
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SMARAN: CLOSING THE GENERALIZATION GAP
WITH PERFORMANCE DRIVEN OPTIMIZATION
METHOD

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimization methods have evolved significantly by introducing various learn-
ing rate scheduling techniques and adaptive learning strategies. Although these
methods have achieved faster convergence, they often struggle to generalize well
to unseen data compared to traditional approaches such as Stochastic Gradient
Descent (SGD) with momentum. Adaptive methods such as Adam store each pa-
rameter’s first and second moments of gradients, which can be memory-intensive.
To address these challenges, we propose a novel SMARAN optimization method
that adjusts the learning rate based on the model’s performance, rather than the
curvature of the objective function. This approach is particularly effective for
minimizing stochastic loss functions, standard in deep learning models. Tradi-
tional gradient-based methods may get stuck in regions where the gradient van-
ishes, such as plateaus or local minima. Therefore, instead of only depending on
the gradient, we use the model’s performance to estimate the appropriate step size.
We performed extensive experiments on standard vision benchmarks, and the gen-
eralization trends observed with SMARAN demonstrate compelling distinctions
relative to adaptive and non-adaptive optimizers.

1 INTRODUCTION

A stochastic optimization problem is defined as

min
x∈X

Eξ[f(x, ξ)] (1)

where ξ is a random variable that introduces uncertainty in the objective function f(x, ξ) and x is
the decision variable belonging to the feasible domain X . Standard solution methods for this form
of optimization problems include gradient-based approaches such as SGD and its variants Lecun
et al. (1998); Graves et al. (2013); Krizhevsky et al. (2012). However, gradient-based methods
rely on the gradient direction for updating the parameters, but the gradient itself is affected by the
stochastic nature of the function; hence, a negative gradient direction may not always be the best
search direction. In nonconvex settings, relying solely on the gradient magnitude to identify the
optimal point can be misleading. Flat regions, saddle points, and inflexion points exhibit the property
of zero gradient. Finally, gradients provide local neighborhood information; hence, one may become
stuck at a local optimum instead of searching for a global solution. We then encounter the issue of
gradient explosion in steep regions. Additionally, gradient-based optimizers lack adaptability in step
size based on landscape curvature, resulting in uniform step size scaling. In the literature, several
variants have been proposed to address these drawbacks. SGD with momentum Polyak (1964) and
Nesterov Nesterov (1983) overcome the first problem by aggregating past gradients to determine the
current update direction. Aggregation reduces the effect of the stochasticity in the gradient. Adaptive
methods overcome the uniform scaling of the gradient along all coordinate directions. AdaGrad
Duchi et al. (2011) was the first algorithm in this line of research. AdaGrad used the historical sum
of squared gradients to adjust the learning rate of individual parameters, resulting in faster learning.
However, the accumulated squared gradients grow monotonically, causing the learning rate to shrink
and leading to premature convergence. Later methods, such as RMSProp Tieleman (2012) and
Adam Kingma & Ba (2015), overcome this difficulty using an exponential moving average (EMA)
of gradients. Adam is the most prominent optimizer used among the adaptive optimizers. It uses

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the EMA of the gradient (the first-moment estimate) for the update direction. It normalizes the
learning rate with the EMA of the gradient square, the second-moment estimate. Although Adam-
based methods have the advantage of faster convergence, storing first and second-moment estimates
for each parameter becomes memory-intensive. Additionally, there is no clear evidence that Adam-
based methods generally outperform SGD with momentum in terms of generalization. To overcome
these drawbacks of previous methods, we introduce a novel optimization approach based on the
objective function value rather than gradient dependence. Main contributions of the paper are:

• A novel optimizer SMARAN, which is based on the concept of EMA but uses the objective
function value to adjust the learning rate instead of gradients, unlike Adam-based methods,
and also includes adaptive regularization.

• Theoretical regret analysis of our objective function for both convex and nonconvex set-
tings, and provide bounds on the learning rate.

• We experimentally compared our algorithm with state-of-the-art methods. Experimental
results demonstrate that SMARAN outperformed other methods in terms of generalization
ability for vision tasks.

The key motivation for using objective value instead of gradients is the high sensitivity of gradients
to stochastic noise. Additionally, objective value provides a more global measure of optimization
progress, even in regions where the gradient vanishes or explodes. Normalizing the learning rate
with EMA of squared loss provides a smoother convergence. Also, loss-driven adaptation encour-
ages updates that are guided by overall performance rather than noisy local curvature, thereby im-
proving generalization compared to gradient-based approaches. In stochastic optimization, optimiz-
ers that approach the global minimum without fully converging are often preferred, as this behavior
tends to yield better generalization. SMARAN’s adaptive learning rate is designed to achieve this
effect while simultaneously ensuring faster convergence, as shown in Fig. 1.

