
Under review as submission to TMLR

Learning without training:
The implicit dynamics of in-context learning

Anonymous authors
Paper under double-blind review

Abstract

One of the most striking features of Large Language Models (LLMs) is their ability to learn
in-context. Namely at inference time an LLM is able to learn new patterns without any
additional weight update when these patterns are presented in the form of examples in the
prompt, even if these patterns were not seen during training. The mechanisms through which
this can happen are still largely unknown. In this work, we show that the stacking of a self-
attention layer with an MLP, allows the transformer block to implicitly modify the weights
of the MLP layer according to the context. We argue through theory and experimentation
that this simple mechanism may be the reason why LLMs can learn in-context and not
only during training. Specifically, we show how a transformer block implicitly transforms a
context into a low-rank weight-update of its MLP layer.

1 Introduction

Large language models (LLMs), powered by the transformer architecture (Vaswani et al., 2017), have
revolutionized modern machine learning, with wide-ranging applications in science, industry, and art (Liu
et al., 2023; Dong et al., 2024). Despite this impact, the mechanisms behind their impressive emergent
properties (Wei et al., 2022; Bubeck et al., 2023) are still not fully understood. One of the most fascinating
and compelling of these properties is the ability of LLMs to perform in-context learning (ICL) wherein
the model is able to adapt based on information provided in the input prompt, without any changes or
modification to the model’s underlying weights. Our work is focused on better understanding the mechanisms
which enable this advantageous behavior.

Historically, in machine learning, the ability to extract patterns from data has been understood as a dynamical
process in which model weights are updated through an optimization procedure (Goodfellow et al., 2016).
However, in the case of ICL, the model weights remain unchanged. Instead, LLMs appear to re-organize or
reconfigure their internal representations depending on the prompt and this dynamic adjustment allows them
to make predictions that are significantly more accurate. This mysterious and extremely helpful property of
LLMs has led researchers to conjecture an implicit form of weight updates taking place at inference time
when a prompt is consumed (Garg et al., 2022; von Oswald et al., 2023; Dai et al., 2023; Akyürek et al., 2023;
Zhang et al., 2024; Huang et al., 2025). And recent works have even been able to justify theoretically this
intuition, showing that simplified transformer blocks, trained on toy set ups of linear regression datasets,
perform implicit weight updates corresponding to a sort of gradient descent optimization (von Oswald et al.,
2023; Dai et al., 2023; Zhang et al., 2024). Together, these works suggest it is possible to understand ICL as
a form of implicit finetuning of the original pretrained model. In this work, we follow this intuition of ICL as
imposing implicit weight updates and focus on the contextual information property which we believe is key
to understanding the underlying effect of ICL. To this end, we introduce the notion of a contextual block, a
generalization of a transformer block. We show that layers with this contextual property, when stacked with
standard neural networks, implicitly transform a context into a weight update of the very first layer of the
subsequent neural network. Through our analysis we are able to provide an explicit formula for this implicit
update to the feedforward layer weights, which surprisingly turns out to be a rank-1 matrix. Interestingly,

*These authors contributed equally to this work

1



Under review as submission to TMLR

other works such as Meng et al. (2022) have uncovered that explicit updates with similar rank-1 matrices can
modify factual information in a LLM. This suggests that these low-rank matrices may be central to the way
LLMs organize and process information at inference time.

Namely, our work demonstrates that contextual blocks, such as self-attention layers combined with a neural
network, indeed perform a sort of implicit low-rank finetuning that can be explicitly described as a rank-1
matrix update of the MLP weights computed directly from the relative effect on the context. Our main
contributions are as follows:

• We introduce the notion of a contextual block formed by a contextual layer stacked with a neural
network, generalizing the key properties of a transformer block which enable in-context learning.

• We show that for contextual blocks the context acts as implicit rank-1 update of the MLP weights,
and derive an an explicit formula for this implicit weight-update corresponding to the marginal effect
of the context on the contextual block.

• Using these implicit updates, we uncover an implicit gradient descent learning dynamics which arises
as prompt tokens are consumed during inference.

1.1 Related work

In-Context Learning. Large language models have the capability to adapt their output based on informa-
tion or examples provided in the prompt. Because this occurs during inference, there are no explicit gradient
updates or modifications of the model parameters. This emergent capability is called in-context learning
(ICL) and it has already been shown to exist for GPT-3 in Brown et al. (2020) for a wide range of NLP tasks.
Many works have investigated the behavior of ICL to better understand its underlying mechanisms, often
through the lens of meta-learning, or learning-to-learn (Schmidhuber, 1987; Hochreiter et al., 2001; Kirsch &
Schmidhuber, 2021). A central question within this research area revolves around the precise nature of the
“learning” that takes place during ICL and whether ICL represents genuine few-shot learning or instead serves
as a mechanism for task-specific inference steering. For instance, the authors of Reynolds & McDonell (2021)
question whether true learning occurs at inference time in ICL, contending that the in-context examples
instead help the model retrieve capabilities which were already learned during pretraining. This suggests that
no new learning actually takes place at inference time. Specifically, Xie et al. (2022) argues that the examples
in the prompt serve only as a form of Bayesian conditioning rather than true learning, and they formalize ICL
as Bayesian inference. Supporting this direction, Min et al. (2022) shows that replacing example labels with
random labels does not dramatically decrease ICL performance, which bolsters the argument that pretrained
capabilities are retrieved from the prompt. Though, revisiting these ideas, Wei et al. (2024) show that these
results may in fact vary depending on model size and that larger models do start to actually learn from
switched labels within the prompt. Still others (e.g., Raventos et al. (2023)), claim that the emergence of
true ICL in large language models seems to be dependent on data diversity during pretraining.

Our approach here focuses less on the ontological nature of ICL and more on the actual computational
mechanisms taking place within a transformer as the context is processed. This perspective aligns our work
most closely with research that frames ICL as meta-optimization, via implicit weight updates, which we now
detail.

