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Abstract

The primary challenge of multi-label active learn-
ing, differing it from multi-class active learning,
lies in assessing the informativeness of an indef-
inite number of labels while also accounting for
the inherited label correlation. Existing studies ei-
ther require substantial computational resources to
leverage correlations or fail to fully explore label
dependencies. Additionally, real-world scenarios
often require addressing intrinsic biases stemming
from imbalanced data distributions. In this paper,
we propose a new multi-label active learning strat-
egy to address both challenges. Our method incor-
porates progressively updated positive and nega-
tive correlation matrices to capture co-occurrence
and disjoint relationships within the label space
of annotated samples, enabling a holistic assess-
ment of uncertainty rather than treating labels as
isolated elements. Furthermore, alongside diver-
sity, our model employs ensemble pseudo labeling
and beta scoring rules to address data imbalances.
Extensive experiments on four realistic datasets
demonstrate that our strategy consistently achieves
more reliable and superior performance, compared
to several established methods.

1 INTRODUCTION

In recent years, extensive machine learning models and al-
gorithms have been developed to deal with the exponential
growth of real-world data. However, the significant mis-
match between the rapid increase in data and the slow pace
of manual data annotation underscores the imperative of
active learning (AL) [Liu et al., 2021, Xie et al., 2022].
Multi-label active learning (MLAL), which considers the
co-occurrence of labels and is more aligned with real-world
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applications, has been explored in different domains, includ-
ing text classification [Han et al., 2024, Kang et al., 2020],
medical imaging [Huang et al., 2024, Simao et al., 2023],
remote sensing [Möllenbrok et al., 2023, Möllenbrok and
Demir, 2023], and so on. The multi-label task, due to the
complexity of label-wise correlation and imbalanced data
distribution, remains a vital task to comprehensively exam-
ine the data, thus necessitating the development of effective
query strategies [Siméoni et al., 2020, Dor et al., 2020].

To deal with the multi-label issue in active learning, earlier
approaches usually transform it into multiple binary classifi-
cation tasks, known as binary relevance (BR) which sums
the informativeness evaluated for each individual label to
obtain the final acquisition score [Zheng et al., 2021, Wang
et al., 2022]. However, these approaches overlook the poten-
tial correlation of labels, such as their co-occurrence, which
should be factored into the overall information assessment
[Zhang et al., 2021, Min et al., 2022]. Consequently, the
information inherent in the label correlation of the queried
samples may not be fully explored.

Some recent works have employed co-occurrence and label
correlation matrices to model these inherent label relation-
ships [Su et al., 2023]. However, while the positive cor-
relations, indicating strong co-occurrence between labels,
have been included, few studies have explored negative cor-
relations where labels are mutually exclusive and do not
appear together. Moreover, asymmetric label-wise correla-
tions, where one label frequently appears with another label
without a reciprocal relationship, remains under-explored.
This also includes the hierarchical structure of the label set,
where node labels inherently belong to and serve as subsets
of their corresponding root labels. The selection of over-
lapping labels, due to the hierarchical nature, affects the
diversity of the strategy, consequently, its overall outcome
[Nakano et al., 2020]. Furthermore, due to the high imbal-
ance ratios in real-world datasets, addressing data imbalance
to maintain consistent performance across different datasets
highlights the critical importance of MLAL tasks [Chen
et al., 2022, Arens et al., 2024].
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Considering label co-occurrence and data imbalance, we
propose a new MLAL framework, named multi-label
CoRrelation-Aware active learning with Beta scoring rules
(CRAB) 1 in this paper. By incorporating the Beta scoring
rules to deal with data imbalance and the expected loss
reduction framework to select the most informative data
instance, we introduce dynamic positive and negative corre-
lation matrices to handle the distinct and asymmetric label
correlation within a Bayesian framework. This approach
demonstrates robust and outstanding performance on four
benchmark datasets for multi-label active learning.

