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Abstract

Learning Energy-Based Models (EBMs) is notoriously difficult when the data dis-
tribution is multi-modal. Standard methods such as Score Matching — even when
amortized across many noisy versions of the data as in Energy-Based Diffusion
Models — often fail to capture relative energies between modes because they rely
solely on local energy differences. We address this limitation by also considering
global energy differences. To do so, we use Conditional Noise-Contrastive Esti-
mation (CNCE) which estimates energy differences between pairs of points drawn
using a freely chosen noise distribution. We design this noise distribution to pro-
pose pairs of points from different modes, thus comparing the modes directly.
We further obtain the asymptotic estimation error of CNCE, derive a theoretically
optimal noise distribution, and provide a practical algorithm that combines local
and global energy differences. Experiments show that this approach substantially

improves estimation in multi-modal settings.

1 Introduction

Energy-Based Models (EBMs) of data are a powerful way of using neural networks for density es-
timation [Murphyl [2023| [Rhodes, [2023]]. Such models parameterize the unnormalized density by an
energy function that can be an expressive neural network. Such modelling flexilbity comes at a price:
the normalizing factor integrates the neural network over the data space which is usually intractable
to compute. This has led to the development of many methods for estimating the parameters that

avoid or approximate the normalizing factor.

Many standard methods for estimating the parameters
of an EBM are sample-inefficient when data is multi-
modal [Koehler et al., [2023|]. Intuitively, this is because
they use local differences to learn the global energy func-
tion. This is for example the case for Score Matching
losses and variants which estimate the gradient of the en-
ergy function. Local differences in the energy function
can be estimated with high precision even if the energy
function is globally distorted (change the relative weights
of two far-away modes) [Wenliang and Kanagawal [2021]].

To address the issue of learning EBMs of multi-modal
data, we use Conditional Noise-Contrastive Estimation
(CNCE) [[Ceylan and Gutmann, [2018]] to estimate local
and global energy differences and provide a theoretical

Figure 1: Learnt densities after training
an EBM on a bi-modal Gaussian mix-
ture with equal weights using CNCE.
Left: solely using local noises may not
learn the correct scalings. Right: com-
bining local and global transitions re-
solves the multimodal issue.

EurIPS 2025 Workshop on Principles of Generative Modeling (PriGM).



result that motivates this choice. Our experiments show that this approach substantially improves
EBM estimation in multi-modal settings.

2 Background

Formally, an Energy-Based Model is written as pg(x) = fo(x)/Z(0), where the unnormalized
density fg = exp(—FEg(x)) is parameterized by an energy function Eg that can be a neural network.

Score Matching losses Learning an EBM can be achieved by minimizing a Score Matching
loss [Hyvirinen, 2005, motivated by the observation that Stein scores V log pg () are convenient
to learn as the intractable normalizing factor cancels out. A popular version is [Vincent, 2011]]

Lpsm(0) = Ep,@)p, (yle.e) [V 108 (Y], €) — Vog pa(y)||*], €))

which is termed the Denoising Score Matching loss. Here, y is a version of the data that is corrupted
by Gaussian noise p, (y|x, t) = N (y|x, eI) for a given €, and the loss is consistent as € — 0. There
is extensive empirical [Wenliang and Kanagawal 2021} Zhang et al.| 2022[| and theoretical [Koehler
et al.| 2023] evidence that such losses are sample-inefficient for learning EBMs of multi-modal data,
essentially because the score is a local quantity. The following attempts to bypass this problem.

Amortizing Score Matching losses across noise levels Recently, Score Matching losses have
been amortized over different corruption levels of the data ¢, as in Energy-Based Diffusion Models
(EBM Diffusion) [Song et al.,|2021} Du et al., 2023} Thornton et al.| 2025]]

»CEBMfDiffusion(e) = Ep(e)pd(m)pn(mm,e) [Hv logpn (y‘wv 6) -V logpg (y|6)||2] (2)

Note that in Eq. [2] the parameterization is shared across noise levels €. The hope is that higher
noise levels e where the score estimation is easier will benefit lower noise levels € where the score
estimation is harder. Indeed, recent theory [Q1in and Risteski} 2024] suggests that minimizing Score
Matching losses over different noise levels as in Eq. [2| does improve over a single noise level as
in Eq. E], and can even be Fisher-efficient [Chewi et al., [2025]).

