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Abstract

As large language models (LLMs) continue to advance, aligning these models
with human preferences has emerged as a critical challenge. Traditional align-
ment methods, relying on human or LLM annotated datasets, are limited by their
resource-intensive nature, inherent subjectivity, and the risk of feedback loops that
amplify model biases. To address these issues, we propose WILDFEEDBACK, a
framework that uses real-time user interactions to build preference datasets that
better reflect genuine human preferences. The process involves feedback signal
identification, preference data construction, and user-guided evaluation. Applied to
a large set of user-LLM interactions, WILDFEEDBACK generates datasets that cap-
ture nuanced user preferences by analyzing feedback within natural conversations.
Our experiments show that LLMs fine-tuned with WILDFEEDBACK align more
closely with user needs, as demonstrated by both traditional benchmarks and our
user-guided evaluation. By leveraging real-time feedback, WILDFEEDBACK over-
comes the limitations of current alignment approaches, offering a scalable, robust
solution for developing LLMs that better meet diverse user needs and preferences.

1 WildFeedback

Existing preference datasets often fail to align with real human preferences, as synthetic datasets like
ULTRAFEEDBACK (Cui et al., 2024) rely solely on GPT-4, risking the reinforcement of model biases.
Human-annotated datasets, while more accurate, are difficult to scale due to resource constraints
and the subjectivity of annotators (Bai et al., 2022; Ouyang et al., 2022). To overcome these issues,
we introduce WILDFEEDBACK, a novel framework that aligns LLMs with in-situ user interactions.
Applied to WildChat (Zhao et al., 2024), this framework yielded a preference dataset of 20,281
samples. The pipeline is shown in Figure 1. WILDFEEDBACK operates through a three-step process:
feedback signal identification, preference dataset construction, and user-guided evaluation.

Feedback Signal Identification. To build preference data from human-LLM interactions, we first
identify conversations with feedback signals through user satisfaction estimation. Users may express
satisfaction (e.g., “thank you”) or dissatisfaction (e.g., “revise it”) explicitly or implicitly during
conversations. Lin et al. (2024b) introduced SPUR, a framework that automatically identifies SAT
(satisfaction) and DSAT (dissatisfaction) patterns using rubrics generalized from conversations with
annotated feedback by recursively prompting GPT-4. We adopt the SAT/DSAT rubrics from Lin
et al. (2024b), using 9 SAT rubrics (e.g., gratitude, praise) and 9 DSAT rubrics (e.g., revision, factual
error). These rubrics are fed into GPT-4 to classify utterances at the conversation level, detailed in
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User: What are the 
structure of a literature 
and how to write it?

AI: [Response 1]

AI: [Response 2]

AI: [Response 3]

User: Write a haiku about 
crocodiles in outer space 
in the voice of a pirate.

User: could write it more 
precisely and not too 
elementary?

User: This is great! 
Thanks!

(1) Satisfaction 
Estimation

Dialogue

Neutral

DSAT

SAT

(2) Preference Data 
Extraction

Prompt

Preferences: the user 
prefers precise and not 

too elementary answers.

Dispreferred Response: 
[Response 2]

Preferred Response: 
[Revised Response 2]

(3) Guided 
Generation

Neutral

Figure 1: Overview of WILDFEEDBACK.

Appendix B.1. Among 148,715 WildChat multi-turn conversations, about 12.8% contain feedback
signals (Table 1). To validate GPT-4’s SAT/DSAT classifications, we conducted a human expert
review with 50 conversations, yielding a Cohen’s Kappa of κ = 0.70 for SAT and κ = 0.54 for
DSAT. Comparatively, GPT-4 showed high agreement with human annotations, achieving κ = 0.69
for SAT and κ = 0.50 for DSAT. Detailed validation results are in Appendix B.2.

Table 1: Statistics of the SAT/DSAT conversations and utterances.
# Conv. # Utt. # SAT Conv. # DSAT Conv. # SAT Utt. # DSAT Utt.

