
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SMARAN: CLOSING THE GENERALIZATION GAP
WITH PERFORMANCE DRIVEN OPTIMIZATION
METHOD

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimization methods have evolved significantly by introducing various learn-
ing rate scheduling techniques and adaptive learning strategies. Although these
methods have achieved faster convergence, they often struggle to generalize well
to unseen data compared to traditional approaches such as Stochastic Gradient
Descent (SGD) with momentum. Adaptive methods such as Adam store each pa-
rameter’s first and second moments of gradients, which can be memory-intensive.
To address these challenges, we propose a novel SMARAN optimization method
that adjusts the learning rate based on the model’s performance rather than the
objective function’s curvature. This approach is particularly effective for mini-
mizing stochastic loss functions, standard in deep learning models. Traditional
gradient-based methods may get stuck in regions where the gradient vanishes,
such as plateaus or local minima. Therefore, instead of only depending on the
gradient, we use the model’s performance to estimate the appropriate step size.
We performed extensive experiments on standard vision benchmarks, and the gen-
eralization trends observed with SMARAN demonstrate compelling distinctions
relative to adaptive and non-adaptive optimizers.

1 INTRODUCTION

A stochastic optimization problem is defined as

min
x∈X

Eξ[f(x, ξ)] (1)

where ξ is a random variable that introduces uncertainty in the objective function f(x, ξ) and x
is the decision variable belonging to the feasible domain X . Standard solution methods for this
form of optimization problems include gradient-based approaches such as SGD and its variants Le-
cun et al. (1998); Graves et al. (2013); Krizhevsky et al. (2012). However, gradient-based methods
rely on the gradient direction for updating the parameters, but the gradient itself is affected by the
stochastic nature of the function; hence, a negative gradient direction may not always be the best
search direction. In nonconvex settings, relying on gradient magnitude to identify the optimal point
could be misleading. Flat regions, saddle points, and inflexion points exhibit the property of zero
gradient. Finally, gradients give local neighborhood information; hence, one may get stuck at local
optima instead of searching for a global solution. Then we have the problem of gradient explosion
in steep regions. In addition, gradient-based optimizers lack step size adaptability based on land-
scape curvature, resulting in uniform step size scaling. In the literature, many variants are proposed
to overcome these drawbacks. SGD with momentum Polyak (1964) and Nesterov Nesterov (1983)
overcome the first problem by aggregating past gradients to determine the current update direction.
Aggregation reduces the effect of the stochasticity in the gradient. Adaptive methods overcome the
uniform scaling of the gradient along all coordinate directions. AdaGrad Duchi et al. (2011) was
the first algorithm in this line of research. AdaGrad used the historical sum of squared gradients
to adjust the learning rate of individual parameters, resulting in faster learning. However, the ac-
cumulated squared gradients grow monotonically, causing the learning rate to shrink and leading
to premature convergence. Later methods, such as RMSProp Tieleman (2012) and Adam Kingma
& Ba (2015), overcome this difficulty using an exponential moving average (EMA) of gradients.
Adam is the most prominent optimizer used among the adaptive optimizers. It uses the EMA of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

gradient (the first-moment estimate) for update direction and normalizes the learning rate with the
EMA of gradient square, the second-moment estimate. Although Adam-based methods have the
advantage of faster convergence, storing first and second-moment estimates for each parameter be-
comes memory-intensive. Also, there is no clear evidence that Adam-based methods perform better
in generalization than SGD with momentum. To overcome these drawbacks of previous methods, we
introduce a novel optimization approach based on the objective function value rather than gradient
dependence. Main contributions of the paper are:

• A novel optimizer SMARAN, which is based on the concept of EMA but uses the objective
function value to adjust the learning rate instead of gradients, unlike Adam-based methods.

• Theoretical regret analysis of our objective function in the online convex optimization
framework, and provide bounds on the learning rate.

• We experimentally compared our algorithm with state-of-the-art methods. Experimental
results demonstrate that SMARAN outperformed other methods in terms of generalization
ability for vision tasks.

