
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INSTRUCTION AGENT: ENHANCING AGENT WITH EX-
PERT DEMONSTRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphical user interface (GUI) agents have advanced rapidly but still struggle with
complex tasks involving novel UI elements, long-horizon actions, and personal-
ized trajectories. In this work, we introduce Instruction Agent, a GUI agent that
leverages expert demonstrations to solve such tasks, enabling completion of other-
wise difficult workflows. Given a single demonstration, the agent extracts step-by-
step instructions and executes them by strictly following the trajectory intended by
the user, which avoids making mistakes during execution. The agent leverages the
verifier and backtracker modules further to improve robustness. Both modules are
critical to understand the current outcome from each action and handle unexpected
interruptions(such as pop-up windows) during execution. Our experiments show
that Instruction Agent achieves a 60% success rate on a set of tasks in OSWorld
that all top-ranked agents failed to complete. The Instruction Agent offers a prac-
tical and extensible framework, bridging the gap between current GUI agents and
reliable real-world GUI task automation.

1 INTRODUCTION

Graphical User Interface (GUI) agents leverage UI elements and input methods such as keyboard
and mouse to interact with digital devices similarly to humans. GUI agents are predominantly pow-
ered by Multimodal Large Language Models (MLLMs). Recent research on GUI agents Koh et al.
(2024); Cheng et al. (2024); Zhang et al. (2025); OpenAI (2025); Anthropic PBC (2024); Qin et al.
(2025) has demonstrated significant potential in automating user interactions and facilitating diverse
tasks across digital platforms, including desktops and mobile devices. Since the introduction of
evaluation benchmarks such as OSWorld Xie et al. (2024) and Windows Agent Arena Bonatti et al.
(2024), rapid progress has been made in the performance capabilities of GUI agents. For instance,
in the OSWorld benchmark Xie et al. (2024), the task success rate has increased from 5.8% in April
2024 (achieved by Gemini Vision Pro) to 42.9% by OpenAI’s CUA O3 model. Nevertheless, a sub-
stantial performance gap substantial gap remains compared to human-level performance (72.36%).

Despite the rapid development of GUI-based agents, some tasks remain difficult or infeasible for
current agents due to complex UI elements, highly idiosyncratic procedures, or long-horizon work-
flows spanning many steps. However, automating these tasks is still highly desirable.

In this paper, we present a method that automates many tasks previously unsolved by the SOTA
agents using a single human demonstration. Our agent is a test-time–only, training-free system built
on existing LLM APIs and open-source models. From the demonstration, it derives a high-quality
task plan as well as UI grounding hints for the grounding model. To ensure the correctness and
reliability of each action execution, we added verification and backtracking modules. Specifically,
our framework comprises the following components (Figure 1):

1. An Instructor Model that extracts precise action plans from user demonstrations. 2. An Actor
Model that follows these demonstration plans step-by-step, with built-in error tolerance and uncer-
tainty handling modules.

Although our framework relies on expert demonstrations, these demonstrations can be easily cap-
tured through quick, ad-hoc user recordings. Our agent framework is particularly beneficial in the
following scenarios:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Instructor–Actor Agent

1. Novel or unintuitive UI elements: Applications frequently introduce novel UI elements that
even humans find challenging to understand. Figure 2 provides an example such of UI elements.
Humans typically learn from interacting with these elements, and this knowledge can be effectively
transferred to agents via expert demonstrations at a minimal cost.

Figure 2: An example of a non-intuitive UI AxureBoutique (2023).

2. Long-horizon tasks requiring high accuracy at each step: For tasks involving many sequential
steps, assuming the success of each step is independent: The probability of overall success (Psuccess)
decreases exponentially with each individual step’s success probability (pi) :

Psuccess =

n∏
i=1

pi

Therefore, ensuring high precision in each step is critical. Our agent’s strictly following the steps
from the demonstration significantly enhances the likelihood of success for individual steps and for
the entire long-horizon task.

3. Tasks requiring highly specific steps: While many computer tasks are, in principle, solvable in
multiple ways, user-specific configurations can cause different approaches to yield different out-
comes. A personalized solution can be sometimes optimal for agent execution. For example, a
user may prefer Firefox because it stores their credentials and browsing history; in such a setup,
successfully placing an Amazon order may only be possible using Firefox with the default profile.
Understanding these requirements beforehand are challenging for current agents, which tend to se-
lect the most common actions by default. Our demonstration-based approach enables the agent to
exactly follow the user’s personalized trajectory and avoids the bias toward ”common” approaches.