148,715 628,467 5,447 13,582 8,186 27,711

Preference Data Construction. After identifying feedback signals using SAT/DSAT rubrics,
we construct a preference dataset comprising four components: the prompt, user preferences, the
preferred response, and the dispreferred response. For conversations with SAT/DSAT signals, we
extract the conversation up to the model response that triggered the feedback as the prompt. We then
use GPT-4 to summarize user preferences from these signals (e.g., a preference for concise answers),
allowing us to pinpoint which responses led to satisfaction or dissatisfaction. For generating preferred
and dispreferred responses, we use two approaches: expert and on-policy. Expert responses are
generated by GPT-4, while on-policy responses are generated by Phi 3 (Abdin et al., 2024), Mistral
(Jiang et al., 2023), and LLaMA 3 (Dubey et al., 2024). In the expert approach, original responses
that triggered DSAT signals are used as dispreferred, and GPT-4 generates preferred responses based
on summarized preferences. For on-policy responses, the policy model generates both preferred
and dispreferred responses, guided by user preferences for the preferred outputs. To ensure safety,
especially when user preferences may be harmful (e.g., explicit content), we add an instruction: “the
response should be safe” when generating preferred responses. Additionally, some conversations
are filtered by the OpenAI moderation API. This method builds a robust dataset that helps models
better align with user preferences while maintaining safety standards. Details on the prompt used for
constructing preference data are in Appendix A.2.

User-guided Evaluation To better assess model alignment with user preferences, we implement
user-guided evaluation alongside preference data construction. Existing benchmarks like AlpacaEval
(Dubois et al., 2024) and MT-Bench (Zheng et al., 2023b) rely on LLMs as judges, which often leads
to biased evaluations favoring longer responses or those generated by LLMs themselves (Liu et al.,
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2024b; Thakur et al., 2024). This can result in evaluations misaligned with actual user preferences.
Similarly, evaluations by human annotators can be flawed due to subjective biases that may not reflect
true user needs. To address these issues, we employ user-guided evaluation that focuses on real user
preferences rather than the subjective ranking of responses. Annotators are guided to rank responses
based on summarized preferences derived from user feedback rather than their own biases. For LLM
evaluators, we provide an instance-level checklist based on these summarized user preferences to
guide assessments. Our evaluation framework adapts from WILDBENCH (Lin et al., 2024a), which
aligns well with human judgment in ranking model performance. We use a pairwise evaluation
strategy where GPT-4 compares two responses using a preference-guided checklist to determine
which performs better, providing clear win/lose rates for straightforward comparisons. The full
evaluation prompt is detailed in Appendix A.3.

WILDFEEDBACK Data. To demonstrate that the generated preferred responses align with actual
user preferences, we randomly selected 500 samples from the WILDFEEDBACK datasets and per-
formed user-guided evaluation, comparing the preferred and dispreferred responses. As shown in
Figure 4, we found that without providing the summarized user preferences as checklists, GPT-4
tends to prefer the dispreferred responses in our dataset, which are the model’s zero-shot generations
without guidance from summarized user preferences. However, after providing the preferences as
checklists to guide the evaluation, GPT-4’s selections more closely align with real users’ preferences.
Additionally, we observed that GPT-4 is significantly more steerable than smaller models: over 70%
of its preferred responses align with in-situ user preferences, compared to only about 50% for smaller
models. Consequently, for on-policy data, we additionally filter out any data that does not align with
user preferences. A detailed analysis of the data can be found in Appendix C.
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Figure 2: Comparison of in-situ user alignment across datasets generated by different models.
“Win/Tie/Lose” represents the percentage of instances where the preferred responses win/tie/lose
compared to the dispreferred responses in the WILDFEEDBACK dataset, prior to filtering.

2 Experiment

To validate the effectiveness of WILDFEEDBACK, We finetune Mistral, Phi 3, LLaMA 3 on both
the GPT-4 and on-policy version of WILDFEEDBACK and compare their performances with the
non-finetuned models. We first perform 1 epoch of supervised fine-tuning (SFT) on the preferred
responses, followed by 1 epoch of direct preference optimization (DPO) (Rafailov et al., 2023) on the
entire dataset. For more details, please refer to Appendix D.

We evaluate our models on MT-Bench (Zheng et al., 2023a), AlpacaEval 2 (Li et al., 2023), Arena-
Hard (Li et al., 2024), and the held-out test set of WILDFEEDBACK. For WILDFEEDBACK evaluation,
we report the win, tie, lose percentage against the off-the-shelf instruct models with GPT-4 as the
judge. Results are shown in Table 2. Implementation details on the benchmarks can be found in
Appendix E.
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3 Result

In this section, we present the main results of our experiments, highlighting the effectiveness of
WILDFEEDBACK on various benchmarks and ablation studies.

Training models on the GPT-4 version of WILDFEEDBACK can significantly and consistently
boost model performance across all benchmarks. As shown in Table 2, models trained with the
GPT-4 version of WILDFEEDBACK exhibit higher win rates across AlpacaEval 2, Arena-Hard, and
MT-Bench, as well as improved performance in both settings of WILDFEEDBACK (with and without
a checklist). For instance, Phi 3’s win rate on AlpacaEval 2 increases from 17.39% to 36.6%, and
its win rate on Arena-Hard improves from 15.4% to 32.4%. Additionally, Phi 3’s performance on
MT-Bench also sees an increase, with its score rising from 7.32 to 7.73. These consistent performance
boosts across various benchmarks demonstrate that the GPT-4 version of WILDFEEDBACK is an
effective tool for enhancing model performance and aligning it more closely with user preferences
across diverse tasks.