2 RELATED WORK

Active learning involves selecting the most informative data
from the unlabeled pool for annotation, thereby reducing the
required training data while maintaining comparable perfor-
mance. Two mainstream AL query strategies are uncertainty-
based and diversity-based approaches [Ren et al., 2021];
the former concentrates on informative measurement at the
sample-level [Abdar et al., 2021], while the latter empha-
sizes data distribution [Kim et al., 2023]. To quantify the
sample uncertainty, methods such as proper scoring rules
[Tan et al., 2024], Dirichlet distribution [Hemmer et al.,
2022], and Gaussian Process [Shi et al., 2021] can be used
to estimate the sample informativeness. By aligning the prior
and posterior distributions with model output observations,
these models can effectively capture the uncertainty.

However, focusing exclusively on uncertainty can introduce
bias in sampling (i.e., selecting near-identical instances,
thus wasting the annotation budget), which may lead to
sub-optimal performance [Prabhu et al., 2019]. Incorporat-
ing diversity into the sampling process offers an alterna-
tive approach to enhancing generalization [Buchert et al.,
2023]. Huang and Zhou [2013] utilized label cardinality
inconsistency to exploit uncertainty and integrated it with
the diversity-based sampling. PLVI-CE leverages average
posterior probability discrepancy to measure data diversity
and prediction inconsistency to assess uncertainty, thus en-
hancing model generalization with limited annotated in-
stances [Gu et al., 2023]. Recently, Tan et al. [2024] pro-
posed BESRA which uses the strictly proper scoring rules.
Its acquisition function combines beta-scoring rules and
k-means clustering to enhance diversity, while the Beta scor-
ing rules also address data imbalance common in multi-label
datasets. Inspired by BESRA, our framework further takes
into account label correlation in the acquisition function.

Research in active learning has gradually paid attention to
the label correlation in MLAL. In light of the specific char-
acteristics of graph data, DAMAL incorporates class-label
interactions using a graph-based ranking approach, where

1Our code is publicly available at https://github.com/
qijindou/CRAB.

edge weights are defined as the cosine similarity between la-
tent features, thus quantifying the graph’s informativeness in
relation to label correlation [Mahapatra et al., 2024, Lu et al.,
2020]. To address the uncertainty in feature correlations
within standard data, Shi et al. [2021] integrated a Gaussian
process with a Bernoulli Mixture model to model corre-
lation through the covariance matrix. Correlation matrix-
based weighted uncertainty, typically derived through co-
occurrence or label similarity analysis, is commonly used
to query the most informative label pairs by capturing the
inter-label influence during label selection [Gong and Zhai,
2021, Su et al., 2023]. Han et al. [2024] propose a two-stage
sample acquisition strategy, called ALMuLa-mix, utilizing
inconsistency to capture label correlations with novel fea-
tures as the first stage and employing the class frequency at
the second stage to ensure inter-class diversity.

Although an increasing number of studies recognize the
importance of correlation during data acquisition, existing
approaches are often resource-intensive, requiring additional
training for interrelation modeling, or struggle to maintain
performance under data imbalance. Our approach effectively
samples the representative data in a correlation-aware man-
ner while maintaining consistent performance, even with
highly imbalanced datasets.

3 CORRELATION-AWARE
MULTI-LABEL ACTIVE LEARNING

Without loss of generality, suppose L = {X,Y }, U = {X}
represent the initial collection of training set and unlabeled
data samples, where |U | ≫ |L|; and yi ∈ {−1,+1}k rep-
resents the label of the ith example in the k label space.
K denotes the total number of labels in the space. Firstly,
our model generates the two-dimensional correlation matrix,
including both positive correlation and negative correlation,
based on the iteratively updated labeled dataset L. Then,
given a model parameterized by θ ∈ Θ, the probability of la-
bel y of a data instance x is P (y|θ, x). We are able to derive
the pseudo label as y∗ based on

∫
θ
P (y|θ, x)P (θ)dθ, where

the integration can be approximated by Monte Carlo via
ensemble. Considering the model’s learning capability of
different categories of data, our model refines the sampling
pool into a more preventative subset based on the pseudo
labels. And considering the influence of label correlation
in quantifying the informativeness of sample, we propose a
variation of the beta scoring rule used in Tan et al. [2024]. Its
key idea is introduced in Section 3.4. Finally, the clustering
approach assures the diversity in sampling. Fig. 1 illustrates
the overall flowchart of our proposed framework.

