) advances the paradigm and
boosts the performance even further. In CV, pre-training with the large scale supervised datasets and
fine-tuning on the small datasets gains much success, which is termed as transfer learning (Yosin-
ski et al., 2014). Recently, MAE from He et al. (2022) shows that self-supervised pre-training by
predicting large portion of masked image patches can also attain SOTA results.

5 CONCLUSIONS

We propose the novel model GraphGPT that can be adapted for the graph-/edge-/node-level tasks,
and it can attain SOTA or close to SOTA results. With GraphGPT, we train large models of up to
hundreds of millions parameters, and observe consistent performance increase. GraphGPT has the
potential to be scaled up to hundreds of billions parameters, and can be aligned or integrated with
large language models. For a comprehensive understanding of GraphGPT, we discuss its limitations
in App. G.
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A DATASETS

The detailed statistics of datasets are reported in Tab. 8.

Table 8: Statistics of graph-/edge-/node-level datasets. Here ‘BC’ stands for binary classification.

datasets # of graphs avg # of nodes avg # of edges task-type metrics

ogbg-molpcba 437,929 26.0 28.1 BC AP
PCQM4Mv2 3,746,619 14.14 14.56 regression MAE
ogbl-ppa 1 576,289 30,326,273 multi-label BC HR@100
ogbn-proteins 1 132,534 39,561,252 BC ROC-AUC

A.1 SUBGRAPH SAMPLING

The subgraph sampling for different datasets of big graphs are shown in Tab. 9.
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Table 9: Details of subgraph sampling for ogbl-ppa and ogbn-proteins datasets. ‘ctx’ means the
context window. edge-ego means sampling subgraph around the central edge, and node-ego means
around the central node.

dataset sampling depth # neighbors ctx

ogbl-ppa edge-ego 1 14 256

ogbn-proteins node-ego

9 1 256
16 1 512
24 1 1024
42 1 2048

B MODELS

We list the model specifics in Tab. 10.

Table 10: Statistics of GraphGPT models of different sizes. The GraphGPT-base is of the same scale
as Bert-base (Devlin et al., 2019).

model-size hidden-size # of layers # of heads

mini 256 4 4
small 512 4 8
medium 512 8 8
base 768 12 12
large 1024 24 16

C IMPLEMENTATION DETAILS

C.1 GRAPHS TO SEQUENCES OF TOKENS

The code is implemented with Pytorch. We use torch-geometric (Fey & Lenssen, 2019) to prepro-
cess graphs, e.g., subgraph sampling and etc. We use Networkx (Hagberg et al., 2008) to Eulerize
the (sub)graphs if needed and then find the (semi-)Eulerian paths. We write our own tokenizer to
convert the (semi-)Eulerian paths to sequences of tokens. The token vocabulary is built for each
dataset separately.

C.2 MODEL BACKBONE

We adopt Llama’s transformer decoder (Touvron et al., 2023) implemented in the Hugging Face’s
transformers package (Wolf et al., 2020) as our backbone. We do not used Llama’s pre-trained
weights. Instead, we train models of different scales as in Tab. 10 with random parameters initial-
ization.

C.3 TRAINING

The models are pre-trained and fine-tuned on GPU clusters of V100-32G using DeepSpeed’s stage-2
schema with mixed precision (Rasley et al., 2020). Following the optimizer setting in Llama, we
use AdamW (Loshchilov & Hutter, 2017) with the hyper-parameters β1 = 0.9, β2 = 0.95 and
weight decay of 0.1 and gradient clipping of 1.0. We use a linear decay learning rate schedule with
1,000 warmup for pre-training only. The maximal learning rate in is 3 × 10−4 for pre-training and
3 × 10−5 for fine-tuning. To make full use of computing power, we pack several graph sequences
together into one entry to maximize the context window (Raffel et al., 2020).
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C.4 VOCABULARY

In NLP, the vocabulary is usually built by tokenizing the text data with the byte-pair encoding (BPE)
algorithm (Sennrich et al., 2016). The resulting unique tokens form the vocabulary, and they are
usually frequent subwords in the text corpus.

In our GraphGPT, the vocabulary is constructed very differently. We split the vocabulary into two
parts, the first part contains the structural and special tokens, and they are dataset agnostic. The
second part consists of the tokens that encode the semantics information of the dataset, such as node
and edge attributes.