2 RELATED WORKS

Progression from manually scheduled updates to gradient-based adaptivity marks the advancement
of optimization methods. Classical methods such as Stochastic Gradient Descent (SGD) and its
momentum-augmented variants Polyak (1964), including Nesterov Accelerated Gradient (NAG)
Nesterov (1983), laid the foundation for this development. These methods primarily focused on
exploiting gradient direction and aggregating past values to reduce noise from stochastic updates.
Nevertheless, they fail to adapt the learning rate based on the loss landscape, which results in oscil-
lations near the optimal point.

Learning rate scheduling schemes were introduced based on training steps to overcome these limi-
tations. While step decay Ge et al. (2019) reduces the learning rate at predefined intervals, cosine
annealing Loshchilov & Hutter (2017) and cyclic schedules Smith (2017) use periodic changes. Al-
though these methods improve convergence, they lack responsiveness towards the loss landscape
and model performance. Their performance is heavily dependent on manual hyperparameter tuning.

Recent works on adaptive learning rate modify the Polyak stepsize for stochastic nonconvex opti-
mization Loizou et al. (2021b). Orvieto et al. (2022) demonstrates a polyak stepsize variant with
decreasing stepsize that gives a convergence rate equivalent to gradient descent with proper initial-
ization.

A paradigm shift occurred with the coming of adaptive methods such as AdaGrad Duchi et al.
(2011), RMSProp Tieleman (2012), and Adam Kingma & Ba (2015). They introduced a parameter-
wise adaptation of the learning rate. AdaGrad uses accumulated squared gradients to normalize the
learning rate, penalizing frequently updated directions but often resulting in premature convergence.
RMSProp overcomes this drawback by using the EMA of squared gradients, promoting smoother
adaptation. Adam combines first and second-order moment estimates of gradients for learning rate
adaptation. This results in stable updates with rapid initial convergence. Empirical studies show that
adaptive methods may overfit, resulting in inferior performance to SGD with momentum on specific
benchmarks.Chen et al. (2020); Reddi et al. (2018)

More recent optimization approaches include AdamW Loshchilov & Hutter (2019), which decou-
ples the weight decay from gradient updates. AMSGrad Reddi et al. (2018) controls the learning rate
to become monotonically decreasing over iterations. Yogi Zaheer et al. (2018) prevents the second
moment estimate of Adam from exploding by sign correction. AdaBound Luo et al. (2019) clips
the bounds of the learning rate to avoid the exploding and vanishing problem. PAdam Chen et al.
(2020) scales the learning rate by a tunable adaptivity parameter. RAdam Liu et al. (2020) rectifies
the adaptive learning rate variance. AdaBelief Zhuang et al. (2020) replaces the uncentred second
moment with a centred variance estimate around the gradient. DecGD Shao et al. (2025) decom-
poses the gradient into a product of the surrogate loss and its gradient, which allows the learning
rate adaptation based on the loss vector.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Now that we have traversed the evolution of optimization methods from simple gradient heuristics
to momentum-based adaptation, we introduce our novel optimizer, SMARAN, whose mechanism
and theoretical insights are discussed in the next section.

3 METHODOLOGY

Let f : Rn → R denote the loss function to minimize and let x ∈ X ⊆ Rn be the decision variable.
We have three hyperparameters: the global learning rate η, the regularization coefficient λ, and the
moment discount factor γ. We included the factor ϵ with a value 10−8 for the numerical stability
of the division operations. The terms mt and vt represent the moments of normalized gradient loss
and square loss at iteration t, respectively, with initial values set to zero.

The previous section identifies three key factors that drive optimization algorithm design: update
direction, update magnitude, and adaptiveness across different landscapes. Following these insights
and the gaps in optimizing a stochastic function, we incorporated these aspects into our method, il-
lustrated in Algorithm 1. The algorithm finds the optimal point using gradient information, momen-
tum, a loss-based scaling mechanism for adaptivity, and variable regularization to avoid overfitting.
The algorithm blends normalization, regularization, and an adaptive learning rate.

Following the Normalized Gradient Descent Shor (1985), to estimate the update direction, we use
the normalized gradient ĝt instead of the complete gradient ∇f(xt)

ĝt =
∇f(xt).

