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Abstract

Recent advancements in Al reasoning have driven substantial improve-
ments across diverse tasks. A critical open question is whether these im-
provements also yields better knowledge transfer: the ability of models to
communicate reasoning in ways humans can understand, apply, and learn
from. To investigate this, we introduce Knowledge Integration and Transfer
Evaluation (KITE), a conceptual and experimental framework for Human-
Al knowledge transfer capabilities and conduct the first large-scale human
study (N=118) explicitly designed to measure it. In our two-phase setup,
humans first ideate with an Al on problem-solving strategies, then inde-
pendently implement solutions, isolating model explanations’ influence on
human understanding. Our findings reveal that although model benchmark
performance correlates with collaborative outcomes, this relationship is
notably inconsistent, featuring significant outliers, indicating that knowledge
transfer requires dedicated optimization. Our analysis identifies behavioral
and strategic factors mediating successful knowledge transfer. We release
our code, dataset, and evaluation framework to support future work on
communicatively aligned models.

1 Introduction

As large language models (LLMs) grow more capable, they are rapidly saturating bench-
marks across reasoning-intensive domains such as coding Chen et al. (2021); Jain et al.
(2024); Jimenez et al. (2023); Shi et al. (2024), scientific problem-solving Rein et al. (2024);
Hendrycks et al. (2020); Tian et al. (2024), and mathematics Cobbe et al. (2021); Hendrycks
et al. (2021). A key driver of this progress is Reinforcement Learning with Verified Rewards
(RLVR), which enables models to optimize for high-reward reasoning in verifiable domains,
achieving state-of-the-art performance and widespread adoption Guo et al. (2025); Lam-
bert et al. (2024); Yang et al. (2025). Yet this rapid scaling assumes a critical premise: that
stronger internal reasoning naturally leads to better knowledge transfer—a model’s ability to
communicate its reasoning in ways that humans can understand, apply, and learn from. As
models become more powerful, does effective knowledge transfer emerge for free, or must
it be treated as a distinct goal requiring targeted evaluation and optimization?

This question is especially important in collaborative workflows where the goal is not to
replace human reasoning but to augment it Mitchell et al. (2025); Fragiadakis et al. (2024);
Yatani et al. (2024); Haase & Pokutta (2024). Without effective knowledge transfer, users
may become overly dependent on systems they do not fully understand Hunter et al. (2024);
Ahmad et al. (2023), a dynamic reminiscent of “manager’s syndrome” Hodgson et al. (2011),
where technical fluency erodes through delegation. The risk is compounded when users
cannot interrogate model reasoning, leading to overreliance and sycophantic behavior. In
high-stakes domains such as medicine or law, this may weaken human oversight entirely
Kerasidou et al. (2022); Holzinger et al. (2025); Bowman et al. (2022). Few studies have
directly assessed how well models support user understanding across key variables like
domain expertise, Al familiarity, or the human-model skill gap—all of which critically shape
transfer outcomes.
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Figure 1: Left: Human-Al collaboration performance vs model solo performance for
code/math tasks. Models improve human-Al collaboration (+ = 0.84 for code, ¥ = 0.69
for math), but at a slower rate than their solo capabilities (gray line shows y = x). Right:
Human preference rates show task-dependent correlations with model performance (posi-
tive for code tasks, r = 0.73; slight negative for math tasks, r = —0.14), revealing that user
preferences vary across task domains and do not consistently align with actual performance.

To investigate this, we introduce Knowledge Integration and Transfer Evaluation (KITE), a
framework to isolate and evaluate knowledge transfer. We conduct a large-scale human study
with 118 participants spanning a range of expertise, including competitive programmers
and math majors. Each participant tackles challenging code/math problems using a two-
phase protocol: (1) a collaborative ideation phase with an Al model to explore solution
strategies, followed by (2) an independent implementation phase, where participants must
solve the problem alone without access to the model or transcripts. This design allows us to
disentangle model performance from its ability to convey reasoning that humans can retain
and apply. We evaluate outcomes using both objective metrics (solution correctness) and
subjective measures (user preferences and qualitative feedback), enabling a nuanced view
of knowledge transfer across users and tasks.

As shown in Figure 1, we generally find participants demonstrated a strong ability to
integrate model-generated reasoning with their own expertise. Interestingly, some models,
such as Claude-3.7-Sonnet, enabled collaborative outcomes that exceeded expectations
based on their solo capabilities, particularly in mathematical reasoning tasks. In contrast,
higher-performing models like Gemini-2.5-Pro did not consistently yield proportionally
stronger collaboration, suggesting diminishing returns in knowledge transfer as model
reasoning scales. If this trend continues, as models grow more capable, their internal
representations may become increasingly difficult to project in ways humans can easily
understand and utilize Hewitt et al. (2025).

Moreover, we find that humans’ subjective preferences for models during collaboration
often diverge from solo model performance, particularly in math tasks, revealing domain-
specific patterns in what users value during collaboration. To probe these dynamics, we
perform qualitative analyses of interaction transcripts, clustering patterns of human queries
and model responses across varying user skill levels and task types. These findings surface
distinct collaboration styles and success/failure modes (overreliance, representation mis-
alignment, adaptive scaffolding...), offering a lens into the latent Human-Al interactions
that govern effective knowledge transfer.

Overall, this work provides a foundation for studying and improving knowledge transfer
in Al systems. We contribute a conceptual and experimental framework for isolating and
measuring transfer, as well as analysis of scaling trends and human-Al interaction patterns.
To support future research, we release our dataset, code, and filtered interaction trajectories.

2 Related Work

Human-AI Collaboration Prior work has examined how bidirectional exchange and expla-
nations enhance collaboration Ma et al. (2023; 2024); Bansal et al. (2021), and how proactive
Al assistants aid open-ended tasks Shao et al. (2024). Closest to our work, Mozannar et al.
(2024) studied how autocomplete and chat assistants help users solve HumanEval tasks
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Chen et al. (2021). We build on these by directly measuring reasoning transfer beyond task
performance.

Code + Math Reasoning Tasks for LLMs Early benchmarks like HumanEval, MBPP, and
GSMS8k Chen et al. (2021); Austin et al. (2021); Cobbe et al. (2021) focus on short solutions or
basic arithmetic. As models saturate these, newer work uses harder problems from Leetcode
and math contests Jain et al. (2024); Su et al. (2024); White et al. (2024), which we adopt to
isolate reasoning ability. This contrasts with repository-style datasets like SWE-Bench and
BigCodeBench Jimenez et al. (2023); Zhuo et al. (2024), which emphasize context handling.

Knowledge Transfer and Education Though few studies directly analyze LLM-to-human
transfer, related educational work investigates how LLMs support tutors Wang et al. (2024),
personalize instruction Karpouzis et al. (2024); Sarkar et al. (2025); Dornburg & Davin (2024),
and give feedback Han et al. (2023); Chevalier et al. (2024). Yet, LLMs often struggle with
teaching, e.g., leaking answers or lacking pedagogy Pal Chowdhury et al. (2024); Wang et al.
(2023); Grassucci et al. (2025). Our work shifts focus from pedagogy to evaluating whether
humans can execute reasoning shared by the model.

3 KITE: Quantifying Knowledge Transfer

We first outline preliminaries for understanding knowledge transfer between entities during
collaborative problem-solving. While we formalize knowledge regions such as M, H, and
their intersections, we note that these are illustrative abstractions—difficult to precisely
measure in practice, but useful for analyzing collaboration dynamics.