In practice, however, estimating parameters by minimizing this loss still incurs a high error, as
we later verify in Figure [2] This error has a practical impact, given the usage of EBM Diffusion
for compositional generation for example [Du et al., 2023]]. This has led recent works to suggest
regularizing the amortized loss Eq. [2] with an extra loss [Guth et al.| 2025] [Aggarwal et al., 2025| [He
et al., 2025} |Plainer et al., 2025]]. This extra loss term is often itself amortized over noise levels and
these works do not provide a theory for why it improves the estimation.

Conditional Noise-Contrastive Estimation loss We next review Conditional Noise-Contrastive
Estimation (CNCE) [Ceylan and Gutmann, [2018]. It learns the differences in energy log pg(y) —
log pe(x) for any @ and y, which also cancels out the intractable normalizing constant.

£CNCE(0) = _QEpd(w)pn('y\m) [IOgO'(lngg(iL') - Ingg(y) + logpn(y\:c) - lngn(iL'ly))],
(3)

where o is the sigmoid function. When @ and y are neighboring points, this difference approximates
the Stein Score. The CNCE loss also uses a conditional noise distribution p,, which determines the
jump from clean data x to corrupted data y used to compute the energy differences. Unlike the
Score Matching loss in Eq. [T} CNCE is consistent for any choice of p,,, a free design choice.

Many choices of p,, have been explored in the literature [Olmin et al.,2024] — many of them result
in a pair of nearby points  and y. This locality implies that the estimation is only accurate when
evaluated on points that are close to each other. This is the case when the noise distribution is
obtained by adding a small Gaussian perturbation p,, (y|z) = N (y|z, eI), the CNCE loss recovers
the population Score Matching loss as e — 0 [Ceylan and Gutmann| 2018, Theorem 1]. Another
popular choice to adaptively update p,,, so that it takes takes local MCMC steps toward the current
version of the model [Ceylan, 2017, Section 4.3] [Welling et al., 2003|]] which recovers the well-
known Contrastive Divergence algorithm [Hinton, 2002, |Yair and Michaeli, [2021].



However, for highly multimodal distributions, there may exist large gaps between the modes so
training on nearby points may result in inaccurate energies. CNCE local is indeed prone to this
problem, which we verify in the experiments section. Welling et al.| [2003]] propose a solution for
the related Contrastive Divergence algorithm: they choose p,, to jump between modes of the data,
but rely on local Gaussian approximations or Metropolis accept-reject steps that are inefficient in
high dimensions. |Ceylan and Gutmann|[2018]] choose p,, as a Gaussian perturbation whose standard
deviation is tuned, but large values can easily lead to jumps in low-density regions of the data.

3 Solving the multimodality problem by jumping between modes

In this section, we formalize a solution to the multimodality problem from a theoretical and a prac-
tical perspective. We start by deriving a formula for the asymptotic estimation error of CNCE.

Theorem 1 (Estimation error of CNCE) The CNCE estimator 6 that minimizes the empirical version
of the loss in Egq. @using Ny data points is asymptotically normal 6 ~ N (0*,X) where ¥ =
NidCfngCfl and its mean-squared error is
~ N 1 B _ 1
6 —6%|? = mtrace(cl e, + o(ﬁd). 4)
The matrices are functions of the log density differences Fp(x,y) = logpg(x) — logpe(y) +
log pn(ylz) —log pn(y)

C’1 = Epd(m)pn(ykv) [VGFQ* ($7 y)VBFO* (17, y)TU(_Fe* (wa y))U(FG* (wa y))] ) )
C2 =Ep,(a)p, (yle) [VoFo: (@, y)VeFo-(z,y) o(—Fo-(x,y))?] . (6)

We next show how to choose the noise distribution to reduce the above error. Indeed, if we had
access to an oracle of the data density we wish to estimate, then our following result proves that
setting the noise density equal to the data density is near-optimal. This is equivalent to randomly
jumping between data points located among the various modes.