3.1 PRELIMINARIES

To address the multi-label active learning problem, most
studies decompose it into multiple binary classification
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Figure 1: Overview of the CRAB framework. It is trained using an ensemble method that generates pseudo labels based
on predictions and calculates the beta proper score. Firstly, positive and negative correlation matrices are updated with
newly sampled instances. Then, utilizing pseudo labels, our model samples data from three categories: label-wise, negatively
correlated, and hard-to-learn samples. Last, our model calculates correlation-aware proper score and subsequently clusters
and labels the selected data based on this score.

tasks, aggregating individual label scores instead of assess-
ing the entire instance holistically. This approach is formu-
lated in Eq. (1), where SBR represents a scoring function
that measures the informativeness (e.g., uncertainty score)
of individual samples, and Sk

BR denotes the score with re-
spect to each label.

SBR(p, y) =

K∑
k=1

Sk
BR(p, y

k) =

K∑
k=1

L(yk|p) (1)

Monte Carlo estimation offers a probabilistic framework for
computing acquisition scores by incorporating randomness
to account for variability. Monte Carlo-based error reduction
estimation [Roy and McCallum, 2001] utilizes the Monte
Carlo approach to approximate the expected reduction in
error resulting from the labeling of a given sample. How-
ever, while Monte Carlo-based methods estimate expected
improvement in model performance, they do not assess the
quality of probabilistic outputs. Rather than estimating error,
proper scoring rules provide a summary measure of predic-
tive probability, computing the positive-oriented rewards
(i.e., utilities) that a classifier seeks to maximize [Gneiting
and Raftery, 2007]. Eq. (2) and (3) show the core concept
of expected increase in score when querying.

Q(L) = EP(x)
EP (θ|L)

[
EP (y|θ,x)

[S(P (·|x, θ), y)− S(P (·|x), y)]
]

(2)

∆Q(x|L) = QL − EP(y|L,x)
[QL+{x,y}]

= EP(y|L,x)

[
EP (x′)P (y′|L,(x,y),x′) (3)

[S(P (·|L, (x, y), x′), y′)− S(P (·|L, x′), y′)]
]

S denotes the scoring function that evaluates predictive prob-
ability distribution on an event, i.e., predicting y′, given x′.
Q(L) represents the mean proper scoring rule of the predic-
tive probabilities obtained using Bayesian estimation based
on the current labeled dataset L. The term ∆Q(x|L) denotes
the increment in the score resulting from acquiring the label
of a sample x, drawn from the unlabeled data pool U . And x
is the point to be acquired, x′ denotes the selected unlabeled
anchor point for assessment. The value of ∆Q(x|L) is then
used to select sample leading to a large increment in the
score or reward. Since the label of unlabeled points x and x′

is unknown, we derive P (y′|L, (x, y), x′) by calculating the
posterior distribution of the ensemble models using Eq. (4).

P (y′|L, (x, y), x′) =
∑
θ∈ΘE

P (y′|θ, x′)P (θ|L, (x, y)) (4)

P (θ|L, (x, y)) ≈ P (θ|L)P (y|θ, x)∑
θ∈ΘE P (θ|L)P (y|θ, x)

(5)

Beta family [Buja et al., 2005], which generalizes the loga-
rithmic score and the brier score, or the other desired cost-
weighted scoring rule, is able to address the issue of imbal-
anced label distribution in multi-label learning. The equation
below illustrates the proper scoring rules L of a predictive



distribution p given the expected value yk, where yk repre-
sents the label for class k. L(1|p) and L(0|p) represent the
partial losses when p is been classified as 1 and 0, respec-
tively.

Sk
BR(p, y

k) = ykL(1|p) + (1− yk)L(0|p) (6)

L(1|p) = L1(1− p) =
∫ 1

p
pα−1(1− p)βdp (7)

L(0|p) = L0(p) =
∫ p

0
pα(1− p)β−1dp (8)

By leveraging Ix(α, β), the Incomplete Beta Function, the
closed form of the Beta distribution is obtained for α, β > 0.
When α = β = 0, the scoring becomes log-loss, and when
α = β = 1, the scoring rule will transform to squared error
losses. By adjusting the value of α and β, our model can ef-
fectively handle scenarios with diverse data distributions. In
our research, we employ the greedy search result of BESRA
as the parameter for scoring, where the α = 0.1, β = 3 [Tan
et al., 2024].

