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ABSTRACT

Optimization methods have evolved significantly by introducing various learn-
ing rate scheduling techniques and adaptive learning strategies. Although these
methods have achieved faster convergence, they often struggle to generalize well
to unseen data compared to traditional approaches such as Stochastic Gradient
Descent (SGD) with momentum. Adaptive methods such as Adam store each pa-
rameter’s first and second moments of gradients, which can be memory-intensive.
To address these challenges, we propose a novel SMARAN optimization method
that adjusts the learning rate based on the model’s performance rather than the
objective function’s curvature. This approach is particularly effective for mini-
mizing stochastic loss functions, standard in deep learning models. Traditional
gradient-based methods may get stuck in regions where the gradient vanishes,
such as plateaus or local minima. Therefore, instead of only depending on the
gradient, we use the model’s performance to estimate the appropriate step size.
We performed extensive experiments on standard vision benchmarks, and the gen-
eralization trends observed with SMARAN demonstrate compelling distinctions
relative to adaptive and non-adaptive optimizers.

1 INTRODUCTION

A stochastic optimization problem is defined as

min
x∈X

Eξ[f(x, ξ)] (1)

where ξ is a random variable that introduces uncertainty in the objective function f(x, ξ) and x
is the decision variable belonging to the feasible domain X . Standard solution methods for this
form of optimization problems include gradient-based approaches such as SGD and its variants Le-
cun et al. (1998); Graves et al. (2013); Krizhevsky et al. (2012). However, gradient-based methods
rely on the gradient direction for updating the parameters, but the gradient itself is affected by the
stochastic nature of the function; hence, a negative gradient direction may not always be the best
search direction. In nonconvex settings, relying on gradient magnitude to identify the optimal point
could be misleading. Flat regions, saddle points, and inflexion points exhibit the property of zero
gradient. Finally, gradients give local neighborhood information; hence, one may get stuck at local
optima instead of searching for a global solution. Then we have the problem of gradient explosion
in steep regions. In addition, gradient-based optimizers lack step size adaptability based on land-
scape curvature, resulting in uniform step size scaling. In the literature, many variants are proposed
to overcome these drawbacks. SGD with momentum Polyak (1964) and Nesterov Nesterov (1983)
overcome the first problem by aggregating past gradients to determine the current update direction.
Aggregation reduces the effect of the stochasticity in the gradient. Adaptive methods overcome the
uniform scaling of the gradient along all coordinate directions. AdaGrad Duchi et al. (2011) was
the first algorithm in this line of research. AdaGrad used the historical sum of squared gradients
to adjust the learning rate of individual parameters, resulting in faster learning. However, the ac-
cumulated squared gradients grow monotonically, causing the learning rate to shrink and leading
to premature convergence. Later methods, such as RMSProp Tieleman (2012) and Adam Kingma
& Ba (2015), overcome this difficulty using an exponential moving average (EMA) of gradients.
Adam is the most prominent optimizer used among the adaptive optimizers. It uses the EMA of
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gradient (the first-moment estimate) for update direction and normalizes the learning rate with the
EMA of gradient square, the second-moment estimate. Although Adam-based methods have the
advantage of faster convergence, storing first and second-moment estimates for each parameter be-
comes memory-intensive. Also, there is no clear evidence that Adam-based methods perform better
in generalization than SGD with momentum. To overcome these drawbacks of previous methods, we
introduce a novel optimization approach based on the objective function value rather than gradient
dependence. Main contributions of the paper are:

• A novel optimizer SMARAN, which is based on the concept of EMA but uses the objective
function value to adjust the learning rate instead of gradients, unlike Adam-based methods.

• Theoretical regret analysis of our objective function in the online convex optimization
framework, and provide bounds on the learning rate.

• We experimentally compared our algorithm with state-of-the-art methods. Experimental
results demonstrate that SMARAN outperformed other methods in terms of generalization
ability for vision tasks.

2 RELATED WORKS

Progression from manually scheduled updates to gradient-based adaptivity marks the advancement
of optimization methods. Classical methods such as Stochastic Gradient Descent (SGD) and its
momentum-augmented variants Polyak (1964), including Nesterov Accelerated Gradient (NAG)
Nesterov (1983), laid the foundation for this development. These methods primarily focused on
exploiting gradient direction and aggregating past values to reduce noise from stochastic updates.
Nevertheless, they fail to adapt the learning rate based on the loss landscape, which results in oscil-
lations near the optimal point.

