

INSTRUCTION AGENT: ENHANCING AGENT WITH EXPERT DEMONSTRATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Graphical user interface (GUI) agents have advanced rapidly but still struggle with
 012 complex tasks involving novel UI elements, long-horizon actions, and personalized
 013 trajectories. In this work, we introduce *Instruction Agent*, a GUI agent that
 014 leverages expert demonstrations to solve such tasks, enabling completion of other-
 015 wise difficult workflows. Given a single demonstration, the agent extracts step-by-
 016 step instructions and executes them by strictly following the trajectory intended by
 017 the user, which avoids making mistakes during execution. The agent leverages the
 018 verifier and backtracker modules further to improve robustness. Both modules are
 019 critical to understand the current outcome from each action and handle unexpected
 020 interruptions(such as pop-up windows) during execution. Our experiments show
 021 that Instruction Agent achieves a 60% success rate on a set of tasks in OSWorld
 022 that all top-ranked agents failed to complete. The Instruction Agent offers a prac-
 023 tical and extensible framework, bridging the gap between current GUI agents and
 024 reliable real-world GUI task automation.

1 INTRODUCTION

029 Graphical User Interface (GUI) agents leverage UI elements and input methods such as keyboard
 030 and mouse to interact with digital devices similarly to humans. GUI agents are predominantly pow-
 031 ered by Multimodal Large Language Models (MLLMs). Recent research on GUI agents Koh et al.
 032 (2024); Cheng et al. (2024); Zhang et al. (2025); OpenAI (2025); Anthropic PBC (2024); Qin et al.
 033 (2025) has demonstrated significant potential in automating user interactions and facilitating diverse
 034 tasks across digital platforms, including desktops and mobile devices. Since the introduction of
 035 evaluation benchmarks such as OSWorld Xie et al. (2024) and Windows Agent Arena Bonatti et al.
 036 (2024), rapid progress has been made in the performance capabilities of GUI agents. For instance,
 037 in the OSWorld benchmark Xie et al. (2024), the task success rate has increased from 5.8% in April
 038 2024 (achieved by Gemini Vision Pro) to 42.9% by OpenAI’s CUA O3 model. Nevertheless, a sub-
 039 stantial performance gap substantial gap remains compared to human-level performance (72.36%).

040 Despite the rapid development of GUI-based agents, some tasks remain difficult or infeasible for
 041 current agents due to complex UI elements, highly idiosyncratic procedures, or long-horizon work-
 042 flows spanning many steps. However, automating these tasks is still highly desirable.

043 In this paper, we present a method that automates many tasks previously unsolved by the SOTA
 044 agents using a single human demonstration. Our agent is a test-time-only, training-free system built
 045 on existing LLM APIs and open-source models. From the demonstration, it derives a high-quality
 046 task plan as well as UI grounding hints for the grounding model. To ensure the correctness and
 047 reliability of each action execution, we added verification and backtracking modules. Specifically,
 048 our framework comprises the following components (Figure 1):

1. An *Instructor Model* that extracts precise action plans from user demonstrations.
2. An *Actor Model* that follows these demonstration plans step-by-step, with built-in error tolerance and uncertainty handling modules.

052 Although our framework relies on expert demonstrations, these demonstrations can be easily cap-
 053 tured through quick, ad-hoc user recordings. Our agent framework is particularly beneficial in the
 following scenarios:

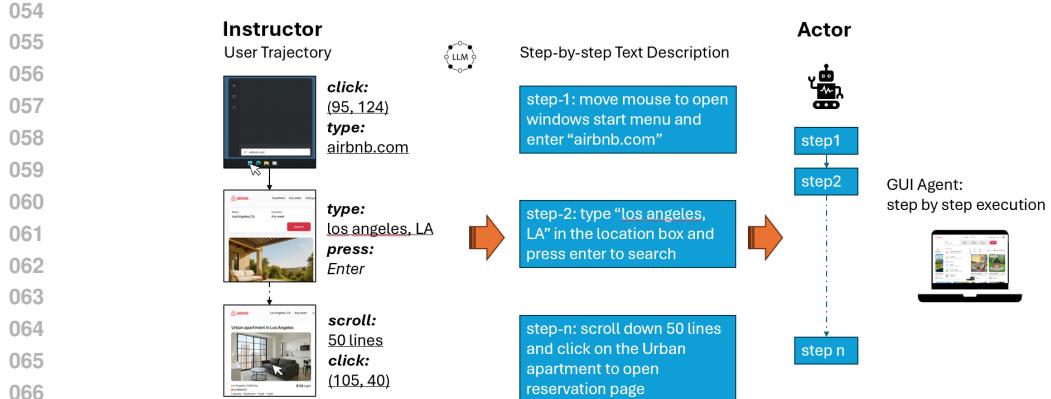


Figure 1: Instructor–Actor Agent

1. *Novel or unintuitive UI elements*: Applications frequently introduce novel UI elements that even humans find challenging to understand. Figure 2 provides an example such of UI elements. Humans typically learn from interacting with these elements, and this knowledge can be effectively transferred to agents via expert demonstrations at a minimal cost.

