

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SMARAN: CLOSING THE GENERALIZATION GAP WITH PERFORMANCE DRIVEN OPTIMIZATION METHOD

Anonymous authors

Paper under double-blind review

ABSTRACT

Optimization methods have evolved significantly by introducing various learning rate scheduling techniques and adaptive learning strategies. Although these methods have achieved faster convergence, they often struggle to generalize well to unseen data compared to traditional approaches such as Stochastic Gradient Descent (SGD) with momentum. Adaptive methods such as Adam store each parameter’s first and second moments of gradients, which can be memory-intensive. To address these challenges, we propose a novel SMARAN optimization method that adjusts the learning rate based on the model’s performance, rather than the curvature of the objective function. This approach is particularly effective for minimizing stochastic loss functions, standard in deep learning models. Traditional gradient-based methods may get stuck in regions where the gradient vanishes, such as plateaus or local minima. Therefore, instead of only depending on the gradient, we use the model’s performance to estimate the appropriate step size. We performed extensive experiments on standard vision benchmarks, and the generalization trends observed with SMARAN demonstrate compelling distinctions relative to adaptive and non-adaptive optimizers.

1 INTRODUCTION

A stochastic optimization problem is defined as

$$\min_{\mathbf{x} \in X} \mathbb{E}_{\xi} [f(\mathbf{x}, \xi)] \quad (1)$$

where ξ is a random variable that introduces uncertainty in the objective function $f(\mathbf{x}, \xi)$ and \mathbf{x} is the decision variable belonging to the feasible domain X . Standard solution methods for this form of optimization problems include gradient-based approaches such as SGD and its variants Lecun et al. (1998); Graves et al. (2013); Krizhevsky et al. (2012). However, gradient-based methods rely on the gradient direction for updating the parameters, but the gradient itself is affected by the stochastic nature of the function; hence, a negative gradient direction may not always be the best search direction. In nonconvex settings, relying solely on the gradient magnitude to identify the optimal point can be misleading. Flat regions, saddle points, and inflection points exhibit the property of zero gradient. Finally, gradients provide local neighborhood information; hence, one may become stuck at a local optimum instead of searching for a global solution. We then encounter the issue of gradient explosion in steep regions. Additionally, gradient-based optimizers lack adaptability in step size based on landscape curvature, resulting in uniform step size scaling. In the literature, several variants have been proposed to address these drawbacks. SGD with momentum Polyak (1964) and Nesterov Nesterov (1983) overcome the first problem by aggregating past gradients to determine the current update direction. Aggregation reduces the effect of the stochasticity in the gradient. Adaptive methods overcome the uniform scaling of the gradient along all coordinate directions. AdaGrad Duchi et al. (2011) was the first algorithm in this line of research. AdaGrad used the historical sum of squared gradients to adjust the learning rate of individual parameters, resulting in faster learning. However, the accumulated squared gradients grow monotonically, causing the learning rate to shrink and leading to premature convergence. Later methods, such as RMSProp Tieleman (2012) and Adam Kingma & Ba (2015), overcome this difficulty using an exponential moving average (EMA) of gradients. Adam is the most prominent optimizer used among the adaptive optimizers. It uses

054 the EMA of the gradient (the first-moment estimate) for the update direction. It normalizes the
 055 learning rate with the EMA of the gradient square, the second-moment estimate. Although Adam-
 056 based methods have the advantage of faster convergence, storing first and second-moment estimates
 057 for each parameter becomes memory-intensive. Additionally, there is no clear evidence that Adam-
 058 based methods generally outperform SGD with momentum in terms of generalization. To overcome
 059 these drawbacks of previous methods, we introduce a novel optimization approach based on the
 060 objective function value rather than gradient dependence. Main contributions of the paper are:

- 061 • A novel optimizer SMARAN, which is based on the concept of EMA but uses the objective
 062 function value to adjust the learning rate instead of gradients, unlike Adam-based methods,
 063 and also includes adaptive regularization.
- 064 • Theoretical regret analysis of our objective function for both convex and nonconvex set-
 065 tings, and provide bounds on the learning rate.
- 066 • We experimentally compared our algorithm with state-of-the-art methods. Experimental
 067 results demonstrate that SMARAN outperformed other methods in terms of generalization
 068 ability for vision tasks.

070 The key motivation for using objective value instead of gradients is the high sensitivity of gradients
 071 to stochastic noise. Additionally, objective value provides a more global measure of optimization
 072 progress, even in regions where the gradient vanishes or explodes. Normalizing the learning rate
 073 with EMA of squared loss provides a smoother convergence. Also, loss-driven adaptation encour-
 074 ages updates that are guided by overall performance rather than noisy local curvature, thereby im-
 075 proving generalization compared to gradient-based approaches. In stochastic optimization, optimiz-
 076 ers that approach the global minimum without fully converging are often preferred, as this behavior
 077 tends to yield better generalization. SMARAN’s adaptive learning rate is designed to achieve this
 078 effect while simultaneously ensuring faster convergence, as shown in Fig. 1.

079 2 RELATED WORKS

082 Progression from manually scheduled updates to gradient-based adaptivity marks a significant ad-
 083 vancement in optimization methods. Classical methods such as SGD and its momentum-augmented
 084 variants Polyak (1964), including Nesterov Accelerated Gradient (NAG) Nesterov (1983), laid the
 085 foundation for this development. These methods primarily focused on exploiting gradient direction
 086 and aggregating past values to reduce noise from stochastic updates. Nevertheless, they fail to adapt
 087 the learning rate based on the loss landscape, which results in oscillations near the optimal point.

088 Learning rate scheduling schemes were introduced based on training steps to overcome these limi-
 089 tations. While step decay Ge et al. (2019) reduces the learning rate at predefined intervals, cosine
 090 annealing Loshchilov & Hutter (2017) and cyclic schedules Smith (2017) use periodic changes. Al-
 091 though these methods improve convergence, they lack responsiveness towards the loss landscape and
 092 model performance. Their performance is heavily dependent on manual tuning of hyperparameters.

093 Recent works on adaptive learning rates modify the Polyak step size for stochastic nonconvex op-
 094 timization Loizou et al. (2021b). Orvieto et al. (2022) demonstrates a polyak stepsize variant with
 095 decreasing stepsize that gives a convergence rate equivalent to gradient descent with proper initial-
 096 ization.

097 A paradigm shift occurred with the coming of adaptive methods such as AdaGrad Duchi et al.
 098 (2011), RMSProp Tieleman (2012), and Adam Kingma & Ba (2015). They introduced a parameter-
 099 wise adaptation of the learning rate. AdaGrad uses accumulated squared gradients to normalize the
 100 learning rate, penalizing frequently updated directions but often resulting in premature convergence.
 101 RMSProp overcomes this drawback by using the EMA of squared gradients, promoting smoother
 102 adaptation. Adam combines first and second-order moment estimates of gradients for learning rate
 103 adaptation. This results in stable updates with rapid initial convergence. Empirical studies show that
 104 adaptive methods may overfit, resulting in inferior performance to SGD with momentum on specific
 105 benchmarks Chen et al. (2020); Reddi et al. (2018).

106 More recent optimization approaches include AdamW Loshchilov & Hutter (2019), which decou-
 107 ples the weight decay from gradient updates. AMSGrad Reddi et al. (2018) controls the learning
 108 rate to become monotonically decreasing over iterations. Yogi Zaheer et al. (2018) prevents the

second moment estimate of Adam from exploding by sign correction. AdaBound Luo et al. (2019) clips the bounds of the learning rate to avoid the exploding and vanishing problem. PAdam Chen et al. (2020) scales the learning rate by a tunable adaptivity parameter. RAdam Liu et al. (2020) addresses the variance in adaptive learning rates. AdaBelief Zhuang et al. (2020) replaces the un-centred second moment with a centred variance estimate around the gradient. DecGD Shao et al. (2025) decomposes the gradient into a product of the surrogate loss and its gradient, which allows the learning rate adaptation based on the loss vector. **Recent meta optimizers include L4 optimizer Rolinek & Martius (2018), which uses the difference in loss values for learning rate scheduling and can be applied over any optimizer.**

Now that we have traversed the evolution of optimization methods from simple gradient heuristics to momentum-based adaptation, we introduce our novel optimizer, SMARAN, whose mechanism and theoretical insights are discussed in the next section.