2 RELATED WORKS

Progression from manually scheduled updates to gradient-based adaptivity marks a significant ad-
vancement in optimization methods. Classical methods such as SGD and its momentum-augmented
variants Polyak (1964), including Nesterov Accelerated Gradient (NAG) Nesterov (1983), laid the
foundation for this development. These methods primarily focused on exploiting gradient direction
and aggregating past values to reduce noise from stochastic updates. Nevertheless, they fail to adapt
the learning rate based on the loss landscape, which results in oscillations near the optimal point.

Learning rate scheduling schemes were introduced based on training steps to overcome these limi-
tations. While step decay Ge et al. (2019) reduces the learning rate at predefined intervals, cosine
annealing Loshchilov & Hutter (2017) and cyclic schedules Smith (2017) use periodic changes. Al-
though these methods improve convergence, they lack responsiveness towards the loss landscape and
model performance. Their performance is heavily dependent on manual tuning of hyperparameters.

Recent works on adaptive learning rates modify the Polyak step size for stochastic nonconvex op-
timization Loizou et al. (2021b). Orvieto et al. (2022) demonstrates a polyak stepsize variant with
decreasing stepsize that gives a convergence rate equivalent to gradient descent with proper initial-
ization.

A paradigm shift occurred with the coming of adaptive methods such as AdaGrad Duchi et al.
(2011), RMSProp Tieleman (2012), and Adam Kingma & Ba (2015). They introduced a parameter-
wise adaptation of the learning rate. AdaGrad uses accumulated squared gradients to normalize the
learning rate, penalizing frequently updated directions but often resulting in premature convergence.
RMSProp overcomes this drawback by using the EMA of squared gradients, promoting smoother
adaptation. Adam combines first and second-order moment estimates of gradients for learning rate
adaptation. This results in stable updates with rapid initial convergence. Empirical studies show that
adaptive methods may overfit, resulting in inferior performance to SGD with momentum on specific
benchmarks Chen et al. (2020); Reddi et al. (2018).

More recent optimization approaches include AdamW Loshchilov & Hutter (2019), which decou-
ples the weight decay from gradient updates. AMSGrad Reddi et al. (2018) controls the learning
rate to become monotonically decreasing over iterations. Yogi Zaheer et al. (2018) prevents the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

second moment estimate of Adam from exploding by sign correction. AdaBound Luo et al. (2019)
clips the bounds of the learning rate to avoid the exploding and vanishing problem. PAdam Chen
et al. (2020) scales the learning rate by a tunable adaptivity parameter. RAdam Liu et al. (2020)
addresses the variance in adaptive learning rates. AdaBelief Zhuang et al. (2020) replaces the un-
centred second moment with a centred variance estimate around the gradient. DecGD Shao et al.
(2025) decomposes the gradient into a product of the surrogate loss and its gradient, which allows
the learning rate adaptation based on the loss vector. Recent meta optimizers include L4 optimizer
Rolinek & Martius (2018), which uses the difference in loss values for learning rate scheduling and
can be applied over any optimizer.

Now that we have traversed the evolution of optimization methods from simple gradient heuristics
to momentum-based adaptation, we introduce our novel optimizer, SMARAN, whose mechanism
and theoretical insights are discussed in the next section.

3 METHODOLOGY

Let f : Rn → R denote the loss function to minimize and let x ∈ X ⊆ Rn be an n-dimensional
vector. We have three hyperparameters: the global learning rate η, the regularization coefficient λ,
and the moment discount factor γ. We included the factor ϵ with a value 10−8 for the numerical
stability of the division operations. The terms mt and vt represent the moments of normalized
gradient loss and square loss at iteration t, respectively, with initial values set to zero.

The previous section identifies three key factors that drive the design of optimization algorithms:
update direction, update magnitude, and adaptiveness across different landscapes. Following these
insights and the gaps in optimizing a stochastic function, we incorporated these aspects into our
method, illustrated in Algorithm 1. The algorithm finds the optimal point using gradient information,
momentum, a loss-based scaling mechanism for adaptivity, and variable regularization to avoid
overfitting. The algorithm blends normalization, regularization, and an adaptive learning rate.

Following the Normalized Gradient Descent Shor (1985), to estimate the update direction, we use
the normalized gradient ĝt instead of the complete gradient ∇f(xt)

ĝt =
∇f(xt).