3.1 Conceptual Framework for Knowledge Transfer

Representational Space Knowledge Transfer
H: Human M: Model Iteratively extract the node You need to run BFS, going to the
with the minimal tentative closest place you haven't visited yet
distance... and checking the distance...
M-H kMGMﬂkHZHMﬁH(kM)*’kHEH

HM—}H € {Examples, Analogies, Context Aggregation..}
MNH

Figure 2: Model knowledge (kps € M) must be projected into a form understandable
by human users (ITy;_y(ky)) in order to communicate knowledge effectively. Effective
projections—via examples, analogies, or context aggregation—bridge the gap between
disjoint representations.

We approach knowledge transfer through the lens of collective intelligence Cui & Yasseri
(2024): the collaborative problem-solving capability that emerges when humans and Al
work together. Following Schut et al. (2023); Kim (2022), we can represent the machine’s
knowledge and capabilities, or representation space, as M, and the human’s as H; illustrated
in Figure 2. This formulation yields three critical regions for our analysis:

1. Shared Knowledge (M N H): This intersection contains reasoning patterns, abstrac-
tions, and strategies already understood by both human and model. It forms the
foundation for effective communication.

2. Al-Exclusive Knowledge (M — H): This region reflects novel reasoning, knowledge,
or strategies that the model can execute but the human has not yet mastered.
Transfer from this space into H is the central goal of collaborative ideation.

3. Human-Exclusive Knowledge (H — M): Reasoning held by the human but not by
the model: such as intuitive understanding, prior experience or deeper domain
knowledge/insight.
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The success of human-Al collaboration hinges critically on accessing and transferring
knowledge from the M — H space into H, especially as humans typically maintain primary
agency in collaborative tasks (e.g., deciding which strategies to pursue or when to submit
solutions). However, as models become more capable, their reasoning may depend on
abstractions increasingly distant from the typical human representation space. We frame
this challenge in terms of projections: for each knowledge point ks in the model’s space,
the model must identify some projection 1y, (kpy) that translates its reasoning into a form
the human can understand, internalize, and act upon. These projections can take many
forms—such as providing analogies, contextualizing concepts with background knowledge,
offering intermediate scaffolding, or generating concrete examples.

Importantly, this process is bidirectional. Humans also project their reasoning into the
model’s representation space via ITy_, (kg ), such as using specialized prompts to elicit
helpful responses. Especially in interactive settings where models are not fully autonomous,
effective collaboration depends on this ongoing loop of mutual translation and aligning
expressions of reasoning.

4 KITE: Evaluating Knowledge Transfer

Informed by the conceptualization in Section 3, our two-phase setup (Figure 3) includes
a human-Al collaboration phase followed by a solo human implementation phase that
requires genuine understanding (e.g., writing code or performing calculations). Since model
suggestions are often incomplete or flawed, solving the task demands debugging, reasoning,
and handling edge cases—allowing us to isolate and measure knowledge transfer. Figure 17
shows example problems and dataset statistics. While the setup generalizes to any task with
separable ideation and implementation phases, we focus on two domains: coding tasks
from LiveCodeBench Jain et al. (2024) and competition-level math problems (AMC/AIME),
which offer consistently challenging reasoning tasks across a broad range of expertise levels.

4.1 Two-Phase Protocol for Isolating Knowledge Transfer

Phase 1: Collaborative Ideation First, participants are presented with a problem drawn
from either the algorithmic coding Jain et al. (2024) or competition mathematics White et al.
(2024) domains. In this phase, they engage in an open-ended dialogue with a selected LLM
to explore solution strategies, exchange ideas, and scaffold their understanding without
solving the problem. To preserve this ideation focus, we forbid models from generating
any long-form code, pseudocode, or mathematical calculations through prompting, as well
as employ a secondary checker model to withhold responses flagged to contain answers
directly or indirectly (code, or mathematical calculations). Participants are also not allowed
to take any notes to log model insights. We additionally perform post-hoc filtering to
remove user interaction data where models emit forbidden content. This ensures that
any knowledge transferred takes the form of conceptual reasoning or strategy, rather than
memorization of content that can be directly used to assemble the final solution.

Phase 2: Independent Solving After the ideation phase concludes, the LM interface and
conversation history are no longer accessible. Participants are tasked with solving the exact
same problem on their own, without model assistance. In coding, participants must write
and submit correct implementations that pass all test cases, given 10 code submission at-
tempts. In math, participants must carry out precise multi-step calculations to arrive at a
final answer, given 5 answer submission attempts. By requiring participants to indepen-
dently execute a solution, Phase 2 becomes a direct and rigorous test of whether they have
absorbed and retained reasoning introduced in Phase 1. Successful completion indicates
that knowledge previously exclusive to the model (ks € M — H) has been projected into
and re-applied by the human (ITp;_ i (kpr) € H).
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Figure 3: Two-phase evaluation framework. (1) Collaborative Ideation: Users and an
Al assistant engage in open-ended discussion to explore problem-solving strategies. (2)
Independent Solving: Users then implement a solution independently, without further
assistance. This design leverages the nature of coding and math tasks—where successful
implementation demands deep understanding, not rote recall—to isolate and measure
genuine knowledge transfer.

4.2 Modeling and Calibrating Skill Hierarchies

Collaboration becomes meaningful only when the task challenges the human’s independent
capabilities. If the human can already easily solve the problem alone, model assistance
becomes redundant: there is no opportunity for knowledge transfer, no dependency, and
thus no true collaboration. This necessitates the calibration of skill hierarchies: the relative
proficiencies of the human, the model, and the task. We accomplish this by assigning
standardized skill ratings (elo) to each of the three entities in the problem-solving process.

Skill Estimation Task difficulty is determined using externally validated Elo ratings:
public LeetCode ratings for programming tasks' and competition-derived estimates for
AMC/AIME math problems?. Human skill is estimated through a two-step process: par-
ticipants self-report their experience level, then complete 5 adaptively selected tasks with
difficulty adjusted based on performance. Their Elo rating is updated using surprise-
conditioned rules (Appendix C.8) Chiang et al. (2024), yielding an empirically grounded
skill estimate. Model skill is measured by zero-shot performance—each model attempts each
task three times, and a task is considered solvable if at least one completion is correct. To
compare human and model skill fairly, we contrast each human’s final Elo with the average
difficulty (Elo) of the top 25% of problems solved by the model, avoiding bias from models
attempting all tasks regardless of difficulty.

Test-Time Pairing During testing, each participant solves between 3 and 15 problems
at their own pace, including across non-contiguous sessions. For each attempt, they are
paired with one of eight held-out LLMs, sampled uniformly without replacement; once
all models have been seen, sampling resets. Tasks are drawn from a calibrated difficulty
band slightly above the participant’s current skill level—specifically, from an Elo margin of
[t 4200, t + 400] for coding and [t + 0.75, t + 1.25] for math—ensuring challenges that are
non-trivial yet solvable with Al assistance. Task completion time is recorded (Appendix B),
but no time limits are imposed.

4.3 Experimental Controls and Evaluation Strategy

Evaluation and Success Metrics Evaluating human-Al collaboration is difficult due to
the noisy and subjective nature of human feedback. We use both objective and subjective

Ihttps://github.com/zerotrac/leetcode_problem_rating
2https ://artofproblemsolving.com/wiki/index.php/AoPS_Wiki:Competition_ratings
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measures. After each task, participants rank the last four models they interacted with; we
convert these into relative win rates using the Bradley-Terry model (Appendix C.7). We
also report win rates stratified by the relative ordering of Human, Model, and Task Skill at
the time of interaction: Human > Task > Model (HTM), Human > Model > Task (HMT),
and Model > Human > Task (MHT). Objectively, we measure transfer by comparing the
proportion of problems solved during collaboration to the model’s solo accuracy on the
same problems. For coding, correctness requires passing all test cases; for math, an exact
answer is required.