∥∇f(xt)∥+ ϵ
(2)

Since the loss function is stochastic, we take the exponential average over past gradients for smooth-
ing purposes to reduce the effect of uncertainty. The first moment is

mt = γmt−1 + ĝt. (3)

Theorem 1. Let f : Rn → R be a differentiable loss function parameterized by x, then the norm
of the exponential average of the normalized gradients over some time step t, given by Eq. (3), is
upper bounded as

∥mt∥ <
1

1− γ
(4)

Proof. Expanding Eq. (3),

mt =

t∑
τ=1

γt−τ ĝτ

Using the triangle inequality,

∥mt∥ ≤
t∑

τ=1

|γt−τ |.∥ĝτ∥ (5)

Since ∥ĝ∥ < 1 due to ϵ factor in Eq. (2)

∥mt∥ <

t∑
τ=1

|γt−τ | (6)

=
1− γt

1− γ
(7)

As t → ∞, sum of geometric progression becomes

1− γt

1− γ
→ 1

1− γ
> ∥mt∥.

Moreover, the first moment is upper-bounded. Hence, this moment prevents gradient explosion,
provided the multiplicative learning factor is not ∞.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This approach is effective for high-dimensional or ill-conditioned landscapes.

Adapting the learning rate based on the curvature of the function is done using a performance-based
factor instead of depending on the gradients. Our performance-based factor is

f(xt)√
vt + ϵ

(8)

where
vt = γvt−1 + f(xt)

2 (9)
Theorem 2. Let f : Rn → R+ be a continuous loss function parameterized by x, and {xt} for
t = 1, 2, ..., T be a finite parameter sequence generated by gradient descent updates in T iterations,
then for every time step t,

0 <
f(xt)√
vt + ϵ

< 1 (10)

where

vt =

t∑
τ=1

γt−τf(xτ)
2 (11)

Proof. From Eq. (9), we have vt ≥ f(xt)
2 which implies,

√
vt ≥ f(xt)√

vt + ϵ > f(xt)

1
√
vt + ϵ

<
1

f(xt)

f(xt)√
vt + ϵ

< 1

Since f : Rn → R+, both numerator and denominator are positive,

0 ≤ f(xt)√
vt + ϵ

< 1 (12)

This factor is 0 only when f(xt) = 0.

Previous methods use the EMA of the gradient square for normalizing the learning rate because gra-
dients give the curvature of the landscape. However, for a nonconvex setting, steep curvature results
in slow learning, whereas in our approach, the optimizer adjusts the learning rate based on its recent
losses. If recent losses are high, then the optimizer updates the parameters cautiously. In contrast, if
recent losses are low and decreasing with each timestep, the learning rate increases, making conver-
gence faster. Unlike other methods stuck at local minima or landscapes where the gradient vanishes,
our optimizer searches for paths to find the global minimum. For constant loss, SMARAN’s learning
rate approaches

√
1− γ regardless of the loss magnitude (proof given in Appendix A.2). In an ideal

case, as x → x∗(global minima), f(x) → 0 hence,

lim
xt→x∗

f(xt)√
vt + ϵ

= 0

To avoid getting overfit, we included a weight decay regularization term in the update step.

xt+1 = xt − η

(
f(xt)√
vt + ϵ

)
(mt + λxt) (13)

AdamW inspires the weight decay, but unlike AdamW, which uses a constant weight decay, ours
is an adaptive weight decay controlled by an adaptive learning rate term. Since the learning rate
scheduler is based on the objective function value over training data, if the optimizer tries to overfit
the training data, the same proportion of regularization prevents the model from overfitting.

Finally, SMARAN’s memory requirement is lower than the adaptive methods since the adaptive
learning rate is a scalar quantity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 SMARAN
Input: Initial vector x0 ∈ X ⊆ Rn, loss function f(x)
Parameter: η, λ, γ
Output: xT

Initialize: m0 = 0, v0 = 0

1: for t = 1 to T do
2: ĝt =

∇f(xt)
∥∇f(xt)∥+ϵ

3: mt = γmt−1 + ĝt

4: vt = γvt−1 + f(xt)
2

5: xt+1 = xt − η
(

f(xt)√
vt+ϵ

)
(mt + λxt)

6: end for
7: return xT

4 CONVERGENCE ANALYSIS

We perform the SMARAN algorithm’s convergence analysis and highlight a risk bound under a
convex setting. First introduced in Duchi et al. (2011), convergence analysis in a convex setting was
discussed in many of the later works on adaptive methods, including Adam Kingma & Ba (2015),
AMSGrad Reddi et al. (2018), Adabound Luo et al. (2019), Adabelief Zhuang et al. (2020), and
DecGD Shao et al. (2025).