∥∇f(xt)∥+ ϵ
(2)

Since the loss function is stochastic, we take the exponential average over past gradients for smooth-
ing purposes to reduce the effect of uncertainty. The first moment is

mt = γmt−1 + ĝt. (3)

Theorem 1. Let f : Rn → R be a differentiable loss function parameterized by x, then the norm
of the exponential average of the normalized gradients over some time step t, given by Eq. (3), is
upper bounded as

∥mt∥ <
1

1− γ
(4)

Proof. Expanding Eq. (3) and using the triangle inequality,

mt =

t∑
τ=1

γt−τ ĝτ =⇒ ∥mt∥ ≤
t∑

τ=1

|γt−τ |.∥ĝτ∥

Since ∥ĝ∥ < 1 due to ϵ factor in Eq. (2)

∥mt∥ <

t∑
τ=1

|γt−τ | = 1− γt

1− γ
(5)

As t → ∞, sum of geometric progression becomes

1− γt

1− γ
→ 1

1− γ
> ∥mt∥.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Moreover, the first moment is upper-bounded. Hence, this moment prevents gradient explosion,
provided the multiplicative learning factor is not ∞.

This approach is effective for high-dimensional or ill-conditioned landscapes.

Adapting the learning rate based on the curvature of the function is achieved using a performance-
based factor, rather than relying on the gradients. Our performance-based factor is

f(xt)√
vt + ϵ

(6)

where
vt = γvt−1 + f(xt)

2 (7)
Theorem 2. Let f : Rn → R+ be a continuous loss function parameterized by x, and {xt} for
t = 1, 2, ..., T be a finite parameter sequence generated by gradient descent updates in T iterations,
then for every time step t,

0 <
f(xt)√
vt + ϵ

< 1 (8)

where

vt =

t∑
τ=1

γt−τf(xτ)
2 (9)

Proof. From Eq. (7), we have vt ≥ f(xt)
2 which implies,

√
vt ≥ f(xt) =⇒

√
vt + ϵ > f(xt) =⇒ 1

√
vt + ϵ

<
1

f(xt)
=⇒ f(xt)√

vt + ϵ
< 1

Since f : Rn → R+, both numerator and denominator are positive,

0 ≤ f(xt)√
vt + ϵ

< 1 (10)

This factor is 0 only when f(xt) = 0.

Previous methods Tieleman (2012); Kingma & Ba (2015); Reddi et al. (2018); Zhuang et al. (2020)
use the EMA of the gradient square for normalizing the learning rate because gradients give the cur-
vature of the landscape. However, in a nonconvex setting, the gradient magnitude changes rapidly,
especially near steep curvature, resulting in an aggressive change in the learning rate, which causes
the optimizer to converge slowly. Fig. 1e shows the trajectory for 100 steps of different optimizers
on the Beale function, which is a nonconvex landscape. In our approach, the optimizer adjusts the
learning rate based on its recent losses, resulting in less aggressive changes and, consequently, faster
convergence. Unlike other methods that get stuck at local minima or landscapes where the gradient
vanishes, our optimizer searches for paths to find the global minimum, particularly in regions with
high loss values. For constant loss, like in flat regions, SMARAN’s learning rate approaches

√
1− γ

regardless of the loss magnitude (proof given in Appendix A.2). In an ideal case, as x → x∗(global
minima), f(x) → 0 hence,

lim
xt→x∗

f(xt)√
vt + ϵ

= 0

To prevent overfitting, we incorporated a weight decay regularization term into the update step.

xt+1 = xt − η

(
f(xt)√
vt + ϵ

)
(mt + λxt) (11)

AdamW inspires the weight decay, but unlike AdamW, which uses a constant weight decay, ours
is an adaptive weight decay controlled by an adaptive learning rate term. Since the learning rate
scheduler is based on the objective function value over training data, if the optimizer tries to overfit
the training data, the same proportion of regularization prevents the model from overfitting.

Finally, SMARAN’s memory requirement is lower than that of the adaptive methods, as the adaptive
learning rate is a scalar quantity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 SMARAN
Input: Initial vector x0 ∈ X ⊆ Rn, loss function f(x)
Parameter: η, λ, γ
Output: xT

Initialize: m0 = 0, v0 = 0

1: for t = 1 to T do
2: ĝt =

∇f(xt)
∥∇f(xt)∥+ϵ

3: mt = γmt−1 + ĝt

4: vt = γvt−1 + f(xt)
2

5: xt+1 = xt − η
(

f(xt)√
vt+ϵ

)
(mt + λxt)

6: end for
7: return xT

(a) SGD on convex landscape (b) Adam on convex landscape (c) SGDM on convex landscape

(d) SMARAN on convex land-
scape

(e) Optimizers on non-convex
landscape

Figure 1: Behaviour of optimizers on convex and non convex landscapes.

4 CONVERGENCE ANALYSIS

We perform a convergence analysis of the SMARAN algorithm and highlight a risk bound under a
convex setting. First introduced in Duchi et al. (2011), convergence analysis in a convex setting was
discussed in many of the later works on adaptive methods, including Adam Kingma & Ba (2015),
AMSGrad Reddi et al. (2018), Adabound Luo et al. (2019), Adabelief Zhuang et al. (2020), and
DecGD Shao et al. (2025).