Incentives and Motivation Participant motivation is a key concern in human-Al studies Si
et al. (2024); McKee (2024). To encourage effortful engagement, we offer performance-based
bonuses: participants earn 1.2x—1.5x their $25/hr base rate for correct answers, scaled by
difficulty. Additionally, many participants are actively preparing for interviews requiring
these skills—e.g., competition math for finance roles, and LeetCode-style coding for software
jobs—providing strong intrinsic motivation to learn from model outputs and give honest
feedback. Details on participant selection appear in Appendix ??.

Model Selection We evaluate eight LLMs of different sizes and abilities: GPT-4.1, GPT-
40 Hurst et al. (2024), GPT-4.5-preview, Gemini-2.5-Pro, DeepSeek-V3 Liu et al. (2024),
Claude-3.7-Sonnet, LLaMA-4-Maverick, and ol. These models were selected based on
strong leaderboard performance on ChatArena Chiang et al. (2024) and widespread usage
in interactive evaluation settings. Notably, DeepSeek-R1 Guo et al. (2025) was considered
but excluded due to availability and latency constraints. To assess natural explanation
behaviors, we evaluate models in a zero-shot setting without prompt optimization or fine-
tuning for explanatory quality, with temperature 0.7 when possible. This design choice
avoids confounding effects of tailored prompts and better reflects how users commonly
interact with models out-of-the-box.

5 Results

The main quantitative results of the study can be found in Figure 1 and 2. In total, we
obtained 578 problem solving trajectories, with each participant completing an average of
4.90 problems. We summarize core insights below, and report auxiliary results, such as
survey feedback, average elo per model, and time spent in Appendix B.

Knowledge Transfer vs. Model Performance While solo model performance positively
correlates with collaborative outcomes, the relationship is inconsistent and marked by
outliers. Gemini-2.5-Pro, despite top solo performance in code (81.3%), showed a drop
in collaborative gain (-10.0%), whereas Claude-3.7-Sonnet and GPT-40 achieved strong
collaboration boosts (+25.0%) despite lower solo scores (45.0%). In math, GPT-40 showed
a +48.4% gain from a solo baseline of just 8.3%. Across tasks, the slope between solo
and collaborative performance remains below 1 (Figure 1), suggesting that improvements
in model reasoning outpace gains in knowledge transfer—highlighting the need to treat
transfer as a distinct optimization objective.

Subjective Preferences v. Model Performance Human preferences also diverge from
solo performance, especially in math. In coding, preferences aligned closely with solo
performance—e.g., Gemini-2.5-Pro led in both (81.3% solo, 20.0% win rate). But in math,
this link was weaker: models like Llama-4-Maverick received strong preferences in some
user segments (25.9% in MHT) despite only moderate solo accuracy (47.8%). Qualitative
feedback suggests this stems from communication style: high-performing math models often
used dense formalism and symbolic reasoning, which casual users found hard to follow.
In contrast, code-oriented models communicated via natural language and algorithmic
heuristics, making them more accessible and preferred.

Knowledge Transfer v. Subjective Preferences We examined whether humans tended to
prefer models that ultimately helped them solve more problems—i.e., whether subjective
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Model \ Code (N=300) | Math (N=278)
\ HTM HMT MHT Total \ HTM HMT MHT Total

GPT-4.1 18.6+72 153120  8.7+42 15.1+70 8.2+29 10.7+63 16.1+35 11.3+20
GPT-40 44421  15.3+16  8.6+39 8.8+19 5.8427  10.8447 22.0+38 13.3+57
ol 4.1+21 10.8+19 15.8+43 7.4+16 17.2+10  4.2+20 0.8+04  10.0473
GPT-4.5 20.4+78 8.9i28 169467  16.0+46 6.2427 159136 6.3+20 11.8+69
Deepseek-V3 73+40 10.1x30  5.6+25 7.8+37 | 133439 13.7+50 10.1x35 13.3+24
Llama-4-Maverick | 8.8+84 9.8+40 6.6+33 9.0+39 6.7+19  10.5+43 259153 11.8423
Claude-3.7-Sonnet | 16.2+36 14.8+37 15.5+47 16.1+43 8.3+00 16.3+49 153430 12.6+23
Gemini-2.5-pro 20.2+55 15.1+40 22.3+91 20.0+6s | 27.2+23 17.9+75 4.4+25  16.0+40

Table 1: Bradley-Terry win rates (+ standard error) showing human preferences for models
post-collaboration across three skill hierarchies: HTM (Human ; Task ; Model), HMT
(Human ; Model j Task), and MHT (Model ; Human j Task), elaborated in Section 4.3. Bold
indicates best performance. Higher values indicate stronger average human preference.

Setting | GPT-41 GPT40 o1 GPT-45 DS-V3 Llama4 Cld-3.7 Gem-25
Code (M) 68.8 16.7 55.0 68.4 33.3 47.1 45.0 81.3
Code (H+M) 65.0 40.0 55.0 69.0 51.9 54.7 70.0 71.3
Code (A) -3.8 +233 400 +0.6 +18.6 +7.6 +25.0 -10.0
Math (M) 47.6 8.3 83.3 33.3 46.2 47.8 20.8 68.4
Math (H+M) 75.7 56.7 858  60.8 70.8 72.6 81.7 79.5
Math (A) +28.1 +484 425 +27.5 +24.6 +24.8 +60.9 +11.1

Table 2: Performance comparison of 8§ LLMs on code and math tasks, showing accuracy
percentages for models operating independently (M) versus human-Al collaborative per-
formance (H+M). Bold indicates best performance. The following abbreviations are used
for models: DS-V3 for Deepseek-V3, Llama-4 for Llama-4-Maverick, Cld-3.7 for Claude-3.7-
Sonnet, and Gem-25 for Gemini-2.5-pro.

preferences aligned with successful knowledge transfer. Overall, we observed a statistically
significant positive correlation (r = 0.86), but a much weaker, non-significant correlation
in math (r = 0.14, p < 0.05). For code, this aligns with the expectation that users, aware of
whether they successfully solved the task, are more likely to favor models that contributed to
that success. However, we also observed several notable outliers, such as o1, which achieved
relatively low win rates in code (7.4%) despite comparable collaborative performance
(55.0%), suggesting that subjective preference is not solely reward-driven: we dive into
detailed causes in our qualitative analysis.

Divergence in Human Preferences Across Skill Hierarchies We find that collaborative
preferences vary across skill hierarchies. For example, Gemini-2.5-Pro was highly preferred
in the math domain when the model outskilled the human and could solve the task in-
dependently (HTM), but performed poorly in the MHT setting (4.4%), where it needed
to follow human guidance. Similarly, Llama-4-Maverick showed stark contrasts between
different hierarchies in math, performing exceptionally well in MHT settings (25.9%) but
poorly in HTM contexts (6.7%). As revealed in our qualitative analysis, this divergence
stems from Gemini’s tendency toward active engagement, frequently asking confirmational
questions to scaffold learning. This behavior was appreciated by users with low expertise,
who found it supportive, but was frustrating to more expert users, who felt it was verbose
and preferred the model to be more direct. These findings caution against one-size-fits-all
strategies: optimal collaboration depends not only on model capability, but also on how
well models can adapt their communication style to fit the skill-level of different users.