4.1 ONLINE CONVEX OPTIMIZATION

Given the objective function ft : X → R, the online convex optimization framework aims to
minimize the regret R(T)

R(T) =

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x) (14)

Standard assumptions Duchi et al. (2011); Reddi et al. (2018); Hazan et al. (2016) of online convex
optimization framework are as follows
Assumption 1. (1) The domain X ⊆ Rn is a bounded convex set; the diameter of X is assumed
bounded. For some bound D, ∥x− y∥ ≤ D ∀ x, y ∈ X . (2) ft is a convex function. (3) Gradient of
ft-∇ft is assumed to be bounded. For some bound G, ∥∇ft∥ ≤ G, ∀ xt ∈ X .

Theorem 3. Under Assumption 1, λ ∈ (0, 1), ηt = η√
t
, η > 0, and Vt =

f(xt)√
vt+ϵ , the regret bound

of SMARAN is

R(T) ≤ GD2
√
T

ηV
+GλD2 +Gη(G+ λD)2(2

√
T − 1) (15)

Proof of Theorem 3 is given in Appendix A.1. We conclude that, like previous adaptive methods
Kingma & Ba (2015); Reddi et al. (2018); Luo et al. (2019); Zhuang et al. (2020); Shao et al. (2025),
SMARAN also has an upper bound in O(

√
T).

5 EXPERIMENTAL RESULTS

We highlight the results of an extensive evaluation of the SMARAN algorithm on different bench-
mark datasets for the vision task. We empirically demonstrate the generalization capability of
SMARAN over state-of-the-art models. All the experiments are performed on NVIDIA RTX A6000
GPU with Python 3.12.7 and Pytorch 2.6.0 + cu124. Code for the proposed optimizer is available
here.

5.1 EXPERIMENTAL SETUP

We perform experiments on an image classification task over multiple datasets and models. We use
CIFAR-10 and CIFAR-100 Krizhevsky & Hinton (2009) datasets with 60, 000 color images of res-
olution 32× 32. CIFAR-10 contains 10 object categories, and CIFAR-100 includes 100 categories.

5

https://github.com/rr-cpu/SMARAN-optimizer

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Test accuracy of ResNet50
on CIFAR10

(b) Test Loss of ResNet50 on
CIFAR10

(c) mAP of ResNet50 on
CIFAR10

(d) Test accuracy of
DenseNet121 on CIFAR10

(e) Test Loss of DenseNet121
on CIFAR10

(f) mAP of DenseNet121 on
CIFAR10

(g) Test accuracy of ResNet50
on CIFAR100

(h) Test Loss of ResNet50 on
CIFAR100

(i) mAP of ResNet50 on
CIFAR100

(j) Test accuracy of
DenseNet121 on CIFAR100

(k) Test Loss of DenseNet121
on CIFAR100

(l) mAP of DenseNet121 on
CIFAR100

Figure 1: Experimental Results on CIFAR10 and CIFAR100 datasets.

We split the data into 50, 000 training samples and 10, 000 test samples. For the Tiny ImageNet
dataset, we used 100, 000 training samples and 10, 000 test samples of size 64× 64. Tiny ImageNet
contains 200 unique categories.

The architectures used for image classification include ResNet50 He et al. (2015) and DenseNet121
Huang et al. (2017). The architectures follow the standard configurations available in the PyTorch
package. We use SGD, SGD with momentum, Adam, AdamW, RAdam, DecGD, and Prodigy
Mishchenko & Defazio (2024) as optimizers for a comparative study with SMARAN for the image
classification task. Unless otherwise stated, all optimizers are initialized with the default hyperpa-
rameter values as mentioned in the PyTorch official documentation. We use cross-entropy loss as
an objective function. We train each optimizer with a list of learning rates in [10−1, 10−2, 10−3] to
find the best-performing configurations. Fig. 1 compares different models with the best-performing
configurations for the CIFAR10 and CIFAR100 datasets. SGD is configured with 0.1 learning rate 0
momentum, and weight decay. SGDM uses the same configuration with 0.9 momentum. Adam and
AdamW follow a learning rate of 0.001 with β1 = 0.9, β2 = 0.999, ϵ = 10−8 and weight decay of 0