App. E shows an example. In the graph sequence, tokens ‘1’, ‘2’ and so on are structural tokens.
‘ogbl-ppa#node#0#17’ and ‘ogbl-ppa#node#1#1959’ are semantics tokens. <gsum> and <eos> in
Fig. 1 are special tokens.

D GRAPH-LEVEL TASK

D.1 GRAPHS TO SEQUENCES OF TOKENS

Below is one example of 2D molecular graphs in the ogbg-molpcba dataset in torch-geometric data
format (Fey & Lenssen, 2019).

Data ( x = [4 , 9 ] , e d g e i n d e x = [2 , 6 ] , e d g e a t t r = [6 , 3 ] , y = [ 1 2 8 ] )

The graph has 4 nodes and 3 edges. The source and destination nodes of the edges are recorded in
‘edge index’, and its dimension is (2, 2 · number of nodes) for undirected graphs. ‘x’ is the node
attributes of 9 dimensions, and ‘edge attr’ stores the edge attributes of 3 dimensions.

The node and edge attributes of the graphs are numbers. If we directly discretize them into tokens,
i.e., using one token to represent each unique number, the numbers that appear few times in the
dataset cannot be well-trained. At the same time, the vocabulary may blow up. Therefore, we split
them into single digits and represent them with the combination of the following tokens. They are
dataset agnostic, and can be shared across different datasets.

<−>, <.> , <0>, <1>, <2>, <3>, <4>, <5>, <6>, <7>, <8>, <9>

The resulting vocabulary is 556 for both ogbg-molpcba and PCQM4Mv2.

Below shows the tokens from one of the possible (semi-)Eulerain paths of the above molecular
graph.

[ ’ 1 ’ , ’ ogbg −molpcba # node #0#1 ’ , ’<7> ’ , ’ ogbg −molpcba # node #2#1 ’ ,
’<1> ’ , ’ ogbg −molpcba # node #3#1 ’ , ’<5> ’ , ’ ogbg −molpcba # node
#6#1 ’ , ’<1> ’ , ’ ogbg −molpcba # edge #0#1 ’ , ’<1> ’ , ’ 2 ’ , ’3 ’ , ’ ogbg −
molpcba # node #0#1 ’ , ’<5> ’ , ’ ogbg −molpcba # node #2#1 ’ , ’<4> ’ , ’
ogbg −molpcba # node #3#1 ’ , ’<5> ’ , ’ ogbg −molpcba # node #4#1 ’ , ’<3> ’ ,

’ ogbg −molpcba # node #6#1 ’ , ’<2> ’ , ’ 2 ’ , ’ ogbg −molpcba # node #0#1 ’ ,
’<5> ’ , ’ ogbg −molpcba # node #2#1 ’ , ’<3> ’ , ’ ogbg −molpcba # node

#3#1 ’ , ’<5> ’ , ’ ogbg −molpcba # node #6#1 ’ , ’<1> ’ , ’ 4 ’ , ’ ogbg −
molpcba # node #0#1 ’ , ’<5> ’ , ’ ogbg −molpcba # node #2#1 ’ , ’<4> ’ , ’
ogbg −molpcba # node #3#1 ’ , ’<5> ’ , ’ ogbg −molpcba # node #4#1 ’ , ’<3> ’ ,

’ ogbg −molpcba # node #6#1 ’ , ’<2>’]

In the sequence of tokens above, for the node ‘1’, we can deduce that its 9 dimensional attributes are
(7, 0, 1, 5, 0, 0, 1, 0, 0, 0). Node ‘1’ is connected to ‘2’ with edge attributes (1, 0, 0). We set 0 as the
the default value of the attributes in this dataset, and do not encode it into tokens.

In the (semi-)Eulerian path, a node may appear several times. We append its attributes tokens to
one of its appearances randomly. This can prevent the model from copying the attributes from the
previous appearance, and also shorten the resulting sequence.

For a graph obtained from Eulerization, an edge may present several times in the path. We apply the
same logic to insert the edge attributes tokens.
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As in the above sequence, node ‘2’ appears two times, and its node attributes tokens are appended
after its second appearance. There is no tokens encode the edge attributes of edge between ‘2’ and
‘3’, which implies the edge attributes are default value (0, 0, 0).