Corollary 2 (Near-optimal noise distribution) The oracle noise p, (y|x) = pq(x) is quasi Fisher-
efficient, in that it achieves the Cramer-Rao Lower Bound, up to a constant factor of 2,

1

2 * 2 -1
E||l6 — 6*||* = Etrace(IF )+ o(m), (7

where I'r denotes the Fisher Information matrix.

In practice, we obviously do not have access to such an oracle of the data density as recommended
by Corollary [2| But for many problems we can approximate it separately. While this introduces a
new source of error, it is reasonable to hope it does not degrade the estimation guarantees [[Uehara
et al., [2020]]. A popular choice is to take many MCMC steps toward the data distribution as in the
popular Contrastive Divergence algorithm, which in theory remains quasi Fisher-efficient [Glaser
et al., |2024] but in practice can be unstable to train [[Carbone et al., 2023, Section 4.2]. Another
choice is to use a non-parametric approximation the data distribution such as a Kernel Density
Estimate (KDE) [Uehara et al., [2020].

Yet, formal guarantees on the quality of the empirical estimate are hard to obtain [Uehara et al.,
2020]. In practice, we set the loss equal to a mixture of CNCE losses between (i) a loss with un-
conditional p,, given by a KDE approximation of the data distribution of two distributions so that
CNCE estimates global differences in the energy and (ii) a loss with conditional p,, given by a small
Gaussian perturbation so that CNCE estimates local differences in the energy. The mixture param-
eter interpolates between (i) the theoretically optimal choice given our Corollary [2]and (ii) what is
used in practice, similar to Score Matching. We tune the mixture parameter as a hyperparameter.

4 Experiments

We consider training an EBM parameterized using a neural network to fit data generated from a 20
dimensional Gaussian mixture with 40 components. The means of the Gaussian mixture compo-
nents are randomly sampled from the standard normal distribution, while the covariances are simply



Table 1: NCE algorithms for learning the 20 dimensional Gaussian mixture. CNCE mix is clearly
the best among all considered variants.

Metric NCE NCE GMM CNCE CNCE mix CNCE GMM
Ratio| 549 +8.6 39.1+£6.6 130.0 +£434 238+05 202+05
NLL|] 35%£13 59+ 1.6 2.1+£27 -6.6 + 0.5 -33+£25

MSE | 3342+48.6 87.6£29.7 329241039 662+74 130.9+£558

given by 0.121. We evaluate the quality of the resulting models by (i) the mean squared error of the
estimated log density ratio between two data samples against the ground truth (ratio), (ii) the nor-
malized negative log likelihood on data points (NLL), (iii) the mean squared error of the normalized
log density against the ground truth (MSE). The models are normalized using importance sampling
with 10° samples, with the proposal distribution given by the ground truth data distribution.

Loss functions based on binary classification We consider the CNCE loss function with the
different design choices: using local Gaussian jumps (CNCE local), global jumps between data
points (CNCE global), and our proposed mixture of both (CNCE mix). We compare this with another
class of loss functions for learning EBMs, called Noise-Contrastive Estimation (NCE) [|Gutmann
and Hyvirinen, |2012], which is obtained as a binary classification problem between data points and
noise points. For NCE, we consider the following design choices: using standard Gaussian noise
(NCE) and using a KDE approximation of the data as noise (NCE global) which is Fisher-efficient
in theory [Uehara et al, 2020]. As shown in Table [[, CNCE mix achieves the best performance,
significantly outperforming the baselines.

Regularizing the loss function used in Energy-Based Diffusion Models We consider another
loss for training EBMs, as used in EBM Diffusion and recalled in Eq. [2| (Diffusion). Our code is
based off Du et al.|[2023]]. Apart from the 20 dimensional Gaussian mixture as considered before,
we utilize a two dimensional Gaussian mixture with 25 modes with equal weights based on|Schroder
et al.|[2023] for better visualizations, whose means are distributed on a grid and the covariances are
small. We further consider adding a regularization term to the loss, given by CNCE with global
jumps (Diffusion regularized). As shown in Figure 2l EBM Diffusion in its raw form struggles to
learn the correct distribution, failing to capture the relative energy scales between the modes. Adding
the regularizer significantly improves upon the vanilla version. Due to differences in e.g. training
complexities, the results may not be directly comparable against Table[I]

Metric EBM diff EBM diff reg

Ratio| 1783.6 +535.0 103.5 +27.0

NLL|] 31.0+7.6 -85+03

MSE | 297254+ 886.7 80.6+17.0
(a) EBM Diffusions for 20 dimensional Gaussian (b) EBM Diffusions for 2 dimensional Gaussian mix-
mixture. ture. Left and right: without and with regularization.