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Test loss of DenseNet121 on
TinyImageNet

(b) Generalization gap of
DenseNet121 on TinyImageNet

(c) mAP of DenseNet121 on
TinyImageNet

(d) Test loss of ResNet50 on
TinyImageNet

(e) Generalization Gap of
ResNet50 on TinyImageNet

(f) mAP of ResNet50 on Tiny-
ImageNet

Figure 2: Experimental Results on Tiny Imagenet Dataset.

and 0.01 respectively. RAdam follows the same configuration as Adam. DecGD and Prodigy follow
their respective default configurations Shao et al. (2025); Mishchenko & Defazio (2024). SMARAN
use γ = 0.9 and λ = 0.01.

All models are trained for 100 epochs with a batch size of 128. According to their preprocessing
schemes, only standard normalization is performed on the CIFAR10 and CIFAR100 images. For
Tiny ImageNet, we normalize the data with a mean of [0.480, 0.448, 0.398] and a standard devia-
tion of [0.277, 0.269, 0.282]. We perform data augmentation by padding four pixels on all sides and
cropping to a fixed resolution of 64 × 64. To augment orientation diversity, horizontal flipping is
performed. All model weights are randomly initialized. We use three evaluation metrics for com-
parison: Test accuracy, Test loss, and Mean Average Precision (mAP) on CIFAR10 and CIFAR100
datasets as shown in Fig. 1. For Tiny ImageNet data, we plot the generalization gap along with Test
loss and mAP in Fig. 2. Apart from the optimizers mentioned above, we also experimented with
other baselines that work based on the loss function, such as Stochastic Polyak Step-size Loizou
et al. (2021a), POlyak NOnmonotone Stochastic (PoNoS) Galli et al. (2023), and sign-based Lion
Chen et al. (2023) optimizer. Results of the experiments are shown in Appendix A.3.

5.2 DISCUSSION

According to the results shown in Fig. 1, the SMARAN algorithm outperforms all models regarding
test loss. Moreover, when comparing the test accuracy, SMARAN outperforms the state-of-the-art
optimizers. SMARAN’s training curve tends to stabilize in regions where overfitting is prevalent.
Where other optimizers overfit the data after certain epochs, SMARAN is a perfect fit on the data,
with testing loss either decreasing, as in the case of CIFAR10, or remaining stable. The reason
behind this behaviour is the variable regularization parameter in our optimizer formulation. One
can also see the same phenomenon for AdamW; however, for AdamW, the regularization is fixed,
whereas for SMARAN, the adaptive learning rate parameter controls the regularization. The opti-
mizer tries to reduce the gap between training loss and test loss, resulting in better generalization.
Figs. 2b and 2e show the generalization gap, the difference between the testing and training loss
of DenseNet121 and ResNet50 on the TinyImageNet dataset. The results show that the generaliza-
tion gap is closer to zero for SMARAN compared to other optimizers. Generalization gap plots of
other datasets are provided in the Appendix A.3. Since the accuracy curve does not reflect the pro-
portionate improvement displayed by the loss curve, we use mAP as a complementary evaluation
metric. mAP provides class-wise prediction confidence and enables a reliable comparison across
different optimizers. The mAP values shown in Figs. 1 and 2 suggest that SMARAN performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

is better than other methods. Figs. 1h and 1k show that SMARAN performs better with more cat-
egories such as CIFAR100 over CIFAR10. A similar trend is seen with the TinyImageNet dataset
in Figs. 2a and 2d. The results of the experiments on loss-based optimizers show that SMARAN is
performing better than other optimizers. The performance gap is relatively low regarding accuracy
on DenseNet121 with CIFAR100, which shows a scope for further improvements for larger models
with diverse datasets.

