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ABSTRACT

Transformers serve as the foundational architecture for many successful large-
scale models, demonstrating the ability to overfit the training data while maintain-
ing strong generalization on unseen data, a phenomenon known as benign overfit-
ting. However, existing research has not sufficiently explored generalization and
training dynamics of transformers under benign overfitting. This paper addresses
this gap by analyzing a two-layer transformer’s training dynamics, convergence,
and generalization under labeled noise. Specifically, we present generalization
error bounds for benign and harmful overfitting under varying signal-to-noise ra-
tios (SNR), where the training dynamics are categorized into three distinct stages,
each with its corresponding error bounds. Additionally, we conduct extensive ex-
periments to identify key factors in transformers that influence test losses. Our
experimental results align closely with the theoretical predictions, validating our
findings.

1 INTRODUCTION

In recent years, benign overfitting has reshaped our understanding of overparameterization in deep
neural networks. Traditional viewpoints hold that models with more parameters than training sam-
ples tend to overfit, resulting in poor generalization performance on new data. However, modern
deep neural networks challenge this viewpoint by demonstrating remarkable generalization capabil-
ities. Despite having sufficient parameters to perfectly fit training data, they still maintain low test
loss Zhang et al. (2017); Neyshabur et al. (2018). This phenomenon, known as benign overfitting,
has attracted significant attention across both statistical and machine learning communities Belkin
et al. (2018; 2019; 2020); Neyshabur et al. (2018); Hastie et al. (2022).

Researchers have investigated benign overfitting from conventional perspective, while these works
are related to linear models Chatterjee & Long (2022); Zou et al. (2021), kernel methods or ran-
dom feature models Montanari & Zhong (2022); Adlam & Pennington (2020); Zhu Li (2021). Re-
searchers have expanded these theoretical analyses to study benign overfitting in neural networks
Adlam & Pennington (2020); Zhu Li (2021). They are still limited to the neural tagent kernel regime
(NTK) Jacot et al. (2018) because the neural network learning problem is equivalent to kernel re-
gression. Several works further study benign overfitting and generalization in transformers. These
analyses typically focus on simplified settings, such as linear transformers Frei & Vardi (2024).
Yet, due to the self-attention mechanism and softmax activation function, the transformer exhibits
nonlinear learning in the real world, rendering the above simplifying assumption unreasonable.

Recent theoretical works have studied the benign overfitting and generalization of transformers
with nonlinear self-attention Jiang et al. (2024); Magen et al. (2024), and some even have extended
to context learning tasks Li et al. (2024b). Our analysis of benign overfitting and generalization in
transformers is compared to existing research, as summarized in Table 1. However, several studies
Frei & Vardi (2024); Li et al. (2024a) only considered generalization in a single type of overfitting
(either benign or harmful). Others Jiang et al. (2024); Li et al. (2024a) analyzed the generalization
of transformers under the assumption of clean data labels, which is unreasonable in real world.
Therefore, an important open question remains:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Benign overfitting (b) Harmful overfitting

Figure 1: Test losses of benign overfitting and harmful overfitting under label noise (parameterized
by α).

How do transformers generalize under labeled noise while considering both benign overfitting and
harmful overfitting?

Our work aims to settle down the above question through feature learning framework by analyzing
a two-layer transformer’s training dynamics, convergence, and generalization under labeled noise.
Specifically, we consider two tokens including signal and noise, and a two-layer nonlinear trans-
former with softmax activation function. We explore the training dynamics of transformers in both
benign overfitting and harmful overfitting, and provide corresponding error bounds. The theoreti-
cal bounds illutrate three distinct stages for benign overfitting and harmful overfitting, respectively.
We then conduct extensive experiments to validate our theoretical finding. As shown in Figure 1,
the test losses for benign overfitting and harmful overfitting divide into three distinct stages and the
empirical loss is upper bounded by the theoretical bound (in Figure 2).