4.1 ONLINE CONVEX OPTIMIZATION

Given the objective function ft : X → R, the online convex optimization framework aims to
minimize the regret R(T)

R(T) =

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x) (12)

Standard assumptions Duchi et al. (2011); Reddi et al. (2018); Hazan et al. (2016) of online convex
optimization framework are as follows
Assumption 1. (1) The domain X ⊆ Rn is a bounded convex set; the diameter of X is assumed
bounded. For some bound D, ∥x − y∥ ≤ D ∀ x,y ∈ X . (2) ft is a convex function. (3) Gradient
of ft,∇ft is assumed to be bounded. For some bound G, ∥∇ft∥ ≤ G, ∀ xt ∈ X .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 3. Under Assumption 1, λ ∈ (0, 1), ηt = η√
t
, η > 0, and Vt =

f(xt)√
vt+ϵ , the regret bound

of SMARAN is

R(T) ≤ GD2
√
T

ηV
+GλD2 +Gη(G+ λD)2(2

√
T − 1) (13)

Proof of Theorem 3 is given in Appendix A.1. We conclude that, like previous adaptive methods
Kingma & Ba (2015); Reddi et al. (2018); Luo et al. (2019); Zhuang et al. (2020); Shao et al. (2025),
SMARAN also has an upper bound in O(

√
T).

4.2 STOCHASTIC NON-CONVEX OPTIMIZATION

The standard assumptions for stochastic nonconvex optimization Chen et al. (2019) include

Assumption 2. (1) f(xt) is lower bounded and differentiable i.e.,∥∇f(x) − ∇f(y)∥ ≤ L∥x −
y∥ ∀x,y where L is the Lipschitz constant. (2) The noisy gradient is unbiased and has independent
noise. gt = ∇f(xt) + ξt, E(ξt) = 0, ξt ⊥⊥ ξj ∀t, j, t ̸= j (3) At step t, the algorithm can access
a bounded noisy gradient, and the true gradient is also bounded. i.e., ∥∇f(xt)∥ ≤ G, ∥gt∥ ≤
G, ∀t > 1.

Based on the above assumptions, we have the following results

Theorem 4. Under Assumption 2, γt < γ ≤ 1, ηt = η√
t
, η > 0, and Vt =

f(xt)√
vt+ϵ > c, where c is a

constant, the expected gradient norm square is upper bounded as

min
t∈[T]

E(∥∇f(xt)∥2) ≤
L2

cη
√
T

(
C1η

2G2(1+logT)+4C2nη(
√
T−1)+4C3n

2η2(1+logT)+C4

)
(14)

where C1, C2, C3 are constants independent of T and n and C4 is independent of T .

Proof of Theorem 4 is given in Appendix A.4.

5 EXPERIMENTAL RESULTS

We highlight the results of an extensive evaluation of the SMARAN algorithm on different bench-
mark datasets for the vision task. We empirically demonstrate the generalization capability of
SMARAN over state-of-the-art models. All the experiments are performed on NVIDIA RTX A6000
GPU with Python 3.12.7 and Pytorch 2.6.0 + cu124. Code for the proposed optimizer is available
here.

5.1 EXPERIMENTAL SETUP

We perform experiments on an image classification task over multiple datasets and models. We
use the AR10 and CIFAR100 Krizhevsky & Hinton (2009) datasets, which comprise 60, 000 color
images of resolution 32× 32. CIFAR10 contains 10 object categories, and CIFAR100 includes 100
categories. We split the data into 50, 000 training samples and 10, 000 test samples. For the Tiny
ImageNet dataset, we used 100, 000 training samples and 10, 000 test samples of size 64× 64. Tiny
ImageNet contains 200 unique categories.

The architectures used for image classification include ResNet50 He et al. (2015) and DenseNet121
Huang et al. (2017). The architectures follow the standard configurations available in the PyTorch
package. We use SGD, SGD with momentum (SGDM), Adam, AdamW, RAdam, DecGD, and
Prodigy Mishchenko & Defazio (2024) as optimizers for a comparative study with SMARAN for
the image classification task. Unless otherwise stated, all optimizers are initialized with the default
hyperparameter values as mentioned in the PyTorch official documentation. We use cross-entropy
loss as an objective function. We train each optimizer with a list of learning rates in the range
[10−1, 10−2, 10−3] to find the best-performing configurations. Fig. 2 compares different models
with the best-performing configurations for the CIFAR10 and CIFAR100 datasets. SGD is config-
ured with a learning rate of 0.1, momentum of 0, and weight decay. SGDM uses the same configu-
ration with a momentum of 0.9. Adam and AdamW follow a learning rate of 0.001 with β1 = 0.9,

6

https://github.com/rr-cpu/SMARAN-optimizer

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Test accuracy of ResNet50
on CIFAR10

(b) Test Loss of ResNet50 on
CIFAR10

(c) mAP of ResNet50 on
CIFAR10

(d) Test accuracy of
DenseNet121 on CIFAR10

(e) Test Loss of DenseNet121
on CIFAR10

(f) mAP of DenseNet121 on
CIFAR10

(g) Test accuracy of ResNet50
on CIFAR100

(h) Test Loss of ResNet50 on
CIFAR100

(i) mAP of ResNet50 on
CIFAR100

(j) Test accuracy of
DenseNet121 on CIFAR100

(k) Test Loss of DenseNet121
on CIFAR100

(l) mAP of DenseNet121 on
CIFAR100

Figure 2: Experimental Results on CIFAR10 and CIFAR100 datasets.