Figure 2: The proposed regularization significantly reduces the estimation errors of EBM Diffusion.

5 Discussion

CNCE for learning Energy-Based Models As popularized by Diffusion Models [Song et al.,
2021f], Score Matching losses [Hyvirinen, 2005, |Vincent, |2011]] are enjoying widespread use in
generative modeling. CNCE is closely related to Score Matching, as it recovers Score Matching in
expectation for infinitesimal noise [Ceylan and Gutmann, 2018|]. We argue that it is currently under-
appreciated by the community. In our work, we analyze the estimation errors of CNCE and highlight
the potential of utilizing it for a broader set of problems, such as regularizing EBM Diffusions.

Broader interest in CNCE Note that CNCE was originally formulated as minimizing a loss func-
tion that solves a certain binary classification task. Versions of the binary task above have been used



in the machine learning literature, without necessarily parameterizing the ratio by an Energy-Based
Model (EBM) in place of p;. One example is to detect the reversibility of a timeseries [Agrawal
et al.| 2022]]. Another example comes from computer vision, where the task is to predict the permu-
tation of a (longer) input tuple that has been scrambled: this is likened to ‘solving a puzzle’ [Noroozi
and Favaro, 2016|]. This can be formalized as CNCE, where label £ = 1 indexes the original tuple
order and label £ = 2 indexes the permutation. Hence, our results may be of independent interest
given the renewed interest in versions of CNCE, while its estimation error was unavailable.
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A Conditional Noise-Contrastive Estimation (CNCE)

Data points sampled from a data distribution p; can be used to define a binary classification task
called Conditional Noise-Contrastive Estimation (CNCE) [Ceylan and Gutmann, 2018]]. A tuple
(z,y) is associated with a binary label k¥ € {0,1}. The tuple is generated from either generative
probabilities

p(x, ylk = 1) = pa(x)pn(ylx), plx, ylk = 2) = pa(y)pn(xly) ®)

with class priors p(k = 1) = p(k = 2) = 0.5, where p,, is a data-dependent noise distribution (e.g.
Gaussian blur). The distribution of class 1 can be sampled by picking a data point = and then noising
it into y. The distribution of class 2 can be sampled by permuting these inputs. Bayes’ rule yields
the discriminative probabilities

g ) — pa(x)pn(y|z) — siemoid( 1o pa(x)pn(y|x)

Pk = y) = o T rae ey (s d<y>pn<w|y>>’ ©)
_ _ (y)pn(x|y) — sigmoi o pd(x)pn(yh:)

= 20) = e ety ~ e e ) o

which are explicit functions of the reversibility ratio % that can be parameterized and

learnt. In short, CNCE detects reversibility — a key concept in the dynamics of physical systems.

CNCE loss and hyperparameters The logistic classification loss for CNCE is
L(0) = —Eg y~p, logo(F(x,y;0)) — Eg yp, logo(—F(z,y;0)) (11)

where Fy(x,y) = log %’%. Exploiting the (unusual) symmetry of the problem stated in

Lemmal[d] allows us to rewrite both sums as one

ﬁ(@) = 7Em,y~p1 loga(F(m, Y; 0)) - Em,ywm log O’(F(:m Y; 0)) = 72Em,y~p1 log O’(F(:C, y;lez))
(12)

While this is all equal for an infinite number of samples, we anticipate discretizing this loss and
joining both sums as one exploits the method of Common Random Numbers, known in statistics for
variance reduction[] This yields

£T NdKZZlOgU mzayljva))a (13)

i=1 j=1

introducing by the choice of discretization, a different number of data and noise samples with K =
Np
Ng*

'This is, in fact, a key difference with the finite-sample NCE loss, which keeps two distinct sums.