Theoretical Works Nonlinear Labeled
Noise

Benign
Overfitting

Harmful
Overfitting

Stage-wise
Error Bounds

Li et al. (2024a) ✓ × × ✓ ×
Sakamoto & Sato (2024) ✓ ✓ ✓ ✓ ×
Jiang et al. (2024) ✓ × ✓ ✓ ×
Frei & Vardi (2024) × ✓ ✓ × ×
Magen et al. (2024) ✓ ✓ ✓ ✓ ×
This work ✓ ✓ ✓ ✓ ✓

Table 1: Theoretical Comparison with existing works on benign overfitting and generalization.

Our contributions are summarized as follows:

• Theoretical Contribution I : We consider a nonlinear transformer with softmax activation
function. Additionally, we relax the assumption of clean data labels and incorporate labeled
noise to more accurately reflect real-world conditions.

• Theoretical Contribution II : We examine the training dynamics of transformers under
labeled noise in both benign overfitting and harmful overfitting. The training dynamics
associated with benign overfitting can be characterized by three distinct phases: initializa-
tion, signal learning, and convergence. In contrast, harmful overfitting is characterized by
initialization, noise learning, and divergence. In Theorem 1 and Theorem 2, we provide
specific stage-wise error bounds for each phase.

• Experimental Contribution : We investigate the transition between benign overfitting
and harmful overfitting. Additionally, to further enhance the model’s generalization perfor-
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(a)

Figure 2: Numerical comparison between the theoretical upper bound and the experimental loss for
benign overfitting.

mance, we analyze several key factors relevant to generalization during benign overfitting.
These experimental results validate our theoretical analysis.

2 RELATED WORK

2.1 BENIGN OVERFITTING IN TRADITIONAL MODELS.

Several works explored benign overfitting in traditional models, including linear models Bartlett
et al. (2020); Zou et al. (2021); Cao et al. (2021); Mo Zhou (2023), kernel methods, and random
feature architectures. Zou et al. (2021) derived excess risk bounds for stochastic gradient descent
with constant step sizes. Liao et al. (2021) expanded the analysis to random Fourier feature regres-
sion, focusing on fixed asymptotic ratios of sample size, data dimensionality, and feature count. As
shown in Liang & Rakhlin (2020); Adlam & Pennington (2020); Zhu Li (2021); Montanari & Zhong
(2022); Chatterjee & Long (2022); Spencer Frei (2022), several studies have broadened conventional
perspectives to investigate benign overfitting in neural networks based on traditional models. The
authors in Adlam et al. (2021) explored a precise analysis of generalization under nuclear regression,
while Tsigler & Bartlett (2022) demonstrated that overparameterized ridge regression models can
achieve benign overfitting even when fitting noisy data, and extended this to ridge regression con-
ditions. Mallinar et al. (2024) discovered that interrupting training prematurely in neural networks
leads to benign overfitting, while deep neural networks trained to full interpolation do not exhibit
this phenomenon. Unlike these research, our work focuses on benign overfitting in transformers,
which is more challenging than neural networks.

2.2 BENIGN OVERFITTING IN TRANSFORMER.

Towards understanding the benign overfitting and generalization in transformers, Frei & Vardi
(2024) investigated the behavior of linear transformers trained on random linear classification tasks
and quantifies how many examples transformers need in context learning to generalize well. Build-
ing on this, Magen et al. (2024) investigated benign overfitting in single-head attention models,
revealing that this phenomenon only occurs when the signal-to-noise ratio reaches a sufficiently
high level, and Sakamoto & Sato (2024) further explored benign overfitting in the token selection
mechanism of the attention. The work in Li et al. (2024a) investigated the training dynamics of
harmful overfitting when optimizing two-layer transformers using symbolic gradient descent. Most
relevant to our work is Jiang et al. (2024), as they also study the benign overfitting and generaliza-
tion of transformer with a similar data model. However, they do not take into account the effect of
labeled noise, which is more common and realistic in real-world. In this paper, we bridge this gap
by analyzing the generalization of transformers in benign overfitting and harmful overfitting under
labeled noise condition.
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3 PROBLEM SETUP

In this section, we denote the data generation model, two-layer transformer model, and the gradient
descent training algorithm.