β2 = 0.999, ϵ = 10−8 and weight decay of 0 and 0.01 respectively. RAdam follows the same
configuration as Adam. DecGD and Prodigy follow their respective default configurations Shao
et al. (2025); Mishchenko & Defazio (2024). SMARAN uses a learning rate of 0.1, γ = 0.9, and
λ = 0.01. We did not use any scheduling schemes, such as cosine annealing, for any of the optimiz-
ers mentioned above, as our objective is to compare the intrinsic performance of each optimizer with
SMARAN. Therefore, any discrepancies between our results and the benchmark values reported in
the literature can be attributed to either differences in the scheduling schemes or variations in the
underlying architectures.

All models are trained for 100 epochs with a batch size of 128. According to their preprocess-
ing schemes, only standard normalization is applied to the CIFAR10 and CIFAR100 images. For
Tiny ImageNet, we normalize the data with a mean of [0.480, 0.448, 0.398] and a standard devia-
tion of [0.277, 0.269, 0.282]. We perform data augmentation by padding four pixels on all sides and
cropping to a fixed resolution of 64 × 64. To augment orientation diversity, horizontal flipping is
performed. All model weights are randomly initialized. We use three evaluation metrics for com-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Test loss of DenseNet121 on
TinyImageNet

(b) Generalization gap of
DenseNet121 on TinyImageNet

(c) mAP of DenseNet121 on
TinyImageNet

(d) Test loss of ResNet50 on
TinyImageNet

(e) Generalization Gap of
ResNet50 on TinyImageNet

(f) mAP of ResNet50 on Tiny-
ImageNet

Figure 3: Experimental Results on Tiny Imagenet Dataset.

parison: test accuracy, test loss, and mean average precision (mAP) on the CIFAR10 and CIFAR100
datasets, as shown in Fig. 2. For the Tiny ImageNet data, we plot the generalization gap alongside
test loss and mAP in Fig. 3. Apart from the optimizers mentioned above, we also experimented
with other baselines that work based on the loss function, such as Stochastic Polyak Stepsize Loizou
et al. (2021a), POlyak NOnmonotone Stochastic (PoNoS) Galli et al. (2023), and sign-based Lion
Chen et al. (2023) optimizer. Results of the experiments are shown in Appendix A.3. Apart from
the baseline optimizers, we compared our optimizer with L4 meta optimizer applied to Adam and
SGDM, which Rolinek & Martius (2018) refers to as L4 Adam and L4 Mom in Fig. 4. The L4 meta
optimizer significantly enhances the performance of Adam and SGDM, yielding generalization per-
formance comparable to SMARAN. However, for DenseNet121, SMARAN outperforms both L4
Adam and L4 Mom in terms of test loss and generalization gap.

To analyze the sensitivity of hyperparameters on SMARAN’s performance, we conducted a study
to find the best possible configurations. We have used ResNet18 as the model and performed exper-
iments on the CIFAR10 dataset. By systematically varying the values of these hyperparameters, we
analyzed their effects on the loss value, as shown in Fig. 5. The best configuration values found are
η = 0.0436, λ = 0.0248, and γ = 0.8912.

5.2 DISCUSSION

According to the results shown in Fig. 2, the SMARAN algorithm outperforms all other models in
terms of test loss. Moreover, when comparing the test accuracy, SMARAN outperforms the state-
of-the-art optimizers. SMARAN’s training curve tends to stabilize in regions where overfitting is
prevalent. Where other optimizers overfit the data after a certain number of epochs, SMARAN is
a perfect fit on the data, with the testing loss either decreasing, as in the case of CIFAR10, or re-
maining stable. The reason behind this behaviour is the variable regularization parameter in our
optimizer formulation. One can also see the same phenomenon for AdamW; however, for AdamW,
the regularization is fixed, whereas for SMARAN, the adaptive learning rate parameter controls the
regularization. The optimizer aims to minimize the gap between the training loss and the test loss,
thereby improving generalization. Figs. 3b and 3e show the generalization gap, which is the differ-
ence between the testing and training losses of DenseNet121 and ResNet50 on the TinyImageNet
dataset. The results show that the generalization gap is closer to zero for SMARAN compared to
other optimizers. Generalization gap plots of other datasets are provided in the Appendix A.3. Since
the accuracy curve does not reflect the proportionate improvement displayed by the loss curve, we
use mAP as a complementary evaluation metric. The mAP values shown in Figs. 2 and 3 suggest