3 METHODOLOGY

Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ denote the loss function to minimize and let $\mathbf{x} \in X \subseteq \mathbb{R}^n$ be an n -dimensional vector. We have three hyperparameters: the global learning rate η , the regularization coefficient λ , and the moment discount factor γ . We included the factor ϵ with a value 10^{-8} for the numerical stability of the division operations. The terms \mathbf{m}_t and v_t represent the moments of normalized gradient loss and square loss at iteration t , respectively, with initial values set to zero.

The previous section identifies three key factors that drive the design of optimization algorithms: update direction, update magnitude, and adaptiveness across different landscapes. Following these insights and the gaps in optimizing a stochastic function, we incorporated these aspects into our method, illustrated in Algorithm 1. The algorithm finds the optimal point using gradient information, momentum, a loss-based scaling mechanism for adaptivity, and variable regularization to avoid overfitting. The algorithm blends normalization, regularization, and an adaptive learning rate.

Following the Normalized Gradient Descent Shor (1985), to estimate the update direction, we use the normalized gradient $\hat{\mathbf{g}}_t$ instead of the complete gradient $\nabla f(\mathbf{x}_t)$

$$\hat{\mathbf{g}}_t = \frac{\nabla f(\mathbf{x}_t)}{\|\nabla f(\mathbf{x}_t)\| + \epsilon} \quad (2)$$

Since the loss function is stochastic, we take the exponential average over past gradients for smoothing purposes to reduce the effect of uncertainty. The first moment is

$$\mathbf{m}_t = \gamma \mathbf{m}_{t-1} + \hat{\mathbf{g}}_t. \quad (3)$$

Theorem 1. *Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a differentiable loss function parameterized by \mathbf{x} , then the norm of the exponential average of the normalized gradients over some time step t , given by Eq. (3), is upper bounded as*

$$\|\mathbf{m}_t\| < \frac{1}{1 - \gamma} \quad (4)$$

Proof. Expanding Eq. (3) and using the triangle inequality,

$$\mathbf{m}_t = \sum_{\tau=1}^t \gamma^{t-\tau} \hat{\mathbf{g}}_\tau \implies \|\mathbf{m}_t\| \leq \sum_{\tau=1}^t |\gamma^{t-\tau}| \cdot \|\hat{\mathbf{g}}_\tau\|$$

Since $\|\hat{\mathbf{g}}\| < 1$ due to ϵ factor in Eq. (2)

$$\|\mathbf{m}_t\| < \sum_{\tau=1}^t |\gamma^{t-\tau}| = \frac{1 - \gamma^t}{1 - \gamma} \quad (5)$$

As $t \rightarrow \infty$, sum of geometric progression becomes

$$\frac{1 - \gamma^t}{1 - \gamma} \rightarrow \frac{1}{1 - \gamma} > \|\mathbf{m}_t\|.$$

162 Moreover, the first moment is upper-bounded. Hence, this moment prevents gradient explosion,
 163 provided the multiplicative learning factor is not ∞ . \square
 164

165 This approach is effective for high-dimensional or ill-conditioned landscapes.
 166

167 Adapting the learning rate based on the curvature of the function is achieved using a performance-
 168 based factor, rather than relying on the gradients. Our performance-based factor is
 169

$$\frac{f(\mathbf{x}_t)}{\sqrt{v_t} + \epsilon} \quad (6)$$

171 where
 172

$$v_t = \gamma v_{t-1} + f(\mathbf{x}_t)^2 \quad (7)$$

173 **Theorem 2.** Let $f : \mathbb{R}^n \rightarrow \mathbb{R}_+$ be a continuous loss function parameterized by \mathbf{x} , and $\{\mathbf{x}_t\}$ for
 174 $t = 1, 2, \dots, T$ be a finite parameter sequence generated by gradient descent updates in T iterations,
 175 then for every time step t ,
 176

$$0 < \frac{f(\mathbf{x}_t)}{\sqrt{v_t} + \epsilon} < 1 \quad (8)$$

177 where
 178

$$v_t = \sum_{\tau=1}^t \gamma^{t-\tau} f(\mathbf{x}_\tau)^2 \quad (9)$$

183 *Proof.* From Eq. (7), we have $v_t \geq f(\mathbf{x}_t)^2$ which implies,
 184

$$\sqrt{v_t} \geq f(\mathbf{x}_t) \implies \sqrt{v_t} + \epsilon > f(\mathbf{x}_t) \implies \frac{1}{\sqrt{v_t} + \epsilon} < \frac{1}{f(\mathbf{x}_t)} \implies \frac{f(\mathbf{x}_t)}{\sqrt{v_t} + \epsilon} < 1$$

185 Since $f : \mathbb{R}^n \rightarrow \mathbb{R}_+$, both numerator and denominator are positive,
 186

$$0 \leq \frac{f(\mathbf{x}_t)}{\sqrt{v_t} + \epsilon} < 1 \quad (10)$$

187 This factor is 0 only when $f(\mathbf{x}_t) = 0$. \square
 188

189 Previous methods Tieleman (2012); Kingma & Ba (2015); Reddi et al. (2018); Zhuang et al. (2020)
 190 use the EMA of the gradient square for normalizing the learning rate because gradients give the
 191 curvature of the landscape. However, in a nonconvex setting, the gradient magnitude changes rapidly,
 192 especially near steep curvature, resulting in an aggressive change in the learning rate, which causes
 193 the optimizer to converge slowly. Fig. 1e shows the trajectory for 100 steps of different optimizers
 194 on the Beale function, which is a nonconvex landscape. In our approach, the optimizer adjusts the
 195 learning rate based on its recent losses, resulting in less aggressive changes and, consequently, faster
 196 convergence. Unlike other methods that get stuck at local minima or landscapes where the gradient
 197 vanishes, our optimizer searches for paths to find the global minimum, particularly in regions with
 198 high loss values. For constant loss, like in flat regions, SMARAN’s learning rate approaches $\sqrt{1 - \gamma}$
 199 regardless of the loss magnitude (proof given in Appendix A.2). In an ideal case, as $\mathbf{x} \rightarrow \mathbf{x}^*$ (global
 200 minima), $f(\mathbf{x}) \rightarrow 0$ hence,
 201

$$\lim_{\mathbf{x}_t \rightarrow \mathbf{x}^*} \frac{f(\mathbf{x}_t)}{\sqrt{v_t} + \epsilon} = 0$$

202 To prevent overfitting, we incorporated a weight decay regularization term into the update step.
 203

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \left(\frac{f(\mathbf{x}_t)}{\sqrt{v_t} + \epsilon} \right) (\mathbf{m}_t + \lambda \mathbf{x}_t) \quad (11)$$

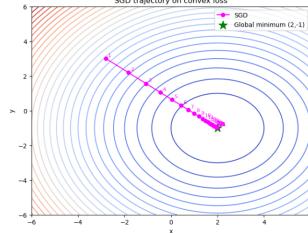
204 AdamW inspires the weight decay, but unlike AdamW, which uses a constant weight decay, ours
 205 is an adaptive weight decay controlled by an adaptive learning rate term. Since the learning rate
 206 scheduler is based on the objective function value over training data, if the optimizer tries to overfit
 207 the training data, the same proportion of regularization prevents the model from overfitting.
 208

209 Finally, SMARAN’s memory requirement is lower than that of the adaptive methods, as the adaptive
 210 learning rate is a scalar quantity.
 211