Notions. We define two sequences {an} and {bn}, which have the following relationship. We define
an = O(bn) and bn = Ω(an) if there exist |an| ≤ c1|bn| for some positive constant c1. At the same
time, we define an = Θ(bn) if an = O(bn) and an = Ω(bn) hold.
Definition 1. Let µ+,µ− ∈ Rd be fixed vectors which represent the signals contained in each data
point (X, y), where ∥µ+∥2 = ∥µ−∥2 = ∥µ∥2 and ⟨µ+,µ−⟩ = 0. Then we define each data point
(X, y) with the input features X = (x1,x2) ∈ Rd×2, and y ∈ {±1} is generated from the model:

• True labels ŷ ∈ {±1} are Rademacher random variables with P[ŷ = 1] = P[ŷ = −1] =
1/2. Observed labels y are generated by flipping ŷ with probability α, i.e., P[y = ŷ] = 1−α
and P[y = −ŷ] = α.

• The signal vector x1 is denoted µ+ if ŷ = 1, and µ− if ŷ = −1.

• The noise vector x2 = ξ is sampled from ξ ∼ N (0, σ2
pId).

We consider each data point as a vector of two tokens, X = (x1,x2)
T ∈ R2×d. The token x1,

represents the signal that is inherently linked to the data’s true class label, such as µ+ and µ−,
while x2, serves as noise and is irrelevant to the label. Building on Definition 3.1 from Jiang et al.
(2024), we further refine the data distribution to enhance its practical applicability. Specifically, we
introduce label-flipping noise to the true label ŷ.

Signal-to-Noise Ratio (SNR). From Cao et al. (2022), when the dimension d is large, the norm of
the noise vector satisfies ∥ξ∥2 ≈ σp

√
d based on standard concentration bounds. Therefore, the

signal-to-noise ratio (SNR) can be expressed as SNR ≈ ∥µ∥2/σp

√
d, which is approximately equal

to ∥µ∥2/∥ξ∥2. Hence, we use the expression SNR ≈ ∥µ∥2/σp

√
d to represent the signal-to-noise

ratio.

Two-layer Transformer. We define the model as a two-layer transformer, consisting of an attention
layer with softmax activation function and a fixed linear layer. Let S represent the softmax function.
we categorize the output of the softmax function into four types of vectors, corresponding to the
softmax outputs of the pairwise inner products involving the query signal, query noise, key signal,
and key noise.

Specifically, the signal-to-signal output S11, signal-to-noise output S12, noise-to-signal output S21,
and noise-to-noise output S22 have been defined in the supplementary material. For example, the
signal-to-signal output S11 can be written as:

S11 = Softmax(⟨q(t)± , k
(t)
± ⟩) =

{
exp(⟨q+,k+⟩)

exp(⟨q+,k+⟩)+exp(⟨q+,kξ,i⟩) for i ∈ [S+],
exp(⟨q−,k−⟩)

exp(⟨q−,k−⟩)+exp(⟨q−,kξ,i⟩) for i ∈ [S−].

Let S+ be the set of indices i in [N ] where yi = 1, and let S− be the set of indices i in [N ] where
yi = −1. Note that q+, k+, q−, k−, and kξ,i are related to the query with +1 label, the key with
+1 label, the query with −1 label, the key with −1 label, and the key with noise, respectively. The
output result can be given as: f(X, υ) = f+1(X, υ) − f−1(X, υ), where fj(X, υ)for j ∈ {±1} is
defined as:

fj(X, υ) =

2∑
l=1

υ⊤W⊤
V,jXS

(
X⊤WQW

⊤
Kxl

)
=

2∑
l=1

υ⊤

(
dV∑
r=1

W⊤
V j,rX

)
S
(
X⊤WQW

⊤
Kxl

)
.