Gradient Descent and Meta-Optimization. A prominent hypothesis is that ICL performs a type of
meta-optimization or implicit gradient descent, essentially finetuning the model through the forward pass
(Garg et al., 2022; Akyürek et al., 2023; von Oswald et al., 2023; Dai et al., 2023; Ahn et al., 2023; Zhang
et al., 2024). Building on this, our work investigates how ICL is implemented through implicit weight updates
that correspond to the underlying learning dynamics of the transformer. Many theoretical analyses of these
learning dynamics rely on simplifying assumptions such as single-head, linear attention transformers and
prompts formatted as input-output examples determined by a fixed function class; e.g., linear regression (von
Oswald et al., 2023; Ahn et al., 2023; Zhang et al., 2024). In particular, von Oswald et al. (2023) shows
that linear transformers trained on ICL tasks learn to perform updates analogous to gradient descent. Both
Zhang et al. (2024) and Ahn et al. (2023) show that transformers can acquire gradient-based algorithms

2



Under review as submission to TMLR

through ICL and prove global convergence to the optimum for tasks like linear regression within this simplified
framework. While the formal analysis of Dai et al. (2023) is also derived for linear attention, their empirical
results instead focus on large GPT transformers trained on structured language tasks. However, their core
conclusion that ICL operates as implicit finetuning resonates strongly with the viewpoint we take on here.
The authors claim that ICL can be understood as implicit finetuning, a perspective similar to the one we take
in this work. Other works investigating the link between ICL and gradient descent for standard transformers
have largely focused on prompts structured as input-output pair examples. For instance, Garg et al. (2022)
demonstrates that standard transformers can in-context learn diverse function classes from such examples,
achieving performance comparable to least squares, while Akyürek et al. (2023) shows they can emulate
explicit learning algorithms like gradient descent and ridge regression. Separately, attempts to develop a
theory for ICL in standard transformers without restricting prompt structure, such as the work by Liu et al.
(2025), have thus far needed to incorporate other architectural simplifications or analytical approximations to
make the analysis tractable.

In contrast to prior work which has often focused on linear attention or specific prompt structures, our
theoretical framework is developed within a more general setting. First, our analysis applies directly
to standard multi-head self-attention mechanisms, without requiring any linearity assumptions or other
architectural simplifications. Second, our theory holds for arbitrary contextual inputs, not being restricted to
prompts formatted as input-output examples. We circumvent both these restrictions by deriving the exact
implicit weight update induced by any context, which then allows for a precise characterization of the implicit
learning dynamics of ICL.

Task Vectors and Model Editing. The concept of a task vector in machine learning was first introduced
in Ilharco et al. (2022) to describe a direction in a model’s weight space that encodes task-specific information.
There task vectors are derived from the difference between pretrained and finetuned model weights and the
authors show how these vectors could be arithmetically manipulated to effectively steer a model’s output. The
term has since been expanded to include vectors applied to a model’s activations as well and several studies
have sought to quantify the effect of ICL by analyzing its influence on both weight task vectors and activation
task vectors; notably Mitchell et al. (2022); Meng et al. (2022); Hendel et al. (2023). Similarly, Todd et al.
(2023) identify “function vectors” (FVs) in transformer hidden states, which are compact representations of
in-context learned tasks, extracted via causal mediation analysis over specific attention head outputs. These
FVs are shown to be causally effective in triggering task execution even in novel contexts, and distinct from
simple semantic offsets, suggesting they act as higher-level function references within the model. Theoretically
our work aligns with and extends these ideas. Namely, we demonstrate that the effect of the context can be
precisely mapped to an update of the transformer’s parameters. Specifically, we show that this effect can be
realized as a direct modification of the feedforward weights. In architectures with residual connections, this
also includes an additive bias modification (Theorem A.2) in the final layer, which is functionally equivalent
to adding an activation task vector, connecting our weight-centric view with activation-based model editing
perspectives.

Among these, the work of Hendel et al. (2023) is particularly relevant and closely related to our own. They
show that a transformer maps in-context examples to an “activation task vector” that encodes the underlying
rule of the examples provided in the prompt. Similar to our main result, they find that manually adding this
task vector to the model’s hidden states during inference on a new input (without demonstrations) produces
outputs similar to those obtained by manually modifying activations with that task vector. While their work
offers a mechanistic view of ICL, our approach differs by theoretically deriving the specific weight and bias
modifications equivalent to processing a prompt in-context. We prove that a transformer modified by this
weight adjustment yields outputs on new inputs that are identical to the original model’s outputs when
provided with the in-context demonstrations.

The low-rank nature of our ICL-induced weight update appears in other works which explore techniques for
explicit model editing. Most notably, ROME (rank-1 Model Editing) in Meng et al. (2022) injects factual
associations into transformers by applying targeted rank-1 updates to feedforward network weight matrices.
Similarly, MEND in Mitchell et al. (2022) learns optimized low-rank decompositions for model edits. While
these methods engineer or learn low-rank modifications for explicit model editing, our theoretical results show

3



Under review as submission to TMLR

that these rank-1 updates to feedforward weights naturally arise as the mechanism by which transformers
implement in-context learning. See also other related works which explore how model editing (either through
modification of weights or model activations) can be used to achieve the results of finetuning without any
gradient-based learning (Subramani et al., 2022; Panickssery et al., 2023; Li et al., 2023; Zou et al., 2023; Liu
et al., 2024; Todd et al., 2024; Uppaal et al., 2024; Yang et al., 2025).

2 Contextual Blocks

In this section, we abstract some key properties of transformers. In particular, we introduce the notion of
contextual layer, which generalizes the self-attention layer of transformer blocks. In this setting a contextual
block is the composition of a contextual layer with a standard neural network generalizing the notion of a
transformer block. Then we prove our main theorem, which shows that the context for contextual blocks
acts as a low-rank fine tuning update of the neural network weights. For the sake of simplicity, we state our
results in the case of a neural network without skip-connection. The skip-connection case is similar but more
complicated and fully worked out in Appendix A.

We call a contextual layer, a network layer A(·) that can take a single vector x alone as input yielding an
output A(x); or, optionally, A can take in addition a context C (e.g., a sequence of tokens, an image, etc.)
along with the vector x, yielding the output.

As a prototypical and guiding example of a contextual layer, consider the self-attention layer of a transformer
block, where the context C is an instruction prompt consisting of a sequence of context tokens C = [c1, . . . , cn]
and x is the query token from which the LLM will make a prediction. Together C and x create a contextualized
input prompt [C, x] = [c1, · · · , cn, x], which is the concatenation of the context tokens and the query token.
Note that a transformer maps sequences of a given length to a sequence of the same length. Therefore, we
take A(C, x) to be the output of the self-attention layer corresponding to last token x. In this way, both
A(C, x) and A(x) occupy the same output vector space.