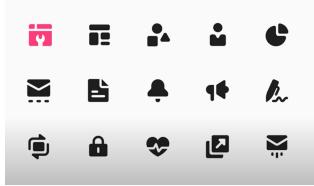


Figure 2: An example of a non-intuitive UI AxureBoutique (2023).

2. *Long-horizon tasks requiring high accuracy at each step*: For tasks involving many sequential steps, assuming the success of each step is independent: The probability of overall success (P_{success}) decreases exponentially with each individual step's success probability (p_i) :

$$P_{\text{success}} = \prod_{i=1}^n p_i$$

Therefore, ensuring high precision in each step is critical. Our agent's strictly following the steps from the demonstration significantly enhances the likelihood of success for individual steps and for the entire long-horizon task.

3. *Tasks requiring highly specific steps*: While many computer tasks are, in principle, solvable in multiple ways, user-specific configurations can cause different approaches to yield different outcomes. A personalized solution can be sometimes optimal for agent execution. For example, a user may prefer Firefox because it stores their credentials and browsing history; in such a setup, successfully placing an Amazon order may only be possible using Firefox with the default profile. Understanding these requirements beforehand are challenging for current agents, which tend to select the most common actions by default. Our demonstration-based approach enables the agent to exactly follow the user's personalized trajectory and avoids the bias toward "common" approaches.

4. *Tasks that are hard to express concisely*: User often specify one's task with a few sentence for GUI agent to execute. However, some tasks are difficult to describe in a short passage—for example, those with personalized, step-dependent details or long-horizon procedures. Although one could enumerate all particulars in a longer description, the agent can still miss details during execution. In such cases, a short demonstration recording is often the most reliable way to convey exactly what the user needs.

108 Finally, the instruction agent frame work we propose can have broader use cases. Expert demonstra-
 109 tions can potentially be augmented and generalized to support similar tasks. Furthermore, demon-
 110 strations and actions can be encapsulated as reusable tools or APIs, thereby enabling broader GUI
 111 task automation.

112

113

2 RELATED WORK

114

115

Script-Based Automation Before the emergence of LLM-powered GUI agents, script-based au-
 116 tomaton methods were widely used to perform automatic computer operations Tupsakhare (2019);
 117 Oksanen (2023). These scripts, however, rely heavily on static environments and tend to fail in dy-
 118 namic contexts commonly encountered in modern apps and webpages. For example, script-based
 119 solutions break easily if UI elements move due to software updates, window resizing, or unexpected
 120 pop-up windows.

121

122

GUI Agents Significant progress has been made on GUI agents OpenAI (2025); Agashe et al.
 123 (2025); Anthropic PBC (2024); Bonatti et al. (2024). Early agent systems typically relied on struc-
 124 tured representations (e.g., accessibility trees or HTML), whereas more recent work operates di-
 125 rectly on visual screenshots. Architectures range from end-to-end models to modular pipelines with
 126 separate planning, grounding, and execution components. Despite these advances, substantial gaps
 127 remain relative to human-level performance, especially on complex or novel tasks with challenging
 128 interfaces or long-horizon trajectories.

129

130

Typical GUI-agent pipelines comprise four primary modules Wang et al. (2025): (1) Planning, which
 131 produces a step-by-step solution; (2) GUI Understanding (grounding), which identifies UI elements
 132 and their interactive affordances; (3) Action Decision, which selects concrete actions based on the
 133 plan; and (4) Execution, which interacts with the operating system via APIs. Among these, planning
 134 and grounding are reported to be the predominant sources of error: according to Agent-S2Agashe
 135 et al. (2025), planning accounts for approximately 41% and grounding for about 20.5% of failures
 on OSWorld.

136

137

In this paper, we directly address these two bottlenecks. The human demonstration provides high-
 138 quality plan for the agent, and instruction generation provides rich and detailed hints to improve
 grounding accuracy.

139

140

GUI Grounding GUI grounding is a critical component in GUI-based agents, as it connects the
 141 UI environment to the agent’s internal knowledge. Numerous studies have advanced this field,
 142 including UI-Tars Qin et al. (2025), U-Ground Gou et al. (2025), WinClick Hui et al. (2025), and
 143 OS-Atlas Wu et al. (2024). As of the time of writing, UI-Tars represents the state-of-the-art open-
 144 source grounding model across multiple benchmarks. Given its strong empirical performance, we
 145 adopt UI-Tars as the grounding model for our agent.

146

147

Human-in-the-Loop Many work has explored introducing human interaction into agentic work-
 148 flows to improve robustness, performance, and reliability Mozannar et al. (2025); Huq et al. (2025).
 149 However, these designs require human input during task execution, which is less convenient. In
 150 contrast, our agent only needs a pre-recorded demonstration as input and can execute the task auto-
 151 matically without human intervention.

152

153

Demo-Based Agent Learning Recently, there has been increased interest in leveraging human-
 154 generated computer usage trajectories to enhance agent performance. Most existing works focus on
 155 utilizing large-scale collections of high-quality trajectories for agent training, demonstrating signif-
 156 icant improvements in effectiveness. Examples include Synatra Ou et al. (2024) and AgentTrek Xu
 157 et al. (2025), where trajectories are extracted and refined from online textual tutorials (e.g., Wiki-
 158 How¹) and screenshot databases (e.g., ClueWeb Overwijk et al. (2022)). Alternatively, approaches
 159 such as those in Agente He et al. (2025), OS-Genesis Sun et al. (2025), and NNetNav Murty et al.
 160 (2025) utilize exploratory agents to autonomously discover trajectories, later identifying and anno-
 161 tating meaningful task-oriented sequences for training.