WILDFEEDBACK significantly enhances model alignment with in-situ user feedback. As
detailed in Section 1, WILDFEEDBACK has two versions, differing in whether the preferred responses
are generated by GPT-4 or the policy models themselves. Compared to off-the-shelf instruction
models, those trained on either version of WILDFEEDBACK demonstrate a stronger alignment with
real user preferences. For example, LLaMA 3 trained on the on-policy version of WILDFEEDBACK
wins against the off-the-shelf LLaMA 3 model 57.2% of the time, while only losing 28.3% of the
time. Notably, even without user preferences provided as checklists during GPT-4 evaluation, the
model still performs on par with or better than the off-the-shelf version, underscoring the robustness
of this training approach.

WILDFEEDBACK does not compromise model performance on other benchmarks. Training on
either version of WILDFEEDBACK not only aligns models more closely with user preferences but also
does not compromise performance on other benchmarks; in most cases, it even leads to improvements.
For instance, LLaMA 3 trained on the on-policy version of WILDFEEDBACK improves its length-
controlled win rate (LC) on AlpacaEval 2 from 22.9% to 30.1% and its raw win rate (WR) from
22.6% to 29.6%. Similarly, Phi 3 shows an increase in its Arena-Hard win rate from 15.4% to 22.0%
after training on the on-policy version. This indicates that the models are better tuned to real-world
interactions without sacrificing their overall versatility or effectiveness across a range of tasks. These
results demonstrate that WILDFEEDBACK provides a valuable framework for refining models to
better meet user expectations while maintaining, and often enhancing, their general performance
across various benchmarks.

Table 2: AlpacaEval 2, Arena-Hard, MT-Bench, and WILDFEEDBACK results under the four settings.
LC and WR denote length-controlled and raw win rate, respectively. WF On-Policy or WF GPT-4
denotes the model trained on either the on-policy or GPT-4 version of WILDFEEDBACK.

Models AlpacaEval 2 Arena-Hard MT-Bench WILDFEEDBACK
With Checklist

WILDFEEDBACK
Without Checklist

LC (%) WR (%) WR (%) Score Win (%) Tie (%) Lose (%) Win (%) Tie (%) Lose (%)

Phi 3 24.3 17.39 15.4 7.32 – – – – – –
↪→ WF On-Policy 24.2 18.3 22.0 7.40 56.5 14.2 29.3 42.5 17.8 39.7
↪→ WF GPT-4 34.9 36.6 32.4 7.73 66.6 9.90 23.5 54.2 14.0 31.8

LLaMA 3 22.9 22.6 20.6 7.10 – – – – – –
↪→ WF On-Policy 30.1 29.6 22.1 7.15 57.2 14.5 28.3 40.9 18.8 40.3
↪→ WF GPT-4 34.2 42.8 32.9 7.57 61.8 11.7 26.4 48.1 17.2 34.8

Mistral 17.1 14.7 12.6 6.71 – – – – – –
↪→ WF On-Policy 12.9 12.3 10.3 6.42 52.1 11.2 36.7 37.4 16.1 46.5
↪→ WF GPT-4 31.4 36.1 19.8 6.79 62.8 9.70 27.4 50.4 14.0 35.6

4 Conclusion

In this work, we propose a framework for constructing preference data and evaluating conversational
AI models based on natural human-LLM interactions. By using SAT/DSAT rubrics to identify user
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satisfaction and dissatisfaction in conversations, we create a preference dataset that includes user
prompts, preferences, and both preferred and dispreferred responses. This enables models to better
align with user expectations. Additionally, we introduce a user-guided evaluation framework that
addresses biases in existing benchmarks by using real user feedback to guide LLM evaluations,
ensuring a more accurate reflection of user preferences. Our approach emphasizes the importance of
aligning AI responses with diverse and inclusive human values, improving overall user satisfaction.
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A Prompts

A.1 Prompt for Feedback Signals Identification

The following is the full prompt we used for dialogue state tracking and SAT/DSAT classification. In
addition, we also prompt GPT-4 to do domain and intent classification. The prompt is adapted from
Das et al. (2023) and Lin et al. (2024b).