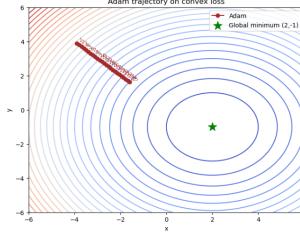
216 **Algorithm 1** SMARAN

217218 **Input:** Initial vector $\mathbf{x}_0 \in X \subseteq \mathbb{R}^n$, loss function $f(\mathbf{x})$ 219 **Parameter:** η, λ, γ 220 **Output:** \mathbf{x}_T 221 **Initialize:** $\mathbf{m}_0 = 0, v_0 = 0$ 222 1: **for** $t = 1$ **to** T **do**223 2: $\hat{\mathbf{g}}_t = \frac{\nabla f(\mathbf{x}_t)}{\|\nabla f(\mathbf{x}_t)\| + \epsilon}$ 224 3: $\mathbf{m}_t = \gamma \mathbf{m}_{t-1} + \hat{\mathbf{g}}_t$ 225 4: $v_t = \gamma v_{t-1} + f(\mathbf{x}_t)^2$ 226 5: $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \left(\frac{f(\mathbf{x}_t)}{\sqrt{v_t} + \epsilon} \right) (\mathbf{m}_t + \lambda \mathbf{x}_t)$ 227 6: **end for**228 7: **return** \mathbf{x}_T

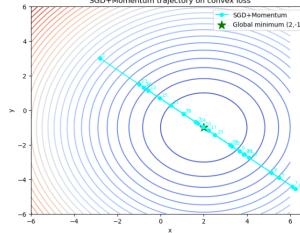
229



230 (a) SGD on convex landscape

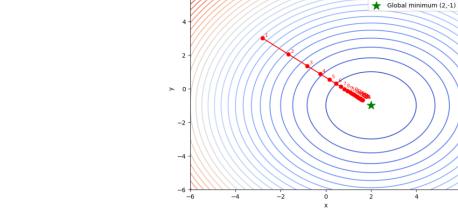


231 (b) Adam on convex landscape

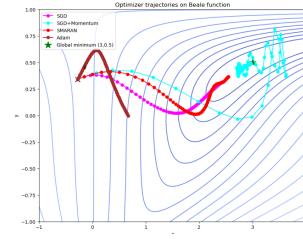


232 (c) SGDM on convex landscape

233



234 (d) SMARAN on convex landscape



235 (e) Optimizers on non-convex landscape

236

237

238 **4 CONVERGENCE ANALYSIS**

239

240 We perform a convergence analysis of the SMARAN algorithm and highlight a risk bound under a
241 convex setting. First introduced in Duchi et al. (2011), convergence analysis in a convex setting was
242 discussed in many of the later works on adaptive methods, including Adam Kingma & Ba (2015),
243 AMSGrad Reddi et al. (2018), Adabound Luo et al. (2019), Adabelief Zhuang et al. (2020), and
244 DecGD Shao et al. (2025).
245

246

247 **4.1 ONLINE CONVEX OPTIMIZATION**

248

249 Given the objective function $f_t : X \rightarrow \mathbb{R}$, the online convex optimization framework aims to
250 minimize the regret $R(T)$

251

252
$$R(T) = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in X} \sum_{t=1}^T f_t(\mathbf{x}) \quad (12)$$

253

254 Standard assumptions Duchi et al. (2011); Reddi et al. (2018); Hazan et al. (2016) of online convex
255 optimization framework are as follows

256

257 **Assumption 1.** (1) The domain $X \subseteq \mathbb{R}^n$ is a bounded convex set; the diameter of X is assumed
258 bounded. For some bound D , $\|\mathbf{x} - \mathbf{y}\| \leq D \forall \mathbf{x}, \mathbf{y} \in X$. (2) f_t is a convex function. (3) Gradient
259 of $f_t, \nabla f_t$ is assumed to be bounded. For some bound G , $\|\nabla f_t\| \leq G, \forall \mathbf{x}_t \in X$.

270 **Theorem 3.** Under Assumption 1, $\lambda \in (0, 1)$, $\eta_t = \frac{\eta}{\sqrt{t}}$, $\eta > 0$, and $V_t = \frac{f(\mathbf{x}_t)}{\sqrt{v_t + \epsilon}}$, the regret bound
 271 of SMARAN is
 272

$$273 \quad R(T) \leq \frac{GD^2\sqrt{T}}{\eta V} + G\lambda D^2 + G\eta(G + \lambda D)^2(2\sqrt{T} - 1) \quad (13)$$

274

275 Proof of Theorem 3 is given in Appendix A.1. We conclude that, like previous adaptive methods
 276 Kingma & Ba (2015); Reddi et al. (2018); Luo et al. (2019); Zhuang et al. (2020); Shao et al. (2025),
 277 SMARAN also has an upper bound in $\mathcal{O}(\sqrt{T})$.
 278

279 4.2 STOCHASTIC NON-CONVEX OPTIMIZATION

280

281 The standard assumptions for stochastic nonconvex optimization Chen et al. (2019) include
 282

283 **Assumption 2.** (1) $f(\mathbf{x}_t)$ is lower bounded and differentiable i.e., $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq L\|\mathbf{x} - \mathbf{y}\| \forall \mathbf{x}, \mathbf{y}$ where L is the Lipschitz constant. (2) The noisy gradient is unbiased and has independent
 284 noise. $\mathbf{g}_t = \nabla f(\mathbf{x}_t) + \xi_t$, $\mathbb{E}(\xi_t) = 0$, $\xi_t \perp\!\!\!\perp \xi_j \forall t, j$, $t \neq j$ (3) At step t , the algorithm can access
 285 a bounded noisy gradient, and the true gradient is also bounded. i.e., $\|\nabla f(\mathbf{x}_t)\| \leq G$, $\|\mathbf{g}_t\| \leq G$, $\forall t > 1$.
 286

287 Based on the above assumptions, we have the following results
 288

289 **Theorem 4.** Under Assumption 2, $\gamma_t < \gamma \leq 1$, $\eta_t = \frac{\eta}{\sqrt{t}}$, $\eta > 0$, and $V_t = \frac{f(\mathbf{x}_t)}{\sqrt{v_t + \epsilon}} > c$, where c is a
 290 constant, the expected gradient norm square is upper bounded as
 291

$$292 \quad \min_{t \in [T]} \mathbb{E}(\|\nabla f(\mathbf{x}_t)\|^2) \leq \frac{L^2}{c\eta\sqrt{T}} \left(C_1\eta^2G^2(1+\log T) + 4C_2n\eta(\sqrt{T}-1) + 4C_3n^2\eta^2(1+\log T) + C_4 \right) \quad (14)$$

293

294 where C_1, C_2, C_3 are constants independent of T and n and C_4 is independent of T .
 295

296 Proof of Theorem 4 is given in Appendix A.4.
 297

298 5 EXPERIMENTAL RESULTS

299

300 We highlight the results of an extensive evaluation of the SMARAN algorithm on different bench-
 301 mark datasets for the vision task. We empirically demonstrate the generalization capability of
 302 SMARAN over state-of-the-art models. All the experiments are performed on NVIDIA RTX A6000
 303 GPU with Python 3.12.7 and Pytorch 2.6.0 + cu124. Code for the proposed optimizer is available
 304 here.
 305

306 5.1 EXPERIMENTAL SETUP

307

308 We perform experiments on an image classification task over multiple datasets and models. We
 309 use the AR10 and CIFAR100 Krizhevsky & Hinton (2009) datasets, which comprise 60,000 color
 310 images of resolution 32×32 . CIFAR10 contains 10 object categories, and CIFAR100 includes 100
 311 categories. We split the data into 50,000 training samples and 10,000 test samples. For the Tiny
 312 ImageNet dataset, we used 100,000 training samples and 10,000 test samples of size 64×64 . Tiny
 313 ImageNet contains 200 unique categories.
 314

315 The architectures used for image classification include ResNet50 He et al. (2015) and DenseNet121
 316 Huang et al. (2017). The architectures follow the standard configurations available in the PyTorch
 317 package. We use SGD, SGD with momentum (SGDM), Adam, AdamW, RAdam, DecGD, and
 318 Prodigy Mishchenko & Defazio (2024) as optimizers for a comparative study with SMARAN for
 319 the image classification task. Unless otherwise stated, all optimizers are initialized with the default
 320 hyperparameter values as mentioned in the PyTorch official documentation. We use cross-entropy
 321 loss as an objective function. We train each optimizer with a list of learning rates in the range
 322 $[10^{-1}, 10^{-2}, 10^{-3}]$ to find the best-performing configurations. Fig. 2 compares different models
 323 with the best-performing configurations for the CIFAR10 and CIFAR100 datasets. SGD is config-
 324 ured with a learning rate of 0.1, momentum of 0, and weight decay. SGDM uses the same configu-
 325 ration with a momentum of 0.9. Adam and AdamW follow a learning rate of 0.001 with $\beta_1 = 0.9$,
 326