3.2 CORRELATION MATRIX CONSTRUCTION

In multi-label scenario, a single sample often has more than
one label, and label with relatively small semantic distances
frequently appear simultaneously. To leverage inherent re-
lationships within the label space to assist in acquisition
process, our framework maintains two dynamic matrices:
a co-occurrence matrix representing positive correlations,
and a anti-correlation matrix representing negative correla-
tions between labels. Both matrices are updated after each
acquisition iteration with newly annotated instances. By dis-
covering the pattern of the occurrence between labels, we
aim to quantify the informativeness considering influence
of correlation, and maintain the diversity while take into
account the imbalanced data distribution.

Positive correlation matrix: The positive correlation matrix
A is constructed based on the label-wise dependence. A is
a K × K two dimensional matrix, where each element
A(m,n) quantifies the dependency of the presence of label
m on label n. This dependency is formally computed using
Eq. (9). Specifically,

∑L
i=1 N(ymi = +1, yni = +1) refers

to the count of labeled instances in which both labels m and
n appear simultaneously. P (ym|yn) gives the likelihood
of label m occurring when label n is present. When m =
n, A(m,n) equals 1. The value of A(m,n) reflects the
probability of one label’s existence conditioned on another.

A(m,n) = P (ym|yn), where m ̸= n

=

∑L
i=1 N(ymi = +1, yni = +1)∑L

i=1 N(yni = +1)
(9)

The positive correlation matrix is constructed to characterize
the pattern of the co-occurrence between labels and capture

the asymmetric correlation between labels, including hierar-
chical relationships.

Negative correlation matrix: Despite the positive correla-
tions, negative correlations between labels have rarely been
addressed in previous research. However, in real-world sce-
narios, negative correlations are instrumental in enabling
the model differentiate between mutually exclusive classes
and contribute to more accurate decisions by clarifying the
model’s decision boundaries [Yang et al., 2024].

To effectively model these negative correlations, we con-
struct an updated anti-correlation matrix, NegA. Maintain-
ing the same format as the positive correlation matrix A,
NegA is a K ×K two dimensional matrix, where each ele-
ment Neg(m,n) quantifies the confidence in the absence of
label m given the presence of label n, as defined in Eq. (10).
Specifically,

∑L
i=1 N(ymi = −1, yni = +1) represents the

count of instances where labels m and n do not co-occur.
This asymmetry allows the matrix to capture the nuanced
conditional negative relationships, and provide a new per-
spective towards the label dependencies.

NegA(m,n) = P (ym|yn), where m ̸= n

=

∑L
i=1 N(ymi = −1, yni = +1)∑L

i=1 N(yni = +1)
(10)

3.3 CORRELATION-BASED SAMPLING

Refining the unlabeled pool to ensure that selected instances
concentrate on specific representative criteria is a common
strategy in active learning [Kang et al., 2020]. However,
current research predominantly based on informativeness
analysis, neglecting the critical role of data correlation in
MLAL. To address this limitation and provide more rep-
resentative and evenly distribution samples for continuous
process, our model refines the unlabeled pool from three per-
spectives based on the correlation properties to generate a
subset to be used in acquisition. And the pseudo label y∗, ob-
tained by averaging the prediction result of ensemble models
through Eq. (11), is used for the following correlation-based
sampling.

y∗ = I[P (y | x, L) > 0.5] (11)

P (y | x, L) =
∫
θ
P (y|x, θ)p(θ | L)

≈
∑E

e=1 P (y|x, θe)/E (12)

3.3.1 Label-wise sampling

In multi-label scenarios, labels often exhibit asymmetric
correlations, where the present of one label, m, is highly
correlated with another label, n, but not vice versa. Hier-
archical structures within labels are a common example of



this kind of relationship. To illustrate the impact on perfor-
mance, we can consider hierarchical data: when asymmetric
correlations exist, the selection of root-node labels often
inevitably overlaps with that of corresponding leaf-node
labels, while rarely occurring independently, which reduces
the representativeness of the selected root labels [Nakano
et al., 2020].