Covariate Analysis We examined the effect of participant characteristics on performance
using logistic regression analysis on potential participant covariates. Notably, we found no
statistically significant effects from user expertise (p = 0.252 for coding, p = 0.196 for math),
LLM familiarity (p = 0.339), or prior experience with collaboration tools, such as Cursor,
(p = 0.238) on solve rates. These findings suggest that our initial expertise calibration
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Figure 4: Analysis of human-Al problem-solving interactions. Human queries (left), model
responses (center), and human feedback (right) are color-coded by correlation with success-
ful problem resolution (green: positive, red: negative). Percentages indicate each category’s
frequency, revealing patterns in effective vs. ineffective knowledge transfer.

successfully balanced tasks relative to individual skill levels. We hypothesize the minimal
impact of LLM familiarity likely stems from the unbalanced conversation pattern, where
even participants with limited experience received comprehensive output from models,
making knowledge transfer primarily dependent on the model’s explanatory capabilities
rather than the user’s prompting expertise.

6 Qualitative Analysis: Interaction Dynamics

To better understand the mechanisms behind our quantitative findings, we analyze inter-
action patterns inspired by the Clio framework (Tamkin et al., 2024). User queries are em-
bedded using OpenAl’s text-embedding-3-large model and clustered with k-means Lloyd
(1982) to identify distinct strategies associated with success or failure, along with their quali-
tative feedback. Clusters are then manually reviewed and verified. Figure 4 summarizes
these patterns, grouping feedback, queries, and model responses by outcome to qualitatively
interpret the dynamics of knowledge transfer in human-AlI collaboration.

6.1 Performance Transfer Gap

The performance transfer gap refers to the observation that improvements in model ca-
pability do not always lead to proportionate improvements in human problem-solving
performance. Our analysis surfaces recurring dynamics that help explain this phenomenon.

Overreliance on Model Authority In 5% of cases, users explicitly described deferring to
the model without critical evaluation. This tendency becomes problematic when models
occasionally return incorrect or misleading solutions. As one participant noted, “The model
initially gave me the wrong answer, which, to be fair, caused me to rush past the planning
step since I trusted the model.” This dynamic suggests that presumed model competence
may inadvertently discourage user reflection, impeding learning and effective problem-
solving.

Misaligned Explanation Strategies Higher-performing models often excel at generating
correct answers but fall short in adapting their explanations to users” knowledge levels.
While patterns such as “Clarification” (27%) and “Simplifying Analogies” (4%) appear
across model outputs, these are not always used effectively. “Step-by-step solutions” were
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the most frequent output style (51%), but users reported issues with verbosity (4%) and poor
formatting (15%), both of which hindered knowledge transfer. Even technically accurate
solutions can become ineffective if presented in ways that are hard for users to interpret,
contextualize, or apply.

6.2 Domain-Specific Preference Patterns

Representation Misalignment We observed a notable difference in how users responded
to model explanations across domains. In math tasks, high-performing models like ol
frequently exhibited what we call representation misalignment: explanations that, while
technically correct, were often overly formal, verbose, or difficult to follow. Users described
these responses as overwhelming or rigid, leading to lower preference ratings despite strong
solve rates. In contrast, coding tasks benefited from better alignment between the procedural
nature of the task and the model’s stepwise reasoning. This suggests a domain-specific
divergence: in coding, model performance and user preference tend to align due to shared
algorithmic structure, whereas in math, users value intuitive and conceptual framing more
highly.

Strategic Framing vs. Technical Depth In coding contexts, users consistently valued
strategic guidance over exhaustive technical detail. For example, one user wrote, “The
model reminded me of the trie type. Without that, I probably couldn’t have solved the
problem. ..” This suggests that models that foreground high-level framing or conceptual
cues—rather than diving straight into detailed solutions—are more helpful in supporting
user problem-solving. However, models often default to presenting fully fleshed-out
solutions, which may obscure the overall structure or intent. Much like how researchers
prefer the big-picture framing of a paper before diving into methods, users may benefit
more from contextualized reasoning than exhaustive but unfocused detail.

6.3 Skill Hierarchy Dependencies

Adaptive Scaffolding vs. Directness The success of interaction strategies often depends
on the relative skill levels of the human and the model. In HTM (Human-Teaches-Model)
settings, where humans are less skilled than the model, successful models like Gemini-2.5-
Pro employed what we call scaffolded projection: breaking down reasoning into digestible
parts, often with built-in comprehension checks. However, the same approach proved coun-
terproductive in MHT (Model-Helps-Human) settings, where the human was more skilled
than the model. In these cases, excessive scaffolding was perceived as redundant or even
patronizing, with feedback describing it as “unnecessarily handholding” or “repetitive.”

Query-Response Alignment These dynamics are further supported by analysis of query
types. In HTM settings, users frequently asked for background knowledge or clarification
(“Clarification of Solution” 16%, “Seeking Background Knowledge” 8%), suggesting a
need for instructional responses. In contrast, MHT scenarios often featured queries like
“Suggesting an Algorithm” (5%), where users sought validation or refinement rather than
explanation. Models that perform well in MHT settings appear to align their responses with
these expert-level expectations—providing concise, targeted feedback rather than elaborate
instructional breakdowns.

7 Discussion

Conclusion We conduct the first large-scale study of knowledge transfer in language models,
producing a conceptual framework as well as empirical data to characterize it. While
model performance generally correlates with collaborative outcomes, this relationship is
inconsistent, with notable outliers. We identify interaction mechanisms that help explain
these gaps. As models grow more capable, their ability to convey reasoning may lag
behind—risking greater knowledge asymmetry and weakening human oversight. In high-
stakes domains, this disconnect could undermine human-Al collaboration, highlighting the
need to better understand and improve knowledge transfer.
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8 Limitations and Future Work

Our study assumes that for each task, some projection of model reasoning could enable
a human to solve it. While unverifiable, this assumption is supported by screening for
baseline proficiency, calibrating task difficulty just beyond participants’ independent ability,
and post-task surveys suggesting participants generally believed the tasks were solvable
with more time or support. Additionally, participants may have exerted more effort than
typical users due to monetary and personal incentives, possibly inflating our measured
collaboration effectiveness relative to real-world settings where users might disengage in
the face of ambiguous model outputs. Lastly, our sample (118 participants) skewed toward
STEM students, limiting generalizability. Future work should extend to domains like
clinical reasoning or creative writing, and explore multimodal collaboration (e.g., diagrams
or interactive tools) to uncover richer knowledge projection strategies.
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A Participant Demographics

A.1 Participant Selection Details

We recruited participants through university-wide email advertisements and word of mouth.
Interested individuals completed an initial survey, after which we filtered for a diverse
sample across academic background, domain expertise, and AI/LLM familiarity to reflect
a broad population representative of both technical and non-technical users. Our final
cohort comprised 118 participants from 11 institutions, spanning a wide range of majors,
including Computer Science (N = 49), Electrical Engineering, Mathematics, Neuroscience,
and various STEM disciplines. Most were in their first (N = 38) or second (N = 36) year of
study, though all undergraduate levels were represented. A full demographic account can
be found in Appendix A.1.
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Degree Count
Computer Science

Undecided

Electrical Engineering

Financial Engineering

Mathematics

Chemistry

Civil and Environmental Engineering
Mechanical and Aerospace Engineering
Neuroscience

Molecular Biology

Economics

Data Science

Chemical and Biological Engineering
Graphic Information Technology
Physics

Geosciences
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Figure 5: Participant Demographics: Distribution of Degrees (Both pursuing and obtained)

Academic Year | Count
1st year 38
2nd year 36
3rd year 23
4th year 19
5th year 2

Figure 6: Participant Demographics: Distribution of participants by academic year.