B Theoretical results

B.1 Useful lemmas

The Fisher Information Matrix plays a special role: under certain assumptions, its inverse provides
the best possible estimation error for 8. We therefore wish to recognize it when performing calcula-

tions for unnormalized models. In practice, we are interested in p(x; 6) = @

Lemma 3 (Fisher Information Matrix in terms of the unnormalized model) The Fisher Information
Matrix of the normalized model p can be written in terms of the unnormalized model f, as

Ip(0) = Varg.,[Velog f(x;0)] (14)
=E, [Volog f(2;0)Voelog f(2;0)"] —E, [Volog f(z;0)|E,[Velog f(x;6)]". (15)

Proof. By definition, the Fisher Information matrix is
I5p(0) = Eqnp [Volog p(a; 0) Ve log p(x;0) ] . (16)

We then relate the Fisher score vector of the normalized model p to the unnormalized model f, as

Ve logp(xz,0) = Vglog f(x;0) — Ve log/f(m; 0)dx = Vglog f(x;0) — M

[ f(z;0)dx

(17)

_ oy [ Vef(x;0)
= Volog f(x;0) 7f f(:l:;@)dwdw (18)

;0

= Volog f(:0) ~ [ Vo logf<w;0>mm (19)
= Vglog f(x;0) —Ey~,Velog f(x;0) (20)
Plugging this back into Eq. [I6]yields the result. O

Lemma 4 (Symmetry of CNCE loss) Given one data / noise pair (x,y), CNCE loss yields two
terms that are exactly the same.

Proof.

logo (log ;Ez’ Z)in(y@)) = log (1 -0 <log ;EZ’ O)pn(az|y))) . (21)

B.2 Proof of Theorem/[]

Recall that under reasonable assumptions, the estimation error of a parameter is asymptotically given
by the following formula [[Vaart| |1998]]

|65 — 0% = trace(Z) + o <%> : (22)

where X is known as the asymptotic covariance matrix defined as
Y =E[Hy(0")] ' x Var[Jy(0")] x E[Hx(8)] ", (23)

which is the product of three matrices involving the empirical loss function. In the following, we
compute the relevant quantities that will define the asymptotic variance.

Empirical loss We recall the empirical loss function

—2 JAv £ 0)pa (y|)
Ln(0) = NdK;;IOgU(F(mi»yiﬁg))a F(x,y;0) :10gm . 24)

10



Gradient of the empirical loss We can compute the gradient of the empirical loss function

NdK Z Z mVBU(F(wh Yij; 0)) (25)

i=1 j=1

JIn(0) = VeLn(0

-2 1 /
= NdKZ;mU (F(wia'yz‘j%0))VBF($i7yij§0) (26)

NdK ZZVBF LiYij, 0) (1_U(F(wi»yij§9))) 27

NdKZZVBF ©;,Yi5,0) P(Y =0|(xi,y:;);0) (28)

11_;1

NdKZZ (@4, ij; 0), (29)

=1 j=1

using that o (.) = o(.)(1 — &(.)). In the last line, we abbreviated the summand of the gradient with
s.

Hessian of the empirical loss We can also compute the Hessian of the empirical loss function

Ng K
Hy(0) = VLn(0 Nk ZZV?)F zi,Yi5:0) (1—o(F(zi,y:;;0))) (30)
1=1 j=1
— VoF(xi,9ij;0)VeF (zi,vi;:0)" o(F(zi,y:;;0)) (1 — U(F(wi,yglﬁ)))
2 _ . AN
NdK;]ZIVGF @i,9ij:0) P(Y = 0|(xi,i;); 6) (32)
— VoF(xi,yij; 0)VoF (i, yi;0)  P(Y = 0|(zi,yi;); 0)P(Y = 1\(%‘%?)!@); 0)
NdK;]ZIS T, Yij; 0 (34)

where in the last line we abbreviate the summand of the Hessian with S.

Expected Hessian of the empirical loss We can now compute the expected Hessian of the empir-
ical loss.