Learning rate scheduling schemes were introduced based on training steps to overcome these limi-
tations. While step decay Ge et al. (2019) reduces the learning rate at predefined intervals, cosine
annealing Loshchilov & Hutter (2017) and cyclic schedules Smith (2017) use periodic changes. Al-
though these methods improve convergence, they lack responsiveness towards the loss landscape
and model performance. Their performance is heavily dependent on manual hyperparameter tuning.

Recent works on adaptive learning rate modify the Polyak stepsize for stochastic nonconvex opti-
mization Loizou et al. (2021b). Orvieto et al. (2022) demonstrates a polyak stepsize variant with
decreasing stepsize that gives a convergence rate equivalent to gradient descent with proper initial-
ization.

A paradigm shift occurred with the coming of adaptive methods such as AdaGrad Duchi et al.
(2011), RMSProp Tieleman (2012), and Adam Kingma & Ba (2015). They introduced a parameter-
wise adaptation of the learning rate. AdaGrad uses accumulated squared gradients to normalize the
learning rate, penalizing frequently updated directions but often resulting in premature convergence.
RMSProp overcomes this drawback by using the EMA of squared gradients, promoting smoother
adaptation. Adam combines first and second-order moment estimates of gradients for learning rate
adaptation. This results in stable updates with rapid initial convergence. Empirical studies show that
adaptive methods may overfit, resulting in inferior performance to SGD with momentum on specific
benchmarks.Chen et al. (2020); Reddi et al. (2018)

More recent optimization approaches include AdamW Loshchilov & Hutter (2019), which decou-
ples the weight decay from gradient updates. AMSGrad Reddi et al. (2018) controls the learning rate
to become monotonically decreasing over iterations. Yogi Zaheer et al. (2018) prevents the second
moment estimate of Adam from exploding by sign correction. AdaBound Luo et al. (2019) clips
the bounds of the learning rate to avoid the exploding and vanishing problem. PAdam Chen et al.
(2020) scales the learning rate by a tunable adaptivity parameter. RAdam Liu et al. (2020) rectifies
the adaptive learning rate variance. AdaBelief Zhuang et al. (2020) replaces the uncentred second
moment with a centred variance estimate around the gradient. DecGD Shao et al. (2025) decom-
poses the gradient into a product of the surrogate loss and its gradient, which allows the learning
rate adaptation based on the loss vector.
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Now that we have traversed the evolution of optimization methods from simple gradient heuristics
to momentum-based adaptation, we introduce our novel optimizer, SMARAN, whose mechanism
and theoretical insights are discussed in the next section.

3 METHODOLOGY

Let f : Rn → R denote the loss function to minimize and let x ∈ X ⊆ Rn be the decision variable.
We have three hyperparameters: the global learning rate η, the regularization coefficient λ, and the
moment discount factor γ. We included the factor ϵ with a value 10−8 for the numerical stability
of the division operations. The terms mt and vt represent the moments of normalized gradient loss
and square loss at iteration t, respectively, with initial values set to zero.

The previous section identifies three key factors that drive optimization algorithm design: update
direction, update magnitude, and adaptiveness across different landscapes. Following these insights
and the gaps in optimizing a stochastic function, we incorporated these aspects into our method, il-
lustrated in Algorithm 1. The algorithm finds the optimal point using gradient information, momen-
tum, a loss-based scaling mechanism for adaptivity, and variable regularization to avoid overfitting.
The algorithm blends normalization, regularization, and an adaptive learning rate.

Following the Normalized Gradient Descent Shor (1985), to estimate the update direction, we use
the normalized gradient ĝt instead of the complete gradient ∇f(xt)

ĝt =
∇f(xt).

∥∇f(xt)∥+ ϵ
(2)

Since the loss function is stochastic, we take the exponential average over past gradients for smooth-
ing purposes to reduce the effect of uncertainty. The first moment is

mt = γmt−1 + ĝt. (3)

Theorem 1. Let f : Rn → R be a differentiable loss function parameterized by x, then the norm
of the exponential average of the normalized gradients over some time step t, given by Eq. (3), is
upper bounded as

∥mt∥ <
1

1− γ
(4)

Proof. Expanding Eq. (3),

mt =

t∑
τ=1

γt−τ ĝτ

Using the triangle inequality,

∥mt∥ ≤
t∑

τ=1

|γt−τ |.∥ĝτ∥ (5)

Since ∥ĝ∥ < 1 due to ϵ factor in Eq. (2)

∥mt∥ <

t∑
τ=1

|γt−τ | (6)

=
1− γt

1− γ
(7)

As t → ∞, sum of geometric progression becomes

1− γt

1− γ
→ 1

1− γ
> ∥mt∥.