¹<https://www.wikihow.com/Main-Page>

162 However, to the best of our knowledge, all prior works rely on large-scale trajectory datasets for
 163 model training. In Li et al. (2024), it has been found that simply scaling training trajectories is
 164 not sufficient for agent to generalize for out-of-domain tasks. On the other hand, there has been
 165 research that studies directly using expert demo data for agent planning, both Jang et al. (2025) and
 166 Ruoss et al. (2025) has shown that it is ineffective to plug in expert demonstration directly in test
 167 time for agents using LLM APIs. Our approach is the first to use test-time inference based solely
 168 on expert demonstrations, requiring only a single trajectory per task without the need for extensive
 169 trajectory datasets or additional training, and has shown effectiveness. This design empowers end-
 170 users to directly create demonstrations and deploy our agent without heavy computational resources
 171 or training expertise.

172 3 METHODOLOGY

173 3.1 PROBLEM FORMULATION

177 We model the autonomous digital agent as a solution to a partially observable Markov decision
 178 process (POMDP), following the definitions in Xie et al. (2024) and Agashe et al. (2025). A POMDP
 179 is defined as $M = (\mathcal{S}, \mathcal{O}, \mathcal{A}, T, R)$, where:

- 180 • \mathcal{S} is the state space,
- 181 • \mathcal{O} is the observation space,
- 182 • \mathcal{A} is the action space,
- 183 • $T : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$ is the transition function, and
- 184 • $R : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is the reward function.

187 In our context, the state space \mathcal{S} corresponds to the digital device’s state, which may include the
 188 desktop environment, webpage, or application status. The observation space \mathcal{O} typically consists
 189 of screenshots representing each state. In addition, we initialize the observation O_0 with step-by-
 190 step instructions generated from human demonstration. We name this module as the Instructor.
 191 The reward function R measures task success, i.e., it indicates whether the agent has successfully
 192 completed the assigned task.

193 Similarly, we formalize the instructor’s task. The instructor receives a sequence of $(\mathcal{A}, \mathcal{S})$ pairs and
 194 must convert this sequence into a natural language description, which serves as part of the initial
 195 observation O_0 for the agent.

197 3.2 AGENT ARCHITECTURE

199 The overall agent architecture is composed of two modules Instructor and Actor as shown in Fig-
 200 ure: 1. The instructor uses human recorded trajectory and output a step-by-step instruction, The
 201 actor then follows the step by step instruction and carry out each step for the same task. The Actor
 202 is further composed of Verifier, Grounder, Executor and Backtracker. In Instructor, Actor, Verifier
 203 and Executor, we use GPT-4o as the backend LLM. In the grounding module, we use UI-Tars 1.5 to
 204 get the grounding coordinates. All LLMs usage happens at test time only and there are no training
 205 involved.

206 3.2.1 INSTRUCTOR

208 The instructor module consists of two main components: the **Recorder** and the **Instruction Gener-
 209 ator** as show in Figure: 4. Our setup requires high-quality trajectory recordings, especially precise
 210 state-action pairs. In our framework, the state is represented by screenshots—we do not use acces-
 211 sibility trees or HTML. For input actions, we capture only keyboard and mouse inputs.

212 Although screen recording videos and tutorials are widely available online, most cannot be directly
 213 leveraged for instruction generation, as they typically do not capture the user’s input events. Even
 214 when user inputs are visible in some recordings (such as those demo videos provided by Xie et al.
 215 (2024)), these inputs are usually not precisely aligned with the corresponding states which is the
 screenshot at the exact time point, making it unusable for our purpose. Therefore, an ad-hoc human