AI/LLM Familiarity Level Count
Occasionally use them, and I generally understand their internal functionality 52
Use them in my everyday workflow, and I generally understand their internal functionality 43
Use them in my everyday workflow, don’t know how they work 14
Occasionally use them, don’t know how they work 9

Figure 7: Participant Demographics: Distribution of AI/LLM Familiarity/Usage

Cursor/GitHub Copilot Usage | Count
Frequently 15
Occasionally 40
Never/don’t know what it is 63

Figure 8: Participant Demographics: Copilot Usage

LeetCode Experience Percentage
Cannot solve LeetCode problems 0%
Can sometimes solve easy problems 12.7%
Can consistently solve easy problems 11%
Can sometimes solve medium problems 36.4%
Can consistently solve medium problems 12.7%
Can sometimes solve hard problems 10.8%
Can consistently solve hard problems 16.4%

I do not have enough context on LeetCode 0%

Figure 9: Participant Demographics (For those who participated in coding tasks): LeetCode
Experience
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Competition Math Experience Percentage
Can solve early problems on AMC10/12 35.6%
Can solve majority of problems on AMC10 22.0%
Can solve majority of problems on AMC12/Consistent AIME qualifier 25.4%
Can solve majority of problems on AIME 11.9%
USAMO participant 5.1%
Putnam/IMO 0.0%

Figure 10: Participant Demographics: Competition Math Experience

Institution Count
Princeton University 86
West Virginia University
Pennsylvania State University
University of California, Los Angeles
UC Berkeley

Stanford University

Arizona State University

Yale University

The University of Texas at Austin
Vanderbilt University

Cornell University

= e e e T U1 N 00

Figure 11: Participant Demographics: Distribution of Affiliated Institutions

B Auxiliary Study Results

Model Math Problems (s) Code Problems (s)
gpt-4-1 776.10 1527.44
claude-3-7-sonnet 794.38 1932.95
llama-4-maverick 799.43 1828.24
gpt-4-5-preview 814.63 1997.26
deepseek-v3 849.38 1990.52
ol 971.17 2211.80
gpt-4o 1014.21 2228.00
gemini-2.5-pro 1075.95 1603.06

Figure 12: Average time (in seconds) required by different models to solve math and code
problems.
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Model Math Problems Code Problems
Teaching Solution Organization Teaching Solution Organization

Claude-3.7-Sonnet 3.79 3.71 3.83 3.85 3.50 3.60
GPT-40 3.46 3.42 3.29 3.61 3.28 3.39
Deepseek-v3 3.19 3.31 2.92 3.71 3.19 2.71
GPT-4.1 4.00 3.52 3.76 4.06 3.56 3.94
Llama-4-Maverick 3.48 3.35 3.57 3.88 3.53 3.59
GPT-4.5-Preview 3.75 3.71 3.50 3.26 3.16 3.58
ol 3.96 3.79 3.67 3.45 3.35 3.50
Gemini-2.5-Pro 3.68 3.63 3.68 4.00 3.75 3.69

Figure 13: Average User Ratings (1-5 Scale) for AI Models on Math and Code Problems.
After each problem participants were asked to rate their solving experience on a likert
scale from 1-5 based on 3 dimensions. Teaching indicates the model’s pedagogical ability,
Solution indicates a model’s ability to give correct and useful response, while Organization
indicates a model’s organization of outputs in a way that was easy to understand for the
user. Higher is better.

Math Problems Code Problems
Model Avg. ELO Count | Model Avg. ELO Count
gpt-4o 4.29 39 | gpt-4o 1650.56 34
gemini-2.5-pro 4.28 39 | gemini-2.5-pro 1638.56 35
ol 3.91 37 | gpt-4-5-preview 1637.33 36
gpt-4-5-preview 3.90 37 | deepseek-v3 1636.59 35
gpt-4-1 3.88 38 | ol 1636.32 34
llama-4-maverick 3.87 37 | claude-3-7-sonnet 1627.51 35
claude-3-7-sonnet 3.79 36 | llama-4-maverick 1625.54 34
deepseek-v3 3.55 37 | gpt-4-1 1554.03 35

Figure 14: Average ELO ratings for math and code problems by model
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C Study Details

C.1 Study Instructions

STUDY PURPOSE
Measuring and improving human interpretability of AI reasoning as we reach
human-level or superhuman AI agents.

PARTICIPANT ROLE

Solve coding/math problems with an LM assistant, only interacting before
providing your final answer. After submission, complete questionnaires about
your experience.

CODING INSTRUCTIONS
1. Log into CodeHT (https://codeht.vercel.app) using study email
2. Configure settings with self-expertise ratings
3. Install EditThisCookie extension and copy Leetcode credentials
4. For each problem:
- Chat with the model to understand the problem and solution approach
- Click "ready to solve"” when prepared to code independently
- Complete within 10 submission attempts
- Submit trajectory and complete ranking survey

MATH INSTRUCTIONS
1. Log into CodeHT using study email
2. Configure settings with self-expertise ratings
3. For each problem:
- Chat with the model to understand the problem
- No note-taking while chatting with the model
- Click "ready to solve” when prepared to work independently
- Complete within 5 submission attempts
- Submit trajectory and complete ranking survey

IMPORTANT NOTES

- No internet reference during problem-solving

- No jailbreaking or sending inappropriate content

- Do not consider model speed in rankings

- Contact study administrators for persistent technical issues
Well-thought-out feedback earns bonus points

Figure 15: Summary of study instructions for participants, showing protocol for both coding
and mathematics problem-solving tasks.
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C.2 Post-Problem Questionnaire

Help Us Improve!

Self-Assessment
Model Ranking

Do you believe you could have solved this problem
Please rank the models you used based on their without Al assistance?
helpfulness by dragging and dropping your recently
used models in order: Please select... v

Problem find-a-safe-walk-
throu... €D Al Assistance Evaluation
o Sielice] e e A e Tt It Please rate your agreement with the following

statements:
View Problem

The Al effectively explained concepts and provided
educational value

q . Please select... v
Problem taking-maximum-

energy-...
The Al provided accurate and correct solutions

o Solved on 4/30/2025 at 01:54 PM
Please select... v
View Problem
The Al provided useful implementation tips and coding
suggestions

Submit Feedback

Figure 16: Questionnaire that users answered after each problem solving session.
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C.3 Problem Samples

Coding Problem Examples

1. [Elo: 1269.9] You are given two positive integers x and y, denoting the number of coins with
values 75 and 10 respectively. Alice and Bob are playing a game. Each turn, starting with
Alice, the player must pick up coins with a total value 115. If the player is unable to do so,
they lose the game. Return the name of the player who wins the game if both players play
optimally.

2. [Elo: 1692.2] You are given an integer array a of size 4 and another integer array b of size at
least 4. You need to choose 4 indices from the array b such thati_-0ji-1;i2ji_3. Your score
will be equal to the value a[0] * b[i-0] + a[1] * b[i-1] + a[2] * b[i-2] + a[3] * b[i_3]. Return the
maximum score you can achieve.