Ng K
-2
E[Hy(0)] = N N e Beimpais oo (o) 3> S(xi i 0) (35)
i=1 j=1
-9 K
= wafvpd,yj~pn(~lw) Z S(x,yj:0)| = —2Eapyy~pa(la) [S(@ y;0)] -

j=1

(36)
When unpacking the summand S, the first term is null as a result of the symmetry of the problem
by Lemma[d] This leaves

E[HN(0)] = 2E(z.y)~p, [VoF (2,9;0)VoF (2,y;0)" P(Y = 0|(z,9);0)P(Y = 1|(z,); )]

(37)

= 2B (5 y)p: | (Vo log f(x;0%) — Vg log f(y;0%)) (Vo log f(x;0*) — Vg log f(y;0")) "
(38)
P(Y =0|(z,y);0)P(Y = 1|(z,9);0)], (39)

where we unpacked the log density ratio F'(x,y, 6).
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Variance of the gradient of the empirical loss We can also compute the variance of the gradient
of the empirical loss

Ng K

4
Val"JN(H) = N2K2 Varwapd,yngPn( ‘93 ) Z Z S(&;, yljae) (40)
i=1 j=1
4
= Vo2 Ve pas ) | 2 8(®@ 30 @1)
Jj=1
4 K
NdK2 fﬂdi,’yJNPn @) Z aij Zs T ij (42)
j=1 j=1
T
4 K K
B NdKZ]EwNPd’y:‘NPM-\@ ZS 2, Y53 0) | Eonpyyjmpallz) ZS z,y;;6
j=1 =1
(43)

The two last terms are actually null given the empirical gradient is unbiased. Hence the variance of
the gradient is

K K
4
Vardy(0) = g Bepiysmpalle) > s(x,y;:0))  s(x,y;;0 (44)
= =1
4 S
- NdKzEwpryijn(.\w) s(x,y;;0)s(z,y;;0)" (45)
j 1
4 T
+ NdKQEENPd,yjNPn( =) 3 z,y;;0 )s(x, yr; 6) (46)
J#k
4K
= NdKZEmNPd7yNPn(~|m) s(z,y;0)s(z,y; 0) ] 47)
(48)
A(K? — K)
TN KR Ceerayera @)y o) [s(z,y:0)s(x,y;0) "] (49)
(50)
4K T 2
= NdKQEwdivprn(~|m) [VOF(wvy§0)v0F(€B,y;0) P(Y =0|(x,y);0) ] (51)
(52)
A(K? — K)
+ —N gz Eepa[Bymp, (o) [VoF (@, y;0) PV = 0|(x, y): 0)] (53)
d
.
Eyp, () [VoF (z,y';0)P(Y = 0|(x,9');0)] |, (54)

where in the last line we unpacked the summand s of the gradient.

Special case when KX = 1 In particular, when K = 1 we have
E[Hy(0)] = 2E (2 4)~p, [VgF(:c Y;0)VoF(x,vy; H)T P(Y =0|(x,y);0)P(Y = 1|(z,y); 0)] ,

(55)
and
4
VarJy (9) N, Ewdi,yijn(.|m) [S(m7 Y; 0)3(587 Y; O)T] (56)
4
N ENPd’yjNPn(-kE) [VQF(:E?:'L B)VGF(wayv G)TP(Y = 0‘($, y>, 0)2} . (57)
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Denote

C1 = Eumpyympn(1x) [VoF (2,9,0)VoF (2, y,0) " P(Y =0|(z,y);0)P(Y = 1|(z,y);0)]
(58)
C2 =Eourpy;mpnla) [VoF (®,y,0)VoF (x,y,0)" P(Y =0|(z,y);0)] . (59)
We have
E[Hy(0)] = 2C1, (60)
4
VarJN(H) = 7C2, (6])
Ny
Y =E[Hy(0%)] ' x Var[Jn(6*)] x E[Hn(6%)] " (62)
1,4 1
= §C1 EC2§CI (63)
1 _
= chl 'c,ort. (64)
B.3 Proof of Corollary2]
With oracle noise, p,, (y|x) = ps(y) and p, (x|y) = ps(x), and we have
P(Y =0|(x,y);0") = P(Y = 1|(x,y);0") = 1/2, (65)
therefore the expected Hessian becomes
1 * * * *
E[HN(0)] = 5Ee~piypa [(Volog f(x:0") — Vg log f(y;0%)) (Ve log f(w;0%) — Vglog f(y;6)) ] ,
(66)
and the variance of the gradient becomes
1
Vardn (0) = EEwdivprd [VoF(z,y;0)VoF (z,y;0)"] (67)
1 * * * *
= w7, Berrars [(Volog f(x;6") — Vg log f(y:;6"))(Velog f(z;0*) — Velog f(y;6%)) "]
(68)
Therefore, the asymptotic variance matrix is given by
4 * * * * -1
= EEwdi,ywd [(Volog f(2;6") — Velog f(y;6"))(Velog f(x;6") — Velog f(y;6°)) ] .
(69)
Observe that