In the ablation study on node re-index in Sec. 3.5.2, the resulting tokens without node re-indexing
of the same example above is shown below. Without re-indexing, the starting node will keep its
original notation, which is ‘4’ in this case.

[ ’ 4 ’ , ’ ogbg −molpcba # node #0#1 ’ , ’<7> ’ , ’ ogbg −molpcba # node #2#1 ’ ,
’<1> ’ , ’ ogbg −molpcba # node #3#1 ’ , ’<5> ’ , ’ ogbg −molpcba # node
#6#1 ’ , ’<1> ’ , ’ ogbg −molpcba # edge #0#1 ’ , ’<1> ’ , ’ 2 ’ , ’1 ’ , ’ ogbg −
molpcba # node #0#1 ’ , ’<5> ’ , ’ ogbg −molpcba # node #2#1 ’ , ’<4> ’ , ’
ogbg −molpcba # node #3#1 ’ , ’<5> ’ , ’ ogbg −molpcba # node #4#1 ’ , ’<3> ’ ,

’ ogbg −molpcba # node #6#1 ’ , ’<2> ’ , ’ 2 ’ , ’ ogbg −molpcba # node #0#1 ’ ,
’<5> ’ , ’ ogbg −molpcba # node #2#1 ’ , ’<3> ’ , ’ ogbg −molpcba # node

#3#1 ’ , ’<5> ’ , ’ ogbg −molpcba # node #6#1 ’ , ’<1> ’ , ’ 3 ’ , ’ ogbg −
molpcba # node #0#1 ’ , ’<5> ’ , ’ ogbg −molpcba # node #2#1 ’ , ’<4> ’ , ’
ogbg −molpcba # node #3#1 ’ , ’<5> ’ , ’ ogbg −molpcba # node #4#1 ’ , ’<3> ’ ,

’ ogbg −molpcba # node #6#1 ’ , ’<2>’]

D.2 MODEL, PRE-TRAINING AND FINE-TUNING
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Figure 2: Training loss versus tokens of ogbg-molpcba dataset for models small/base/large as in Tab.
10. They are all trained on 12.6 B to 16 B tokens with a batch size of 0.4M tokens.

We set the context window to be 1024 so that the token sequence of all the molecules can be fit in.
We use the mini-batch of 1024 and 1920 sequences for the ogbg-molpcba and PYQM4Mv2 datasets
respectively. The total update-step is 4.3× 104 and 1.8× 106.

E EDGE-LEVEL TASK

E.1 GRAPHS TO SEQUENCES OF TOKENS

The whole ogbl-ppa dataset is summarized in torch-geometric format as follows.

Data ( num nodes =576289 , e d g e i n d e x = [2 , 42463862] , x =[576289 , 5 8 ] )
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It has 576289 nodes and 21231931 edges in the training data. ‘x’ is the one-hot representation of
the species that the node (protein) belongs to.

We sample a subgraph from it as below.

Data ( num nodes =30 , r o o t n i d = [ 2 ] , e d g e i n d e x =[ 2 , 8 4 ] , x =[30 , 2 ] )

It has 30 nodes, 42 edges as in ‘edge index’. ‘x’ is the node attributes of 2 dimensions, and it
encodes the node identity as described in Sec. 2.2.3. We partition the nodes (proteins) based on the
associated species. The number of proteins inside each species varies from 616 to 41017. Finally
we use 58 tokens for species and 41017 tokens for the local indices. Combined with the tokens for
the structure and the special tokens, the total vocabulary is 41231.

Here ‘root n id’ records the two seed nodes, and the subgraph is sampled centered around them.
The resulting tokens from one of the possible (semi-)Eulerian paths are:

[ ’ 1 ’ , ’2 ’ , ’3 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#1959 ’ , ’4 ’ ,
’5 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#2460 ’ , ’6 ’ , ’7 ’ ,