Moreover, the first moment is upper-bounded. Hence, this moment prevents gradient explosion,
provided the multiplicative learning factor is not ∞.
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This approach is effective for high-dimensional or ill-conditioned landscapes.

Adapting the learning rate based on the curvature of the function is done using a performance-based
factor instead of depending on the gradients. Our performance-based factor is

f(xt)√
vt + ϵ

(8)

where
vt = γvt−1 + f(xt)

2 (9)
Theorem 2. Let f : Rn → R+ be a continuous loss function parameterized by x, and {xt} for
t = 1, 2, ..., T be a finite parameter sequence generated by gradient descent updates in T iterations,
then for every time step t,

0 <
f(xt)√
vt + ϵ

< 1 (10)

where

vt =

t∑
τ=1

γt−τf(xτ )
2 (11)

Proof. From Eq. (9), we have vt ≥ f(xt)
2 which implies,

√
vt ≥ f(xt)√

vt + ϵ > f(xt)

1
√
vt + ϵ

<
1

f(xt)

f(xt)√
vt + ϵ

< 1

Since f : Rn → R+, both numerator and denominator are positive,

0 ≤ f(xt)√
vt + ϵ

< 1 (12)

This factor is 0 only when f(xt) = 0.

Previous methods use the EMA of the gradient square for normalizing the learning rate because gra-
dients give the curvature of the landscape. However, for a nonconvex setting, steep curvature results
in slow learning, whereas in our approach, the optimizer adjusts the learning rate based on its recent
losses. If recent losses are high, then the optimizer updates the parameters cautiously. In contrast, if
recent losses are low and decreasing with each timestep, the learning rate increases, making conver-
gence faster. Unlike other methods stuck at local minima or landscapes where the gradient vanishes,
our optimizer searches for paths to find the global minimum. For constant loss, SMARAN’s learning
rate approaches

√
1− γ regardless of the loss magnitude (proof given in Appendix A.2). In an ideal

case, as x → x∗(global minima), f(x) → 0 hence,

lim
xt→x∗

f(xt)√
vt + ϵ

= 0

To avoid getting overfit, we included a weight decay regularization term in the update step.

xt+1 = xt − η

(
f(xt)√
vt + ϵ

)
(mt + λxt) (13)

AdamW inspires the weight decay, but unlike AdamW, which uses a constant weight decay, ours
is an adaptive weight decay controlled by an adaptive learning rate term. Since the learning rate
scheduler is based on the objective function value over training data, if the optimizer tries to overfit
the training data, the same proportion of regularization prevents the model from overfitting.

Finally, SMARAN’s memory requirement is lower than the adaptive methods since the adaptive
learning rate is a scalar quantity.
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Algorithm 1 SMARAN
Input: Initial vector x0 ∈ X ⊆ Rn, loss function f(x)
Parameter: η, λ, γ
Output: xT

Initialize: m0 = 0, v0 = 0

1: for t = 1 to T do
2: ĝt =

∇f(xt)
∥∇f(xt)∥+ϵ

3: mt = γmt−1 + ĝt

4: vt = γvt−1 + f(xt)
2

5: xt+1 = xt − η
(

f(xt)√
vt+ϵ

)
(mt + λxt)

6: end for
7: return xT

4 CONVERGENCE ANALYSIS

We perform the SMARAN algorithm’s convergence analysis and highlight a risk bound under a
convex setting. First introduced in Duchi et al. (2011), convergence analysis in a convex setting was
discussed in many of the later works on adaptive methods, including Adam Kingma & Ba (2015),
AMSGrad Reddi et al. (2018), Adabound Luo et al. (2019), Adabelief Zhuang et al. (2020), and
DecGD Shao et al. (2025).

4.1 ONLINE CONVEX OPTIMIZATION

Given the objective function ft : X → R, the online convex optimization framework aims to
minimize the regret R(T )

R(T ) =

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x) (14)

Standard assumptions Duchi et al. (2011); Reddi et al. (2018); Hazan et al. (2016) of online convex
optimization framework are as follows
Assumption 1. (1) The domain X ⊆ Rn is a bounded convex set; the diameter of X is assumed
bounded. For some bound D, ∥x− y∥ ≤ D ∀ x, y ∈ X . (2) ft is a convex function. (3) Gradient of
ft-∇ft is assumed to be bounded. For some bound G, ∥∇ft∥ ≤ G, ∀ xt ∈ X .