3. [Elo: 2450.6] You are given a binary string s representing a number n in its binary form. You
are also given an integer k. An integer x is called k-reducible if performing the following
operation at most k times reduces it to 1: Replace x with the count of set bits in its binary
representation. For example, the binary representation of 6 is “110”. Applying the operation
once reduces it to 2 (since “110” has two set bits). Applying the operation again to 2 (binary
”10”) reduces it to 1 (since “10” has one set bit). Return an integer denoting the number of
positive integers less than n that are k-reducible.

Math Problem Examples
1. [Elo: 1.72] The point (-1, -2) is rotated 270 degrees counterclockwise about the point (3, 1).
What are the coordinates of its new position?
2. [Elo: 3.39] In triangle ABC medians AD and BE intersect at G and triangle AGE is equilateral.
Then cos(C) can be written as mn\/ﬁ, where m and n are relatively prime positive integers and
p is a positive integer not divisible by the square of any prime. What is m+n+p?
3. [Elo: 6] Misha rolls a standard, fair six-sided die until she rolls 1-2-3 in that order on three

consecutive rolls. The probability that she will roll the die an odd number of times is %

where m and n are relatively prime positive integers. Find m + n.

Figure 17: Example abbreviated coding and math questions of varying difficulty from the
study. Coding problems sourced from Jain et al. (2024), Math problems sourced from AMC,
AIME competition series White et al. (2024).

C.4 Model Prompts

Model System Prompt

You are a helpful Al assistant for coding and math problems. Currently, your goal is
to guide the user through problem-solving without performing any calculations or
generating code. For math problems, never perform computations that a calculator
would do—instead, explain concepts, algorithms, and approaches the user should
apply themselves. For coding problems, describe algorithms and implementation
strategies in detail, but never write actual code or pseudocode. Your role is to help
the user understand HOW to solve the problem, while they execute the solution. Do
not reveal what you think the final answer should be. Please write all inline/display
math in latex notation, not markdown. Do not simplify any equations for the user.
your job is to guide the user and tell them how to solve the problem, not do it for
them.

Bottom line key rules:

1. Do not reveal your thoughts on the final answer to math problems.
2. Do not generate any calculations for math problems.
3. Do not generate any code or pseudocode for coding problems.
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Rule Compliance Evaluator System Prompt

You are an expert evaluator tasked with determining whether an Al tutor’s response
follows the established tutoring guidelines. You will be provided with:

* A problem description (coding or math)
* The conversation history between the tutor and student
¢ The current tutor response to evaluate

Your task is to assess whether the tutor’s response violates any of the core tutoring
rules:
Core Rules to Check:

1. No Answer Revelation: The tutor must not reveal their thoughts on what
the final answer should be

2. No Calculations: For math problems, the tutor must not perform any com-
putations that a calculator would do

3. No Code Generation: For coding problems, the tutor must not generate
actual code or pseudocode

4. Guidance Only: The tutor should provide explanations, concepts, and
approaches rather than solutions

Evaluation Process:

1. Carefully read the problem description to understand what the correct
answer would be

2. Review the conversation history for context

3. Analyze the current tutor response for rule violations

4. Look for subtle violations such as:
¢ Revealing intermediate calculation results
¢ Showing code snippets or algorithmic steps in executable form
* Hinting too strongly at the final answer
¢ Performing mathematical operations for the student

Output Format: Provide your evaluation as:
¢ COMPLIANT or VIOLATION
¢ Brief explanation of your decision

o If violation detected, specify which rule(s) were broken and cite the prob-
lematic text

C.5 Data Distribution
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Distribution of Conversation Lengths

200 4
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100 -

Frequency

o
4 5 6 7 8 9 10+

Number of Messages

Figure 18: Distribution of conversation lengths, based on number of messages sent by the
human.

C.6 Screenshots

Faiady 1o Sab #2102 -

Math Problem

ok e shauld do

]

Approaching the Snowstorm Driving
Problem

Figure 19: Image of user interface during a math problem solving session. The user may not
type in an answer or perform any calculations during Phase 1, the collective ideation phase.
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Fdath Problem

92:33 a

Your Salution

Figure 20: Image of user interface during a math problem solving session. Once the user
clicks “ready to solve”, they may no longer view their chats with the model, isolating

knowledge transfer.

Back Already Submitted

You are given an integer array nums.

The factor score of an array is defined as the
product of the LCM and GCD of all elements of
that array.

Return the maximum factor score of nums after
removing at most one element from it.

Note that both the LCM and GCD of a single
number are the number itself, and the factor
score of an empty array is 0.

Example 1:

Input: nums = [2,4,8,16]

Output: 64

Explanation:

On removing 2, the GCD of the rest of the
elements is 4 while the LCM is 16, which gives a
maximum factor score of 4 * 16 = 64.

Example 2:

This problem has already been submitted

1 Solving Mode 08:29 -

Python v

Already Solved

1 Solution:
maxScore( , nums: List )

n, ctr = len(nums), Counter(num:

mx = gcd(*nums) * Llcm(*nums)

Chat Assistant

Chat disabled during solving mode

Figure 21: Image of user interface during a coding problem solving session. In place of a
singular answer submission area is a code editor interface.

C.7 Win Rate Calculations

To quantify relative model performance based on user rankings, we employed the Bradley-
Terry model Bradley & Terry (1952), which provides a probabilistic framework for analyzing
pairwise comparison data. Given a set of models M, the model assigns a positive strength
parameter 77; to each model i € M. The probability that model i is preferred over model j is

given by:

P(i - ) = —1— M

7'[i+7'[j
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C.7.1 Pairwise Comparison Extraction

For each problem-solving session, users ranked the models based on perceived helpfulness.
From these rankings, we extracted all pairwise comparisons between the most recently
used model and all other models. Specifically, if a model was ranked higher than another
model, we recorded this as a win for the higher-ranked model. This approach ensured that
comparisons were focused on distinguishing the performance of the most recent model
relative to alternatives.

C.7.2 Maximum Likelihood Estimation

We estimated the strength parameters using maximum likelihood estimation. The log-
likelihood function for the Bradley-Terry model is:

“m=y mﬂog(nﬁm) 6

ijeM

where n;; is the number of times model i was preferred over model j. The MLE iteratively
updates the parameters according to:

i o ®)

where w; = Zj#,r njj is the total number of wins for model i. This process continues until

convergence, with a small € added to prevent division by zero. The final strengths are
normalized to sum to 1.

C.7.3 Standard Error Calculation

Standard errors were computed using the Fisher Information Matrix (FIM). For the Bradley-
Terry model, the FIM elements are:

Vhsi iy - 2 ifi=
Iij = ”ij+”,/‘z‘ vy . (4)
o (7'(1'-‘1-7'[/‘)2 lf ! # ]

Due to the identifiability constraint (}_; 77; = 1), we removed one row and column from
the FIM before inversion. The standard errors were calculated as the square roots of the
diagonal elements of the inverted FIM.

C.8 Elo Adjustment Calculations

In our study, we calibrate our initial human expertise for coding and mathematical problem-
solving capabilitie. The precise formulation of our ELO update mechanism is shown in
Figure 22.

In this formulation, when a user attempts a problem, the system calculates the expected
probability of success (P,) based on the difference between the problem’s rating (Ry) and the
user’s current rating (R.), scaled by factor S. After the user submits their solution, the actual
outcome (O,) is determined—1 for correct solutions and 0 for incorrect solutions. The rating
adjustment (AR) is then calculated as the product of a constant K and the difference between
the actual and expected outcomes. The system implements domain-specific parameters to
appropriately scale the ELO adjustments:

¢ Coding problems: K = 64, S = 200, with ratings bounded between 1000-4000
* Mathematical problems: K = 0.8, S = 1, with ratings bounded between 1-10
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1 1 if win
PE_W O, = {0 floss AR = K(O, — P.) 1)
R _ max(min(R. + AR, 10),1) if math )
" | max(min (R, + AR, 4000),1000)  if coding

Figure 22: Rating adjustment formulas based on performance outcomes. P, represents
the expected probability of winning, O, is the actual outcome, AR is the rating change,
and Ry,¢y is the updated rating constrained by the appropriate bounds for math or coding
competitions.