Contextual layers produce contextual vectors computed as the difference

δAx(C) := A(C, x) − A(x)

between the layer output with and without context for a given input x. Motivated by this generalization
of the self-attention layer as a contextual layer, we now generalize the notion of a full transformer block to
define the notion of a contextual block:
Definition 2.1. A contextual block is the composition ΦW = φW ◦ A consisting of a contextual layer A as
above with a neural network φW ; i.e., φW (z) = fθ(Wz + b), where W and b are the weights of an initial
fully-connected dense layer and fθ(z) is the rest of the neural network parameterized by weights θ.

In what follows, we show that it is possible to replace the effect of a portion of the context C with a direct
modification to the weights W . For a given input x and a context C, a contextual block A essentially
transforms any portion Y ⊂ C into an implicit update of the initial MLP weights so that W becomes
W + ∆xW (Y ). Furthermore, this ∆xW (Y ) corresponds to a low-rank weight update of W . Interpreted
another way, this suggests that contextual layers load the subsequent network weights so that the information
contained in Y is effectively and efficiently transferred via ∆xW (Y ).

We make this relationship precise in Theorem 2.2 below. Importantly, the formula derived there is exact so
the output of the contextual block with the full context, ΦW (C, x), is precisely equivalent to the output with
a reduced context and modified weights, ΦW +∆xW (Y )(C\Y, x). Thus, the low-rank weight update ∆xW (Y )
perfectly captures the effect of the removed context portion Y .
Theorem 2.2. Consider a contextual block ΦW = φW ◦ A as above formed by a contextual layer A composed
with a neural network φW whose first fully-connected layer has weight matrix W . Given a context C and an
input x, the effect of some portion Y ⊂ C of the context on the output of ΦW corresponds to a weight update
W + ∆xW (Y ). Namely,

ΦW (C, x) = ΦW +∆xW (Y )(C\Y, x) where ∆xW (Y ) = (WδAx(Y ))A(C\Y, x)T

∥A(C\Y, x)∥2 , (1)

4



Under review as submission to TMLR

where δAx(Y ) := A(C, x) − A(C\Y, x) is the context vector associated to Y . Furthermore, note that since
WδAx(Y ) is a column vector and A(C\Y, x)T is a row vector, ∆xW (Y ) corresponds to a rank-1 weight
update.

Proof. The result follows by direct computation. Let φW (z) = fθ(Wz + b), where W and b are the weights
of the first dense layer of φ and fθ represents the rest of the network. Then, we have by definition that

ΦW +∆xW (Y )(C\Y, x) = φW +∆xW (Y )

(
A(C\Y, x)

)
= fθ

(
(W + ∆xW (Y ))A(C\Y, x) + b

)
= fθ

(
WA(C\Y, x) + ∆xW (Y )A(C\Y, x) + b

)
.

Now, replacing ∆xW (Y ) by its definition given in Eq. 1 and using that zT

∥z∥2 z = 1, we obtain

ΦW +∆xW (Y )(C\Y, x) = fθ

(
WA(C\Y, x) + (WδAx(Y ))A(C\Y, x)T

∥A(C\Y, x)∥2 A(C\Y, x) + b

)
= fθ

(
W

(
A(C\Y, x) + δAx(Y )

)
+ b

)
.

Finally, by definition of the context vector we have that A(C\Y, x) + δAx(Y ) = A(C, x); and therefore,

ΦW +∆xW (Y )(C\Y, x) = fθ (WA(C, x) + b) = φW (A(C, x)) = ΦW (C, x)

which ends the proof.

Remark 2.3. Our theorem states that any contextual layer produces an implicit weight transfer from the
prompt to the first neural network layer, implicitly modifying the behavior of the pretrained neural network.
Among all possible contextual layers (e.g., self-attention, RNN, or recurrent layers with local attention as
in De et al. (2024)), some may be better at providing useful weight modifications than others. It may be
interesting to evaluate the generative power of a contextual-layer in terms of the particular form of the implicit
weight updates given by our theorem and the special structure of A given by the contextual layer.

Note that when Y = C is the full context, the theorem above gives a formula to put all the context information
into the weight matrix W . See Figure 1.
Corollary 2.3.1. In the notation above, the full context C can be transferred to the neural network weights
by the following update:

ΦW (C, x) = ΦW +∆xW (C)(x), with ∆xW (C) = (WδAx(C))A(x)T

∥A(x)∥2 , (2)

where δAx(C) = A(C, x) − A(x) is the context vector and ∆xW is rank-1, since WδAx(C) is a column vector
and A(x)T is a row vector.

Remark 2.4. The weight transfer formula in Eq. 1 can be also rewritten using union/concatenation of
context by setting D = C\Y ; namely:

ΦW (D ∪ Y, x) = ΦW +∆xW (Y )(D, x).

In Appendix A, we generalize Theorem 2.2 for neural networks with skip-connections, as is usually the case
for standard transformer blocks. In Section 4, we verify our theoretical results experimentally on a standard
concrete example.

5



Under review as submission to TMLR

=Output with context Output without context

MLP → W

Self-Attention A

c1, ..., cn x

prompt = context + query

MLP → W + ∆xW (C)

Self-Attention A

x

prompt = query

Figure 1: When taking Y = C to be the full context and a query x, the corollary to Theorem 2.2 provides an
explicit formula which effectively captures how the effect of the context C is encoded as a weight transfer to
the first layer MLP weight W via ∆xW (C).

3 The implicit learning dynamics of ICL

With this insight on the relationship between the the context and its implicit affect on the weight parameters,
we now use Eq. 2 to examine the weight dynamics of W via in-context learning. Namely, when the context
C = [c1, . . . , cn] is a sequence of tokens, an iterative application of Corollary 2.3.1 uncovers an implicit
learning dynamics generated by the effect of each context token on the contextual block output.

Starting with the initial weight W0 for φW , the first dense layer of the neural network, we compute the weight
updates corresponding to the addition of a new context token ci provided to us by Corollary 2.3.1. We have

ΦW0(c1, x) = ΦW0+∆xW0(c1)(x)
ΦW0(c1, c2, x) = ΦW0+∆xW0(c1,c2)(x)

...
ΦW0(c1, . . . , cn, x) = ΦW0+∆xW0(c1,...,cn)(x)

This leads to the following sequence of corresponding MLP weights

W1 = W0 + ∆xW0(c1) (3)
W2 = W0 + ∆xW0(c1, c2) (4)

... (5)
Wn = W0 + ∆xW0(c1, . . . , cn). (6)

By construction, this sequences converges to the effect of the full context on the initial MLP weights so that

ΦW0(c1, . . . , cn, x) = ΦWn(x).