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Test Accuracy of ResNet50
on CIFAR10

(b) Test Loss of ResNet50 on
CIFAR10

(c) Generalization gap of
ResNet50 on CIFAR10

(d) Test Accuracy of ResNet50
on CIFAR100

(e) Test Loss of ResNet50 on
CIFAR100

(f) Generalization gap of
ResNet50 on CIFAR100

(g) Test Accuracy of
DenseNet121 on CIFAR10

(h) Test Loss of DenseNet121
on CIFAR10

(i) Generalization gap of
DenseNet121 on CIFAR10

(j) Test Accuracy of
DenseNet121 on CIFAR100

(k) Test Loss of DenseNet121
on CIFAR100

(l) Generalization gap of
DenseNet121 on CIFAR100

Figure 4: Comparison of SMARAN with L4 Adam and L4 Mom.

(a) η vs Loss value (b) λ vs Loss value (c) γ vs Loss value

Figure 5: Hyperparamater sensitivity analysis of SMARAN on ResNet18 on CIFAR10.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

that SMARAN performance is better than other methods. Figs. 2h and 2k show that SMARAN
performs better with more categories such as CIFAR100 over CIFAR10. A similar trend is seen
with the TinyImageNet dataset in Figs. 3a and 3d. The results of the experiments on loss-based
optimizers indicate that SMARAN outperforms other optimizers. The performance gap is relatively
low in terms of accuracy on DenseNet121 with CIFAR100 compared to SPS and PoNoS, indicating
a scope for further improvement with larger models and diverse datasets. Similarly, comparison
with L4 Adam and L4 Mom in Fig. 4 demonstrates that, although SMARAN has outperformed
state-of-the-art adaptive optimizers, there is still scope for further improvement.

6 CONCLUSION

In this work, we introduce a novel optimization method, SMARAN, which adapts the learning rate
based on the loss value rather than relying on gradients. Our method provides a bounded learning
rate, resulting in stable training and better generalization. Our variable regularization mechanism
prevents the model from overfitting after achieving optimal test results. Although the model is not
coordinate-wise adaptive, like Adam and other adaptive methods, the learning rate still adapts to the
curvature of the loss landscape by using the exponential average of historical losses. Additionally,
SMARAN is memory-efficient compared to Adam-type methods, as its learning rate is a scalar. Ex-
perimental results demonstrate the algorithm’s effectiveness for vision-based models over adaptive
methods. Future work includes extending the SMARAN optimizer to other domains, such as text
and video processing.

REFERENCES

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. In IJCAI, pp.
3267–3275, 2020.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discovery of optimization
algorithms. In NeurIPS, volume 36, pp. 49205–49233, 2023.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. In ICLR, 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12(7):2121–2159, 2011.

Leonardo Galli, Holger Rauhut, and Mark Schmidt. Don’t be so monotone: Relaxing stochastic line
search in over-parameterized models. In NeurIPS, 2023.

Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule: A
near optimal, geometrically decaying learning rate procedure for least squares. In NeurIPS, pp.
14977–14988, 2019.

Alex Graves, Abdel-Rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recur-
rent neural networks. In ICASSP, pp. 6645–6649, 2013.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157–325, 2016.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, pp. 770–778, 2015.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, pp. 4700–4708, 2017.

D.P. Kingma and L.J. Ba. Adam: A method for stochastic optimization. In ICLR, pp. 13, 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, Ontario, 2009.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In NeurIPS, pp. 1097–1105, 2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In ICLR, 2020.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In AISTATS, pp. 1306–1314,
2021a.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In AISTATS, pp. 1306–1314,
2021b.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In ICLR,
2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Liangchen Luo, Yuanhao Xiong, and Yan Liu. Adaptive gradient methods with dynamic bound of
learning rate. In ICLR, 2019.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. In ICML, volume 235, pp. 35779–35804, 2024.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate
O(1/k2).Dokl Akad Nauk SSSR, 269 : 543, 1983.

Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou. Dynamics of sgd with stochastic polyak
stepsizes: Truly adaptive variants and convergence to exact solution. In NeurIPS, pp. 26943–26954,
2022.

Boris Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computa-
tional Mathematics and Mathematical Physics, 4:1–17, 12 1964.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In ICLR,
2018.

Michal Rolinek and Georg Martius. L4: Practical loss-based stepsize adaptation for deep learning. In
NeurIPS, volume 31, 2018.

Zhou Shao, Hang Zhou, and Tong Lin. A new adaptive gradient method with gradient decomposition.
Machine Learning, 114(7):155, May 2025.