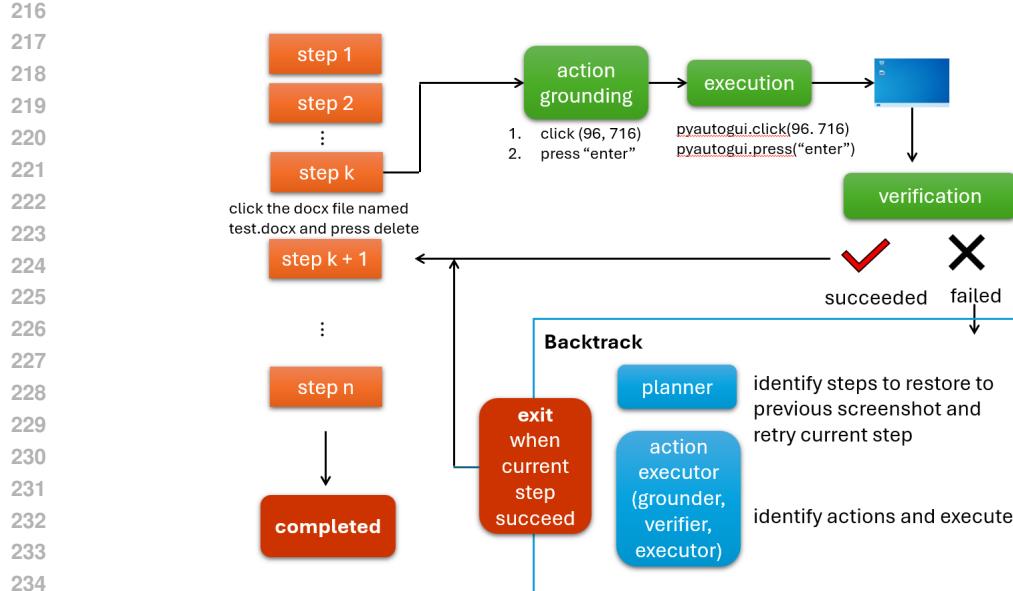


Figure 3: An overview of Instruction Agent

demonstration is still required for the agent. For each user action during the recording phase, we capture the screenshot immediately preceding that action.

During the instruction generation phase, we call a LLM, with the input consists of the user action log and its associated screenshot and prompt it to generate the a natural language description of the user action. For click actions, we annotate the input coordinates on the screenshot to enable the language model to generate more precise, location-aware descriptions, which are critical for grounding model in the actor agent. Additionally, we found it beneficial to include the screenshot after the action at the same time, as it provides useful functional feedback for describing the action’s effect.

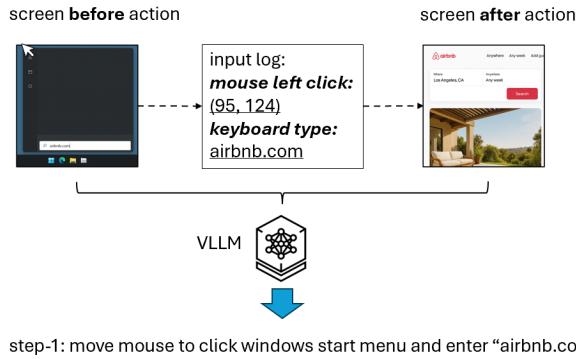


Figure 4: Instruction Generation

3.2.2 ACTOR

The actor module is responsible for interacting with the environment and executing the instructions provided by the instructor. It is composed of four main components: the **Grounder**, the **Verifier**, the **Backtracker**, and the **Executor**.

Given an instruction list consisting of steps s_1, s_2, \dots, s_n , where each s_i is an action description recorded in the demonstration trajectory, the actor iterates through the instruction list as follows:

270 For each step s_i , the agent first uses the UI Grounder to generate a specific command (e.g., click,
 271 type, scroll) based on the instruction. This command is then sent to the Executor, which converts
 272 it into executable code (i.e., using PyAutoGUI) to interact with the environment. After execution,
 273 the Verifier compares the screenshots before and after the action to determine whether the step was
 274 successfully performed. If the verifier confirms success, the agent proceeds to the next instruction;
 275 otherwise, it enters the backtracking loop to retry or recover from the failed action.

276
 277 **UI Grounder:** Our agent is compatible with open-source grounding models such as U-
 278 Ground Gou et al. (2025) and UI-Tars Qin et al. (2025). In our experiment, we use UI-Tars 1.5
 279 7B². Although UI-Tars is capable of directly generating end to end executable code, we found relying
 280 on its executable code does not get satisfactory performance in our use case. Instead, we only
 281 use the UI coordinates it identifies and use a separate LLM(GPT-4o) for code generation.

282
 283 **Verifier:** The verifier is a critical component of our agent. Because the agent must follow instruc-
 284 tions step by step, it needs to know when a step has been successfully completed and it is safe to
 285 proceed, versus when a step has failed and should be retried. Without a verifier, the agent would
 286 execute steps blindly and can't complete any task when any step fails.

287 The verifier utilizes a LLM (GPT-4o) to determine whether an action was successful. It takes as input
 288 the screenshots before (O_{i-1}) and after (O_i) the action. By analyzing changes in the observation,
 289 the verifier decides when to proceed based on if the intended action had the desired effect.

290
 291 **Backtracker:** When the verifier determines that an action has failed, the backtracker is invoked to
 292 retry the step. Given the dynamic nature of computer environments, it is often necessary to restore
 293 the previous state before retrying. The backtracker consists of a planner and an action executor (use
 294 the same LLMs as the Actor agent). It stores the observation (screenshot) prior to s_i and plans a
 295 sequence of actions to return to that state (see the Backtrack module in Figure 1). In real-world
 296 environments, a reset button or snapshot may be available, but often, recovery requires additional
 297 actions such as “click back” in a browser or closing unintended pop-ups. The backtracker analyzes
 298 the current and target screenshots to make a recovery plan, then executes the actions, verifying after
 299 each step whether the agent has returned to the desired state. To avoid infinite loops, we limit the
 300 number of recovery attempts; if recovery fails after a few steps, the workflow is terminated or human
 301 intervention is requested.