The following proposition shows that this implicit learning dynamics is similar to that of online gradient
descent, where the tokens play the role of the data points and a loss which changes at each step depending of
the token considered for that step.
Proposition 3.1. In the notation above, the iterative process of weight updates can be realized as a form of
stochastic gradient updates

Wi+1 = Wi − h∇W Li(Wi)
with learning rate given by h = 1/∥A(x)∥2 and loss at step i given by

Li(W ) = trace(∆T
i W )

6



Under review as submission to TMLR

where ∆i = W0

(
A(c1, . . . , ci, x) − A(c1, . . . , ci+1, x)

)
A(x)T .

Proof. Firstly, considering the sequence of Wi’s as defined in Eq. 3-6 above and Eq. 2, we have

Wi+1 − Wi = ∆xW0(c1, . . . , ci+1) − ∆xW0(c1, . . . , ci)

=
W0

(
A(c1, . . . , ci+1, x) − A(c1, . . . , ci, x)

)
A(x)T

∥A(x)∥2

= −h∆i,

with h = 1/∥A(x)∥2 and ∆i = W0

(
A(c1, . . . , ci, x) − A(c1, . . . , ci+1, x)

)
A(x)T .

This means that
Wi+1 = Wi − h∆i = Wi − h∇W trace(∆T

i W ), (7)

since in general we have ∇W trace(AT W ) = A.

Notice that ∆i measures the marginal effect of the addition of context token ci+1 to the partial context c1, . . . , ci.
Intuitively, when ci+1 has no marginal effect on the output; i.e., when A(c1, . . . , ci, x) = A(c1, . . . , ci+1, x),
we would expect that the corresponding update to the MLP weights W also vanishes. This intuition is
quantitatively justified through Proposition 3.1 since by definition ∆i indeed vanishes since A(c1, . . . , ci, x) −
A(c1, . . . , ci+1, x) is zero. Figure 3 verifies this behavior in a simple experiment showing that these gradients
vanish as the learning dynamics converge and the entire context is processed. In short, as the marginal effect
of the additional context ci+1 goes to zero, so too does the relative change in the MLP weights W and thus
their gradient updates.

Remark 3.2. Interestingly, it is possible to derive a different but similar implicit learning dynamics for
W0, W1, . . . , Wn by considering partial updates leaving the overall contextual block output unchanged at each
step when the partial updates are used in conjunction with the remaining tokens; i.e., define Wi so that
ΦWi

(ci+1, · · · , cn, x) = ΦW0(c1, . . . , cn, x). These dynamics are described in Appendix B. The difference is
that, in general, one can no longer represent the marginal contextual effect by a single gradient update, but
instead leads to a factorization formula for the overall weight Wn so that ΦWn

(x) = ΦW0(c1, . . . , cn, x).

4 Experiments

In order to verify Theorem 2.2 in practice, we consider a well-defined problem of learning a function class from
in-context examples. This specific task has been studied throughout the literature (Garg et al., 2022; Akyürek
et al., 2023; von Oswald et al., 2023; Ahn et al., 2023; Zhang et al., 2024) and those works are often concerned
with the theoretical properties or experimental robustness of ICL to various function classes. In particular, in
Zhang et al. (2024) and Garg et al. (2022), the authors show that it is possible to train a transformer from
scratch to perform in-context learning of linear functions. That is to say, given a transformer model trained
on a class of linear functions, the trained model is able to learn new and unseen linear functions (drawn
from a distribution similar to that used during training) purely from in-context examples with performance
comparable to the optimal least squares estimator. There the authors were concerned with quantifying how
robust transformers are (and are not) to distributional shifts between the training data of the model and
inference-time prompts. That is not our goal here.

Instead, since these works have have already verified that transformers can indeed learn linear models
in-context, we use a similar experimental framework to verify that the in-context prompts can effectively be
transferred to a weight update via Eq. 2. We verify that the prediction made by the trained model with an
in-context prompt is identical to the prediction made by the model with MLP weights modified according to
Eq. 2 but without access to the in-context prompt.

7



Under review as submission to TMLR

4.1 Setup

We train a single layer, standard transformer on instances of prompts composed of input-output pairs of
the form (x1, h(x1), . . . , xN , h(xN ), xquery) where the xi, xquery are sampled i.i.d. from a distribution Dx and
the function h is sampled independently from a distribution over functions in a function class H. We take
H to be the class of linear functions defined by h(x) = ωT x where each ω ∼ N (0, Id) and we sample points
xi, xquery ∼ N (0, Id). Here the features xi, xquery are d-dimensional and the outputs yi are scalar. The goal
of the in-context learner is to use the input-output pair prompt created from a similarly constructed linear
regression task (by sampling a new and unseen wtest, xi, xquery drawn from the same distributions as used
during training) and to form a prediction ŷ(xquery) so that ŷ(xquery) = ωT

testxquery.

Each training prompt is indexed by a task denoted τ ∈ N and we express each prompt as an embedding
matrix Eτ so that

Eτ :=
(

xτ,1 xτ,2 · · · xτ,N xτ, query
⟨ωτ , xτ,1⟩ ⟨ωτ , xτ,2⟩ · · · ⟨ωτ , xτ,N ⟩ 0

)
∈ R(d+1)×(N+1).

(
x1 x2 · · · xN xquery

f(x1) f(x2) · · · f(xN ) 0

)
−→ f(xquery)

so that Eτ = [C, x]. Let ΦW = φW ◦ A denote our simple transformer consisting of an attention block
A followed by a fully connected dense neural neural network φW . Since transformers map sequences of a
given length to sequences of the same length, the natural model prediction ŷ(xτ, query) for xτ,query is the last
component of the query-token output by a single transformer block1; that is,

ŷ(xτ, query) = ΦW (Eτ )(d+1),(N+1) (8)

Note that, defined this way, the dimensionality of ΦW (Eτ ) = ΦW ([C, x]) and ΦW +∆xW (x) agree. We train
the transformer using the loss over a batch of size B defined as

L̂(θ) = 1
2B

B∑
τ=1

(
ŷτ,query − wT

τ xτ,query
)2

.