’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#3566 ’ , ’6 ’ , ’8 ’ , ’ ogbl −
ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#4145 ’ , ’6 ’ , ’9 ’ , ’ ogbl −ppa #
node #0#20 ’ , ’ ogbl −ppa # node #1#5334 ’ , ’10 ’ , ’ ogbl −ppa # node
#0#27 ’ , ’ ogbl −ppa # node #1#17324 ’ , ’6 ’ , ’ ogbl −ppa # node #0#17 ’ , ’
ogbl −ppa # node #1#6850 ’ , ’11 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa #
node #1#5498 ’ , ’6 ’ , ’12 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node
#1#5776 ’ , ’6 ’ , ’4 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node
#1#8183 ’ , ’2 ’ , ’5 ’ , ’2 ’ , ’13 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa
# node #1#3514 ’ , ’2 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node
#1#9374 ’ , ’14 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#6164 ’ ,
’15 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#8368 ’ , ’2 ’ , ’6 ’ ,
’16 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#10803 ’ , ’6 ’ ,
’17 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#11465 ’ , ’6 ’ ,
’10 ’ , ’18 ’ , ’ ogbl −ppa # node #0#20 ’ , ’ ogbl −ppa # node #1#16505 ’ ,
’6 ’ , ’19 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#15071 ’ , ’2 ’ ,

’20 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#7761 ’ , ’2 ’ ,
’21 ’ , ’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#8828 ’ , ’2 ’ , ’22 ’ ,

’ ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#14477 ’ , ’2 ’ , ’23 ’ , ’
ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#16026 ’ , ’2 ’ , ’24 ’ , ’ ogbl
−ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#16825 ’ , ’6 ’ , ’25 ’ , ’ ogbl −ppa
# node #0#17 ’ , ’ ogbl −ppa # node #1#17615 ’ , ’19 ’ , ’25 ’ , ’2 ’ , ’26 ’ , ’
ogbl −ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#19524 ’ , ’2 ’ , ’27 ’ , ’ ogbl
−ppa # node #0#17 ’ , ’ ogbl −ppa # node #1#17854 ’ , ’6 ’ , ’28 ’ , ’ ogbl −ppa
# node #0#17 ’ , ’ ogbl −ppa # node #1#17733 ’ , ’6 ’ , ’29 ’ , ’ ogbl −ppa #
node #0#27 ’ , ’ ogbl −ppa # node #1#23255 ’ , ’6 ’ , ’30 ’ , ’ ogbl −ppa # node
#0#17 ’ , ’ ogbl −ppa # node #1#19700 ’ , ’6 ’ , ’27 ’ , ’1 ’ , ’ ogbl −ppa #
node #0#17 ’ , ’ ogbl −ppa # node #1#20474 ’]

In the ablation study on node identity encoding in Sec. 3.5.3, an example of the subgraph sampled
from ogbl-ppa without identity encoding is shown below.

Data ( num nodes =30 , r o o t n i d = [ 2 ] , e d g e i n d e x =[ 2 , 1 3 6 ] , x =[30 , 1 ] )

Different from the subgraph with node identity encoded in ‘x’, its node attribute ‘x’ contains only
the information of the node’s (protein) hosting species. It cannot be used to uniquely identify the
nodes. The vocabulary decreases from 41231 to 214.

The resulting tokens from one of its possible (semi-)Eulerian paths is below.

[ ’ 1 ’ , ’2 ’ , ’3 ’ , ’4 ’ , ’ ogbl −ppa # node #0#17 ’ , ’5 ’ , ’6 ’ , ’7 ’ , ’5 ’ ,
’8 ’ , ’9 ’ , ’1 ’ , ’ ogbl −ppa # node #0#17 ’ , ’10 ’ , ’ ogbl −ppa # node
#0#17 ’ , ’11 ’ , ’ ogbl −ppa # node #0#17 ’ , ’3 ’ , ’ ogbl −ppa # node #0#17 ’ ,