## LABEL DEFINITION ##
{
"valid_preceding_topical_relation_labels": [
{
"label": "YES",
"definition": "The current turn has **some or any** topical/subtopical
relation to the preceding conversation context."
},
{
"label": "NO",
"definition": "The current turn has **absolutely no** topical/subtopical
relation to the preceding conversation context OR is the first turn in the
conversation, marking the beginning of a new dialogue segment."
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}
],
"valid_domain_labels": [
"AI MACHINE LEARNING AND DATA SCIENCE",
"ASTROLOGY",
"BIOLOGY AND LIFE SCIENCE",
"BUSINESS AND MARKETING",
"CAREER AND JOB APPLICATION",
"CLOTHING AND FASHION",
"COOKING FOOD AND DRINKS",
"CRAFTS",
"CULTURE AND HISTORY",
"CYBERSECURITY",
"DATING FRIENDSHIPS AND RELATIONSHIPS",
"DESIGN",
"EDUCATION",
"ENTERTAINMENT",
"ENVIRONMENT AGRICULTURE AND ENERGY",
"FAMILY PARENTING AND WEDDINGS",
"FINANCE AND ECONOMICS",
"GAMES",
"GEOGRAPHY AND GEOLOGY",
"HEALTH AND MEDICINE",
"HOUSING AND HOMES",
"HUMOR AND SARCASM",
"LANGUAGE",
"LAW AND POLITICS",
"LITERATURE AND POETRY",
"MANUFACTURING AND MATERIALS",
"MATH LOGIC AND STATISTICS",
"MUSIC AND AUDIO",
"NEWS",
"PETS AND ANIMALS",
"PHILOSOPHY",
"PHYSICS CHEMISTRY AND ASTRONOMY",
"PRODUCTIVITY",
"PSYCHOLOGY AND EMOTIONS",
"RELIGION AND MYTHOLOGY",
"SHIPPING AND DELIVERY",
"SHOPPING AND GIFTS",
"SMALL TALK",
"SOCIAL MEDIA",
"SOFTWARE AND WEB DEVELOPMENT",
"SPORTS AND FITNESS",
"TAXATION",
"TECHNOLOGY",
"TIME AND DATES",
"TRANSPORTATION AUTOMOTIVE AND AEROSPACE",
"TRAVEL",
"VISUAL ARTS AND PHOTOGRAPHY",
"WEATHER",
"WRITING JOURNALISM AND PUBLISHING",
"OTHER"
],
"valid_intent_labels": [
{
"label": "INTENT:1-INFORMATION_SEEKING",
"definition": "The user wants to find factual information or answers to
specific questions."