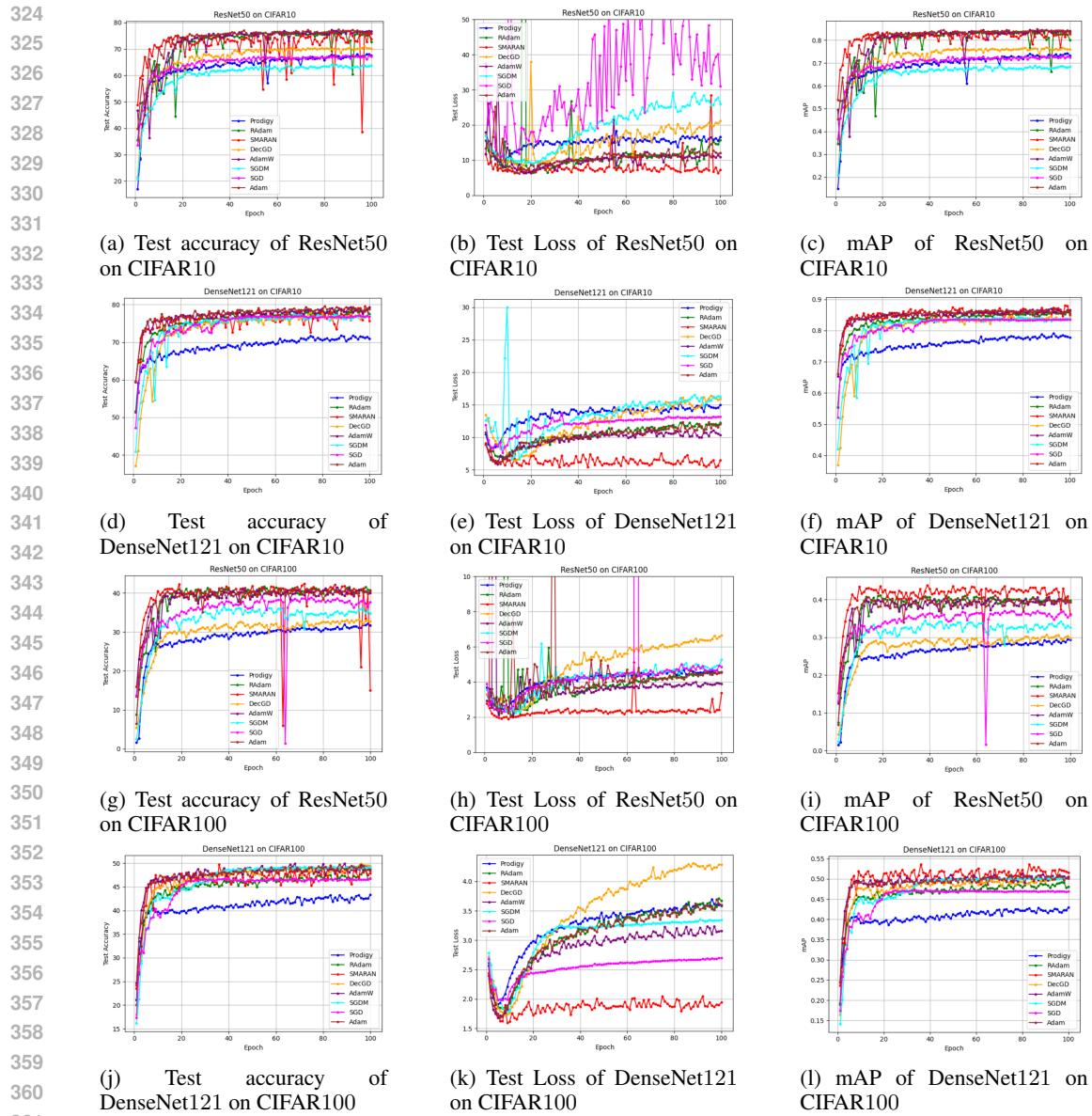


Figure 2: Experimental Results on CIFAR10 and CIFAR100 datasets.

$\beta_2 = 0.999$, $\epsilon = 10^{-8}$ and weight decay of 0 and 0.01 respectively. RAdam follows the same configuration as Adam. DecGD and Prodigy follow their respective default configurations Shao et al. (2025); Mishchenko & Defazio (2024). SMARAN uses a learning rate of 0.1, $\gamma = 0.9$, and $\lambda = 0.01$. We did not use any scheduling schemes, such as cosine annealing, for any of the optimizers mentioned above, as our objective is to compare the intrinsic performance of each optimizer with SMARAN. Therefore, any discrepancies between our results and the benchmark values reported in the literature can be attributed to either differences in the scheduling schemes or variations in the underlying architectures.

All models are trained for 100 epochs with a batch size of 128. According to their preprocessing schemes, only standard normalization is applied to the CIFAR10 and CIFAR100 images. For Tiny ImageNet, we normalize the data with a mean of $[0.480, 0.448, 0.398]$ and a standard deviation of $[0.277, 0.269, 0.282]$. We perform data augmentation by padding four pixels on all sides and cropping to a fixed resolution of 64×64 . To augment orientation diversity, horizontal flipping is performed. All model weights are randomly initialized. We use three evaluation metrics for com-

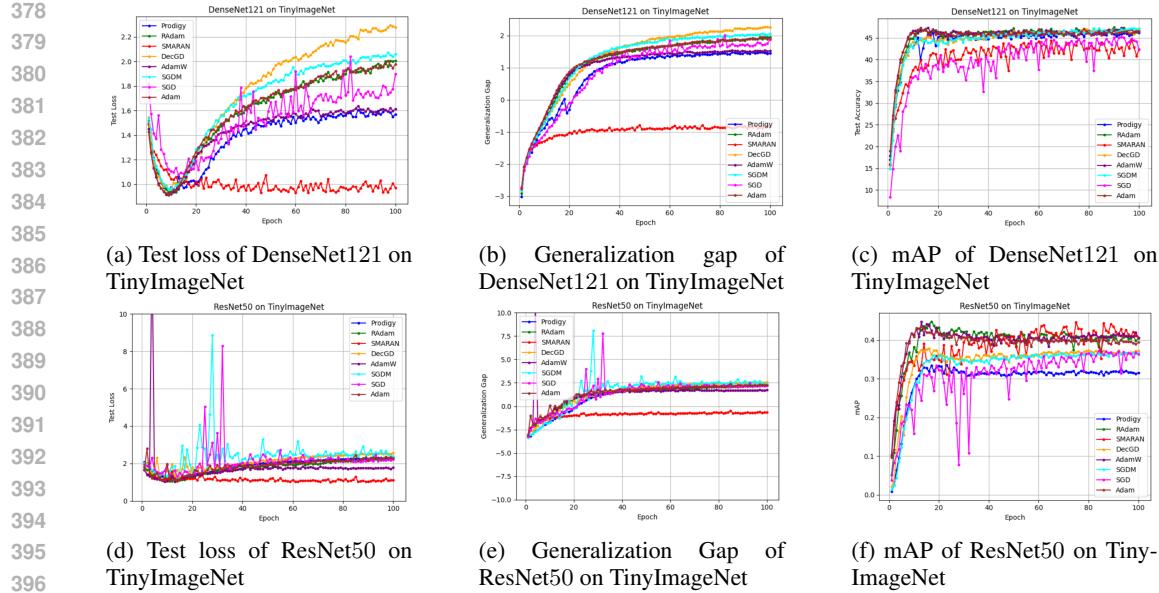


Figure 3: Experimental Results on Tiny Imagenet Dataset.

parison: test accuracy, test loss, and mean average precision (mAP) on the CIFAR10 and CIFAR100 datasets, as shown in Fig. 2. For the Tiny ImageNet data, we plot the generalization gap alongside test loss and mAP in Fig. 3. Apart from the optimizers mentioned above, we also experimented with other baselines that work based on the loss function, such as Stochastic Polyak Step size Loizou et al. (2021a), POlyak NONmonotone Stochastic (PoNoS) Galli et al. (2023), and sign-based Lion Chen et al. (2023) optimizer. Results of the experiments are shown in Appendix A.3. **Apart from the baseline optimizers, we compared our optimizer with L4 meta optimizer applied to Adam and SGDM, which Rolinek & Martius (2018) refers to as L4 Adam and L4 Mom in Fig. 4.** The L4 meta optimizer significantly enhances the performance of Adam and SGDM, yielding generalization performance comparable to SMARAN. However, for DenseNet121, SMARAN outperforms both L4 Adam and L4 Mom in terms of test loss and generalization gap.