Rating updates occur at two critical moments: when a user correctly solves a problem, or
when they reach the maximum submission limit for a problem without solving it (fail to
solve). This ensures that ratings accurately reflect both successes and failures, providing a
comprehensive measure of user capability. The larger K value for coding problems creates
more dramatic ELO shifts, while the smaller value for math problems produces more
gradual adjustments, reflecting the different granularity appropriate for each domain.

To get a new problem, the system selects a problem at random from the pool of problems
that is within a range of their current elo rating. The difficulty ranges are domain-specific:

¢ Coding problems: Select from problems 200 to 400 points above the current user
skill level.

* Mathematical problems: Select from problems 0.75 to 1.25 points above the current
user skill level.

C.9 Research Ethics and Risk Disclosure

Our study was approved by our institution’s Institutional Review Board (IRB). All par-
ticipants were informed of the study’s purpose, procedures, and potential risks before
providing consent to participate.

Disclosure of Potential Risks The primary risks to participants were minimal and limited
to:

* Mental fatigue: Participants might experience mental fatigue from engaging with
challenging mathematical and coding problems. We mitigated this by allowing par-
ticipants to take breaks between problems and not imposing strict time constraints.

¢ Frustration: Some participants might experience frustration if unable to solve
problems or if model assistance was perceived as inadequate. We emphasized
in our instructions that the goal was to evaluate the models, not the participants’
abilities.

* Confidentiality: There was a minimal risk of breach of confidentiality of study data.
To address this, all data was stored securely on university-approved platforms, and
personally identifiable information was separated from study responses.

These risks were explicitly communicated to participants in the consent form, which clearly
stated that participation was voluntary and could be discontinued at any time without
penalty. Participants were also provided with contact information for the research team and
the IRB for any questions or concerns.

Compensation Participants were fairly compensated at a base rate of $25/hour, with
performance bonuses for successfully solving problems (1.2-1.5x base rate depending on
difficulty). This compensation structure was designed to motivate genuine engagement
while avoiding coercive incentives.
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Data Management Participants were informed that their interactions with AI models
would be recorded for research purposes, with all data anonymized prior to analysis. No
personally identifiable information is included in our published results or released datasets.
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C.10 Sample Interactions

Human: how to find the maximum possible energy gained

Model: [Abbreviated]

# Approach to Finding Maximum Possible Energy

This problem involves finding an optimal starting position to maximize total energy
gained while following teleportation rules.

Key Observation: Your path through magicians is deterministic once you choose a
starting position. If you start at position j, you'll follow a fixed path: j — j+k — j+ 2k —
... until you reach the end.

Solution Strategy:
1. For each valid starting position (from 0 to n-1), compute the total energy gained.
2. Return the maximum of these totals.

Human: how to code negative infinity in python

Model: [Abbreviated]
# Setting Negative Infinity in Python
In Python, you can represent negative infinity in several ways:

Using the float Type:
negative_infinity = float('-inf"')

Alternative Approaches:
1. Using the math module: negative_infinity = -math.inf
2. Using NumPy: negative_infinity = -np.inf

[User submits code with an error: TypeError: ‘int” object is not iterable]
[User makes several attempts to fix the code, including changing how infinity is defined]
[Final attempts result in a time limit exceeded error]

I understood how the algorithm would work in theory but I didn’t know how to debug
my answer. The model’s explanation was clear and easy to follow along with.”

Figure 23: Interaction between human and Al model (Claude 3.7 Sonnet) on a dynamic
programming problem. The user attempts to implement a solution based on the model’s
explanation but encounters runtime errors that are not resolved within the time limit.
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Human: So the base case is returning -1.

Model: [Abbreviated]

Yes, the base case would be returning -1 if no valid rectangle can be formed with the
given conditions. Here’s how you can approach the problem:

1. **Check the conditions for a rectangle**: - A rectangle requires four distinct points that
form edges parallel to the axes. - The x-coordinates of two opposite corners should be the
same as the other pair, and similarly for y-coordinates.

2. **Check for points inside the rectangle**: - Once you identify a potential rectangle,
ensure that no other point lies inside or on the border (aside from the four corners).

3. **Return -1 as a fallback**: - If no valid rectangle satisfies these conditions, return -1.

Human: There has to be an easier way than iterating over all combinations of 4 points

Model: [Abbreviated]

You're absolutely correct. Instead of iterating over all combinations of four points, we
can leverage the properties of rectangles:

1. **A rectangle is defined by two diagonal points**: - For any rectangle with edges
parallel to the axes, its opposite diagonal corners are sufficient to define it. - If you have
two diagonal points (x1,y1) and (x2,y2), the other two corners must be (x1,y,) and
(x2,41)-

2. *Use a set for fast lookups**: - Store all points in a set for O(1) lookup to determine if
the remaining corners exist.

3. **Check for validity**: - Verify that there are no points inside the rectangle or on its
borders apart from the four corners.

Human: Isn’t that runtime still pretty bad?

Model: [Abbreviated]

While the O(n?) approach scales better than brute-forcing all combinations of 4 points,
we can optimize it further:

The constraints state that n < 10, meaning at most 10 points in the input. For n = 10,
O(n?) means iterating through (120) = 45 pairs of points, which is computationally trivial.
Some optimizations: 1. **Avoid validating duplicate rectangles** 2. **Early exit for invalid
cases** 3. **Efficient point validation**

Given the small input size constraint, the O(n?) approach with these optimizations is
efficient enough.

Human: How do you tell if something is in the rectangle again? What would a helper
function look like?

Model: [Abbreviated]

To determine if a point is inside or on the boundary of a rectangle, you can use the
rectangle’s bounding coordinates. If the rectangle is defined by its diagonal corners
(x1,y1) and (x2,y2), you can derive the rectangle’s boundaries as x,,;, = min(x1,x),
Xmax = max(xler)/ Ymin = min(ylr ]/2)/ Ymax = max(ylr yZ)-

A point (x,y) is inside or on the boundary if: x,;, < x < Xmax and Yinin < Y < Yimax-

[User submits several iterations of code, eventually arriving at a correct solution]

” Although the solution offered by the Al was one that I had originally thought of and
most people would have thought of, it was still helpful in that it wasn’t giving FALSE
information. It basically just confirmed what I was thinking, and was helpful in that it
confirmed the runtime wasn’t able to reduced much further. Furthermore, I feel that if I
was more thorough in asking about solving the problem in a really short time, it would
give me more answers.”