10



},
{
"label": "INTENT:2-ANALYSIS",
"definition": "The user asks analytical or conceptual questions about
a complex topic or problem. The user’s questions require some degree
of reasoning, interpretation, argumentation, comparison, and/or data
processing."
},
{
"label": "INTENT:3-CREATION",
"definition": "The user asks the agent to either generate original content
or translate existing content into new content based on specified criteria
or constraints."
},
{
"label": "INTENT:4-OPEN-ENDED_DISCOVERY",
"definition": "The user wants to casually chat or play with the
agent out of curiosity, boredom, or humor, OR the user’s intent is so
unclear/underspecified that it’s impossible to categorize in any of the
other intent classes. The user mainly treats the agent as a conversation
or chitchat partner, and none of the other intent categories can be
assigned."
}
],
"valid_satisfaction_labels": [
{
"label": "Gratitude",
"definition": "The user thanks or compliments the AI agent for its
responses"
},
{
"label": "Learning",
"definition": "The user learns something new or useful by indicating
curiosity and satisfaction with the information provided"
},
{
"label": "Compliance",
"definition": "The user follows the AI agent’s suggestions or instructions
when applicable"
},
{
"label": "Praise",
"definition": "The user uses positive feedback words (e.g., excellent,
amazing) or emojis, indicating enthusiasm and enjoyment of the
conversation"
},
{
"label": "Personal_Details",
"definition": "The user shares more personal details or opinions with the AI
agent when satisfied with its responses"
},
{
"label": "Humor",
"definition": "The user jokes with or challenges the AI agent in a friendly
manner when suitable"
},
{
"label": "Acknowledgment",
"definition": "The user acknowledges or confirms that they understood or
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agreed with the AI agent’s explanations when relevant"
},
{
"label": "Positive_Closure",
"definition": "The user ends the conversation on a positive note without
asking for more information or assistance"
},
{
"label": "Getting_There",
"definition": "The user acknowledges that the model’s response is
getting better or has merit but is not fully satisfied. Appropriate
dissatisfaction criteria may need to be checked as well when Getting_There
presents"
},
{
"label": "N/A",
"definition": "The user utterance of the turn does NOT match the definition
of any other valid satisfaction labels"
}
],
"valid_dissatisfaction_labels": [
{
"label": "Negative_Feedback",
"definition": "The user explicitly expresses dissatisfaction, frustration,
annoyance, or anger with the AI agent’s response or behavior"
},
{
"label": "Revision",
"definition": "The user explicitly asks the AI agent to revise its previous
response or repeatedly asks similar questions"
},
{
"label": "Factual_Error",
"definition": "The user points out the AI agent’s factual mistakes,
inaccuracies, or self-contradiction in its information or output"
},
{
"label": "Unrealistic_Expectation",
"definition": "The user has unrealistic expectations of what the AI agent
can do and does not accept its limitations or alternatives"
},
{
"label": "No_Engagement",
"definition": "The user does not respond to the AI agent’s questions,
suggestions, feedback requests, etc."
},
{
"label": "Ignored",
"definition": "The user implies that their query was ignored completely or
that the response did not address their intent/goal at all"
},
{
"label": "Lower_Quality",
"definition": "The user perceives a decline in quality of service compared
to previous experience with other agents/tools, etc."
},
{
"label": "Insufficient_Detail",
"definition": "The user wants more specific/useful information than what is
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provided by the AI agent"
},
{
"label": "Style",
"definition": "The user feels that there is a mismatch between their
preferred style (e.g. bullet point vs paragraph, formal vs casual, short
vs long, etc.) and what is provided by the AI agent"
},
{
"label": "N/A",
"definition": "The user utterance of the turn does NOT match the definition
of any other valid dissatisfaction labels"
}
],
"valid_state_labels": [
{
"label": "FEEDBACK",
"definition": "The user utterance of the turn contains a comment or
evaluation or judgement of the previous turn’s agent response"
},
{
"label": "REFINEMENT",
"definition": "The user utterance of the turn is a repetition or refinement
of unclear/underspecified instruction given in the previous turn’s user
utterance"
},
{
"label": "NEWTOPIC",
"definition": "The user utterance of the turn is either the first turn
of the conversation or is not related in terms of topic or task to its
previous turn, introducing a new topic or task"
},
{
"label": "CONTINUATION",
"definition": "The user utterance of the turn is a topical or logical
continuation of the previous turn"
}
]
}

## TASK ##
You are given a dialogue between a user and an agent comprised of turns starting with T. For each
turn, solely based on the turn’s User utterance, you must carefully analyze the conversation and
answer the following questions by replacing $instruction$ with correct answers in JSON format. -
Summarize the user utterance in ≤ 3 sentences
- Analyze the user utterance’s relation with the previous turn and output an appropriate label from the
“valid_preceding_topical_relation_labels” list.
- Analyze the user utterance’s domain and output an appropriate label from the “valid_domain_labels”
list. If preceding_topical_relation is YES, the domain label must be consistent with the preceding
turn’s domain label.
- Analyze the user utterance’s intent and output an appropriate label from the "valid_intent_labels"
list.
- Analyze the user utterance’s satisfaction with respect to the previous turn’s AI response and output
all applicable labels from the “valid_satisfaction_labels” list.
- Analyze the user utterance’s dissatisfaction with respect to the previous turn’s AI response and
output all applicable labels from the “valid_dissatisfaction_labels” list.
- Analyze the user utterance’s state and output an appropriate label from the “valid_state_labels” list.
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## OUTPUT FORMAT ##
The length and turn order of the output list must match the length and turn order of the input list. The
sample output format is given as follow: [ {
"T-$turn number$": {
"summary": "$turn summary in ≤ 3 sentence$",
"preceding_topical_relation": "$an appropriate valid preceding topical
relation label$",
"domain": "$an appropriate valid domain label$",
"intent": "INTENT:$an appropriate valid intent label$",
"satisfaction": [$a comma separated string list of applicable valid
satisfaction label(s)$],
"dissatisfaction": [$a comma separated string list of applicable valid
dissatisfaction label(s)$],
"state": "$an appropriate valid state label$"
}
} ]

## INPUT ##
#D1#

## OUTPUT ##

A.2 Prompt for Preference Data Construction

The following is the prompt for constructing preference data.

# Conversation between User and AI
< |begin_of_history| >
history
< |end_of_history| >
# Instruction
What are the user’s query and preferences? The query should be the user’s first attempt before
providing any feedbacks to the model. Only output the turn id. The preference should always be
based on user’s feedbacks and in complete sentences. Generate your answer in json format like

[ {
"query": turn id,
"preferences": [preference 1, preference 2, ...]
} ]

A.3 Prompt for User-guided Evaluation

The following is the prompt for user-guided evaluation. We borrow the WB-Reward prompt from
WILDBENCH (Lin et al., 2024a).