’11 ’ , ’12 ’ , ’1 ’ , ’5 ’ , ’13 ’ , ’ ogbl −ppa # node #0#17 ’ , ’5 ’ , ’14 ’ ,
’ ogbl −ppa # node #0#17 ’ , ’5 ’ , ’9 ’ , ’10 ’ , ’8 ’ , ’ ogbl −ppa # node
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#0#17 ’ , ’3 ’ , ’15 ’ , ’ ogbl −ppa # node #0#17 ’ , ’3 ’ , ’16 ’ , ’ ogbl −ppa #
node #0#17 ’ , ’3 ’ , ’2 ’ , ’ ogbl −ppa # node #0#20 ’ , ’17 ’ , ’ ogbl −ppa #
node #0#27 ’ , ’1 ’ , ’18 ’ , ’ ogbl −ppa # node #0#20 ’ , ’1 ’ , ’19 ’ , ’ ogbl −
ppa # node #0#17 ’ , ’3 ’ , ’9 ’ , ’ ogbl −ppa # node #0#17 ’ , ’20 ’ , ’ ogbl −
ppa # node #0#17 ’ , ’10 ’ , ’3 ’ , ’21 ’ , ’3 ’ , ’5 ’ , ’10 ’ , ’12 ’ , ’ ogbl −
ppa # node #0#17 ’ , ’3 ’ , ’22 ’ , ’ ogbl −ppa # node #0#17 ’ , ’3 ’ , ’17 ’ ,
’18 ’ , ’3 ’ , ’23 ’ , ’13 ’ , ’24 ’ , ’5 ’ , ’25 ’ , ’ ogbl −ppa # node #0#17 ’ ,
’23 ’ , ’ ogbl −ppa # node #0#17 ’ , ’21 ’ , ’ ogbl −ppa # node #0#17 ’ , ’20 ’ ,
’5 ’ , ’26 ’ , ’ ogbl −ppa # node #0#17 ’ , ’5 ’ , ’22 ’ , ’24 ’ , ’ ogbl −ppa #
node #0#17 ’ , ’23 ’ , ’5 ’ , ’27 ’ , ’6 ’ , ’ ogbl −ppa # node #0#17 ’ , ’28 ’ ,
’ ogbl −ppa # node #0#17 ’ , ’7 ’ , ’ ogbl −ppa # node #0#17 ’ , ’28 ’ , ’5 ’ , ’
ogbl −ppa # node #0#17 ’ , ’27 ’ , ’ ogbl −ppa # node #0#17 ’ , ’29 ’ , ’ ogbl −
ppa # node #0#17 ’ , ’5 ’ , ’30 ’ , ’ ogbl −ppa # node #0#17 ’ , ’5 ’ , ’19 ’ ,
’5 ’ , ’12 ’ , ’20 ’ , ’ 1 ’ ]

E.2 MODEL, PRE-TRAINING AND FINE-TUNING

1.3

1.8

2.3

2.8

3.3

3.8

0 10 20 30 40 50

Tr
ai

ni
ng

 lo
ss

Billion of tokens 

OGBL-PPA Pre-training

mini
small

medium
base

large

Figure 3: Training loss versus tokens of ogbl-ppa dataset for models mini/small/medium/base/large
as in Tab. 10. They are all trained on 25.6 B tokens with a batch size of 0.4M (i.e., 1600 × 256)
tokens. GraphGPT-base and GraphGPT-large are further trained with additional tokens to attain
better fine-tuning performance.

In pre-training stage, we use the mini-batch of 1600 sequences of 256 tokens. The total update-step
is 6.25×104. In fine-tuning stage, we use the mini-batch of 4096 sequences of maximal 256 tokens.

The pre-training loss versus the number of tokens is shown in Fig. 3. In general, larger model results
in lower pre-training loss, and better results in down-stream fine-tuning tasks. The fine-tuning results
of link prediction is shown in Tab. 11. Pre-training can improve the downstream task substantially
(see Fig. 4).

E.3 NODE IDENTITY ENCODING

The comparison between models trained with and without node identity encoding is shown in Fig.
5. The node identity encoding can achieve much better results.
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Figure 4: The ablation study of pre-training for ogbl-ppa. Evaluation metric HR@100 on the
valid/test data versus the number of samples fine-tuned. ‘w’ and ‘w/o’ indicate whether pre-training
is employed or not. ‘w’ means the model is pre-trained with 25.6 B tokens first, and then fine-tuned
with the link prediction task. ‘w/o’ indicates that the model is trained with the supervised link pre-
diction task directly with random parameters initialization. We use GraphGPT-mini to save time and
computing resources.
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Figure 5: The ablation study of node identity encoding for ogbl-ppa. Evaluation metric HR@100 on
the valid/test data versus the number of samples fine-tuned. ‘w’ and ‘w/o’ indicate whether the node
is encoded with two tokens uniquely or not. Both ‘w’ and ‘w/o’ are pre-trained with 25.6 B tokens
first, and then fine-tuned with the link prediction task. After fine-tuning with about 500 M samples,
the results become stable. The model is GraphGPT-mini.