4.1.1 Transformer Setup

For our experiments, we focus on autoregressive (“decoder-only”) models consisting of a single-layer transformer
ΦW = φW ◦ A with a multi-head self-attention block A followed by a dense, fully-connected, two-layer MLP
φW . Specifically, for an input X = [x1, . . . , xN+1] written as a sequence of vectors xi ∈ Rd+1, we have

A(X; WH , WQ, WK , WV ) = MultiHeadAttn(X; WH , WQ, WK , WV )
= WH [H1, · · · , Hh].

Each head Hi is defined as usual by

Hi = Attn(X; WQ,i, WK,i, WV,i) = WV,i · X · softmax(WK,iX)T WQ,iX√
dk

with WK,i, WQ,i, WV,i ∈ Rdk×(d+1), WH ∈ R(d+1)×dmodel .

The MLP itself is a two-layer ReLU neural network

φW (x) = W ′ReLU(Wx + b) + b′,

with b, b′ ∈ Rdmlp and W ∈ Rdmlp×(d+1). For our initial experiments we don’t employ MLP skip connections,
LayerNorm or any form of positional encoding. In the experiments that follow, we take d = 2, N = 100,
dmlp = 128, dmodel = 32 and dk = dmodel/h with number of heads h = 8.

1For the sake of simplicity, in Theorem 2.2 and in this experiment, we use standard transformer blocks Vaswani et al. (2017)
but without the skip connection on the MLP layer; see Appendix A to learn how to deal with the skip connection.

8



Under review as submission to TMLR

4.2 Verifying Theorem 2.2

Given a transformer trained on linear functions, we show that the in-context prompt can be transferred to a
weight update as defined in Eq. 2. Namely we want to show that

ΦW (C, x) = ΦW +∆xW (x);

or equivalently, for a task τ ,

ΦW

((
xτ,1 xτ,2 · · · xτ,N xτ,query

⟨ωτ , xτ,1⟩ ⟨ωτ , xτ,2⟩ · · · ⟨ωτ , xτ,N ⟩ 0

))
= ΦW +∆W

((
xτ,query

0

))
where

∆W = ∆xτ,queryW

((
xτ,1 xτ,2 · · · xτ,N

⟨ωτ , xτ,1⟩ ⟨ωτ , xτ,2⟩ · · · ⟨ωτ , xτ,N ⟩

))
is computed as in Eq. 2. Figure 2 compares the validation loss obtained by using each side of the equation
above to make predictions upon an evaluation query-token. The loss values for both setups are reported
for each checkpoint obtained during pretraining. We can see that these losses are the same for the two
computations (left, middle), and this behavior is evidenced over 100 newly sampled tasks for all points
(x1, x2) ∈ Rd=2 (right).

0 20 40 60 80 100
Training Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Training Loss
Validation Loss
Validation Loss (computed via W)

0 20 40 60 80 100
Training Steps

0.130

0.135

0.140

0.145

0.150

0.155

0.160

Lo
ss

Validation Loss
Validation Loss (computed via W)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Input Dimension 1 (x1)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

In
pu

t D
im

en
sio

n 
2 

(x
2)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
ea

n 
Pr

ed
ict

io
n 

Di
ffe

re
nc

e 
(|

W
W

+
xW

|)

1e 7

Figure 2: Train and Validation loss curves. Here, the “Validation loss (computed via ∆W )” refers the loss
computed using ΦW +∆W ; i.e., the trained model prediction given only xquery but with MLP weights modified
by ∆W as defined in Eq. 2. Left: Training loss and both validation Loss curves. Middle: Close-up of
validation loss computed both ways; i.e., using ΦW (C, x) vs. ΦW +∆xW (x). Right: Once trained, we sample
100 test tasks and for each point (x1, x2) ∈ Rd=2 average the difference between ΦW and ΦW +∆xW . The two
outputs agree on a wide range of both tasks and input values up to an order of 10−7.

4.3 Convergence of ∆W

The experiments in this section aim to understand how the weights adapt as the in-context prompt is
processed by the model during the implicit learning dynamics described by Proposition 3.1. In particular, we
want to verify that the gradient updates vanish as context convergence is reached.

We create a sequence {(∆W )i}N
i=1 where each (∆W )i is as described in Eqs. 3-6. That is, we have that

ΦW (Ci, x) = ΦW +(∆W )i
(x)

where
Ci = [c1, . . . , ci] =

(
xτ,1 · · · xτ,i

⟨ωτ , xτ,1⟩ . . . ⟨ωτ , xτ,i⟩

)
and x =

(
xτ,query

0

)
.

If we let W0 denote the learned weights of the first dense layer, it follows from Corollary 2.3.1, that for any
i = 1, 2, . . . , N ,

(∆W )i = (W0δAx(Ci))A(x)T

∥A(x)∥2 , where δAx(Ci) = A(c1, . . . , ci, x) − A(x).

9



Under review as submission to TMLR

Intuitively, we expect that as the ‘in-context learner’ processes more of the prompt, the relative change in the
(∆W )i should decrease. In Figure 3 we verify that this is indeed the case.

For a given context Ci = [c1, . . . , ci] of length i, we plot the marginal change in (∆W )i from incorporating
one additional context token ci+1 which would yield (∆W )i+1 for the context Ci+1 = [c1, . . . , ci, ci+1]. We
measure this marginal change via the L2-norm; i.e., for each context length i we compute (cf. Proposition 3.1)

∥∇W Li(W )∥2 = ∥(∆W )i+1 − (∆W )i∥2.

We observe in Figure 3 that the gradient updates decrease and vanish as the implicit learning dynamics
progresses toward the full context as we expect from a converging gradient descent dynamics.

0 20 40 60 80 100
Context Length

0.0

0.5

1.0

1.5

2.0

(
W

) i+
1

(
W

) i
2

Figure 3: Convergence of (∆W )i. As more of the context in processed, the relative change in the weights W
converges to zero. For context length i > 2, the plot above represents the average difference ∥(∆W )i+1 −
(∆W )i∥2 and the standard error over 100 separate trials.