Theorem 3. Under Assumption 1, λ ∈ (0, 1), ηt = η√
t
, η > 0, and Vt =

f(xt)√
vt+ϵ , the regret bound

of SMARAN is

R(T ) ≤ GD2
√
T

ηV
+GλD2 +Gη(G+ λD)2(2

√
T − 1) (15)

Proof of Theorem 3 is given in Appendix A.1. We conclude that, like previous adaptive methods
Kingma & Ba (2015); Reddi et al. (2018); Luo et al. (2019); Zhuang et al. (2020); Shao et al. (2025),
SMARAN also has an upper bound in O(

√
T ).

5 EXPERIMENTAL RESULTS

We highlight the results of an extensive evaluation of the SMARAN algorithm on different bench-
mark datasets for the vision task. We empirically demonstrate the generalization capability of
SMARAN over state-of-the-art models. All the experiments are performed on NVIDIA RTX A6000
GPU with Python 3.12.7 and Pytorch 2.6.0 + cu124. Code for the proposed optimizer is available
here.

5.1 EXPERIMENTAL SETUP

We perform experiments on an image classification task over multiple datasets and models. We use
CIFAR-10 and CIFAR-100 Krizhevsky & Hinton (2009) datasets with 60, 000 color images of res-
olution 32× 32. CIFAR-10 contains 10 object categories, and CIFAR-100 includes 100 categories.

5
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(a) Test accuracy of ResNet50
on CIFAR10

(b) Test Loss of ResNet50 on
CIFAR10

(c) mAP of ResNet50 on
CIFAR10

(d) Test accuracy of
DenseNet121 on CIFAR10

(e) Test Loss of DenseNet121
on CIFAR10

(f) mAP of DenseNet121 on
CIFAR10

(g) Test accuracy of ResNet50
on CIFAR100

(h) Test Loss of ResNet50 on
CIFAR100

(i) mAP of ResNet50 on
CIFAR100

(j) Test accuracy of
DenseNet121 on CIFAR100

(k) Test Loss of DenseNet121
on CIFAR100

(l) mAP of DenseNet121 on
CIFAR100

Figure 1: Experimental Results on CIFAR10 and CIFAR100 datasets.

We split the data into 50, 000 training samples and 10, 000 test samples. For the Tiny ImageNet
dataset, we used 100, 000 training samples and 10, 000 test samples of size 64× 64. Tiny ImageNet
contains 200 unique categories.

The architectures used for image classification include ResNet50 He et al. (2015) and DenseNet121
Huang et al. (2017). The architectures follow the standard configurations available in the PyTorch
package. We use SGD, SGD with momentum, Adam, AdamW, RAdam, DecGD, and Prodigy
Mishchenko & Defazio (2024) as optimizers for a comparative study with SMARAN for the image
classification task. Unless otherwise stated, all optimizers are initialized with the default hyperpa-
rameter values as mentioned in the PyTorch official documentation. We use cross-entropy loss as
an objective function. We train each optimizer with a list of learning rates in [10−1, 10−2, 10−3] to
find the best-performing configurations. Fig. 1 compares different models with the best-performing
configurations for the CIFAR10 and CIFAR100 datasets. SGD is configured with 0.1 learning rate 0
momentum, and weight decay. SGDM uses the same configuration with 0.9 momentum. Adam and
AdamW follow a learning rate of 0.001 with β1 = 0.9, β2 = 0.999, ϵ = 10−8 and weight decay of 0
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(a) Test loss of DenseNet121 on
TinyImageNet

(b) Generalization gap of
DenseNet121 on TinyImageNet

(c) mAP of DenseNet121 on
TinyImageNet

(d) Test loss of ResNet50 on
TinyImageNet

(e) Generalization Gap of
ResNet50 on TinyImageNet

(f) mAP of ResNet50 on Tiny-
ImageNet

Figure 2: Experimental Results on Tiny Imagenet Dataset.

and 0.01 respectively. RAdam follows the same configuration as Adam. DecGD and Prodigy follow
their respective default configurations Shao et al. (2025); Mishchenko & Defazio (2024). SMARAN
use γ = 0.9 and λ = 0.01.