Naum Zuselevich Shor. Minimization methods for non-differentiable functions. Springer Berlin, Hei-
delberg, 1985.

Leslie N. Smith. Cyclical learning rates for training neural networks. In WACV, pp. 464–472, 2017.

Tijmen Tieleman. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning, 4(2):26, 2012.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
for nonconvex optimization. In NeurIPS, pp. 9815 – 9825, 2018.

Juntang Zhuang, Tommy Tang, Sekhar Tatikonda, Nicha C Dvornek, Yifan Ding, Xenophon Pa-
pademetris, and James S Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. In NeurIPS Workshop: Deep Learning through Information Geometry, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROOF OF THEOREM 3

Proof. The potential function is defined as

ϕ = ∥xt+1 − x∗∥2 (15)

∥xt+1 − x∗∥ = ∥xt − ηtVt(mt + λxt)− x∗∥2

= ∥xt − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 − ηtVt⟨mt + λxt,xt − x∗⟩

= ∥xt − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 − ηtVt⟨mt,xt − x∗⟩ − ηtVtλ⟨xt,xt − x∗⟩

rearranging the terms,

⟨mt,xt − x∗⟩ = ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 − ηtVtλ⟨xt,xt − x∗⟩
ηtVt

substitute mt from Eq. 3,

⟨γmt−1 + ĝt,xt − x∗⟩ = ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 − ηtVtλ⟨xt,xt − x∗⟩
ηtVt

⟨ĝt,xt − x∗⟩ = ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 − ηtVtλ⟨xt,xt − x∗⟩
ηtVt

− γ⟨mt−1,xt − x∗⟩

substitute ĝt from Eq. 2 and for simplicity assume ϵ ≈ 0,

⟨∇ft(xt),xt − x∗⟩ = ∥∇ft(xt)∥
(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

ηtVt
+ ηtVt∥mt + λxt∥2−

λ⟨xt,xt − x∗⟩ − γ⟨mt−1,xt − x∗⟩
)

(16)

From Eq. 12, regret is defined as

R(T) =

T∑
t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x) (17)

=

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
∗) (18)

=

T∑
t=1

(ft(xt)− ft(x
∗)) (19)

≤
T∑

t=1

⟨∇ft(xt),xt − x∗⟩ (20)

Therefore

R(T) ≤ ∥∇ft(xt)∥
(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

ηtVt
+ ηtVt∥mt + λxt∥2+

λ⟨xt,xt − x∗⟩ − γ⟨mt−1,xt − x∗⟩
)

(21)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Simplifying each term in Eq. 21 and substitute ηt = η/
√
t.

T∑
t=1

∥∇ft(xt)∥
(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

ηtVt

)
(22)

=

T∑
t=1

∥∇ft(xt)∥
√
t

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

ηVt

)
(23)

≤ G

ηV

T∑
t=1

√
t

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
(24)

≤ G

ηV

(
∥x1 − x∗∥2 +

T∑
t=2

√
t∥xt − x∗∥2 −

T∑
t=2

√
t− 1∥xt − x∗∥2

)
(25)

=
GD2

ηV

(
n+

T∑
t=2

(
√
t−

√
t− 1)

)
(26)

≤ GD2
√
T

ηV
(27)

Similarly,

T∑
t=1

∥∇ft(xt)∥
(
λ⟨xt,xt − x∗⟩

)
(28)

≤ GλD2 (29)
(30)

For the remaining part,

T∑
t=1

∥∇ft(xt)∥
(
ηtVt∥mt + λxt∥2 − γ⟨mt−1,xt − x∗⟩

)
(31)

≤
T∑

t=1

∥∇ft(xt)∥
(
ηtVt∥mt + λxt∥2

)
(32)

≤ Gη

T∑
t=1

∥mt + λxt∥2√
t

(33)

≤ Gη(G+ λD)2
T∑

t=1

1√
t

(34)

≤ Gη(G+ λD)2(2
√
T − 1) (35)

From Eq. 21, 27, 30 and 35 we write

R(T) ≤ GD2
√
T

ηV
+GλD2 +Gη(G+ λD)2(2

√
T − 1) (36)

A.2 PROOF OF CONSTANT LEARNING RATE FOR CONSTANT LOSS

Given

Vt =
f(xt)√
vt + ϵ

(37)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Assume f(xt) = k where k is some constant, and for simplicity, assume ϵ ≈ 0. Then from Eq. 7,

vt = γvt−1 + k2 (38)

The solution for the above recurrence relation is

vt =
k2

1− γ
(39)

substituting into Eq. 37, we get

Vt =
k√
k2

1−γ

(40)

=
√
1− γ (41)

A.3 ADDITIONAL RESULTS

(a) Generalization gap of
DenseNet121 on CIFAR10

(b) Generalization gap of
DenseNet121 on CIFAR100

(c) Generalization gap of
ResNet50 on CIFAR10

(d) Generalization gap of
ResNet50 on CIFAR100

Figure 6: Generalization gaps on CIFAR10 and CIFAR100.