To address this, our strategy introduces a new mechanism
for the label-wise selection. If one label n is highly depen-
dent on the presence of another m, while the reverse is not
necessarily true—otherwise, they would effectively be con-
sidered the same label in most cases—and their correlation
exceeds a predefined threshold, σ, set as the standard devia-
tion of a two-tailed normal distribution, we classify the label
pair as asymmetrically correlated. To improve label-wise
sampling, we then refine the label space of instances that
contain both labels m and n by removing label n, ensuring
that sampling prioritizes the most independent label, m. The
model then performs evenly sampling based on the refined
pseudo labels, ensuring a more balanced sampling pool.

3.3.2 Negative-correlated label sampling

In multi-label learning, it is essential for the model to respect
the exclusivity of certain labels to ensure accurate predic-
tions [Huang et al., 2017]. When mutually exclusive labels,
such as those that should not logically co-occur, are pre-
dicted together, it is often an indication of model bias or mis-
guided learning [Huang and Kang, 2021, Perales-González
et al., 2020]. This misalignment can reduce model’s effec-
tiveness. As the second subset for concentrated sampling,
we select instances with negatively correlated pseudo labels
that are not expected to co-occur in the label space.

To formalize this, we consider a pair of labels as mutu-
ally exclusive when the negative correlation coefficient
NegA(m,n) exceeds a predefined threshold, set as 2σ,
where σ represents the standard deviation. Based on predic-
tions with pseudo labels, our model selects samples with the
predicted labels that are unlikely to co-occur, according to
the negative correlation matrix, as those samples are at high
risk of incorrect predictions. These selected samples are then
added to the refined subset of the unlabeled pool, ensuring
that the model better accounts for negative correlations.

3.3.3 Hard-to-learn label sampling

The third set, which our model uses to further expand the
subset, consists of hard-to-learn samples. These samples
are typically characterized by low confidence and low vari-
ability, indicating instances where the model has difficulty
making accurate predictions. Such samples often contain
ambiguous or noisy features or lie near decision boundaries
[Chang et al., 2017, Yang and Xu, 2020]. In this study, we
define samples without any predicted pseudo labels as hard-

Algorithm 1 CRAB Update Strategy for MLAL
Input: Labeled pool: L; Unlabeled pool: U ; Model:
ΘE = θ1, ..., θE ; Query size: N ; Per-label query size: N ;
Hard to learn query size: Z.
Output: Updated labeled and unlabeled pool.

1: for θe ∈ ΘE do
2: Get the prediction P (y|θe, x) and corresponding

Beta score SBR

3: end for
4: Update correlation matrix A and NegA with L via

Eq. (9) and Eq. (10)
5: Get the pseudo label Y ∗ via Eq. (11)
6: Select and add N label-wise samples per label to U∗

7: Select and add N negative-correlated samples with
NegA to U∗

8: Select and add Z hard samples to U∗

9: for u ∈ U∗ do
10: Get the attention beta score, SAB , via Eq. (13). Up-

date to Q(x|L, x′) with Eq. (3)
11: end for
12: L+=k-Means Centers(Q(x|L, x′), N )
13: L← L+ L+; U ← U − L+

14: return L,U

to-learn samples. Specifically, if the pseudo labels obtained
through Eq. (11) for all classes of a given instance falls
below the threshold, 0.5, the classifier cannot make any pre-
diction, thus the sample is classified as hard to learn. To
improve performance on these challenging instances while
maintaining diversity in the sampling process, our model
dynamically adjusts the sample size using a polynomial de-
cay function, enabling more focused learning on difficult
cases over time.

3.4 CORRELATION-AWARE QUERYING

With the correlation-based sampling strategy described in
section 3.3, our model obtains a refined subset of the
original unlabeled data pool. Then, our model calculates
correlation-aware beta scores for these samples in the se-
lected subset, and use those scores to cluster the samples for
acquisition. This score computation method is inspired by
the attention mechanism introduced in transformer models
[Vaswani et al., 2017], which is defined as follows.