Figure 24: Interaction between human and Al model (GPT-40) on finding the maximum area
rectangle with point constraints. The model guides the user through an O(n3) approach
by checking if points form valid rectangleg7with no additional points inside or on the
boundaries.
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Human: how should i approach this

Model: [Abbreviated]

# Approach for Analyzing the Recurrence Relation 11 = 2uy — Zu%
1. Find the Limit (L):

* Assume 1y — Land ug,q — Lask — oo

* Substitute into the recurrence: L = 2L — 212

* Solve for L to find possible limits

2. Determine the Actual Limit:
* Calculate first few terms starting with uy = 1/4
* Analyze the function f(x) = 2x — 2x2 and its derivative at fixed points

3. Analyze Convergence Rate:

* Consider transformation vy = 1 — 2uy

* Find recurrence for vy 1 in terms of vy

* Use the transformed sequence to find closed-form for vy

4. Translate the Condition:
* Express |u; — L| < 21% in terms of vy,
* Solve for the smallest k satisfying this inequality

Human: what do you think are the first few terms of the sequence and how fast does it
generally converge

Model: [Abbreviated]

# Exploring the Sequence Terms and Convergence Speed
1. Calculating Terms:

* Start with uy = %

*up=2ug—2uF=2-1—2-(3)?

* Continue for uy, ug, .. .

2. Observing Convergence:
* Compare terms to potential limits
* Analyze how |uj — L| changes with each step

3. Relating to Transformation:

* Calculate vy = 1 — 2uy for first few terms

* Examine the relationship between v 1 and vy

* Determine how convergence of vy relates to convergence of

Human: it converges exponentially fast, not linearly or quadratic.

[User submits answer: 10]
[Answer is correct]

it gave me general intuition how to solve it but didn’t say much other than just guess
and check and find a pattern.”

Figure 25: Interaction between human and Al model (Gemini 2.5 Pro) on a recurrence
relation problem. The model outlines a systematic approach focusing on finding limits and
transformation techniques. The user identifies the exponential convergence pattern and
determines the correct answer.
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Human: I'm assuming this can be done pretty fast, considering we can use k as somewhat
like a boundary?

Model: [Abbreviated]

One key insight is that you only need to ensure each pair (i, n - i - 1) has the same absolute
difference. Since you can replace any element with an integer from 0 to k, you have a
fixed range for potential targets.

Solution Strategy:

1. Recognize that the final array must have pairs whose difference is some integer X (<=
k).

2. For each pair (i, n - i - 1), determine which X values can be achieved with 0, 1, or 2
changes.

3. Find the X that leads to the minimum total changes across all pairs.

Human: Can [ have two pointers here?

Model: Yes. You could have one pointer at i = 0 and another at j = n-1, moving inward. At
each step, you analyze how many replacements would be needed to make their difference
match a candidate X.

Human: Can we not just count the amount of pairs with the same difference?

Model: [Abbreviated]

Simply counting the most common current difference can fail because you might achieve
a different uniform difference with fewer total changes. You need to consider how many
changes would be required for each pair to achieve each potential difference X, then
choose the X requiring minimal changes overall.

Human: How do I know how many possible X’s there are?

Model: All possible values of X lie in the set {0, 1, 2, ..., k}, since any replacements must
be in [0, k].

Human: So this time won’t be O(n)?

Model: [Abbreviated]

A naive approach could lead to O(n-k) time, which is too large when n and k can both
reach 10°. Instead, for each pair, determine which differences can be achieved with 0, 1, or
2 changes, storing this information compactly. Then find the difference X that minimizes
total changes.

Human: So what are we storing?

Model: For each pair, store: - The single difference achievable with 0 changes (current
absolute difference) - A compact representation of differences achievable with 1 change -
By default, other differences in [0, k] require 2 changes

[User attempts multiple implementations, encountering various errors]

Human: [Final implementation attempt, which times out]

”Although this Al ‘seemed’ smarter than the others in that it was giving me better
solutions, the overall explanation was confusing such that I wasn’t able to understand
it! There were points where the grammar was interesting and it would throw me off. If
the grammar usage was a bit better I could’ve implemented what it was asking me, but I
started getting frustrated trying to understand what it was trying to say.”

Figure 26: Interaction between human and Al model (Deepseek-V3) on a problem about
minimizing array modifications to equalize differences. Despite a theoretically sound
approach, communication barriers preventeglgsuccessful implementation.
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Human: how should i approach this problem

Model: [Abbreviated]

# Approach to the Problem

1. Understand the Properties of z: You have z = a + bi, where a and b are integers.

2. Analyze the Modulus Condition: Given |z| = ,/p where |z| = Va2 + b?, we get
a>+ b = p.

3. Properties of p: Consider which prime numbers can be expressed as a> + b?.

4. Calculate z3: Expand (a + bi)3.

5. Identify Real and Imaginary Parts of z3: Find Re(z%) and Im(z%).

Human: explain step 4 in more detail

Model: [Abbreviated]

You need to compute z> = (a + bi)? using the binomial expansion: (a + bi)? = a3 +
3a2(bi) + 3a(bi)? + (bi)3

Remember that: - i2 = —1-i% = —i

After substituting, you can rewrite the expression and group the real and imaginary parts:
23 = (a® — 3ab?) + (3a%b — b3)i

So Re(z%) = a® — 3ab? and Im(z%) = 3a%b — b>.

Regarding the Triangle Inequality: The condition requires that p, Re(z%), and Im(z%)
form a triangle, which means: - All side lengths must be positive - Any two sides must
sum to more than the third side

Human: Re(z%) = a® — 3ab? and Im(z%) = 3a%b — b®

Human: explain step 6 in more detail

Model: [Abbreviated]

# Apply the Triangle Conditions

For a triangle with sides p, s; = a3 — 3ab?, and s3 = 3a%b — b°:

1. Positivity Conditions: - p > 0 (always true since p is prime) - s, > 0, which requires
a> +/3b (assuming a,b > 0) - s3 > 0, which follows if 2 > V/3b

2. Triangle Inequality: - p +sp > s3-p+53 >5s3-50+53 > p

These simplify to: - [a® — 3a%b — 3ab® + b3| < a® + b? - 4> + 3a®b — 3ab® — b® > a? + b?
Strategy: Find pairs of positive, coprime integers (a,b) that satisfy: - a,b are positive
integers - @ and b are coprime - p = a2 + b? is prime and p < 1000 - a > /3b - Triangle
inequality conditions hold

You've found primes 17 (from a = 4,b = 1), 89 (froma = 5,b = 8), 349 (froma = 18,b =
5)...

[User submits 199, which is incorrect, then 349, which is correct]

“Helped me with my thought process especially with certain identities and tricks. I kind
of forgot certain properties of complex numbers so the Al was pretty good at getting me
back up to speed. Aside from a few glitches, I feel it did a pretty good job at explaining
things and setting a framework with clear steps to take.”

Figure 27: Interaction between human and AI model (Gemini 2.5 Pro) on a AIME problem
requiring complex number manipulation. The model provides a step-by-step approach,
helping the user navigate through mathematical derivations and systematically find the
largest prime meeting all conditions.

30



	Introduction
	Related Work
	KITE: Quantifying Knowledge Transfer
	Conceptual Framework for Knowledge Transfer

	KITE: Evaluating Knowledge Transfer
	Two-Phase Protocol for Isolating Knowledge Transfer
	Modeling and Calibrating Skill Hierarchies
	Experimental Controls and Evaluation Strategy

	Results
	Qualitative Analysis: Interaction Dynamics
	Performance Transfer Gap
	Domain-Specific Preference Patterns
	Skill Hierarchy Dependencies

	Discussion
	Limitations and Future Work
	Participant Demographics
	Participant Selection Details

	Auxiliary Study Results
	Study Details
	Study Instructions
	Post-Problem Questionnaire
	Problem Samples
	Model Prompts
	Data Distribution
	Screenshots
	Win Rate Calculations
	Pairwise Comparison Extraction
	Maximum Likelihood Estimation
	Standard Error Calculation

	Elo Adjustment Calculations
	Research Ethics and Risk Disclosure
	Sample Interactions