To analyze the sensitivity of hyperparameters on SMARAN’s performance, we conducted a study to find the best possible configurations. We have used ResNet18 as the model and performed experiments on the CIFAR10 dataset. By systematically varying the values of these hyperparameters, we analyzed their effects on the loss value, as shown in Fig. 5. The best configuration values found are $\eta = 0.0436$, $\lambda = 0.0248$, and $\gamma = 0.8912$.

5.2 DISCUSSION

According to the results shown in Fig. 2, the SMARAN algorithm outperforms all other models in terms of test loss. Moreover, when comparing the test accuracy, SMARAN outperforms the state-of-the-art optimizers. SMARAN’s training curve tends to stabilize in regions where overfitting is prevalent. Where other optimizers overfit the data after a certain number of epochs, SMARAN is a perfect fit on the data, with the testing loss either decreasing, as in the case of CIFAR10, or remaining stable. The reason behind this behaviour is the variable regularization parameter in our optimizer formulation. One can also see the same phenomenon for AdamW; however, for AdamW, the regularization is fixed, whereas for SMARAN, the adaptive learning rate parameter controls the regularization. The optimizer aims to minimize the gap between the training loss and the test loss, thereby improving generalization. Figs. 3b and 3e show the generalization gap, which is the difference between the testing and training losses of DenseNet121 and ResNet50 on the TinyImageNet dataset. The results show that the generalization gap is closer to zero for SMARAN compared to other optimizers. Generalization gap plots of other datasets are provided in the Appendix A.3. Since the accuracy curve does not reflect the proportionate improvement displayed by the loss curve, we use mAP as a complementary evaluation metric. The mAP values shown in Figs. 2 and 3 suggest

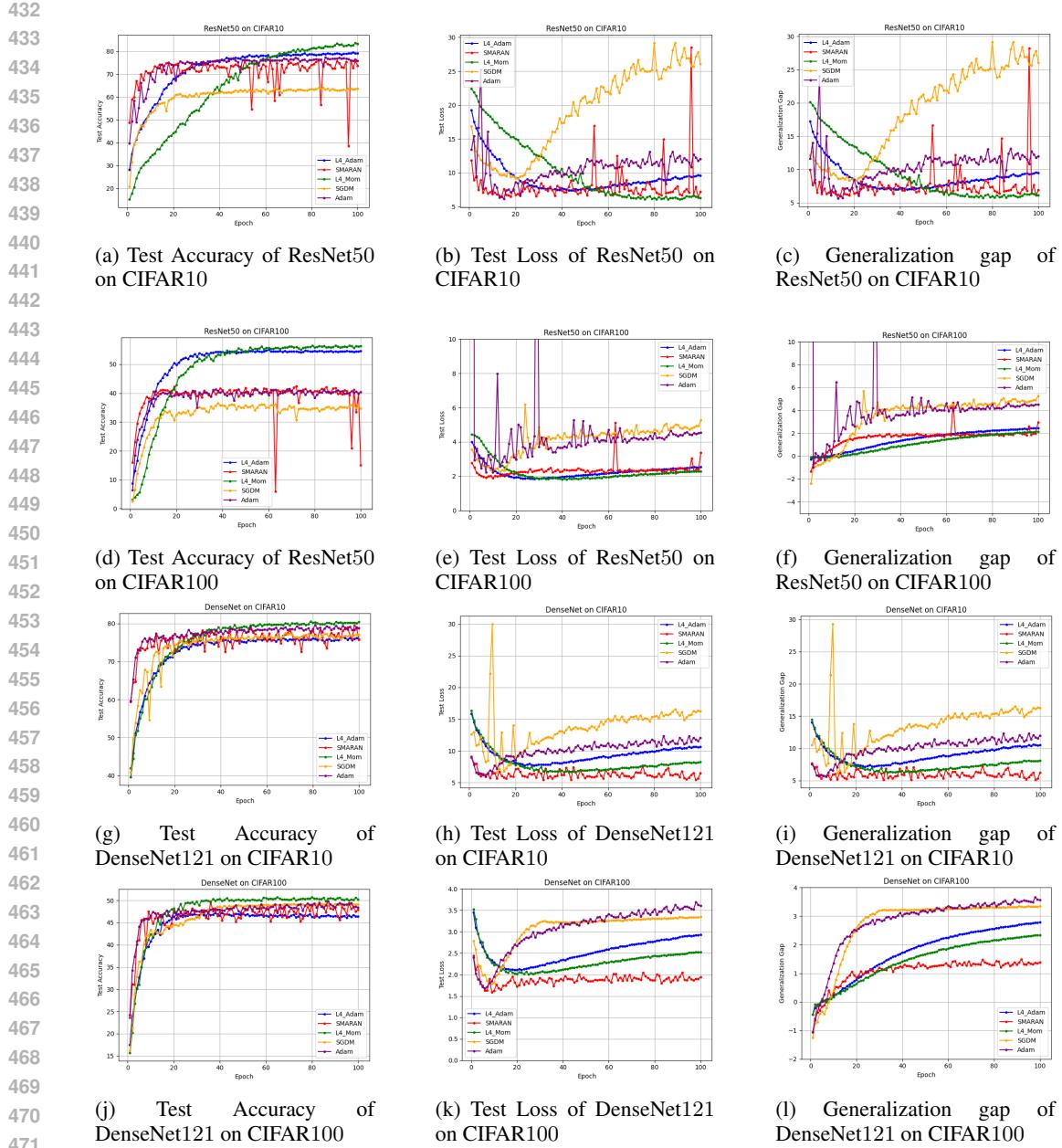


Figure 4: Comparison of SMARAN with L4 Adam and L4 Mom.

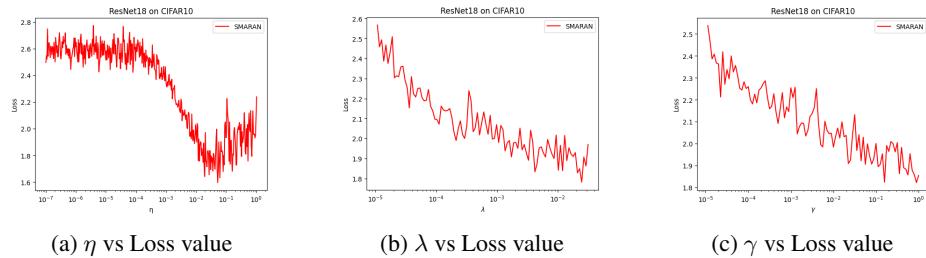


Figure 5: Hyperparameter sensitivity analysis of SMARAN on ResNet18 on CIFAR10.

486 that SMARAN performance is better than other methods. Figs. 2h and 2k show that SMARAN
 487 performs better with more categories such as CIFAR100 over CIFAR10. A similar trend is seen
 488 with the TinyImageNet dataset in Figs. 3a and 3d. The results of the experiments on loss-based
 489 optimizers indicate that SMARAN outperforms other optimizers. The performance gap is relatively
 490 low in terms of accuracy on DenseNet121 with CIFAR100 compared to SPS and PoNoS, indicating
 491 a scope for further improvement with larger models and diverse datasets. **Similarly, comparison**
 492 **with L4 Adam and L4 Mom in Fig. 4 demonstrates that, although SMARAN has outperformed**
 493 **state-of-the-art adaptive optimizers, there is still scope for further improvement.**

494 6 CONCLUSION

495 In this work, we introduce a novel optimization method, SMARAN, which adapts the learning rate
 496 based on the loss value rather than relying on gradients. Our method provides a bounded learning
 497 rate, resulting in stable training and better generalization. Our variable regularization mechanism
 498 prevents the model from overfitting after achieving optimal test results. Although the model is not
 499 coordinate-wise adaptive, like Adam and other adaptive methods, the learning rate still adapts to the
 500 curvature of the loss landscape by using the exponential average of historical losses. Additionally,
 501 SMARAN is memory-efficient compared to Adam-type methods, as its learning rate is a scalar. Ex-
 502 perimental results demonstrate the algorithm’s effectiveness for vision-based models over adaptive
 503 methods. Future work includes extending the SMARAN optimizer to other domains, such as text
 504 and video processing.