20



Under review as a conference paper at ICLR 2024

Table 11: Edge-level link prediction task results of the ogbl-ppa dataset of different model size.

Models HR@100 (%) ParamsTest Valid

GraphGPT

mini (w/o pre-training) 41.28±1.35 40.14±1.01 14.75M
mini 55.56±1.14 54.87±0.66 14.75M
small 57.25±1.34 58.78±0.68 37.89M
medium 60.08±1.18 61.01±0.77 54.67M
base 64.98±1.73 66.68±1.33 144.93M
large 67.15±1.36 68.60±1.40 444.92M

E.4 OTHER DATASETS

We also conduct the experiment on a small dataset ogbl-ddi. The performance is not good. It
either implies that we need more experiments to find suitable hyper-parameters, or indicates that
GraphGPT might not be a good choice for small dense graphs. ogbl-ddi has around 14.67% edges
of the corresponding complete graph. In contrast, ogbl-ppa has only 0.018% edges of the complete
graph.

F NODE-LEVEL TASK

F.1 GRAPHS TO SEQUENCES OF TOKENS

The entire ogbn-proteins dataset is a large graph as follows.

Data ( num nodes =132534 , e d g e i n d e x = [2 , 79122504] , e d g e a t t r
=[79122504 , 8 ] , n o d e s p e c i e s =[132534 , 1 ] , y =[132534 , 1 1 2 ] )

It has 132,534 nodes and 39,561,252 edges. ‘node species’ stores the species’ numeric id that the
node (proteins) belongs to.

One sampled subgraph in the torch-geometric data format is:

Data ( num nodes =10 , r o o t n i d =0 , e d g e i n d e x = [2 , 2 2 ] , e d g e a t t r = [22 ,
8 ] , y =[10 , 1 1 2 ] , x =[10 , 2 ] )

It has 10 nodes, 11 edges as in ‘edge index’. Edge attributes is stored in ‘edge attr’ of dimension 8.
‘x’ is the node attributes of 2 dimensions, and it encodes the node identity as described in Sec. 2.2.3.
Its first dimension (token) represents the species, and the second is local numbering of each protein
inside its species. Similar to the ogbl-ppa dataset, the identity encoding of 132,534 nodes occupies
25,465 tokens in the vocabulary, and the total vocabulary is 25,620.

‘y’ records the labels for the supervised node-level task. ‘root n id’ represents the target node, and
the subgraph is sampled centered around it.

The resulting tokens from one of the possible (semi-)Eulerian paths are as follows.