SAB(fL(x), y) =

K∑
m=1

Â(m, :)Sm
BR(fL(x), y

m) (13)

Â(m,n) = norm(A(m,n)), where m ̸= n

=
A(m,n)

γ ·max(A(:, n))
(14)



Using Eq. (13), we score each prediction, where SAB in-
corporates the influence of other labels’ scores through the
attention coefficient Â as the final score, accounting the
correlation. Additionally, we introduce γ, a normalization
parameter set to 2, to prevent over-estimating correlated un-
certainty while preserving the original significance of each
label’s score. This approach allows our model consider the
impact of neighboring labels on informativeness, and the
refined unlabeled pool enhances computational efficiency
and deepens the analysis of label correlations. Algorithm 1
details the procedure for one iteration of our framework.

4 EXPERIMENTS

We collected four benchmark multi-label text datasets to
analyze the performance and robustness of our framework
[Kementchedjhieva and Chalkidis, 2023]. Those datasets
include: RCV1 [Lewis et al., 2004], UKLEX [Chalkidis
and Søgaard, 2022], EURLEX [Chalkidis et al., 2021],
and MIMIC3 [Johnson et al., 2016]. RCV1 is a news ar-
ticles dataset from Reuters; UKLEX is a collection of
legal documents sourced from various categories within
UK law; EURLEX is a set of descriptors from European
legal information thesaurus extracted from the European
Union’s legal database; and MIMIC3 is a set of de-identified
health records for medical diagnosis. Following the method
by Charte et al. [2015], we used mean imbalance ratio
(MeanIR) to create synthetic datasets with varying imbal-
ance ratios based on the modified RCV1 dataset, reduce the
label size of RCV1 to ten by selecting the most frequently
occurring labels, enabling an evaluation of the model’s per-
formance across different degrees of imbalance. Table 1 and
Table 2 offer a detailed summary of these four datasets. We
also introduced a new metric, termed CorrAvg, defined as∑K

m=1

∑K
n=1 A(m,n)/(K ×K),m ̸= n, to quantify the

degree of inter-correlation within label set.

4.1 IMPLEMETATION

We used Neural-Classifier [Liu et al., 2019], implemented
in Pytorch [Paszke et al., 2019], as the code base. In our
study, we exployed three mainstream models, TextCNN
[Zhang and Wallace, 2017], TextRNN [Liu et al., 2016], and
DistilBERT [Sanh, 2019], as the backbone classifiers. To
enhance efficiency and performance, we applied the cold
start strategy [Zhu et al., 2019] with random initialization
at the beginning of each active learning iteration, a method
known for its applicability to real-world scenarios [Frankle
and Carbin, 2018]. All experiments were conducted on a
single RTX3090 GPU. Following the setting of Tan et al.
[2024], the maximum sequence length for the text data was
set to 256, with each training iteration consisting of 80
epochs. The initial training set and validation set sizes are
set to 100 and 1000, respectively, and are sampled from the

Dataset #Document
Train/Test

#Vocab./
#Label

#MeanIR
Train/Test

#CorrAvg
Train/Test

RCV1 24,891/6223 104,619/102 402/197 0.137/0.137
UKLEX 20,000/8500 63,157/18 7/6 0.026/0.024
EURLEX 55,000/5000 160,211/21 16/15 0.131/0.147
MIMIC 29,999/10000 137,678/19 127/101 0.321/0.320

Table 1: Benchmark datasets with corresponding imbalance
level and correlation level statistics.

Dataset #Document
Train/Test

#Vocab./
#Label

#MeanIR
Train/Test

#CorrAvg
Train/Test

RCV1-T10-5 1,200/600 25,254/10 5/10 0.133/0.138
RCV1-T10-10 1,200/600 25,289/10 10/10 0.135/0.138
RCV1-T10-20 1,200/600 24,170/10 20/10 0.137/0.138
RCV1-T10-50 1,200/600 25,280/10 50/10 0.142/0.138

Table 2: Synthetic datasets with corresponding imbalance
level and correlation level statistics.

training set. We implemented an early stopping criterion
with the patience of 30 epochs to prevent the model from
falling into local optima or overfitting [Du et al., 2019, Ying,
2019]. AdamW was used as the optimizer [Loshchilov and
Hutter, 2019], with the learning rate tailored for each model:
5e-2 for TextCNN and TextRNN, and 5e-5 for DistilBERT.
The hard-to-learn query size was set to 300 for benchmark
datasets and 200 for synthetic datasets, while the per-label
query size was set to 50 for RCV1 and 100 for other datasets,
due to differences in label space size.