505 REFERENCES

506 Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
 507 generalization gap of adaptive gradient methods in training deep neural networks. In *IJCAI*, pp.
 508 3267–3275, 2020.

509 Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
 510 Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discovery of optimization
 511 algorithms. In *NeurIPS*, volume 36, pp. 49205–49233, 2023.

512 Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
 513 algorithms for non-convex optimization. In *ICLR*, 2019.

514 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
 515 stochastic optimization. *JMLR*, 12(7):2121–2159, 2011.

516 Leonardo Galli, Holger Rauhut, and Mark Schmidt. Don’t be so monotone: Relaxing stochastic line
 517 search in over-parameterized models. In *NeurIPS*, 2023.

518 Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule: A
 519 near optimal, geometrically decaying learning rate procedure for least squares. In *NeurIPS*, pp.
 520 14977–14988, 2019.

521 Alex Graves, Abdel-Rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recur-
 522 rent neural networks. In *ICASSP*, pp. 6645–6649, 2013.

523 Elad Hazan et al. Introduction to online convex optimization. *Foundations and Trends® in Opti-
 524 mization*, 2(3-4):157–325, 2016.

525 Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
 526 In *CVPR*, pp. 770–778, 2015.

527 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
 528 convolutional networks. In *CVPR*, pp. 4700–4708, 2017.

529 D.P. Kingma and L.J. Ba. Adam: A method for stochastic optimization. In *ICLR*, pp. 13, 2015.

530 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
 531 nical report, University of Toronto, Ontario, 2009.

540 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In *NeurIPS*, pp. 1097–1105, 2012.

541

542

543 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

544

545 Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the variance of the adaptive learning rate and beyond. In *ICLR*, 2020.

546

547

548 Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak step-size for sgd: An adaptive learning rate for fast convergence. In *AISTATS*, pp. 1306–1314, 2021a.

549

550

551 Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak step-size for sgd: An adaptive learning rate for fast convergence. In *AISTATS*, pp. 1306–1314, 2021b.

552

553

554

555 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In *ICLR*, 2017.

556

557

558 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *ICLR*, 2019.

559

560 Liangchen Luo, Yuanhao Xiong, and Yan Liu. Adaptive gradient methods with dynamic bound of learning rate. In *ICLR*, 2019.

561

562 Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free learner. In *ICML*, volume 235, pp. 35779–35804, 2024.

563

564

565 Yurii Nesterov. A method for solving the convex programming problem with convergence rate $\mathcal{O}(1/k^2)$. *Dokl Akad Nauk SSSR*, 269 : 543, 1983.

566

567 Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou. Dynamics of sgd with stochastic polyak stepsizes: Truly adaptive variants and convergence to exact solution. In *NeurIPS*, pp. 26943–26954, 2022.

568

569

570

571 Boris Polyak. Some methods of speeding up the convergence of iteration methods. *USSR Computational Mathematics and Mathematical Physics*, 4:1–17, 12 1964.

572

573

574 Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In *ICLR*, 2018.

575

576 Michal Rolinek and Georg Martius. L4: Practical loss-based stepsize adaptation for deep learning. In *NeurIPS*, volume 31, 2018.

577

578

579 Zhou Shao, Hang Zhou, and Tong Lin. A new adaptive gradient method with gradient decomposition. *Machine Learning*, 114(7):155, May 2025.

580

581

582 Naum Zuselevich Shor. *Minimization methods for non-differentiable functions*. Springer Berlin, Heidelberg, 1985.

583

584 Leslie N. Smith. Cyclical learning rates for training neural networks. In *WACV*, pp. 464–472, 2017.

585

586 Tijmen Tieleman. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. *COURSERA: Neural Networks for Machine Learning*, 4(2):26, 2012.

587

588

589 Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods for nonconvex optimization. In *NeurIPS*, pp. 9815 – 9825, 2018.

590

591 Juntang Zhuang, Tommy Tang, Sekhar Tatikonda, Nicha C Dvornek, Yifan Ding, Xenophon Papademetris, and James S Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed gradients. In *NeurIPS Workshop: Deep Learning through Information Geometry*, 2020.

592

593

594 **A APPENDIX**595 **A.1 PROOF OF THEOREM 3**596 *Proof.* The potential function is defined as
597

600
$$\phi = \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \quad (15)$$

601
602

603
$$\begin{aligned} \|\mathbf{x}_{t+1} - \mathbf{x}^*\| &= \|\mathbf{x}_t - \eta_t V_t (\mathbf{m}_t + \lambda \mathbf{x}_t) - \mathbf{x}^*\|^2 \\ 604 &= \|\mathbf{x}_t - \mathbf{x}^*\|^2 + \eta_t^2 V_t^2 \|\mathbf{m}_t + \lambda \mathbf{x}_t\|^2 - \eta_t V_t \langle \mathbf{m}_t + \lambda \mathbf{x}_t, \mathbf{x}_t - \mathbf{x}^* \rangle \\ 605 &= \|\mathbf{x}_t - \mathbf{x}^*\|^2 + \eta_t^2 V_t^2 \|\mathbf{m}_t + \lambda \mathbf{x}_t\|^2 - \eta_t V_t \langle \mathbf{m}_t, \mathbf{x}_t - \mathbf{x}^* \rangle - \eta_t V_t \lambda \langle \mathbf{x}_t, \mathbf{x}_t - \mathbf{x}^* \rangle \end{aligned}$$

606
607

608 rearranging the terms,
609

610
$$\langle \mathbf{m}_t, \mathbf{x}_t - \mathbf{x}^* \rangle = \frac{\|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 + \eta_t^2 V_t^2 \|\mathbf{m}_t + \lambda \mathbf{x}_t\|^2 - \eta_t V_t \lambda \langle \mathbf{x}_t, \mathbf{x}_t - \mathbf{x}^* \rangle}{\eta_t V_t}$$

611
612

613 substitute \mathbf{m}_t from Eq. 3,
614

615
$$\begin{aligned} \langle \gamma \mathbf{m}_{t-1} + \hat{\mathbf{g}}_t, \mathbf{x}_t - \mathbf{x}^* \rangle &= \frac{\|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 + \eta_t^2 V_t^2 \|\mathbf{m}_t + \lambda \mathbf{x}_t\|^2 - \eta_t V_t \lambda \langle \mathbf{x}_t, \mathbf{x}_t - \mathbf{x}^* \rangle}{\eta_t V_t} \\ 616 & \langle \hat{\mathbf{g}}_t, \mathbf{x}_t - \mathbf{x}^* \rangle = \frac{\|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 + \eta_t^2 V_t^2 \|\mathbf{m}_t + \lambda \mathbf{x}_t\|^2 - \eta_t V_t \lambda \langle \mathbf{x}_t, \mathbf{x}_t - \mathbf{x}^* \rangle}{\eta_t V_t} \\ 617 & \quad - \gamma \langle \mathbf{m}_{t-1}, \mathbf{x}_t - \mathbf{x}^* \rangle \end{aligned}$$

618
619
620

621 substitute $\hat{\mathbf{g}}_t$ from Eq. 2 and for simplicity assume $\epsilon \approx 0$,
622

623
$$\begin{aligned} \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}^* \rangle &= \|\nabla f_t(\mathbf{x}_t)\| \left(\frac{\|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2}{\eta_t V_t} + \eta_t V_t \|\mathbf{m}_t + \lambda \mathbf{x}_t\|^2 - \right. \\ 624 & \quad \left. \lambda \langle \mathbf{x}_t, \mathbf{x}_t - \mathbf{x}^* \rangle - \gamma \langle \mathbf{m}_{t-1}, \mathbf{x}_t - \mathbf{x}^* \rangle \right) \end{aligned} \quad (16)$$