# Instruction
You are an expert evaluator. Your task is to evaluate the quality of the responses generated by two AI
models. We will provide you with the user query and a pair of AI-generated responses (Response A
and B). You should first read the user query and the conversation history carefully for analyzing the
task, and then evaluate the quality of the responses based on and rules provided below.
# Conversation between User and AI
## History
< |begin_of_history| >
{history}
< |end_of_history| >
## Current User Query
< |begin_of_query| >
{query}
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< |end_of_query| >
## Response A
< |begin_of_response_A| >
{response_a}
< |end_of_response_A| >
## Response B
< |begin_of_response_B| >
{response_b}
< |end_of_response_B| >
# Evaluation
## Checklist
< |begin_of_checklist| >
{checklist}
< |end_of_checklist| >
Please use this checklist to guide your evaluation, but do not limit your assessment to the checklist.
## Rules
You should compare the above two responses based on your analysis of the user queries and the
conversation history. You should first write down your analysis and the checklist that you used for
the evaluation, and then provide your assessment according to the checklist. There are five choices to
give your final assessment: [“A++”, “A+”, “A=B”, “B+”, “B++”], which correspond to the following
meanings:
- ‘A++’: Response A is much better than Response B.
- ‘A+’: Response A is only slightly better than Response B.
- ‘A=B’: Response A and B are of the same quality. Please use this choice sparingly.
- ‘B+’: Response B is only slightly better than Response A.
- ‘B++’: Response B is much better than Response A.
## Output Format
First, please output your analysis for each model response, and then summarize your assessment to
three aspects: “reason A=B”, “reason A > B”, and “reason B > A”, and finally make your choice for
the final assessment. Please provide your evaluation results in the following json format by filling in
the placeholders in []:
{
"analysis of A": "[analysis of Response A]",
"analysis of B": "[analysis of Response B]",
"reason of A=B": "[where Response A and B perform equally well]",
"reason of A>B": "[where Response A is better than Response B]",
"reason of B>A": "[where Response B is better than Response A]",
"choice": "[A++ or A+ or A=B or B+ or B++]"
}

B SAT and DSAT

B.1 Detailed SAT and DSAT Criteria

The detailed definitions of SAT and DSAT can be found in Table 3 and Table 4.

B.2 SAT and DSAT Annotation

GPT-4’s performances on SAT and DSAT classification can be found in table 5. GPT-4 demonstrates
strong performance in classifying SAT (satisfaction) signals, with high accuracy at 91.7% and
balanced precision and recall, both around 73%. The Cohen’s Kappa of 68.5% reflects substantial
agreement with human annotators. For DSAT (dissatisfaction) signals, GPT-4 achieves a precision
of 83.3%, with a recall of 48.4%, leading to an F1 score of 61.2% and a Cohen’s Kappa of 50.4%.
These metrics indicate that GPT-4 is effective at recognizing both SAT and DSAT signals. For human
annotation, we utilized a web-based annotation tool named Potato (Pei et al., 2022). The interface is
shown in Figure 3.
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Table 3: Detailed definitions of the SAT Rubrics.
Keyword Definition
Gratitude The user thanks or compliments the AI agent for its responses.

Learning The user learns something new or useful by indicating curiosity and satis-
faction with the information provided.

Compliance The user follows the AI agent’s suggestions or instructions when applicable.

Praise The user uses positive feedback words (e.g., excellent, amazing) or emojis,
indicating enthusiasm and enjoyment of the conversation.

Personal Details The user shares more personal details or opinions with the AI agent when
satisfied with its responses.

Humor The user jokes with or challenges the AI agent in a friendly manner when
suitable.

Acknowledgment The user acknowledges or confirms that they understood or agreed with the
AI agent’s explanations when relevant.

Positive Closure The user ends the conversation on a positive note without asking for more
information or assistance.

Getting There The user acknowledges that the model’s response is getting better or has
merit but is not fully satisfied.

C WILDFEEDBACK Data

To demonstrate that the generated preferred responses align with actual user preferences, we randomly
selected 500 samples from the WILDFEEDBACK datasets and performed user-guided evaluation,
comparing the preferred and dispreferred responses. As explained in Section §1, there are two
versions of WILDFEEDBACK: the GPT-4 version and the on-policy version, which differ in whether
the responses are generated by GPT-4 or the policy model. As shown in Figure 4, we found
that without providing the summarized user preferences as checklists, GPT-4 tends to prefer the
dispreferred responses in our dataset, which are the model’s zero-shot generations without guidance
from summarized user preferences. However, after providing the preferences as checklists to guide
the evaluation, GPT-4’s selections more closely align with real users’ preferences. Additionally, we
observed that GPT-4 is significantly more steerable than smaller models: over 70% of its preferred
responses align with in-situ user preferences, compared to only about 50% for smaller models.
Consequently, for on-policy data, we additionally filter out any data that does not align with user
preferences.