4.4 Comparison with Finetuning

For the experiments in this section, we pretrain a transformer as above (i.e., with a multi-head single layer
transformer block without MLP skip-connection or LayerNorm) with examples of the form

Eτ :=
(

xτ,1 xτ,2 · · · xτ,N xτ,query
⟨ωτ , xτ,1⟩ ⟨ωτ , xτ,2⟩ · · · ⟨ωτ , xτ,N ⟩ 0

)
∈ R(d+1)×(N+1).

For finetuning we create one new test example by sampling a ωtest and xtest which the model has not seen
during pretraining, though drawn from the same distribution during pretraining. Set

DFT :=
(

x1 · · · xM xtest
⟨ωtest, x1⟩ · · · ⟨ωtest, xM ⟩ 0

)
For each i = 1, 2, · · · , M , we create a finetuning dataset consisting of the first i elements of DFT, ignoring the
last column which is our test query. Here we take M = N for consistency but really M could be any value.
That is, for all i = 1, · · · , M , set

Di
FT =

(
x1 x2 · · · xi

⟨ωtest, x1⟩ ⟨ωtest, x2⟩ · · · ⟨ωtest, xi⟩

)
.

We initialize the transformer with the pretrained weights, then finetune using SGD taking one example(
xi

⟨ωtest, xi⟩

)
at a time in the same order as they are processed in-context, updating the weight matrix W of

the MLP layer at each step. After finetuning on all i examples of Di
FT, we compute the loss of the finetuned

model on the test query (xtest, 0). We call this the ‘gradient descent (GD) test loss’ for i steps.

10



Under review as submission to TMLR

Similarly, for each i we compute the weight transfer as defined in Eq. 2 using the context

Ci =
(

x1 x2 · · · xi

⟨ωtest, x1⟩ ⟨ωtest, x2⟩ · · · ⟨ωtest, xi⟩

)
and the same test query as before x = (xtest, 0). Using the value of ∆xW (Ci) from the weight transfer
formula, we compute the loss on test query (xtest, 0). We call this the ‘∆W test loss’ for context length i.

In Figure 4 (left), we compare the finetune SGD test loss with the ∆W weight transfer test loss showing the
average and standard error over 100 separate trials. Although different, we see that the two learning processes
(finetuning and implicit weight-update dynamics) minimize the loss in similar ways. Furthermore, we use the
(normalized) Frobenius inner product to compare the weight updates to W which arise via finetuning and via
the implicit weight update. That is, for each i ∈ [M ], we can compare the weight update to W coming from
our implicit dynamics (i.e., ∆xW (Ci)) and the update coming from finetuning on DFT, call it ∇W Li. As
we see in Figure 4 (right), the direction of two weight updates remain highly aligned in weight space as the
context length increases and as the number of finetune gradient steps increases.

0 20 40 60 80 100
GD Steps / Context length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Gradient Descent
W update

0 20 40 60 80 100
GD Steps / Context length

0.95

0.96

0.97

0.98

0.99

1.00

tr(
W

T
W

L)

Trace Inner product between W and WL

Figure 4: Direct finetuning vs implicit weight update. Left: Both finetuning and implicit weight updates
minimize the loss in similar ways. Right: The two forms of weight updates remain highly aligned with
respect to the normalized Frobenius inner product.

5 Conclusion and Limitations

Our approach to uncovering the transformer’s in-context learning mechanics improves upon previous methods
in that it does not put any restrictions on the self-attention layer architecture. While earlier theoretical works
have also derived a similar form of implicit learning dynamics, these did so only under limiting assumptions
on the self-attention layer, such as requiring linear attention or a single head as well as specific forms of
prompts; see von Oswald et al. (2023), Dai et al. (2023), and Huang et al. (2025), see also (Shen et al.,
2024; Deutch et al., 2024). In contrast our main Theorems (Thm. 2.2 and Thm. A.2) remain valid if the
self-attention layer is switched by other forms of contextual layers, such an RNNs, state space models, or any
layer that can take an input and optionally a context. This is surprising because our analysis hints that ICL
is less about the internals of self-attention, but rather about the fact that regular neural networks can transfer
modification of input space to their weight structure. This is a deep property that has been noticed in a
number of theoretical works, and has been used to helped understand why deep neural networks generalize so
well (Seong et al., 2018; Ma & Ying, 2021; Dherin et al., 2022).

While our current analysis is closer to reality and accommodates standard self-attention, the current framework
still involves some simplifications. These constitute the main limitations of our analysis and point towards
important directions for future work

• The current derivation is valid only for a single transformer block. Our main theorem quantifies
the context’s impact on the model’s state at the position of the final input token, not on all token
representations throughout the block’s output.

11



Under review as submission to TMLR

• Our analysis focuses on how the context influences the prediction of only the very first token generated
after the prompt. It does not capture the full mechanics of generation beyond that.

In spite of these limitations, we hope this work will help understand better the mysterious phenomena that
emerge at inference time for LLMs.

12



Under review as submission to TMLR

References
Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement

preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36:45614–45650, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algorithm is
in-context learning? investigations with linear models. In ICLR, 2023.

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen, Craig Citro,
David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly Templeton, Trenton
Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam Jermyn, Andy Jones, Andrew
Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and
Joshua Batson. Circuit tracing: Revealing computational graphs in language models. Transformer Circuits
Thread, 2025. URL https://transformer-circuits.pub/2025/attribution-graphs/methods.html.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4, 2023. URL
https://arxiv.org/abs/2303.12712.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why Can GPT Learn
In-Context? Language Models Implicitly Perform Gradient Descent as Meta-Optimizers. In Findings of
the Association for Computational Linguistics: ACL 2023, pp. 4005–4019. Association for Computational
Linguistics, 2023.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert Gu,
Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mixing gated linear
recurrences with local attention for efficient language models. arXiv preprint arXiv:2402.19427, 2024.

Gilad Deutch, Nadav Magar, Tomer Natan, and Guy Dar. In-context learning and gradient descent revisited.
In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2024.

Benoit Dherin, Michael Munn, Mihaela Rosca, and David Barrett. Why neural networks find simple solutions:
The many regularizers of geometric complexity. In NeurIPS, 2022.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context learning. In Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, 2024.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn in-context?
a case study of simple function classes. Advances in Neural Information Processing Systems, 35:30583–30598,
2022.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
urlhttp://www.deeplearningbook.org.