6 CONCLUSION

In this work, we introduced a novel optimization method, SMARAN, that adapts the learning rate
based on loss value instead of depending on the gradients. Our method provides a bounded learning
rate, resulting in stable training and better generalization. Our variable regularization mechanism
constrains the model from overfitting after reaching the optimal test results. Even though the model
is not adaptive coordinate-wise, such as Adam and other adaptive methods, the learning rate still
adapts to the curvature of the loss landscape using the exponential average of historical loss. Addi-
tionally, SMARAN is memory efficient compared to Adam-type methods since its learning rate is a
scalar. Experimental results demonstrate the algorithm’s effectiveness for vision-based models over
adaptive methods. Future work includes extending the SMARAN optimizer for other domains like
text and video processing.

REFERENCES

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. In IJCAI, pp.
3267–3275, 2020.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discovery of optimization
algorithms. In NeurIPS, volume 36, pp. 49205–49233, 2023.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12(7):2121–2159, 2011.

Leonardo Galli, Holger Rauhut, and Mark Schmidt. Don’t be so monotone: Relaxing stochastic line
search in over-parameterized models. In NeurIPS, 2023.

Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule: A
near optimal, geometrically decaying learning rate procedure for least squares. In NeurIPS, pp.
14977–14988, 2019.

Alex Graves, Abdel-Rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recur-
rent neural networks. In ICASSP, pp. 6645–6649, 2013.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157–325, 2016.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, pp. 770–778, 2015.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, pp. 4700–4708, 2017.

D.P. Kingma and L.J. Ba. Adam: A method for stochastic optimization. In ICLR, pp. 13, 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, Ontario, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In NeurIPS, pp. 1097–1105, 2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In ICLR, April 2020.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In AISTATS, pp. 1306–1314,
2021a.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In AISTATS, pp. 1306–1314,
2021b.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In ICLR,
2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Liangchen Luo, Yuanhao Xiong, and Yan Liu. Adaptive gradient methods with dynamic bound of
learning rate. In ICLR, 2019.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. In ICML, volume 235, pp. 35779–35804, 2024.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate
O(1/k2).Dokl Akad Nauk SSSR, 269 : 543, 1983.

Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou. Dynamics of sgd with stochastic polyak
stepsizes: Truly adaptive variants and convergence to exact solution. In NeurIPS, pp. 26943–26954,
2022.

Boris Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computa-
tional Mathematics and Mathematical Physics, 4:1–17, 12 1964.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In ICLR,
2018.

Zhou Shao, Hang Zhou, and Tong Lin. A new adaptive gradient method with gradient decomposition.
Machine Learning, 114(7):155, May 2025.

Naum Zuselevich Shor. Minimization methods for non-differentiable functions. Springer Berlin, Hei-
delberg, 1985.

Leslie N. Smith. Cyclical learning rates for training neural networks. In WACV, pp. 464–472, 2017.

Tijmen Tieleman. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning, 4(2):26, 2012.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
for nonconvex optimization. In NeurIPS, pp. 9815 – 9825, 2018.

Juntang Zhuang, Tommy Tang, Sekhar Tatikonda, Nicha C Dvornek, Yifan Ding, Xenophon Pa-
pademetris, and James S Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. In NeurIPS Workshop: Deep Learning through Information Geometry, 2020.

A APPENDIX

A.1 PROOF OF THEOREM 3

Proof. The potential function is defined as

ϕ = ∥xt+1 − x∗∥2 (16)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

∥xt+1 − x∗∥ = ∥xt − ηtVt(mt + λxt)− x∗∥2

= ∥xt − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 − ηtVt⟨mt + λxt,xt − x∗⟩

= ∥xt − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 − ηtVt⟨mt,xt − x∗⟩ − ηtVtλ⟨xt,xt − x∗⟩

rearranging the terms,

⟨mt,xt − x∗⟩ = ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 − ηtVtλ⟨xt,xt − x∗⟩
ηtVt

substitute mt from Eq. 3,

⟨γmt−1 + ĝt,xt − x∗⟩ = ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 − ηtVtλ⟨xt,xt − x∗⟩
ηtVt

⟨ĝt,xt − x∗⟩ = ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 + ηtVtλ⟨xt,xt − x∗⟩
ηtVt

− γ⟨mt−1,xt − x∗⟩

substitute ĝt from Eq. 2 and for simplicity assume ϵ ≈ 0,

⟨∇ft(xt),xt − x∗⟩ = ∥∇ft(xt)∥
(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