A.4 PROOF OF THEOREM 4

Based on Assumption 2 and Chen et al. (2019), Eq. (3), we estimate

E

(
T∑

t=1

ηt⟨∇f(xt), Vt∇f(xt)⟩

)
≤E
(
C1

T∑
t=1

∥Vtηtgt∥2 + C2n

T∑
t=2

|Vtηt − Vt−1ηt−1|

+ C3n
2
T−1∑
t=2

|Vtηt − Vt−1ηt−1|2 + C4

)
(42)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) Test accuracy of ResNet50
on CIFAR10

(b) Test Loss of ResNet50 on
CIFAR10

(c) mAP of ResNet50 on
CIFAR10

(d) Test accuracy of
DenseNet121 on CIFAR10

(e) Test Loss of DenseNet121
on CIFAR10

(f) mAP of DenseNet121 on
CIFAR10

(g) Test accuracy of ResNet50
on CIFAR100

(h) Test Loss of ResNet50 on
CIFAR100

(i) mAP of ResNet50 on
CIFAR100

(j) Test accuracy of
DenseNet121 on CIFAR100

(k) Test Loss of DenseNet121
on CIFAR100

(l) mAP of DenseNet121 on
CIFAR100

Figure 7: Experimental Results on CIFAR10 and CIFAR100 datasets for loss based models.

We have three expressions in the RHS of Eq. 42 to bound,

P1 = E

(
T∑

t=1

∥Vtηtgt∥2
)

(43)

P2 = E

(
T∑

t=2

|Vtηt − Vt−1ηt−1|

)
(44)

P3 = E

(
T−1∑
t=2

|Vtηt − Vt−1ηt−1|2
)

(45)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

solving Eq. 43,

P1 = E

(
T∑

t=1

∥Vtηtgt∥2
)

(46)

≤ E

(
T∑

t=1

∥ηtgt∥2
)

(47)

≤ η2G2E(
T∑

t=1

1

t
) (48)

≤ η2G2(1 + logT) (49)

where the first inequality came from the fact that Vt < 1, Theorem 2, second inequality came from

gt ≤ G and the last inequality came from the fact
T∑

t=1

1
t ≤ 1 + logT .

Solving Eq. 44 using the property |a− b| ≤ |a|+ |b| and Vt < 1

P2 = E

(
T∑

t=2

|Vtηt − Vt−1ηt−1|

)
(50)

≤
T∑

t=2

(
η√
t
+

η√
t− 1

)
(51)

≤ 2η

T−1∑
t=1

1√
t− 1

(52)

≤ 4η(
√
T − 1) (53)

Solving Eq. 45

P3 = E

(
T−1∑
t=2

|Vtηt − Vt−1ηt−1|2
)

(54)

≤
T−1∑
t=2

(Vtηt + Vt−1ηt−1)
2 (55)

≤
T−1∑
t=2

2(|Vtηt|2 + |Vt−1ηt−1|2) (56)

≤
T−1∑
t=2

2

(
η2

t
+

η2

t− 1

)
(57)

≤ 4η2
T−1∑
t=2

(
1

t− 1

)
(58)

≤ 4η2(1 + logT) (59)

So RHS of Eq. 42 becomes

RHS = C1η
2G2(1 + logT) + 4C2nη(

√
T − 1) + 4C3n

2η2(1 + logT) + C4 (60)

Now, let Vt ≥ c, we have
Vtηt ≥

ηc√
t

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

therefore the LHS of Eq. 42 becomes

E

(
T∑

t=1

ηt⟨∇f(xt), Vt∇f(xt)⟩

)
≥ E

T∑
t=1

ηc√
t
∥∇f(xt)∥2 (61)

≥ ηc

L2
E

T∑
t=1

∥∇f(xt)∥2 (62)

≥ ηc

L2

√
T min

t∈[T]
E∥∇f(xt)∥2 (63)

Substituting the LHS and RHS from Eq. 60 and Eq. 63 to Eq. 42 yields

min
t∈[T]

E(∥∇f(xt)∥2) ≤
L2

cη
√
T

(
C1η

2G2(1 + logT) + 4C2nη(
√
T − 1) + 4C3n

2η2(1 + logT) + C4

)
(64)

Hence proved.

17

	Introduction
	Related works
	Methodology
	Convergence Analysis
	Online Convex Optimization
	Stochastic Non-convex Optimization

	Experimental Results
	Experimental Setup
	Discussion

	Conclusion
	Appendix
	Proof of Theorem 3
	Proof of constant learning rate for constant loss
	Additional Results
	Proof of theorem 4