302 While it may appear paradoxical that the backtracker itself is an autonomous agent (posing a poten-
 303 tially harder problem), we argue that, in practice, divergence caused by simple misclicks is usually
 304 minor. Previous research Xie et al. (2024); Koh et al. (2024) shows agents perform well in such
 305 short, localized recovery tasks. As a safeguard, the backtracker is restricted to a small number of
 306 retries before terminate the task as failure.

307
 308 **Executor:** The executor module, using a large language model (GPT-4o), receives the command
 309 generated by the grounder and the current state, and outputs executable code to interact with the
 310 environment. We use pyautogui as the primary interface for execution, which is a popular and
 311 convenient choice.

312 4 EXPERIMENTS

313 4.1 BENCHMARK

314 We evaluate our agent using the widely adopted OSWorld benchmark Xie et al. (2024) for GUI
 315 agents. For each task, we create a human demonstration trajectory and then let the agent to act
 316 autonomously.

317 4.1.1 TASK SELECTION

318 Instruction Agents have access to high-quality plans derived from human demonstrations, giving
 319 them a natural advantage in task completion. Therefore, evaluating them on tasks already solved by

320
 321 ²<https://huggingface.co/ByteDance-Seed/UI-TARS-1.5-7B>

other agents is not meaningful. Instead, we focus on tasks that failed by the top-ranked agents on the OSWorld leaderboard³. Specifically, we selected the top three open-source agents available at the time of writing (as of May 1, 2025) and identified tasks that all three failed to complete (Table 1). These agents were ranked 3, 4, and 6, respectively. We excluded agents ranked 1 and 2, as their trajectories are not publicly available. Nevertheless, the open-source agents we selected achieve success rates comparable to the leading closed-source agents, ensuring that our evaluation remains representative.

OSWorld contains 369 tasks in total, of which 130 were failed by all three selected agents. We randomly sampled 20 of these 130 tasks 20 of these 130 tasks to balance coverage and evaluation cost for our evaluation.

4.1.2 RECORDING

We hired human annotators to record expert demonstrations within Docker-hosted virtual machines. The recording script captured mouse clicks, keyboard inputs, and screenshots before and after each action. An instruction generator then converted these events into step-by-step textual descriptions, which were provided to the agent.

4.1.3 AGENT EVALUATION

We leveraged OSWorld’s Docker environment to run the tasks. Each experiment was evaluated and manually inspected to ensure accuracy.

4.1.4 RESULTS

Table 1 presents the performance comparison. On the 20 sampled tasks—each of which all top agents failed—our agent achieved a 60% success rate. Although not perfect, this result is worth noting given the difficulty of OSWorld tasks: humans achieve only 72% accuracy on overall OSWorld tasks. Thus, our agent demonstrates competitive performance.

Agent	Success Rate
Instruction Agent (ours)	60%
Human	72.36%
UI-TARS-1.5 (100 steps) - rank 3	0%
Agent S2 w/ Gemini 2.5 (50 steps) - rank 4	0%
InfantAgent (50 steps) - rank 6	0%

Table 1: Success rates of different agents on the 20 unsolved OSWorld tasks.

4.2 ABLATION STUDIES

We further conducted ablation studies to assess the contributions of the *verifier* and *backtracker* modules (Table 2). The verifier evaluates the correctness of each executed step, while the backtracker allows the agent to recover from errors by restoring the environment to a previous state and retrying.

In our experiments across 20 tasks, 5 required at least one retry, and in 2 cases, an incorrect action pushed the environment into a different state which required the backtracker to restore a valid state before retrying.

Agent Variant	Success Rate
Instruction Agent (full)	60%
- without backtracker	45%
- without verifier and backtracker	40%

Table 2: Ablation study: contributions of the verifier and backtracker modules.