ηtVt
+ ηtVt∥mt + λxt∥2+

λ⟨xt,xt − x∗⟩ − γ⟨mt−1,xt − x∗⟩
)

(17)

From Eq. 14, regret is defined as

R(T) =

T∑
t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x) (18)

=

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
∗) (19)

=

T∑
t=1

(ft(xt)− ft(x
∗)) (20)

≤
T∑

t=1

⟨∇ft(xt),xt − x∗⟩ (21)

Therefore

R(T) ≤ ∥∇ft(xt)∥
(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

ηtVt
+ ηtVt∥mt + λxt∥2+

λ⟨xt,xt − x∗⟩ − γ⟨mt−1,xt − x∗⟩
)

(22)

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Simplifying each term in Eq. 22 and substitute ηt = η/
√
t.

T∑
t=1

∥∇ft(xt)∥
(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

ηtVt

)
(23)

=

T∑
t=1

∥∇ft(xt)∥
√
t

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

ηVt

)
(24)

≤ G

ηV

T∑
t=1

√
t

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
(25)

≤ G

ηV

(
∥x1 − x∗∥2 +

T∑
t=2

√
t∥xt − x∗∥2 −

T∑
t=2

√
t− 1∥xt − x∗∥2

)
(26)

=
GD2

ηV

(
n+

T∑
t=2

(
√
t−

√
t− 1)

)
(27)

≤ GD2
√
T

ηV
(28)

Similarly,
T∑

t=1

∥∇ft(xt)∥
(
λ⟨xt,xt − x∗⟩

)
(29)

≤ GλD2 (30)
(31)

For the remaining part,
T∑

t=1

∥∇ft(xt)∥
(
ηtVt∥mt + λxt∥2 − γ⟨mt−1,xt − x∗⟩

)
(32)

≤
T∑

t=1

∥∇ft(xt)∥
(
ηtVt∥mt + λxt∥2

)
(33)

≤ Gη

T∑
t=1

∥mt + λxt∥2√
t

(34)

≤ Gη(G+ λD)2
T∑

t=1

1√
t

(35)

≤ Gη(G+ λD)2(2
√
T − 1) (36)

From Eq. 22, 28, 31 and 36 we write

R(T) ≤ GD2
√
T

ηV
+GλD2 +Gη(G+ λD)2(2

√
T − 1) (37)

A.2 PROOF OF CONSTANT LEARNING RATE FOR CONSTANT LOSS

Given

Vt =
f(xt)√
vt + ϵ

(38)

Assume f(xt) = c be constant and for simplicity assume ϵ ≈ 0. Then from Eq. 9,

vt = γvt−1 + c2 (39)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

solution for the above recurrence relation is

vt =
c2

1− γ
(40)

substitute into Eq.38, we get

Vt =
c√
c2

1−γ

(41)

=
√
1− γ (42)

A.3 ADDITIONAL RESULTS

(a) Generalization gap of
DenseNet121 on CIFAR10

(b) Generalization gap of
DenseNet121 on CIFAR100

(c) Generalization gap of
ResNet50 on CIFAR10

(d) Generalization gap of
ResNet50 on CIFAR100

Figure 3: Generalization gaps on CIFAR10 and CIFAR100.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

(a) Test accuracy of ResNet50
on CIFAR10

(b) Test Loss of ResNet50 on
CIFAR10

(c) mAP of ResNet50 on
CIFAR10

(d) Test accuracy of
DenseNet121 on CIFAR10

(e) Test Loss of DenseNet121
on CIFAR10

(f) mAP of DenseNet121 on
CIFAR10

(g) Test accuracy of ResNet50
on CIFAR100

(h) Test Loss of ResNet50 on
CIFAR100

(i) mAP of ResNet50 on
CIFAR100

(j) Test accuracy of
DenseNet121 on CIFAR100

(k) Test Loss of DenseNet121
on CIFAR100

(l) mAP of DenseNet121 on
CIFAR100

Figure 4: Experimental Results on CIFAR10 and CIFAR100 datasets for loss based models.

13

	Introduction
	Related works
	Methodology
	Convergence Analysis
	Online Convex Optimization

	Experimental Results
	Experimental Setup
	Discussion

	Conclusion
	Appendix
	Proof of Theorem 3
	Proof of constant learning rate for constant loss
	Additional Results