625
626
627

628 From Eq. 12, regret is defined as
629

630
$$R(T) = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in X} \sum_{t=1}^T f_t(\mathbf{x}) \quad (17)$$

631
632

633
$$= \sum_{t=1}^T f_t(\mathbf{x}_t) - \sum_{t=1}^T f_t(\mathbf{x}^*) \quad (18)$$

634
635

636
$$= \sum_{t=1}^T (f_t(\mathbf{x}_t) - f_t(\mathbf{x}^*)) \quad (19)$$

637
638

639
$$\leq \sum_{t=1}^T \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}^* \rangle \quad (20)$$

640
641

642 Therefore
643

644
$$\begin{aligned} R(T) &\leq \|\nabla f_t(\mathbf{x}_t)\| \left(\frac{\|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2}{\eta_t V_t} + \eta_t V_t \|\mathbf{m}_t + \lambda \mathbf{x}_t\|^2 + \right. \\ 645 & \quad \left. \lambda \langle \mathbf{x}_t, \mathbf{x}_t - \mathbf{x}^* \rangle - \gamma \langle \mathbf{m}_{t-1}, \mathbf{x}_t - \mathbf{x}^* \rangle \right) \end{aligned} \quad (21)$$

646
647

648 Simplifying each term in Eq. 21 and substitute $\eta_t = \eta/\sqrt{t}$.
 649

$$650 \sum_{t=1}^T \|\nabla f_t(\mathbf{x}_t)\| \left(\frac{\|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2}{\eta_t V_t} \right) \quad (22)$$

$$653 = \sum_{t=1}^T \|\nabla f_t(\mathbf{x}_t)\| \sqrt{t} \left(\frac{\|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2}{\eta V_t} \right) \quad (23)$$

$$656 \leq \frac{G}{\eta V} \sum_{t=1}^T \sqrt{t} \left(\|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \right) \quad (24)$$

$$659 \leq \frac{G}{\eta V} \left(\|\mathbf{x}_1 - \mathbf{x}^*\|^2 + \sum_{t=2}^T \sqrt{t} \|\mathbf{x}_t - \mathbf{x}^*\|^2 - \sum_{t=2}^T \sqrt{t-1} \|\mathbf{x}_t - \mathbf{x}^*\|^2 \right) \quad (25)$$

$$662 = \frac{GD^2}{\eta V} \left(n + \sum_{t=2}^T (\sqrt{t} - \sqrt{t-1}) \right) \quad (26)$$

$$665 \leq \frac{GD^2 \sqrt{T}}{\eta V} \quad (27)$$

667 Similarly,

$$669 \sum_{t=1}^T \|\nabla f_t(\mathbf{x}_t)\| \left(\lambda \langle \mathbf{x}_t, \mathbf{x}_t - \mathbf{x}^* \rangle \right) \quad (28)$$

$$672 \leq G\lambda D^2 \quad (29)$$

$$673 \quad (30)$$

674 For the remaining part,

$$676 \sum_{t=1}^T \|\nabla f_t(\mathbf{x}_t)\| \left(\eta_t V_t \|\mathbf{m}_t + \lambda \mathbf{x}_t\|^2 - \gamma \langle \mathbf{m}_{t-1}, \mathbf{x}_t - \mathbf{x}^* \rangle \right) \quad (31)$$

$$679 \leq \sum_{t=1}^T \|\nabla f_t(\mathbf{x}_t)\| \left(\eta_t V_t \|\mathbf{m}_t + \lambda \mathbf{x}_t\|^2 \right) \quad (32)$$

$$682 \leq G\eta \sum_{t=1}^T \frac{\|\mathbf{m}_t + \lambda \mathbf{x}_t\|^2}{\sqrt{t}} \quad (33)$$

$$685 \leq G\eta(G + \lambda D)^2 \sum_{t=1}^T \frac{1}{\sqrt{t}} \quad (34)$$

$$688 \leq G\eta(G + \lambda D)^2 (2\sqrt{T} - 1) \quad (35)$$

689 From Eq. 21, 27, 30 and 35 we write

$$691 R(T) \leq \frac{GD^2 \sqrt{T}}{\eta V} + G\lambda D^2 + G\eta(G + \lambda D)^2 (2\sqrt{T} - 1) \quad (36)$$

694 \square

697 A.2 PROOF OF CONSTANT LEARNING RATE FOR CONSTANT LOSS

698 Given

$$700 V_t = \frac{f(\mathbf{x}_t)}{\sqrt{v_t} + \epsilon} \quad (37)$$

702 Assume $f(\mathbf{x}_t) = k$ where k is some constant, and for simplicity, assume $\epsilon \approx 0$. Then from Eq. 7,

$$704 \quad v_t = \gamma v_{t-1} + k^2 \quad (38)$$

706 The solution for the above recurrence relation is

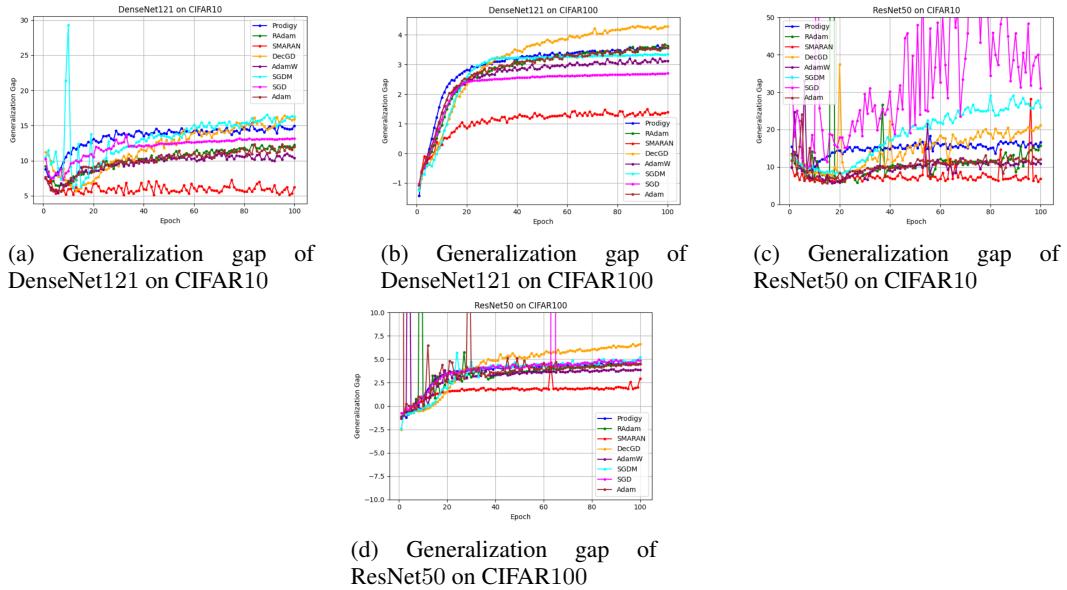
$$708 \quad v_t = \frac{k^2}{1 - \gamma} \quad (39)$$