4.2 BASELINES

To conduct a comparative performance analysis, we adopted
five state-of-the-art MLAL methods as baselines, including
random sampling. Each baseline uses the same query param-
eters and backbone classifier to maintain consistency across
experiments. Specifically, MMC [Yang et al., 2009] applies
maximal confidence to selecting data that induces the largest
reduction in expected model loss. AUDI [Huang and Zhou,
2013] explores uncertainty and diversity in both instance
and label spaces through label ranking and threshold learn-
ing. ADAPTIVE[Li and Guo, 2013] integrates max-margin
prediction uncertainty with label cardinality inconsistency to
assess the unified informativeness of multi-label instances.
BESRA [Tan et al., 2024] utilizes the beta scoring rules
within an expected loss reduction framework to evaluate
informativeness and employs vector representations to main-
tain diversity. CMAL [Yu et al., 2020] leverages global label
correlation matrix and label space sparsity with uncertainty
to query the most informative example-label pairs.



Figure 2: Averaged micro-F1 score on DistilBERT, averaged
results with 5 random seeds.

4.3 RESULTS

Figures 2–5 present the quantitative performance of our
proposed framework. Figure 2 compares the performance
of CRAB and baseline methods across four datasets using
DistilBERT. Figure 3 and Figure 4 present supplementary
performance comparisons based on TextCNN and TextRNN.
Following Tan et al. [2024], we obtained the predictive distri-
bution by training five ensemble models independently, each
initialized with the same parameters for every AL iteration.
The micro-F1 results show that our proposed model, CRAB,
has consistently outperforms other AL methods across dif-
ferent text domains and network structures. Additionally,
CRAB demonstrates robust performance on datasets with
varying degrees of correlation, particularly compared with
BESRA, suggesting that our strategy effectively models
correlation during data selection.

Among the baseline methods, BESRA achieves strong re-
sults and shows relatively robustness on different datasets.
However, its performance on the highly correlated MIMIC
dataset is less stable, likely due to the absence of correlation
consideration. AUDI, which incorporates both uncertainty
and diversity at both data and instance level, presents notable
performance on three of the datasets, RCV1, UKLEX, and
EURLEX, but struggles on MIMIC. Adaptive and MMC
yield similar results over four datasets, as both utilize the
max-margin as the selection criterion. Although CMAL con-
siders global label correlation, it only performs optimally on
the highly correlated MIMIC dataset and does not maintain
stable performance on all datasets. To examine robustness of
the model on imbalanced datasets, we conducted compara-
tive experiments on synthetic datasets, with results shown in
Figure 5. CRAB maintains superior performance across syn-

Figure 3: Averaged micro-F1 score on TextCNN, averaged
results with 5 random seeds.

thetic datasets with different MeanIR values, demonstrating
its capability to handle imbalanced datasets.

To further investigate the effectiveness of our model, Fig-
ures 6 and 7 present a qualitative analysis of CRAB. Fig-
ure 6 shows the MeanIR of the selected samples across AL
iterations. Since MeanIR indicates imbalance, with lower
values reflecting a more even data distribution, we observe
that CRAB demonstrates a more balanced sample selec-
tion compared to other baseline models, which underscores
its capacity to address data imbalance effectively. Figure 7
illustrates the trend of two categories of data within the
unlabeled data pool: hard-to-learn data and negatively cor-
related data. Unlike random selection, CRAB strategically
selects data that enhances model learning, thereby reducing
misclassification of negatively correlated data. Addition-
ally, CRAB improves performance on hard-to-learn data,
helping the model becomes more robust and accurate. This
targeted data selection contributes to a more balanced and
adaptive learning process, ultimately leading to improved
generaliztion across diverse data types.