We also compare WILDFEEDBACK with current open-source datasets in Table 6 2. To the best of
our knowledge, WILDFEEDBACK is the first multi-turn pairwise preference dataset constructed from
real human-LLM interactions. It is also the only dataset derived from in-situ user feedback, unlike
existing preference datasets that are annotated by human annotators or LLMs, which often fail to
fully capture real users’ preferences. Additionally, although OpenAssistant Conversations (OASST1)
(Köpf et al., 2023) also include multi-turn conversations, both its prompts and responses are entirely
composed by human annotators, making it less reflective of the genuine dynamics of human-LLM
interactions. Overall, WILDFEEDBACK outperforms existing datasets in accurately representing
authentic human-LLM interactions, making it a more reliable resource for developing and evaluating
preference-based models.

2For ULTRAFEEDBACK, we refer to the pre-processed, binarized version that was used to train Zephyr
(Tunstall et al., 2023).
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Table 4: Detailed definitions of the DSAT Rubrics.
Keyword Definition
Negative Feedback The user explicitly expresses dissatisfaction, frustration, annoyance,

or anger with the AI agent’s response or behavior.

Revision The user explicitly asks the AI agent to revise its previous response
or repeatedly asks similar questions.

Factual Error The user points out the AI agent’s factual mistakes, inaccuracies, or
self-contradiction in its information or output.

Unrealistic Expectation The user has unrealistic expectations of what the AI agent can do and
does not accept its limitations or alternatives.

No Engagement The user does not respond to the AI agent’s questions, suggestions,
feedback requests, etc.

Ignored The user implies that their query was ignored completely or that the
response did not address their intent/goal at all.

Lower Quality The user perceives a decline in quality of service compared to previ-
ous experience with other agents/tools, etc.

Insufficient Detail The user wants more specific/useful information than what is pro-
vided by the AI agent.

Style The user feels that there is a mismatch between their preferred style
and what is provided by the AI agent.

Table 5: SAT and DSAT Classification Results. All numbers are in %.
Accuracy Precision Recall F1 GPT-Human κ Human-Human κ

SAT 91.7 73.2 73.6 73.4 68.5 70.0
DSAT 81.8 83.3 48.4 61.2 50.4 54.1

D Implementation Details

Unless otherwise specified, in all of our experiments, we use GPT-4o with the gpt-4o-0513 engine.
For open-weight models, we use Phi-3-mini-4k-instruct, Mistral-7B-Instruct-v0.3,
Meta-Llama-3-8B-Instruct.

Additionally, we found that hyperparameter tuning is crucial for achieving optimal performance in
preference optimization. Generally, on-policy data requires a lower learning rate than GPT-4o data,

Table 6: Statistics of existing preference datasets. The average length refers to the number of tokens.
The responses of WILDFEEDBACK are either extracted from the original conversations or generated
by GPT-4, Mistral, Phi 3, or LLaMA 3.

# Conv. Prompt
Length

Response
Length

Multi-
Turn? Feedback Type

WebGPT (Nakano et al., 2022) 38,925 51 188 ✗ Human Annotators
Anthropic HH (Bai et al., 2022) 118,263 186 95 ✗ Human Annotators
OASST1 (Köpf et al., 2023) 35,905 168 221 ✓ Human Annotators
ULTRAFEEDBACK (Cui et al., 2024) 61,135 159 256 ✗ GPT-4

WILDFEEDBACK (ours)
↪→ GPT-4 20,281 929 440

✓ In-situ Users↪→ Mistral 9,601 1,063 362
↪→ Phi 3 9,194 931 344
↪→ LLaMA 3 10,659 982 376
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Figure 3: The interface used for human annotation.
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Figure 4: Comparison of in-situ user alignment across datasets generated by different models.
“Win/Tie/Lose” represents the percentage of instances where the preferred responses win/tie/lose
compared to the dispreferred responses in the WILDFEEDBACK dataset, prior to filtering. The
comparison is made both with and without providing GPT-4 with summarized user preferences as
checklists to guide its evaluation.