³<https://os-world.github.io/>

378 4.3 FAILURE ANALYSIS
379380 In this section, we discuss the common failure modes observed during our experiments. The failures
381 can be broadly categorized into four types: (1) grounding errors, (2) execution errors, (3) verification
382 errors, and (4) backtracking errors.383 **Grounding Errors.** In many failed tasks, the grounding model did not accurately produce the
384 correct coordinates, even when provided with detailed instructions. Grounding models are evolving
385 rapidly, and we expect these errors to diminish as models improve.387 **Execution Errors.** A small portion of failures stemmed from incorrect Python code (via
388 `pyautogui`) generated by the Executor, despite having correct instructions and accurate grounding
389 coordinates. This is expected, as we relied on a general-purpose LLM(GPT-4o) with only simple
390 prompting for code generation. We believe such errors can be mitigated by employing models
391 specifically fine-tuned for GUI interaction or by designing more robust prompts.393 **Verification Errors.** Verification errors occur when the LLM fails to correctly determine whether
394 a step has been successfully completed. We tackle this by adding explicit descriptions of the ex-
395 pected outcome of each action to our instructions. For example, instead of simply stating “click the
396 Windows Start icon,” we specify “click the Windows Start icon to open the Windows Start menu.”
397 This allows the verifier to check both the action and its effect. While this approach substantially re-
398 duced verification errors, they still occur in tasks involving novel UI interactions or subtle interface
399 changes that are difficult for the LLM to detect.400 **Backtracking Errors.** When errors from the above sources occur, the agent attempts to backtrack
401 and recover. However, backtracking remains challenging: the agent may fail to restore the envi-
402 ronment to a valid state or may become stuck in loops. To address this, we introduced a memory
403 buffer that stores all previous attempts and errors encountered during backtracking, and we prompt
404 the agent to try alternative strategies when it becomes stuck. This reduces failure rates; however,
405 backtracking still struggles when the divergence caused by an earlier error is too severe to recover.407 5 BROADER USE CASES
408409 The goal of the Instruction Agent is to automate complex tasks with minimal human intervention,
410 and our experiments demonstrate its effectiveness. Beyond hard task automation, the agent has
411 broader applications: when tasks are common or part of a larger workflow, it can be packaged as
412 an API or tool for integration with other agents; although task-specific, its demonstrations can often
413 be adapted to similar tasks with only minor edits; and for tasks that remain too challenging, limited
414 human interaction can be introduced to guide the most difficult steps. Even in such cases, pre-
415 corded demonstrations minimize the need for continuous supervision while significantly improving
416 task performance.417 6 CONCLUSION
419420 In this work, we presented *Instruction Agent*, a training-free framework that leverages expert demon-
421 strations to automate complex GUI tasks that have been failed by current agents. Instruction Agent
422 offers a robust and extensible framework for reliable GUI automation, enabling broader adoption in
423 both everyday workflows and specialized enterprise applications.424 Future work includes improving the backtracking mechanism and testing the framework with dif-
425 ferent LLMs, particularly smaller models that can run efficiently on edge devices. We see this as a
426 step toward more practical, reliable, and accessible GUI automation.428 REFERENCES
429430 Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2:
431 A compositional generalist-specialist framework for computer use agents, 2025. URL <https://arxiv.org/abs/2504.00906>.

432 Anthropic PBC. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku.
 433 <https://www.anthropic.com/news/3-5-models-and-computer-use>, October
 434 2024. Accessed 2 July 2025.

435 AxureBoutique. Navigating the maze: Examples of bad navigation in ui/ux. <https://www.youtube.com/watch?v=D-RMsyZrt38>, September 2023. YouTube video, accessed 2 July
 436 2025.

437 Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
 438 Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows
 439 agent arena: Evaluating multi-modal os agents at scale, 2024. URL <https://arxiv.org/abs/2409.08264>.

440 Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
 441 Wu. Seeclik: Harnessing gui grounding for advanced visual gui agents, 2024. URL <https://arxiv.org/abs/2401.10935>.

442 Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
 443 Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents,
 444 2025. URL <https://arxiv.org/abs/2410.05243>.

445 Yanheng He, Jiahe Jin, and Pengfei Liu. Efficient agent training for computer use, 2025. URL
 446 <https://arxiv.org/abs/2505.13909>.

447 Zheng Hui, Yinheng Li, Dan Zhao, Tianyi Chen, Colby Banbury, and Kazuhito Koishida. Winclick:
 448 Gui grounding with multimodal large language models, 2025. URL <https://arxiv.org/abs/2503.04730>.

449 Faria Huq, Zora Zhiruo Wang, Frank F. Xu, Tianyue Ou, Shuyan Zhou, Jeffrey P. Bigham, and
 450 Graham Neubig. Cowpilot: A framework for autonomous and human-agent collaborative web
 451 navigation. In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the
 452 Association for Computational Linguistics: Human Language Technologies (System Demonstrations)*, pp. 163–172. Association for Computational Linguistics, 2025. doi: 10.18653/v1/2025.
 453 naacl-demo.17. URL <http://dx.doi.org/10.18653/v1/2025.nacl-demo.17>.

454 Lawrence Jang, Yinheng Li, Dan Zhao, Charles Ding, Justin Lin, Paul Pu Liang, Rogerio Bonatti,
 455 and Kazuhito Koishida. Videowebarena: Evaluating long context multimodal agents with video
 456 understanding web tasks, 2025. URL <https://arxiv.org/abs/2410.19100>.

457 Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
 458 Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
 459 multimodal agents on realistic visual web tasks, 2024. URL <https://arxiv.org/abs/2401.13649>.

460 Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
 461 and Oriana Riva. On the effects of data scale on ui control agents, 2024. URL <https://arxiv.org/abs/2406.03679>.

462 Hussein Mozannar, Gagan Bansal, Cheng Tan, Adam Journey, Victor Dibia, Jingya Chen, Jack Ger-
 463 rits, Tyler Payne, Matheus Kunzler Maldaner, Madeleine Grunde-McLaughlin, Eric Zhu, Griffin
 464 Bassman, Jacob Alber, Peter Chang, Ricky Loyn, Friederike Niedtner, Ece Kamar, Maya Murad,
 465 Rafah Hosn, and Saleema Amershi. Magentic-ui: Towards human-in-the-loop agentic systems,
 466 2025. URL <https://arxiv.org/abs/2507.22358>.

467 Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D. Manning. Nnetnav: Unsupervised
 468 learning of browser agents through environment interaction in the wild, 2025. URL <https://arxiv.org/abs/2410.02907>.

469 Juho-Jaakko Oksanen. Test automation for windows gui application. Bachelor's thesis, Oulu Univer-
 470 sity of Applied Sciences, Oulu, Finland, 2023. URL <https://www.thesaurus.fi/handle/10024/801926>.