The parameter of the linear layer is denoted as υ ∈ RdV . The parameters of the attention layer
are defined as WQ,WK ,WV,j , where WQ,WK ∈ Rd×dK and WV,j ∈ Rd×dV , representing
the query matrix, the key matrix, and the value matrix respectively. We use θ to represent all the
parameters of the attention model, which is defined as θ = (WQ,WK ,WV,j). We rewrite the
model in a specific form for j ∈ {±1}:

fj(θ,X, υ) =
∑

r∈[dV ]

(
υ⊤⟨WV j,r,x1⟩(S11 + S21) + υ⊤⟨WV j,r,x2⟩(S12 + S22)

)
.
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Training Algorithm. We use a training dataset S = {(Xi, yi)}Ni=1 generated from the distribution
D defined in Definition 1. Our transformer model is trained by minimizing the logistic loss function:
LS(θ) =

1
N

∑N
i=1 ℓ(yif(θ,X, υ)), where ℓ(z) = log(1 + exp(−z)). We employ gradient descent

to minimize the training loss LS(θ), and focus on characterizing the test error(i.e., true error), de-
fined by: L0−1

D (θ) = P(x,y)∼D [y ̸= sign (f(θ,X, υ))] . For the sake of simplification, we consider
gradient descent optimization, and we have W

(t+1)
V = W

(t)
V − η

(
∇WV

LS(W
(t))
)
, W

(t+1)
Q =

W
(t)
Q − η

(
∇WQ

LS(W
(t))
)
, and W

(t+1)
K = W

(t)
K − η

(
∇WK

LS(W
(t))
)
.

4 MAIN RESULTS

In this section, we present our main theoretical findings. These findings are based on several key
conditions as follows:

Assumptions . Given a sufficiently small failure probability δ > 0, a large constant c1, and a target
training loss ϵ > 0, suppose the following conditions hold:

(1) The dimension dK satisfies: dK ≥
{

SNR4N4ϵ−4, if ∥µ∥ ≥ σp

√
d,

SNR−4N4ϵ−4, if ∥µ∥ < σp

√
d.

(2) The dimension d satisfies: d ≥ poly(dK).

(3) The training sample size N satisfies: N ≥ c1 · polylog(d).

(4) The label-flipping probability α satisfies: α ∈ [0, 1/2).

(5) The linear layer weight satisfies: ∥υ∥2 = Θ(1).

(6) The learning rate η satisfies: η ≤ O
(
min

{
σ2
pd, ∥µ∥22

}
N2ϵ−2

)
.

(7) The parameters WQ and WK are initialized from a Gaussian distributions N (0, σ2
K) and

the variance satisfies: σ2
K ≤ O

(
max

{
(σ2

pd)
−1, ∥µ∥−2

2

}
N−1ϵ log 24N2

δ

)−3/2

, while

WV is initialized from N (0, σ2
V ) where

σV ≤

O
( √

ϵ√
dN∥υ∥σp

)
, if ∥µ∥ ≥ σp

√
d,

O
( √

ϵ√
N∥υ∥∥µ∥

)
, if ∥µ∥ < σp

√
d.

Assumptions (1)–(3) ensure that the transformer operates in an over-parameterized setting. Similar
assumptions have been made in neural networks Cao et al. (2022); Kou et al. (2023). Noise in
training data is common in real-world environments. To address this gap, we relax the assumption of
clean data labels and incorporate labeled noise α to more accurately reflect real-world conditions. As
a result, the generalization error bound derived under this assumption is more meaningful in practice.
Assumption (4) ensures that we do not incorporate excessive noise, which could significantly impair
the transformer’s generalization. This assumption is frequently used in theoretical analyses Kou
et al. (2023); Frei & Vardi (2024); Sakamoto & Sato (2024). Assumption (5) is realistic in practice,
as it controls the range of weights through appropriate training strategies. Assumptions (6)–(7)
ensure that gradient descent can effectively minimize the training loss. Similar assumptions have
been widely used in feature learning theories Cao et al. (2022); Jiang et al. (2024).