4.4 PARAMETER SENSITIVITY ANALYSIS

To validate the effectiveness and generalizability of CRAB,
we conduct two experiments to analyze its performance un-
der different parameter settings. Figure 8a demonstrates the
performance with varying sizes of hard-to-learn samples for
refined unlabeled pool selection. With an acquisition size
of 100 per iteration, the model achieves the optimal perfor-
mance. However, including any hard-to-learn samples in the
sampling pool leads to a performance decline. If the sample
size is set too large, such as 200, the model initially shows



Figure 4: Averaged micro-F1 score on TextRNN, averaged
results with 5 random seeds.

Figure 5: Averaged micro-F1 score on synthetic dataset
using TextCNN, averaged results with 5 random seeds.

Figure 6: The averaged MeanIR of selected samples, aver-
aged the results with 5 random seeds.

Figure 7: Trend of hard-to-learn and negative-correlated
data, with the red bar axis on left and the blue bar axis on
right, averaged the results with 5 random seeds.

(a) (b)

Figure 8: (a) Performance for different size of hard-to-learn
samples. (b) Performance for different decay functions of
the hard-to-learn samples.

relatively better performance due to the higher proportion
of hard-to-learn samples in the early stages. However, as
annotated data increases, performance declines because the
hard-to-learn samples become less influential, necessitating
a reduction in their selection. This parameter is adjustable
across different datasets and model structures to ensure
compatibility with the learning capabilities across varying
scenarios. To deal with the problem of the amount of hard-
to-learn samples decreasing with increased annotated data,
CRAB adopts a decay function for the size of hard-to-learn
samples to adapt to the training process. Figure 8b presents
performance of three decay approaches, linear decay, cosine
decay, and polynomial decay. Among these, polynomial
decay achieves superior performance in terms of micro-F1
score, as it produces an accelerated decrease in output for
sampling, better aligning with the trend in the size of hard-
to-learn samples.

4.5 ABLATION STUDY

We conducted four experiments to examine whether the
structure of CRAB improves MLAL performance by con-



(a) (b)

Figure 9: (a) Ablation study of the asymmetric-correlated la-
bel. (b) Ablation study of considering negatively correlated
label pairs.

sidering correlation. Taking into consideration the asymmet-
rically correlated label relationships, CRAB selects only the
initial label in the correlation chain for per-label selection,
thus avoiding duplicate selection of correlated labels. Fig-
ure 9a compares performance with and without considering
asymmetrical correlations on the MIMIC dataset. Results il-
lustrate that CRAB demonstrates superior performance and
is more effective in querying indicative samples than when
treating all labels equally. Figure 9b shows the benefits of
sampling conflicted labels, with performance improvements
becoming more pronounced in later training stages.

Figure 10a illustrates how the correlation attention impact
MLAL accuracy. To assess performance without correlation
in score evaluation, we removed the correlation attention in
Eq. (13), with the results shown by the blue line. Evidently,
when positive label correlations are incorporated, CRAB per-
forms more consistently throughout the experiment, indicat-
ing that our strategy effectively models inter-label relation-
ships to make more informative queries. Additionally, we
compared the micro-F1 score and computation time of the
random sampling and clustering-based sampling during the
refined unlabeled pool sampling. As shown in Figure 10b,
random sampling performs almost identically to clustering-
based sampling, suggesting it can serve as a replacement
during the refined unlabeled pool selection. Moreover, the
querying time with random sampling decreases by 40% .
These findings demonstrate that our method is effective,
efficient, and robust.

5 CONCLUSION

In this paper, we proposed an innovative MLAL query strat-
egy, CRAB, which takes into account inherent label rela-
tionships within a Bayesian framework. By updating the
correlation matrices with the annotated data, our model
is competent to query more representative samples in the
initial stage and achieves a more accurate score for evalu-
ating the informativeness of instances. Additionally, with
the utilization of beta scoring rules, our model maintains

(a) (b)

Figure 10: (a) Ablation study of the correlation attention. (b)
Performance for random sampling or cluster-based sampling
for refined sampling pool selection.

consistently robust performance on imbalanced datasets.
Leveraging pseudo labels and correlation-aware sampling,
our strategy eliminates the need for additional training mod-
ules, and our model demonstrates significant performance
improvements in MLAL on four benchmark datasets. Future
research could explore the correlation at the instance space
and investigate additional relationships between the data
features and label distributions.
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