Bobby He and Thomas Hofmann. Simplifying transformer blocks. In ICLR, 2024.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. arXiv preprint
arXiv:2310.15916, 2023.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent. In
International conference on artificial neural networks, pp. 87–94. Springer, 2001.

13

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://arxiv.org/abs/2303.12712


Under review as submission to TMLR

Guan Zhe Hong, Bhavya Vasudeva, Vatsal Sharan, Cyrus Rashtchian, Prabhakar Raghavan, and Rina
Panigrahy. Latent concept disentanglement in transformer-based language models. arXiv preprint
arXiv:2506.16975, 2025. URL https://arxiv.org/abs/2506.16975.

Jianhao Huang, Zixuan Wang, and Jason D. Lee. Transformers learn to implement multi-step gradient
descent with chain of thought. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=r3DF5sOo5B.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, Hannaneh
Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint arXiv:2212.04089, 2022.

Louis Kirsch and Jürgen Schmidhuber. Meta learning backpropagation and improving it. Advances in Neural
Information Processing Systems, 34:14122–14134, 2021.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. arXiv preprint arXiv:2306.03341, 2023.
NeurIPS 2023 spotlight.

Junnan Liu, Hongwei Liu, Linchen Xiao, Shudong Liu, Taolin Zhang, Zihan Ma, Songyang Zhang, and
Kai Chen. Deciphering trajectory-aided llm reasoning: An optimization perspective, 2025. URL https:
//arxiv.org/abs/2505.19815.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-train,
prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM
computing surveys, 55(9):1–35, 2023.

Sheng Liu, Haotian Ye, Lei Xing, and James Zou. In-context vectors: Making in context learning more effective
and controllable through latent space steering. In Proceedings of the 41st International Conference on
Machine Learning, pp. 32287–32307, 2024. URL https://proceedings.mlr.press/v235/liu24bx.html.

Cong Ma and Lexing Ying. On Linear Stability of SGD and Input Smoothness of Neural Networks, 2021.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in
gpt. Advances in neural information processing systems, 35:17359–17372, 2022.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer.
Rethinking the role of demonstrations: What makes in-context learning work? In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, 2022.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-based
model editing at scale. In International Conference on Machine Learning, pp. 15817–15831. PMLR, 2022.

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt Turner.
Steering llama 2 via contrastive activation addition. arXiv preprint arXiv:2312.06681, 2023.

Allan Raventos, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the emergence
of non-bayesian in-context learning for regression. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=BtAz4a5xDg.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the few-shot
paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems,
2021.

Jurgen Schmidhuber. Evolutionary principles in self-referential learning. On learning how to learn: The
meta-meta-... hook.) Diploma thesis, Institut f. Informatik, Tech. Univ. Munich, 1(2):48, 1987.

Sihyeon Seong, Yegang Lee, Youngwook Kee, Dongyoon Han, and Junmo Kim. Towards flatter loss surface
via nonmonotonic learning rate scheduling. In Proceedings of the Thirty-Fourth Conference on Uncertainty
in Artificial Intelligence, 2018.

14

https://arxiv.org/abs/2506.16975
https://openreview.net/forum?id=r3DF5sOo5B
https://arxiv.org/abs/2505.19815
https://arxiv.org/abs/2505.19815
https://proceedings.mlr.press/v235/liu24bx.html
https://openreview.net/forum?id=BtAz4a5xDg


Under review as submission to TMLR

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Position: Do pretrained transformers learn in-context
by gradient descent? In Proceedings of the 41st International Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research, pp. 44712–44740, 2024.

Nishant Subramani, Nivedita Suresh, and Matthew E Peters. Extracting latent steering vectors from
pretrained language models. In Findings of the Association for Computational Linguistics: ACL 2022, pp.
566–581, 2022.

Eric Todd, Millicent L Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau. Function
vectors in large language models. arXiv preprint arXiv:2310.15213, 2023.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau. Function
vectors in large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=AwyxtyMwaG.

Rheeya Uppaal, Apratim Dey, Yiting He, Yiqiao Zhong, and Junjie Hu. Model editing as a robust and
denoised variant of dpo: A case study on toxicity. arXiv preprint arXiv:2405.13967, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems,
volume 30, pp. 5998–6008, 2017.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey
Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In Proceedings
of the 40th International Conference on Machine Learning, volume 202, pp. 35151–35174, 2023. URL
https://proceedings.mlr.press/v202/von-oswald23a.html.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models. arXiv
preprint arXiv:2206.07682, 2022.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu, Da Huang,
Denny Zhou, and Tengyu Ma. Larger language models do in-context learning differently, 2024. URL
https://openreview.net/forum?id=DRGnEkbiQZ.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context learning
as implicit bayesian inference. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=RdJVFCHjUMI.

Liu Yang, Ziqian Lin, Kangwook Lee, Dimitris Papailiopoulos, and Robert D Nowak. Task vectors in
in-context learning: Emergence, formation, and benefit. CoRR, 2025.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context. Journal
of Machine Learning Research, 25(49):1–55, 2024.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan, Xuwang
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J. Byun, Zifan
Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson, J. Zico Kolter, and
Dan Hendrycks. Representation engineering: A top-down approach to ai transparency. arXiv preprint
arXiv:2310.01405, 2023.

15

https://openreview.net/forum?id=AwyxtyMwaG
https://proceedings.mlr.press/v202/von-oswald23a.html
https://openreview.net/forum?id=DRGnEkbiQZ
https://openreview.net/forum?id=RdJVFCHjUMI


Under review as submission to TMLR

A Contextual blocks with skip-connections

We now consider the case of contextual blocks with skip connections encompassing the standard Pre-LN
transformer block as for instance described in He & Hofmann (2024).
Definition A.1. A contextual block Φ with skip connection is a layer of the form

ΦW,b′(C, x) = A(C, x) + W ′gθ(WA(C, x) + b) + b′ (9)

where gθ is any differential model parameterized by θ and A(C, x) is a contextual layer.

Again, here our motivation and prototypical example is taken from the standard transformer architecture
where the contextual layer A(C, x) is a multi-head attention block with a skip connection; i.e.,

A(C, x) = x + MultiHeadAttn(C, x).