Theorem 1 (Benign overfitting in transformers). When N · SNR2 + h(α) = Ω(1), where h(α) is
a function related to α, for any ϵ > 0, under the assumptions above, with probability at least 1− δ:

• (Phase 1: Initialization) There exists T1 = O

(
1

ηd
1
4
K∥µ∥2

2∥υ∥2
2

)
, and for t ∈ (0, T1], the test

loss is upper bounded by:

L0−1
D (θ(t)) ≤ 1

2
+ α+O(1).

5
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• (Phase 2: Signal learning) There exists T2 = Θ
(

1
η∥µ∥2

2∥υ∥2
2

)
, for t ∈ (T1, T2], the test

loss is upper bounded by:

L0−1
D (θ(t)) ≲ α+ exp

(
−η4∥µ∥82(t− T1)

4SNR2
)
.

• (Phase 3: Convergence) There exists t > T2 such that:

– The training loss converges to ϵ: LS(θ(t)) ≤ ϵ.
– The test loss is upper bounded by:

L0−1
D (θ(t)) ≲ α+ exp

(
−η4(t− T2)

4∥µ∥62 · SNR2

σ2
V

)
.

Theorem 1 illustrates the generalization behavior of transformers under benign overfitting when
N · SNR2 + h(α) = Ω(1). Under this condition, the error bounds of transformers can be divided
into three distinct phases:

• Initialization phase: Initially, the transformer parameters have not been adequately
trained, leading to a test loss that remains at a significant constant level of Ω(1). This
phase is primarily influenced by α and the random initialization parameters (σV and σ2

K).
• Signal learning phase: During this phase, the model focuses more on learning the signals

rather than the noises, which results in an increase in test loss. The test loss is governed by
an upper bound that is directly proportional to time t, the labeled noise α, the learning rate
η, the signal strength ∥µ∥, and the square of the signal-to-noise ratio SNR2.

• Convergence phase: When t > T2, the training loss converges to a low level ϵ. In this
phase, the upper bound of the test loss is influenced by several key factors, including time
t, the labeled noise α, the learning rate η, the signal strength ∥µ∥, and SNR2. Notably, it
is inversely proportional to the initialization variance σ2

V . By carefully tuning these factors
under benign overfitting condition, we can achieve a lower test loss, which is the primary
objective of our work in this paper.

Theorem 2 (Harmful overfitting in transformers). When N−1 · SNR−2 + h(α) = Ω(1), where
h(α) is a function related to α, for any ϵ > 0, under the assumptions, with probability at least 1−δ:

• (Phase 1: Initialization) There exists T1 = O

(
N

ηd
1
4
K∥µ∥2

2∥υ∥2
2

)
, for t ∈ (0, T1], such that

the test loss is upper bounded by: L0−1
D ((θ(t)) ≤ 1

2 + α+O(1).

• (Phase 2: Noise learning) There exists T2 = Θ
(

N
ησ2

pd∥υ∥2
2 log(24N2/δ)

)
. For t ∈ (T1, T2],

the test loss is bounded by:

L0−1
D (θ(t)) ≤ 1

2
+ α+O

(
1

∥µ∥22∥v∥22
+

1

∥µ∥42∥v∥42

)
L0−1
D (θ(t)) ≥ 1

2
−O

(
1

∥µ∥22∥v∥42

)
.

• (Phase 3: Divergence) There exists t > T2 such that:

– The training loss is higher than ϵ: LS((θ(t)) ≥ ϵ.
– The test loss is high: L0−1

D ((θ(t)) ≥ 1
2 .

Theorem 2 characterizes the generalization behavior of the transformer in harmful overfitting when
N−1 · SNR−2 + h(α) = Ω(1). The error bounds can be divided into three distinct phases:

• Initialization phase:Initially, the transformer parameters have not been sufficiently trained,
resulting in the test loss remaining at a large constant value Ω(1). This is primarily influ-
enced by α and random initialization (σV and σ2

K). This indicates that the model has not
yet effectively learned the signals or the noises.
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(a) Benign Overfitting (b) Harmful Overfitting

Figure 3: Attention score analysis of benign overfitting and harmful overfitting under various labeled
noise α ∈ {0.2, 0.1, 0.01, 0.001}. We denote atten signals as the strength of the signals learned by
attention, while atten noises represents the strength of the noise learned by attention.