471 OpenAI. Introducing operator. <https://openai.com/index/introducing-operator/>, January 2025. Accessed 2 July 2025.

486 Tianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
 487 Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
 488 demonstrations for digital agents at scale, 2024. URL <https://arxiv.org/abs/2409.15637>.

489 Arnold Overwijk, Chenyan Xiong, Xiao Liu, Cameron VandenBerg, and Jamie Callan. Clueweb22:
 490 10 billion web documents with visual and semantic information, 2022. URL <https://arxiv.org/abs/2211.15848>.

491 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jia-
 492 hao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
 493 Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei
 494 Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang,
 495 Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui
 496 interaction with native agents, 2025. URL <https://arxiv.org/abs/2501.12326>.

497 Anian Ruoss, Fabio Pardo, Harris Chan, Bonnie Li, Volodymyr Mnih, and Tim Genewein. Lmact:
 498 A benchmark for in-context imitation learning with long multimodal demonstrations, 2025. URL
 499 <https://arxiv.org/abs/2412.01441>.

500 Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
 501 Chengyou Jia, Liheng Chen, Zhoumianze Liu, Ben Kao, Guohao Li, Junxian He, Yu Qiao, and
 502 Zhiyong Wu. Os-genesis: Automating gui agent trajectory construction via reverse task synthesis,
 503 2025. URL <https://arxiv.org/abs/2412.19723>.

504 Preeti Tupsakhare. Python for automation and scripting: Streamlining operations and increasing
 505 efficiency. *The Journal of Scientific and Engineering Research*, pp. 222–227, 09 2019. doi:
 506 10.5281/zenodo.13918609.

507 Shuai Wang, Weiwen Liu, Jingxuan Chen, Yuqi Zhou, Weinan Gan, Xingshan Zeng, Yuhan Che,
 508 Shuai Yu, Xinlong Hao, Kun Shao, Bin Wang, Chuhan Wu, Yasheng Wang, Ruiming Tang, and
 509 Jianye Hao. Gui agents with foundation models: A comprehensive survey, 2025. URL <https://arxiv.org/abs/2411.04890>.

510 Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
 511 Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
 512 generalist gui agents, 2024. URL <https://arxiv.org/abs/2410.23218>.

513 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
 514 Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Sil-
 515 vio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal
 516 agents for open-ended tasks in real computer environments, 2024. URL <https://arxiv.org/abs/2404.07972>.

517 Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
 518 Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials, 2025. URL
 519 <https://arxiv.org/abs/2412.09605>.

520 Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Qing-
 521 wei Lin Kang, Yu and, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Ufo:
 522 A ui-focused agent for windows os interaction. In *NAACL'25*, pp. 597–622, April
 523 2025. URL <https://www.microsoft.com/en-us/research/publication/ufo-a-ui-focused-agent-for-windows-os-interaction/>.

A APPENDIX

A.1 INSTRUCTION FORMAT

534 Below is the full instruction for task a82b78bb-7fde-4cb3-94a4-035baf10bcf0:

535 [basicstyle=, breaklines=true] "action": "Left click on the blue,
 536 underlined hyperlink text '<https://minedojo.org>' located below the

540 author affiliations near the top center of the PDF document; this action
 541 opens the minedojo.org website in the default web browser." "action":
 542 "Left click on the 'Team' button, which is a white rounded rectangular
 543 tab located at the far right of the horizontal navigation bar below
 544 the MineDojo logo; this action scrolls the page to display the Team
 545 section." "action": "Left click on the blue, underlined text 'Jim
 546 (Linxi) Fan' located below the first circular profile image in the 'Team'
 547 section; this is a hyperlink that opens the personal website of Jim
 548 Fan in a new browser tab." "action": "Left click on the star-shaped
 549 bookmark icon located in the top right corner of the Chrome address
 550 bar, which appears as an outlined star; this action opens the 'Bookmark
 551 added' dialog for the current page." "action": "Left click on the
 552 dropdown menu labeled 'Bookmarks bar' in the 'Bookmark added' popup,
 553 located in the upper right area of the Chrome window, which has a white
 554 background and a blue outline; this opens the folder selection options
 555 for saving the bookmark." "action": "Left click on the 'Choose another
 556 folder...' option in the dropdown menu under the 'Folder' field of
 557 the 'Bookmark added' popup, located in the upper right section of the
 558 popup; this opens the 'Edit bookmark' window with more folder selection
 559 and editing options." "action": "Left click the 'New folder' button
 560 at the bottom left of the 'Edit bookmark' dialog, which is a rounded
 561 rectangular button with gray text and border; this action creates a new,
 562 editable folder named 'New folder' under 'Bookmarks bar'." "action":
 563 "TYPE 'Liked Authors'" "action": "Left click the blue 'Save' button
 564 at the bottom right of the 'Edit bookmark' dialog; this button has
 565 white text and a rounded shape. Clicking it closes the dialog and
 566 saves the bookmark." "action": "Left click on the browser tab labeled
 567 'MineDojo | Building Open...' at the top of the Chrome window, which
 568 is a rectangular tab element located to the left of the currently active
 569 'Jim Fan' tab and features the MineDojo logo and page title; this action
 570 brings the MineDojo website to the foreground, displaying the 'Team'
 571 section." "action": "Left click on the text link labeled 'De-An Huang'
 572 located in the second row, third column of the 'Team' section beneath a
 573 circular profile photo; this action opens De-An Huang's personal academic
 574 webpage in a new browser tab." "action": "Left click on the star-shaped
 575 'Bookmark this tab' icon located at the right end of the Chrome address
 576 bar, which is gray before clicking; this action opens a popup confirming
 577 the tab is bookmarked." "action": "Left click on the blue 'Done' button
 578 in the 'Bookmark added' popup, located to the right side of the popup
 579 window, to close the dialog and save the bookmark." "action": "Left
 580 click on the browser tab labeled 'MineDojo | Building Open-ended Embodied
 581 Agents' at the top left of the Chrome window, which has a colorful icon
 582 and is positioned as the first tab in the row; this action switches
 583 the view to the MineDojo website displaying the team member profiles."
 584 "action": "Left click on the underlined text 'Yuke Zhu' located near
 585 the bottom right of the team members section; it is a black link below a
 586 circular portrait and will open Yuke Zhu's personal academic webpage in a
 587 new browser tab." "action": "Left click on the star-shaped bookmark icon
 588 located at the right end of the Chrome address bar, which is outlined and
 589 turns blue when hovered; this action opens the 'Bookmark added' popup for
 590 the current page." "action": "Left click the blue 'Done' button at the
 591 bottom right of the 'Bookmark added' popup dialog in Chrome; this button
 592 confirms adding the bookmark and closes the popup." "action": "Left
 593 click on the browser tab labeled 'MineDojo | Building Open...' located
 594 at the top left of the Chrome window, which is visually represented as
 595 a light-colored tab with the MineDojo logo and partially visible title
 596 text; this action brings the MineDojo team webpage to the foreground."
 597 "action": "Left click on the text link labeled 'Anima Anandkumar'
 598 located at the bottom right of the 'Team' section, beneath the round