We can generalize Theorem 2.2 to this context by allowing to update not only the weight matrix W of the
first layer but also the bias term b′ of the last layer.
Theorem A.2. Consider a contextual block Φ with skip connection as above; i.e.,

ΦW,b′(C, x) = A(C, x) + W ′gθ(WA(C, x) + b) + b′ (10)

where A(C, x) is a contextual layer and gθ(z) is a differentiable model. Then the effect of a portion Y ⊂ C of
the context C on the output of Φ implicitly corresponds to a rank-1 weight update of the first-layer weight
matrix W given by ∆xW (Y ) as well as an update of last-layer bias b′ given by ∆xb′(Y ). That is,

ΦW, b′(C, x) = ΦW +∆xW (Y ), b′+∆xb′(Y )(C\Y, x), (11)

and these updates are defined by the following formulas

∆xb′(Y ) := δAx(Y ), (12)

∆xW (Y ) := (WδAx(Y ))A(C\Y, x)T

∥A(C\Y, x)∥2 , (13)

where δAx(Y ) := A(C, x) − A(C\Y, x) is the context vector associated to Y . Note that ∆xW (Y ) is rank-1,
since WδAx(Y ) is a column vector and A(C\Y, x)T is a row vector.

Proof. Again, the result follows by direct computation. In the notation above, we have by definition that

ΦW +∆xW (Y ), b′+∆xb′(Y )(C\Y, x) = A(C\Y, x)
+ W ′gθ ((W + ∆xW (Y )) A(C\Y, x) + b))
+ b′ + ∆b′(Y )

= A(C\Y, x) + ∆xb′(Y )
+ W ′gθ (WA(C\Y, x) + ∆xW (Y )A(C\Y, x) + b))
+ b′

Now replacing ∆xW (Y ) by its definition in Eq. 13 and using that zT

∥z∥2 z = 1, we have that

∆xW (Y )A(C\Y, x) = (WδAx(Y ))A(C\Y, x)T

∥A(C\Y, x)∥2 A(C\Y, x) = WδAx(Y ).

Therefore, simplifying the above and substituting Eq. 12, we get that

ΦW +∆xW (Y ), b′+∆xb′(Y )(C\Y, x) = A(C\Y, x) + δAx(Y )
+ W ′gθ (W (A(C\Y, x) + δAx(Y )) + b)) + b′.

16



Under review as submission to TMLR

Since by definition of the context vector we have that A(C\Y, x) + δAx(Y ) = A(C, x), we finally get that

ΦW +∆xW (Y ), b′+∆xb′(Y )(C\Y, x) = A(C, x) + W ′gθ

(
WA(C, x) + b)

)
+ b′

= ΦW,b′(C, x)

which ends the proof.

Observe that the bias vector update ∆xb′(Y ) bears some similarity in spirit with the function vectors of Todd
et al. (2024), the transcoder outputs of Ameisen et al. (2025), or the latent concept representations of Hong
et al. (2025) used to edit transformer weights. Note also that this theorem is not only valid for contextual
layers like Pre-LN transformer blocks as in He & Hofmann (2024) but also other types of contextual layers as,
for instance, those in the Griffin recurrent models with local attention De et al. (2024).

B An alternative implicit learning dynamics of ICL

In this section, we describe an alternate view on the implicit learning dynamics which follow from an iterative
application of Theorem 2.2.

This approach differs in that it interprets how each context token input of a transformer affects the contextual
block output. It’s based on the idea that the influence of each context token on the model’s output can be
seen as an implicit change in its behavior. While the transformer’s weights are not actually updated as it
generates a response, the final output is effectively the same as if the model had undergone a rapid learning
process influenced by the context. We will now describe this implicit learning dynamic.

This approach differs in that it uncovers the implicit dynamics generated by the effect of each context token
on the contextual block output. As a result, this means that while no explicit weight update is performed
while a transformer block generates the first response token, the actual output is equivalent to that of the
contextual block without context but for which an implicit learning dynamics in weight space has happened.
We now describe in detail these learning dynamic.

Starting with the initial weight W0 for the first dense layer of the neural network, we have

ΦW0(c1, . . . , cn, x) = ΦW0+∆W0(c1)(c2, . . . , cn, x) (14)

which gives us the first weight update corresponding on the effect of token c1 on the first-layer weight matrix:

W1 = W0 + (W0∆A(c1))A(c2, . . . , cn, x)T

∥A(c2, . . . , cn, x)∥2 (15)

If we continue this process iteratively, we obtain the next weight update corresponding to the consumption of
the second token:

TW1(c2, . . . , cn, x) = TW1+∆W1(c2)(c3, . . . , cn, x) (16)
which yields

W2 = W1 + (W1∆A(c2))A(c3, . . . , cn, x)T

∥A(c3, . . . , cn, x)∥2 (17)

We can summarize this iterative process of implicit weight updates for each successive token:
Corollary B.0.1. In the notation above, the iterative process of weight updates

Wi = Wi−1 + (Wi−1∆A(ci))A(ci+1, . . . , cn, x)T

∥A(ci+1, . . . , cn, x)∥2 (18)

starting with the initial weights of the first dense layer W0 models the transfer of information from the prompt
token ci into the contextual block weights: Namely, we have that

TWi
(ci+1, . . . , cn, x) = TW0(c1, . . . , cn, x), (19)

for all i = 1, . . . , n with ∆A(ci) = A(ci, . . . , cn, x) − A(ci+1, . . . , cn, x).

17



Under review as submission to TMLR

Notice that ∆A(ci) measures the effect of context token ci on the contextual block output. When ci has no
effect on the output, that is when ∆A(ci) is zero, and the corresponding update vanishes. Notice that the
weight update at step i is linear in the weights; namely, we can rewrite it as

Wi = Wi−1 + hiWi−1Ai = Wi−1(1 + hiAi) where Ai := ∆A(ci)A(ci+1, . . . , cn, x)T (20)

with adaptive learning rate given by

hi := 1
∥A(ci+1, . . . , cn, x)∥2 . (21)

In particular, this gives us a factorization formula for the total implicit weight matrix corresponding to the
effect of context [c1, . . . , cn] on input-token x:

Wn = W0(1 + h1A1)(1 + h2A2) · · · (1 + hnAn). (22)

18


	Introduction
	Related work

	Contextual Blocks
	The implicit learning dynamics of ICL
	Experiments
	Setup
	Transformer Setup

	Verifying Theorem 2.2
	Convergence of W
	Comparison with Finetuning

	Conclusion and Limitations
	Contextual blocks with skip-connections
	An alternative implicit learning dynamics of ICL