[ ’ 1 ’ , ’ ogbn − p r o t e i n s # node #0#3702 ’ , ’ ogbn − p r o t e i n s # node #1#16267 ’ , ’
ogbn − p r o t e i n s # edge #7#1 ’ , ’<1> ’ , ’<6> ’ , ’<4> ’ , ’ 2 ’ , ’ ogbn −
p r o t e i n s # node #0#3702 ’ , ’ ogbn − p r o t e i n s # node #1#6896 ’ , ’ ogbn −
p r o t e i n s # edge #4#1 ’ , ’<3> ’ , ’<4> ’ , ’<0> ’ , ’ 3 ’ , ’ ogbn − p r o t e i n s #
node #0#3702 ’ , ’ ogbn − p r o t e i n s # node #1#4121 ’ , ’ ogbn − p r o t e i n s # edge
#4#1 ’ , ’<3> ’ , ’<9> ’ , ’<8> ’ , ’ 4 ’ , ’ ogbn − p r o t e i n s # node #0#3702 ’ ,
’ ogbn − p r o t e i n s # node #1#3963 ’ , ’ ogbn − p r o t e i n s # edge #4#1 ’ , ’<1> ’ ,
’<5> ’ , ’<3> ’ , ’ 5 ’ , ’ ogbn − p r o t e i n s # node #0#3702 ’ , ’ ogbn − p r o t e i n s
# node #1#8259 ’ , ’ ogbn − p r o t e i n s # edge #4#1 ’ , ’<4> ’ , ’<8> ’ , ’ ogbn −
p r o t e i n s # edge #7#1 ’ , ’<2> ’ , ’<1> ’ , ’<5> ’ , ’ 6 ’ , ’7 ’ , ’ ogbn −
p r o t e i n s # edge #7#1 ’ , ’<4> ’ , ’<1> ’ , ’<8> ’ , ’ 8 ’ , ’ ogbn − p r o t e i n s #
node #0#3702 ’ , ’ ogbn − p r o t e i n s # node #1#1 ’ , ’7 ’ , ’ ogbn − p r o t e i n s #
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node #0#3702 ’ , ’ ogbn − p r o t e i n s # node #1#89 ’ , ’ ogbn − p r o t e i n s # edge
#7#1 ’ , ’<3> ’ , ’<2> ’ , ’<1> ’ , ’ 6 ’ , ’ ogbn − p r o t e i n s # node #0#3702 ’ ,
’ ogbn − p r o t e i n s # node #1#955 ’ , ’ ogbn − p r o t e i n s # edge #7#1 ’ , ’<2> ’ ,
’<7> ’ , ’<0> ’ , ’ 9 ’ , ’ ogbn − p r o t e i n s # node #0#3702 ’ , ’ ogbn − p r o t e i n s
# node #1#7055 ’ , ’ ogbn − p r o t e i n s # edge #4#1 ’ , ’<1> ’ , ’<6> ’ , ’<5> ’ ,
’10 ’ , ’ ogbn − p r o t e i n s # node #0#3702 ’ , ’ ogbn − p r o t e i n s # node
#1#10010 ’ , ’ ogbn − p r o t e i n s # edge #4#1 ’ , ’<1> ’ , ’<6> ’ , ’<9> ’ , ’ 4 ’ ,

’5 ’ , ’ ogbn − p r o t e i n s # edge #4#1 ’ , ’<2> ’ , ’<0> ’ , ’<7> ’ , ’ 3 ’ ]

The original edge attributes are 8-dimensional vector of 3 decimal numbers from 0.001 to 1. We
split them into single digits and represent them with the combination of the digits tokens as in App.
D.

To reduce the number of tokens in the resultant sequences further, we multiply the number with 1000
and then minus it by 1. So we do not need to encode ‘.’ any more. At the same time, we treat the
value 0.001 (0 after the above transformation) as the default value and do not encode it with tokens.

F.2 MODEL, PRE-TRAINING AND FINE-TUNING

In the pre-training, we use the mini-batch of 2048 sequences of 256 tokens. The total update-step is
9.76× 104. In the fine-tuning, we use the mini-batch of 128 sequences of maximal 256 tokens.

The pre-training loss versus the number of tokens for various model sizes is shown in Fig. 6. In
general, larger model results in lower training loss, and better results in down-stream fine-tuning
tasks as in Tab. 12.

The loss of mini/small/medium models are almost saturated after training with 25.6 B tokens. In
contrast, base/large models can be further pre-trained as the loss keeps decreasing.

Fig. 8 shows that pre-training can improve the results significantly.
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Figure 6: Pre-training loss versus tokens of ogbn-proteins dataset for models mini/small/medi-
um/base/large as in Tab. 10. They are all trained on 51.2 B tokens with a batch size of 0.52M (i.e.,
2048 × 256) tokens. The first 25.6 B tokens are trained with the maximal learning rate 3 × 10−4,
and the second 25.6 B tokens are trained with the maxial learning rate 1 × 10−4. The learning rate
scheduler is linear decay with 1000 warm-up steps.
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trained during fine-tuning.
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Figure 8: The ablation study of pre-training for ogbn-proteins of GraphGPT-mini. Evaluation metric
ROC-AUC on the valid/test data versus the number of samples fine-tuned. ‘w’ and ‘w/o’ indicate
whether pre-training is employed or not. ‘w’ means the model is pre-trained with 51.2 B tokens first,
and then fine-tuned with the link prediction task. ‘w/o’ indicates that the model is trained with the
supervised link prediction task directly with random parameters initialization. We use GraphGPT-
mini to save time and computing resources.
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Table 12: Node-level binary classification task results of ogbn-proteins dataset. The batch-size is
128, and the learning rate is 3× 10−5.