594 profile image with long dark hair and a light-colored top; this action
 595 opens a new browser tab displaying the Anima AI + Science Lab webpage."
 596 "action": "Left click on the star icon (bookmark button) located at the
 597 right end of the Chrome address bar, which is outlined and turns blue
 598 when hovered; this action adds the current page to bookmarks and opens
 599 the 'Bookmark added' dialog." "action": "Left click on the blue 'Done'
 600 button located at the bottom right of the 'Bookmark added' popup dialog;
 601 this action closes the popup and returns to the main webpage."
 602
 603

604 A.2 AGENT TRAJECTORY

605
 606 Full execution trace with verifier responses for task a82b78bb-7fde-4cb3-94a4-035baf10bcf0:
 607
 608 [basicstyle=,breaklines=true] Running AgentM with run name: 1 Screenshot
 609 received ... ready to act
 610 Executing step 0: Action: Left click on the blue, underlined hyperlink
 611 text "https://minedojo.org" ... Verification Response: YES
 612 Executing step 1: Action: Left click on the "Team" button ...
 613 Verification Response: YES
 614 Executing step 2: Action: Left click on the blue, underlined text "Jim
 615 (Linxi) Fan" ... Verification Response: YES
 616 Executing step 3: Action: Left click on the star-shaped bookmark icon
 617 ... Verification Response: YES
 618 Executing step 4: Action: Left click on the dropdown menu labeled
 619 "Bookmarks bar" ... Verification Response: YES
 620 Executing step 5: Action: Left click on the "Choose another folder..."
 621 option ... Verification Response: YES
 622 Executing step 6: Action: Left click the "New folder" button ...
 623 Verification Response: YES
 624 Executing step 7: Action: TYPE "Liked Authors" (No need to verify text
 625 input or key press)
 626 Executing step 8: Action: Left click the blue "Save" button ...
 627 Verification Response: YES
 628 Executing step 9: Action: Switch to "MineDojo | Building Open..." tab
 629 ... Verification Response: YES
 630 Executing step 10: Action: Left click on the text link labeled "De-An
 631 Huang" ... Verification Response: YES
 632 Executing step 11: Action: Bookmark current tab ... Verification
 633 Response: YES
 634 Executing step 12: Action: Click "Done" in bookmark popup ...
 635 Verification Response: YES
 636 Executing step 13: Action: Switch to "MineDojo | Building Open-ended
 637 Embodied Agents" tab ... Verification Response: YES
 638 Executing step 14: Action: Left click on the underlined text "Yuke Zhu"
 639 ... Verification Response: YES
 640 Executing step 15: Action: Bookmark current tab ... Verification
 641 Response: YES
 642 Executing step 16: Action: Click "Done" in bookmark popup ...
 643 Verification Response: YES
 644 Executing step 17: Action: Switch to "MineDojo | Building Open..." tab
 645 ... Verification Response: YES

648 Executing step 18: Action: Left click on the text link labeled "Anima
649 Anandkumar" ... Verification Response: YES
650
651 Executing step 19: Action: Bookmark current tab ... Verification
652 Response: YES
653
654 Executing step 20: Action: Click "Done" in bookmark popup ...
655 Verification Response: YES
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701