All models are trained for 100 epochs with a batch size of 128. According to their preprocessing
schemes, only standard normalization is performed on the CIFAR10 and CIFAR100 images. For
Tiny ImageNet, we normalize the data with a mean of [0.480, 0.448, 0.398] and a standard devia-
tion of [0.277, 0.269, 0.282]. We perform data augmentation by padding four pixels on all sides and
cropping to a fixed resolution of 64 × 64. To augment orientation diversity, horizontal flipping is
performed. All model weights are randomly initialized. We use three evaluation metrics for com-
parison: Test accuracy, Test loss, and Mean Average Precision (mAP) on CIFAR10 and CIFAR100
datasets as shown in Fig. 1. For Tiny ImageNet data, we plot the generalization gap along with Test
loss and mAP in Fig. 2. Apart from the optimizers mentioned above, we also experimented with
other baselines that work based on the loss function, such as Stochastic Polyak Step-size Loizou
et al. (2021a), POlyak NOnmonotone Stochastic (PoNoS) Galli et al. (2023), and sign-based Lion
Chen et al. (2023) optimizer. Results of the experiments are shown in Appendix A.3.

5.2 DISCUSSION

According to the results shown in Fig. 1, the SMARAN algorithm outperforms all models regarding
test loss. Moreover, when comparing the test accuracy, SMARAN outperforms the state-of-the-art
optimizers. SMARAN’s training curve tends to stabilize in regions where overfitting is prevalent.
Where other optimizers overfit the data after certain epochs, SMARAN is a perfect fit on the data,
with testing loss either decreasing, as in the case of CIFAR10, or remaining stable. The reason
behind this behaviour is the variable regularization parameter in our optimizer formulation. One
can also see the same phenomenon for AdamW; however, for AdamW, the regularization is fixed,
whereas for SMARAN, the adaptive learning rate parameter controls the regularization. The opti-
mizer tries to reduce the gap between training loss and test loss, resulting in better generalization.
Figs. 2b and 2e show the generalization gap, the difference between the testing and training loss
of DenseNet121 and ResNet50 on the TinyImageNet dataset. The results show that the generaliza-
tion gap is closer to zero for SMARAN compared to other optimizers. Generalization gap plots of
other datasets are provided in the Appendix A.3. Since the accuracy curve does not reflect the pro-
portionate improvement displayed by the loss curve, we use mAP as a complementary evaluation
metric. mAP provides class-wise prediction confidence and enables a reliable comparison across
different optimizers. The mAP values shown in Figs. 1 and 2 suggest that SMARAN performance

7
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is better than other methods. Figs. 1h and 1k show that SMARAN performs better with more cat-
egories such as CIFAR100 over CIFAR10. A similar trend is seen with the TinyImageNet dataset
in Figs. 2a and 2d. The results of the experiments on loss-based optimizers show that SMARAN is
performing better than other optimizers. The performance gap is relatively low regarding accuracy
on DenseNet121 with CIFAR100, which shows a scope for further improvements for larger models
with diverse datasets.

6 CONCLUSION

In this work, we introduced a novel optimization method, SMARAN, that adapts the learning rate
based on loss value instead of depending on the gradients. Our method provides a bounded learning
rate, resulting in stable training and better generalization. Our variable regularization mechanism
constrains the model from overfitting after reaching the optimal test results. Even though the model
is not adaptive coordinate-wise, such as Adam and other adaptive methods, the learning rate still
adapts to the curvature of the loss landscape using the exponential average of historical loss. Addi-
tionally, SMARAN is memory efficient compared to Adam-type methods since its learning rate is a
scalar. Experimental results demonstrate the algorithm’s effectiveness for vision-based models over
adaptive methods. Future work includes extending the SMARAN optimizer for other domains like
text and video processing.
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A APPENDIX

A.1 PROOF OF THEOREM 3

Proof. The potential function is defined as

ϕ = ∥xt+1 − x∗∥2 (16)

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

∥xt+1 − x∗∥ = ∥xt − ηtVt(mt + λxt)− x∗∥2

= ∥xt − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 − ηtVt⟨mt + λxt,xt − x∗⟩

= ∥xt − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 − ηtVt⟨mt,xt − x∗⟩ − ηtVtλ⟨xt,xt − x∗⟩

rearranging the terms,

⟨mt,xt − x∗⟩ = ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 − ηtVtλ⟨xt,xt − x∗⟩
ηtVt

substitute mt from Eq. 3,

⟨γmt−1 + ĝt,xt − x∗⟩ = ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 − ηtVtλ⟨xt,xt − x∗⟩
ηtVt