711 substituting into Eq. 37, we get

$$714 \quad V_t = \frac{k}{\sqrt{\frac{k^2}{1-\gamma}}} \quad (40)$$

$$716 \quad = \sqrt{1 - \gamma} \quad (41)$$

721 A.3 ADDITIONAL RESULTS

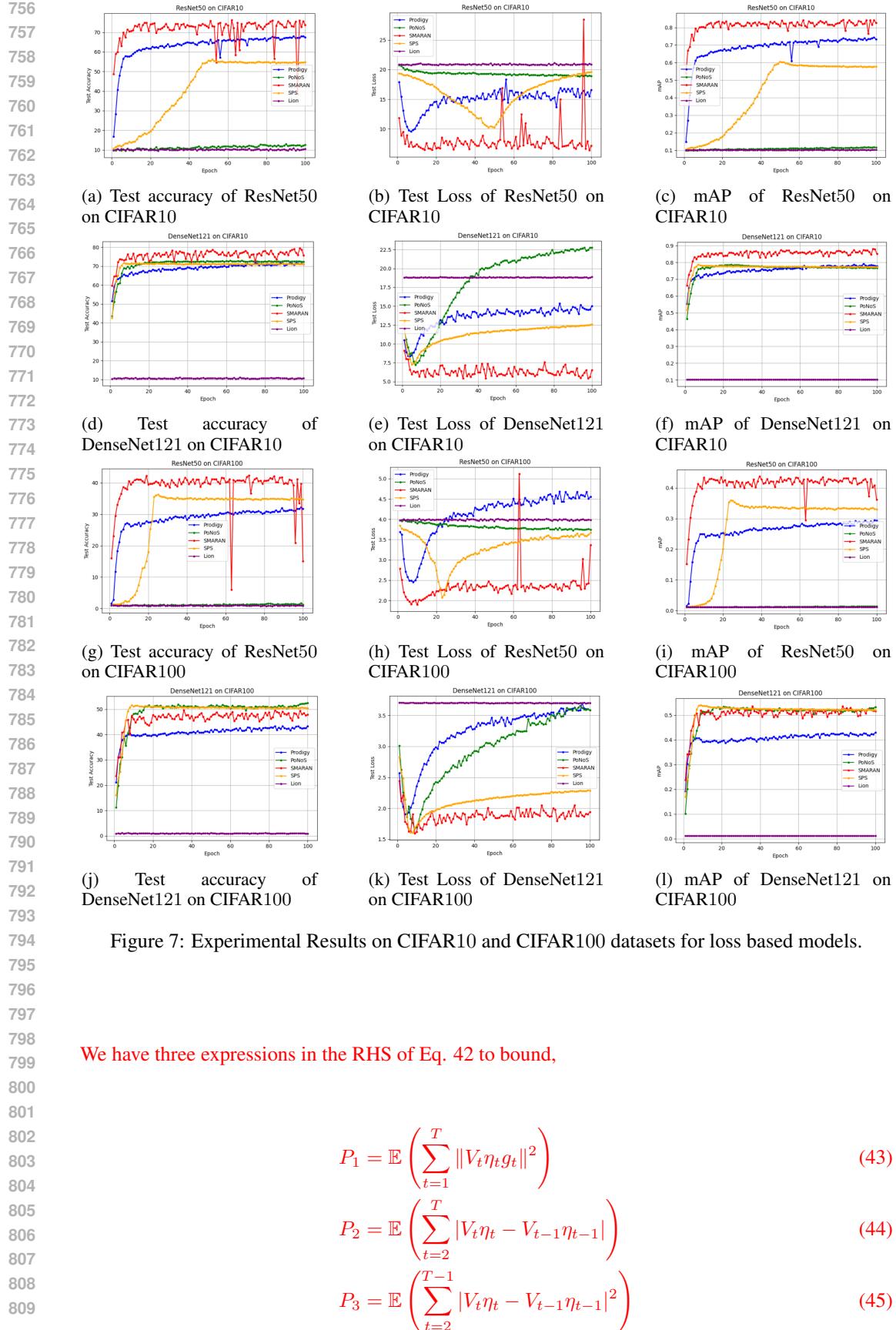


743 Figure 6: Generalization gaps on CIFAR10 and CIFAR100.

747 A.4 PROOF OF THEOREM 4

748 Based on Assumption 2 and Chen et al. (2019), Eq. (3), we estimate

$$751 \quad \mathbb{E} \left(\sum_{t=1}^T \eta_t \langle \nabla f(\mathbf{x}_t), V_t \nabla f(\mathbf{x}_t) \rangle \right) \leq \mathbb{E} \left(C_1 \sum_{t=1}^T \|V_t \eta_t \mathbf{g}_t\|^2 + C_2 n \sum_{t=2}^T |V_t \eta_t - V_{t-1} \eta_{t-1}| \right. \\ 752 \quad \left. + C_3 n^2 \sum_{t=2}^{T-1} |V_t \eta_t - V_{t-1} \eta_{t-1}|^2 + C_4 \right) \quad (42)$$



810 solving Eq. 43,

811

$$812 P_1 = \mathbb{E} \left(\sum_{t=1}^T \|V_t \eta_t \mathbf{g}_t\|^2 \right) \quad (46)$$

813

$$814 \leq \mathbb{E} \left(\sum_{t=1}^T \|\eta_t \mathbf{g}_t\|^2 \right) \quad (47)$$

815

$$816 \leq \eta^2 G^2 \mathbb{E} \left(\sum_{t=1}^T \frac{1}{t} \right) \quad (48)$$

817

$$818 \leq \eta^2 G^2 (1 + \log T) \quad (49)$$

819 where the first inequality came from the fact that $V_t < 1$, Theorem 2, second inequality came from
 820 $g_t \leq G$ and the last inequality came from the fact $\sum_{t=1}^T \frac{1}{t} \leq 1 + \log T$.

821 Solving Eq. 44 using the property $|a - b| \leq |a| + |b|$ and $V_t < 1$

822

$$823 P_2 = \mathbb{E} \left(\sum_{t=2}^T |V_t \eta_t - V_{t-1} \eta_{t-1}| \right) \quad (50)$$

824

$$825 \leq \sum_{t=2}^T \left(\frac{\eta}{\sqrt{t}} + \frac{\eta}{\sqrt{t-1}} \right) \quad (51)$$

826

$$827 \leq 2\eta \sum_{t=1}^{T-1} \frac{1}{\sqrt{t-1}} \quad (52)$$

828

$$829 \leq 4\eta(\sqrt{T} - 1) \quad (53)$$

830 Solving Eq. 45

831

$$832 P_3 = \mathbb{E} \left(\sum_{t=2}^{T-1} |V_t \eta_t - V_{t-1} \eta_{t-1}|^2 \right) \quad (54)$$

833

$$834 \leq \sum_{t=2}^{T-1} (V_t \eta_t + V_{t-1} \eta_{t-1})^2 \quad (55)$$

835

$$836 \leq \sum_{t=2}^{T-1} 2(|V_t \eta_t|^2 + |V_{t-1} \eta_{t-1}|^2) \quad (56)$$

837

$$838 \leq \sum_{t=2}^{T-1} 2 \left(\frac{\eta^2}{t} + \frac{\eta^2}{t-1} \right) \quad (57)$$

839

$$840 \leq 4\eta^2 \sum_{t=2}^{T-1} \left(\frac{1}{t-1} \right) \quad (58)$$

841

$$842 \leq 4\eta^2 (1 + \log T) \quad (59)$$

843 So RHS of Eq. 42 becomes

844

$$845 RHS = C_1 \eta^2 G^2 (1 + \log T) + 4C_2 n \eta (\sqrt{T} - 1) + 4C_3 n^2 \eta^2 (1 + \log T) + C_4 \quad (60)$$

846 Now, let $V_t \geq c$, we have

847

$$848 V_t \eta_t \geq \frac{\eta c}{\sqrt{t}}$$

864 therefore the LHS of Eq. 42 becomes
 865

$$866 \quad \mathbb{E} \left(\sum_{t=1}^T \eta_t \langle \nabla f(\mathbf{x}_t), V_t \nabla f(\mathbf{x}_t) \rangle \right) \geq \mathbb{E} \sum_{t=1}^T \frac{\eta c}{\sqrt{t}} \|\nabla f(\mathbf{x}_t)\|^2 \quad (61)$$

$$869 \quad \geq \frac{\eta c}{L^2} \mathbb{E} \sum_{t=1}^T \|\nabla f(\mathbf{x}_t)\|^2 \quad (62)$$

$$872 \quad \geq \frac{\eta c}{L^2} \sqrt{T} \min_{t \in [T]} \mathbb{E} \|\nabla f(\mathbf{x}_t)\|^2 \quad (63)$$

874 Substituting the LHS and RHS from Eq. 60 and Eq. 63 to Eq. 42 yields
 875

$$876 \quad \min_{t \in [T]} \mathbb{E}(\|\nabla f(\mathbf{x}_t)\|^2) \leq \frac{L^2}{c\eta\sqrt{T}} \left(C_1 \eta^2 G^2 (1 + \log T) + 4C_2 n \eta (\sqrt{T} - 1) + 4C_3 n^2 \eta^2 (1 + \log T) + C_4 \right) \quad (64)$$

879 Hence proved.
 880

881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917