• Noise learning phase: During this phase, the model increasingly focuses on the noises
rather than the signals, leading to an increase in test loss. The test loss is upper bounded by
a function directly related to the label-flipping noise α, the signal strength |µ|, and the norm
of the linear layer weight ∥υ∥2. In contrast, the lower bound of the test loss is influenced
solely by the signal strength |µ| and the norm of the linear layer weight ∥υ∥2.

• Divergence phase: When t > T2, the model fully learns the noises. The test loss increases
significantly and begins to diverge, ultimately exceeding 1/2. This is higher than what
would be expected from a random guess.

Remark 1. In summary, the model mainly learns the signals when benign overfitting occurs, result-
ing in lower loss values and better generalization. In contrast, when harmful overfitting occurs, the
model mainly focuses on the noises, leading to poor generalization.

5 EXPERIMENTS

We present simulations using synthetic data to support our theoretical analysis. In this section, we
demonstrate that the training dynamics can be clearly divided into three distinct phases based on
varying α values across both overfitting scenarios. Furthermore, we confirm the existence of benign
overfitting and investigate the conditions under which it occurs. Finally, we investigated methods to
further enhance the model’s generalization performance when benign overfitting occurs.

Synthetic data setting: We generate the training and test datasets according to Definition 1. Each
data point consists of two components: signal and noise. The signal is composed of two orthogonal
vectors, ∥µ∥2 · e1 and ∥µ∥2 · e2, which are generated with equal probability. e1 and e2 are defined
as [1, 0, . . . , 0]⊤ and [0, 1, . . . , 0]⊤ respectively. The noise is sampled from a Gaussian distribution
N (0, σ2

pI). In our experiments, the sample size N is variable. Specifically, in the training dynamics
and learning rate η experiments, we vary N from 2 to 20. In other experiments, we set N to 100 to
ensure the model learns the data sufficiently. Furthermore, to investigate the effect of signal-to-noise
ratio (SNR) on benign overfitting, we adjust the signal strength µ from 1 to 100, while keeping the
noise standard deviation σp constant at 4. This allows us to explore how varying SNR impacts the
test loss.

5.1 TRAINING DYNAMICS OF BENIGN OVERFITTING AND HARMFUL OVERFITTING

We primarily illustrate the training dynamics by examining the attention scores and the values of the
WV matrix under various label-flipping noise conditions, encompassing both benign and harmful
overfitting. Figure 3 (a) and (b) demonstrate that the training dynamics of attention can be charac-
terized by three distinct phases. During the initialization phase, attention treats signals and noises
equally, as it cannot distinguish between them. In the signal learning phase, attention increasingly
focuses on the signals rather than the noises, and in the convergence phase, attention is entirely

7
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(a) Benign Overfitting (b) Harmful Overfitting

Figure 4: Analysis of the WV matrix of benign overfitting and harmful overfitting under various
labeled noise α ∈ {0.2, 0.1, 0.01, 0.001}. We denote V signals as the strength of the signals learned
by the WV matrix, while V noises represents the strength of the noises learned by WV .

(a) α = 0.001 (b) α = 0.01 (c) α = 0.1 (d) α = 0.2

Figure 5: The heatmap of test loss on synthetic data across various SNR, N and label-flipping prob-
ability α.

directed towards the signals. In contrast, during the noise learning phase in harmful overfitting,
attention increasingly concentrates on the noises rather than the signals. Eventually, attention pri-
marily focuses on the noises, causing the model to learn irrelevant information. We also observe
that as the label-flipping noise α increases, a larger portion of the attention mechanism is directed
towards the noises, leading the model to memorize more irrelevant information.