⟨ĝt,xt − x∗⟩ = ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 + η2t V
2
t ∥mt + λxt∥2 + ηtVtλ⟨xt,xt − x∗⟩
ηtVt

− γ⟨mt−1,xt − x∗⟩

substitute ĝt from Eq. 2 and for simplicity assume ϵ ≈ 0,

⟨∇ft(xt),xt − x∗⟩ = ∥∇ft(xt)∥
(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

ηtVt
+ ηtVt∥mt + λxt∥2+

λ⟨xt,xt − x∗⟩ − γ⟨mt−1,xt − x∗⟩
)

(17)

From Eq. 14, regret is defined as

R(T ) =

T∑
t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x) (18)

=

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
∗) (19)

=

T∑
t=1

(ft(xt)− ft(x
∗)) (20)

≤
T∑

t=1

⟨∇ft(xt),xt − x∗⟩ (21)

Therefore

R(T ) ≤ ∥∇ft(xt)∥
(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

ηtVt
+ ηtVt∥mt + λxt∥2+

λ⟨xt,xt − x∗⟩ − γ⟨mt−1,xt − x∗⟩
)

(22)
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Simplifying each term in Eq. 22 and substitute ηt = η/
√
t.

T∑
t=1

∥∇ft(xt)∥
(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

ηtVt

)
(23)

=

T∑
t=1

∥∇ft(xt)∥
√
t

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

ηVt

)
(24)

≤ G

ηV

T∑
t=1

√
t

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
(25)

≤ G

ηV

(
∥x1 − x∗∥2 +

T∑
t=2

√
t∥xt − x∗∥2 −

T∑
t=2

√
t− 1∥xt − x∗∥2

)
(26)

=
GD2

ηV

(
n+

T∑
t=2

(
√
t−

√
t− 1)

)
(27)

≤ GD2
√
T

ηV
(28)

Similarly,
T∑

t=1

∥∇ft(xt)∥
(
λ⟨xt,xt − x∗⟩

)
(29)

≤ GλD2 (30)
(31)

For the remaining part,
T∑

t=1

∥∇ft(xt)∥
(
ηtVt∥mt + λxt∥2 − γ⟨mt−1,xt − x∗⟩

)
(32)

≤
T∑

t=1

∥∇ft(xt)∥
(
ηtVt∥mt + λxt∥2

)
(33)

≤ Gη

T∑
t=1

∥mt + λxt∥2√
t

(34)

≤ Gη(G+ λD)2
T∑

t=1

1√
t

(35)

≤ Gη(G+ λD)2(2
√
T − 1) (36)

From Eq. 22, 28, 31 and 36 we write

R(T ) ≤ GD2
√
T

ηV
+GλD2 +Gη(G+ λD)2(2

√
T − 1) (37)

A.2 PROOF OF CONSTANT LEARNING RATE FOR CONSTANT LOSS

Given

Vt =
f(xt)√
vt + ϵ

(38)

Assume f(xt) = c be constant and for simplicity assume ϵ ≈ 0. Then from Eq. 9,

vt = γvt−1 + c2 (39)
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solution for the above recurrence relation is

vt =
c2

1− γ
(40)

substitute into Eq.38, we get

Vt =
c√
c2

1−γ

(41)

=
√
1− γ (42)

A.3 ADDITIONAL RESULTS

(a) Generalization gap of
DenseNet121 on CIFAR10

(b) Generalization gap of
DenseNet121 on CIFAR100

(c) Generalization gap of
ResNet50 on CIFAR10

(d) Generalization gap of
ResNet50 on CIFAR100

Figure 3: Generalization gaps on CIFAR10 and CIFAR100.
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(a) Test accuracy of ResNet50
on CIFAR10

(b) Test Loss of ResNet50 on
CIFAR10

(c) mAP of ResNet50 on
CIFAR10

(d) Test accuracy of
DenseNet121 on CIFAR10

(e) Test Loss of DenseNet121
on CIFAR10

(f) mAP of DenseNet121 on
CIFAR10

(g) Test accuracy of ResNet50
on CIFAR100

(h) Test Loss of ResNet50 on
CIFAR100

(i) mAP of ResNet50 on
CIFAR100

(j) Test accuracy of
DenseNet121 on CIFAR100

(k) Test Loss of DenseNet121
on CIFAR100

(l) mAP of DenseNet121 on
CIFAR100

Figure 4: Experimental Results on CIFAR10 and CIFAR100 datasets for loss based models.
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