and instruct models need a lower learning rate than base models. Specifically, Mistral and Gemma
(Team et al., 2024) require a lower learning rate than Phi 3 and LLaMA 3. Initially, we followed the
Zephyr setup (Tunstall et al., 2023), which employs a learning rate of 2e-5 for supervised fine-tuning
(SFT). However, we found that our models quickly collapsed, failing to generate sensible outputs
after just a few dozen iterations. After conducting a grid search on the hyperparameters for both SFT
and DPO training, we discovered that while it is acceptable to use a larger learning rate for training
base models, a much smaller learning rate is required for instruct models, likely due to the various
annealing techniques applied during the post-training process (Parmar et al., 2024). We also explored
NLL regularization (Liu et al., 2024a) with a regularization strength of 0.2, but the results are not
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ideal, and therefore, we did not include NLL regularization in the final set up. We trained all the
models using LLaMA Factory (Zheng et al., 2024), a unified efficient LLM finetuning framework.
The following is the hyperparameters we used in our final experiment.

SFT Training. For SFT training, we trained all the models for 1 epoch with a batch size of 128, a
learning rate of 5e-6, a linear warm-up ratio of 0.1, and a cosine learning rate scheduler. Better results
may be achievable by decreasing the learning rate for Mistral. Additionally, it is recommended to use
a higher learning rate (e.g., 2e-5) if you are fine-tuning from the base models.

DPO Training. For DPO training, we trained all the models for 1 epoch with a batch size of 32,
a learning rate of 5e-7, and β = 0.1. All other hyperparameters remained the same as in the SFT
training.

E Evaluation

Benchmarks Evaluation. We evaluate our models using three of the most popular open-ended
instruction-following benchmarks: MT-Bench (Zheng et al., 2023a), AlpacaEval 2 (Li et al., 2023),
and Arena-Hard (Li et al., 2024). AlpacaEval 2 consists of 805 questions from 5 datasets, and
MT-Bench covers 8 categories with 80 questions. Arena-Hard is an enhanced version of MT-Bench,
incorporating 500 well-defined technical problem-solving queries. We report scores following each
benchmark’s evaluation protocol. For AlpacaEval 2, we report both the raw win rate (WR) and
the length-controlled win rate (Dubois et al., 2024). The LC metric is specifically designed to be
robust against model verbosity. For Arena-Hard, we report the win rate (WR) against the baseline
model. We use GPT-4-Turbo (gpt-4-0125) as the judge for both AlpacaEval 2 and Arena-Hard. For
MT-Bench, we report the average MT-Bench score with GPT-4o (gpt-4o-0513) as the judge. We
use the same, default decoding strategies specified by the evaluation benchmarks.

WILDFEEDBACK Evaluation. In addition to publicly available benchmarks, we also constructed
our own evaluation benchmark from the held-out test set in WILDFEEDBACK and evaluated models
using user-guided evaluation. We ensured that all samples in the test set were sourced from conversa-
tions and users that were never included in the training set. Constructing an evaluation dataset for
user-guided evaluation is not a trivial task, as we can no longer randomly or stratifiedly select test
samples from different domains. In user-guided evaluation, we always provide a user-inspired check-
list for GPT-4 to guide its evaluation, making it more aligned with real users’ preferences. However,
individual user preferences can be highly subjective and specific. The goal of WILDFEEDBACK is not
to align language models with the preferences of a specific individual but to learn the broader mode
of all individuals’ preferences. Therefore, we must ensure that the preferences reflected in the test
samples represent the majority view. Additionally, since the user preferences we extracted are often
particular to specific tasks, we also need to ensure that the tasks in the test set are at least somewhat
similar to those in the training set.

To achieve this, we utilized FAISS (Douze et al., 2024) to cluster user prompts and their summarized
preferences. We grouped all user prompts into 70 clusters. Within each cluster, we selected 10
samples where the preferences were most similar to the other preferences in the same group. We
then applied similar data curation techniques as described in WILDBENCH (Lin et al., 2024a) to
perform deduplication and remove nonsensical tasks, resulting in a final test set of 540 samples.
This approach ensures that the evaluation set captures a representative range of user preferences,
while also maintaining diversity within the clusters. By doing so, we aim to provide a more reliable
and comprehensive evaluation that reflects the majority’s preferences without overfitting to specific,
idiosyncratic cases. This method allows us to test the model’s ability to generalize across a broad
spectrum of user needs, ultimately leading to a more robust and user-aligned language model.

For WILDFEEDBACK evaluation, we report the win, tie, lose percentage against the off-the-shelf
instruct models with GPT-4 as the judge. We employ the WILDBENCH prompt Lin et al. (2024a) to
perform the evaluation, which has been shown to correlate well with human judgement in ranking
model performance. We report the results evaluated with or without the user preferences provided as
a checklist to guide GPT-4o evaluation.
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