Eampa,y~pa [(Volog f(x;0%) — Vg log f(y;0%))(Ve log f(x;0*) — Velog f(y; 0%)) "]

(70
= Earpsy~ps [Volog f(x;0%)Vglog f(x;0%) | — Exmpyy~p, [Volog f(x;0%)Vglog f(7(47;19)*)T]
~ Eampaypa V0108 f(y:0°)Vo10g f(2:0°) '] + Eampyympa [Volog f(y; 67)Velog f(zgg)*)T]
= 2Banp, [Veolog f(x;0%)Velog f(;0) "] — 2Eqrp, y~p, [Volog f(x;07)Velog f(y; 1?7%;]
—215(6) (74)

using Lemma which relates the Fisher Information Matrix to the unnormalized density f(x;8).
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As such, we have

== Ie(6) 75)
and
E||6 — 0*|*> = it]race(lgl) + o(i), (76)
Ny Ny
as claimed.

C Experimental details

The training sets, the validation sets and the test sets all have 10000 data points. We use a batch
size of 256 and train for 50000 iterations. The models are evaluated after every 2000 steps, and the
results with the lowest losses (for NCE algorithms) / negative ELBO (for EBM Diffusions) on the
validation sets are reported.

For all experiments, we use Adam optimizer [Kingma and Bal 2015]] and tune the learning rates
between le — 4, 3e — 4, 1e — 3 and 3e — 3. We run each configuration for a single run using random
seed 1, and run the best configurations for two extra runs using random seeds 2 and 3 and aggregate
the results to obtain uncertainty estimates.

The employed neural network is a small ResNet [He et al., 2016] based on the code provided by
Du et al.| [2023] |4 where we largely reuse the structure. For NCE family of algorithms which do
not model the intermediate distributions, we do not use time embeddings and change the output
dimensionality of the final layer to 1.

C.1 Loss functions based on binary classification

For the Gaussian noise as used by NCE, we consider as means the empirical means of the training
set or directly using zero means. In terms of the covariances, we consider using the empirical
covariances of the training set, using identity matrix and using an isotropic covariance o2 where o
is % of the maximum distance between any two training data points.

The standard deviations o of the Gaussian KDE in NCE global and CNCE global and the standard
deviations of the Gaussian transition kernels for CNCE local are all tuned between 0.01, 0.1 and
1.0.

For CNCE mix, we tune both the standard deviations of the transition kernels and the Gaussian
KDE:s using the aforementioned grid, and additionally tune the proportion of noises based on local
transitions among all noises between 0.9, 0.75 and 0.5.

C.2 Regularizing the loss function used in Energy-Based Diffusion Models

We interpret the model’s outputs given ¢ = 0 as the learned clean data distribution. Similar to the
settings of CNCE mix, we form the regularization term based on a KDE approximation with o tuned
between 0.0, 0.01, 0.1 and 1.0. We additionally tune the regularization weight A between 0.1, 1.0
and 10.0, and use as training loss Lsm + ALcncE, Where Lgy is the original Score Matching loss as
employed by EBM Diffusion and Lcncg is the CNCE loss with global jumps.

The two dimensional Gaussian mixture based on [Schroder et al.| [2023]] uses a grid of 25 Gaussian
distributions, with the z, y coordinates of the means between [—2,—1,0, 1, 2], and the covariance
0.121.

’ResNetDiffusionModel in https://github.com/yilundu/reduce_reuse_recycle/blob/main/
notebooks/simple_distributions.ipynbl
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