Figure 4 (a) and (b) demonstrate that the update of WV matrix can be characterized by three distinct
phases. According to Assumption (7), the WV matrix starts with relatively small values due to
random initialization. As training progresses, the model prefers to learn the signals rather than
memorize the noises in benign overfitting, which is referred to as the signal learning phase. After a
certain period, WV stops learning noises and V noises converges to a constant, while WV continues
to learn signals. In contrast, as training progresses, WV prefers to learn noises in harmful overfitting
and WV completely memorizes noises ultimately. Furthermore, we observe that the WV matrix
memorize more noises as the labeled noise α increases when benign overfitting occurs.

We further conduct experiments on two types of overfitting test errors as shown in Figure 1, pro-
viding empirical verification for our theoretical results in Theorem 1 and Theorem 2. When benign
overfitting occurs, the initialization stage is brief, and the test loss remains at a significantly high
value. The model gradually learns the signals, with the test loss decreasing rapidly until it reaches
the ϵ level. During the convergence phase, the test loss stabilizes at the ϵ level. In contrast, when
harmful overfitting occurs, the model prefers to learn noises, with the test loss increasing rapidly
and eventually diverging.

5.2 TRANSITION BETWEEN BENIGN OVERFITTING AND HARMFUL OVERFITTING

As illustrated in Figure 5, there is a clear distinction between benign overfitting and harmful over-
fitting under varying labeled noise α and SNR. The test loss shows a decreasing trend as both N
and SNR increase. To further explore this transition, we apply additional processing based on Fig-
ure 5. Figure 6 shows that the boundary does not undergo any significant spatial deformation as α
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(a) α = 0.001 (b) α = 0.01 (c) α = 0.1 (d) α = 0.2

Figure 6: Under varying labeled noise α, benign overfitting is depicted in yellow, while harmful
overfitting is shown in purple. The transition between two types of overfitting is illustrated by a red
curve.

(a) The test loss w.r.t. the critical line N ·
SNR2 + h(α) = Ω(1).

(b) Similarity analysis of α = 0.1
and α = 0.001.

Figure 7: (a) shows the variation of Ω(1)− h(α) with α, while (b) shows the similarity between the
two conditions α = 0.1 and α = 0.001, with higher scores indicating higher similarity.

increases. Instead, it simply shifts spatially. This observation aligns with our theory, which indi-
cates that the transition between benign and harmful overfitting is primarily governed by SNR and
N , while α only influences the translation h(α).

5.2.1 THE IMPACT OF CRITICAL LINE

The boundary N · SNR2 + h(α) = Ω(1) represents the minimum condition under which benign
overfitting occurs. As illustrated in Figure 7 (a), we show how N · SNR2 varies with changes in α.
The figure clearly demonstrates that the likelihood of convergence toward Ω(1) shifts with changes
in α. Specifically, as α increases, the term Ω(1) − h(α) rises, indicating a corresponding decrease
in h(α). Furthermore, Figure 7 (b) reveals that the shape of the curve remains consistent, suggesting
that α affects only the spatial displacement h(α) of the curve, without altering its overall form. The
curves for α = 0.1 and α = 0.001 demonstrate a striking similarity, which verifies our theory:
varying α does not impact the distribution of the data; instead, it only influences the spatial offset
h(α) of the boundary line.

6 CONCLUSION AND FUTURE WORK

This paper studies the training dynamics, convergence, and generalization of a two-layer transformer
with labeled noise. Firstly, we present generalization error bounds for both benign and harmful over-
fitting under varying signal-to-noise ratios (SNR). Secondly, we categorize the training dynamics
into three stages and provide corresponding stage-wise error bounds. One limitation of our study
is that the transformer model we analyze consists of only two layers. The more complex softmax
and multi-layer attention mechanisms in deeper transformers create significant challenges in sep-
arating signal from noise, complicating the analysis of their training dynamics and generalization.
An important direction for future work is to extend our analysis to deeper architectures.

9
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