Models ROC-AUC (%) ParamsTest Valid

GraphGPT-mini (w/o pre-training) 57.52±0.36 61.19±0.08 10.76M
GraphGPT-mini 75.61±1.37 80.47±0.94 10.76M
GraphGPT-small 80.10±0.35 83.36±0.40 29.90M
GraphGPT-medium 82.71±0.52 86.18±0.28 46.68M
GraphGPT-base 83.37±0.15 87.68±0.25 132.94M
GraphGPT-large 84.80±0.18 89.35±0.24 428.94M

F.3 NODE IDENTITY ENCODING

The comparison between models trained with and without node identity encoding is shown in Fig.
9. The node identity encoding improves results.
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Figure 9: The ablation study of node identity encoding for ogbn-proteins of GraphGPT-mini. Eval-
uation metric ROC-AUC on the valid/test data versus the number of samples fine-tuned. ‘w’ and
‘w/o’ indicate whether the node is encoded with two tokens uniquely or not. Both ‘w’ and ‘w/o’
are pre-trained with 25.6 B tokens first, and then fine-tuned with the link prediction task. After fine-
tuning with about 0.2 to 0.4 M samples, the results become stable for the model with node identity
encoding.

G DISCUSSION ON LIMITATIONS

We discuss some limitations of GraphGPT for a comprehensive understanding the novel model.

Transferability. Due to the lack of shared semantics among different graph datasets, GraphGPT has
to be pre-trained on target dataset itself and then fine-tuned. This may restrict its applicability in
various graph tasks. However, there are two exceptions.

a). Structure-understanding GraphGPT. Graph structures are shared across all the graph datasets, for
example, node degrees, motifs, edge directions and etc. We can pre-train a structure-understanding
GraphGPT using structure information only, i.e., removing all the semantics (node/edge attributes)
in the graphs. This GraphGPT would be able to do any graph structure understanding related tasks,
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if trained with enough data and large model size. Besides, it could be further pre-trained later on
specific datasets with semantics information.

b). Domain specific GraphGPT. For example, molecular datasets share the same semantics informa-
tion, i.e., nodes (atoms) and edges (bonds). We can collect all available molecular datasets and pre-
train a molecule-understanding GraphGPT. It can then be fine-tuned on various molecule datasets,
and would have a wide application in drug and material research.

Dataset size. When the graph datasets for pre-train and fine-tune are small or medium, GraphGPT
might not perform well, for example, ogbn-proteins and ogbg-molpcba datasets. It could be over-
come by collecting more data of the same semantics for pre-training/fine-tuning. In addition, utiliz-
ing the above mentioned ‘structure-understanding GraphGPT’ and further pre-training on the dataset
with semantics could also be helpful.

Compute budget. The pre-training on one big graph (ogbn-proteins and ogbl-ppa) and many small
graphs (PCQM4M-v2) with large model sizes (50M+ parameters) are very computationally expen-
sive.

For example, pre-training a GraphGPT-base (100M+) for PCQM4M-v2 with 25.6B tokens will take
about 240 V100 GPU hours (4 V100 trained with 60 hours). Fine-tuning cost about 20 V100-hours
per epoch.

For small/medium dataset, the trade-off between compute budget and performance implies that
GraphGPT might not be the first choice.

However, to pursue superior performance given large amount of data, large scale GraphGPT is a very
competitive candidate. Meanwhile, int8/int4-quantization techniques has been developed to allow
much faster inference, even training (Dettmers et al., 2022; Frantar et al., 2022). Parallel training
frameworks like DeepSpeed and Megatron enable fast mixed-precision and bf-16 precision training
utilizing thousands of GPUs (Rasley et al., 2020; Shoeybi et al., 2019). Transformer-specific opti-
mization techniques like FlashAttention-2 allows us to speed-up the training of transformer models
(Dao, 2023). Last but not least, the development of GPU and tensor accelerator chips is very fast.
As they are becoming much faster and cheaper, compute burden will not be a big problem.

Context window. The context window of the transformer affects the computational complexity very
much. This limits the efficiency of training large (sub)graphs. Besides relying on the development
of efficient training of transformers (Dao, 2023), finding short sequence representation of graphs,
and exploring better ways to extract sequences from big graphs are interesting to study further.

These limitations are also opportunities that worth further explorations.
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