4. Tasks that are hard to express concisely. User often specify one’s task with a few sentence for
GUI agent to execute. However, some tasks are difficult to describe in a short passage—for example,
those with personalized, step-dependent details or long-horizon procedures. Although one could
enumerate all particulars in a longer description, the agent can still miss details during execution. In
such cases, a short demonstration recording is often the most reliable way to convey exactly what
the user needs.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Finally, the instruction agent frame work we propose can have broader use cases. Expert demonstra-
tions can potentially be augmented and generalized to support similar tasks. Furthermore, demon-
strations and actions can be encapsulated as reusable tools or APIs, thereby enabling broader GUI
task automation.

2 RELATED WORK

Script-Based Automation Before the emergence of LLM-powered GUI agents, script-based au-
tomation methods were widely used to perform automatic computer operations Tupsakhare (2019);
Oksanen (2023). These scripts, however, rely heavily on static environments and tend to fail in dy-
namic contexts commonly encountered in modern apps and webpages. For example, script-based
solutions break easily if UI elements move due to software updates, window resizing, or unexpected
pop-up windows.

GUI Agents Significant progress has been made on GUI agents OpenAI (2025); Agashe et al.
(2025); Anthropic PBC (2024); Bonatti et al. (2024). Early agent systems typically relied on struc-
tured representations (e.g., accessibility trees or HTML), whereas more recent work operates di-
rectly on visual screenshots. Architectures range from end-to-end models to modular pipelines with
separate planning, grounding, and execution components. Despite these advances, substantial gaps
remain relative to human-level performance, especially on complex or novel tasks with challenging
interfaces or long-horizon trajectories.

Typical GUI-agent pipelines comprise four primary modulesWang et al. (2025): (1) Planning, which
produces a step-by-step solution; (2) GUI Understanding (grounding), which identifies UI elements
and their interactive affordances; (3) Action Decision, which selects concrete actions based on the
plan; and (4) Execution, which interacts with the operating system via APIs. Among these, planning
and grounding are reported to be the predominant sources of error: according to Agent-S2Agashe
et al. (2025), planning accounts for approximately 41% and grounding for about 20.5% of failures
on OSWorld.

In this paper, we directly address these two bottlenecks. The human demonstration provides high-
quality plan for the agent, and instruction generation provides rich and detailed hints to improve
grounding accuracy.

GUI Grounding GUI grounding is a critical component in GUI-based agents, as it connects the
UI environment to the agent’s internal knowledge. Numerous studies have advanced this field,
including UI-Tars Qin et al. (2025), U-Ground Gou et al. (2025), WinClick Hui et al. (2025), and
OS-Atlas Wu et al. (2024). As of the time of writing, UI-Tars represents the state-of-the-art open-
source grounding model across multiple benchmarks. Given its strong empirical performance, we
adopt UI-Tars as the grounding model for our agent.

Human-in-the-Loop Many work has explored introducing human interaction into agentic work-
flows to improve robustness, performance, and reliability Mozannar et al. (2025); Huq et al. (2025).
However, these designs require human input during task execution, which is less convenient. In
contrast, our agent only needs a pre-recorded demonstration as input and can execute the task auto-
matically without human intervention.

Demo-Based Agent Learning Recently, there has been increased interest in leveraging human-
generated computer usage trajectories to enhance agent performance. Most existing works focus on
utilizing large-scale collections of high-quality trajectories for agent training, demonstrating signif-
icant improvements in effectiveness. Examples include Synatra Ou et al. (2024) and AgentTrek Xu
et al. (2025), where trajectories are extracted and refined from online textual tutorials (e.g., Wiki-
How1) and screenshot databases (e.g., ClueWeb Overwijk et al. (2022)). Alternatively, approaches
such as those in Agente He et al. (2025), OS-Genesis Sun et al. (2025), and NNetNav Murty et al.
(2025) utilize exploratory agents to autonomously discover trajectories, later identifying and anno-
tating meaningful task-oriented sequences for training.

1https://www.wikihow.com/Main-Page

3

https://www.wikihow.com/Main-Page


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

However, to the best of our knowledge, all prior works rely on large-scale trajectory datasets for
model training. In Li et al. (2024), it has been found that simply scaling training trajectories is
not sufficient for agent to generalize for out-of-domain tasks. On the other hand, there has been
research that studies directly using expert demo data for agent planning, both Jang et al. (2025) and
Ruoss et al. (2025) has shown that it is ineffective to plug in expert demonstration directly in test
time for agents using LLM APIs. Our approach is the first to use test-time inference based solely
on expert demonstrations, requiring only a single trajectory per task without the need for extensive
trajectory datasets or additional training, and has shown effectiveness. This design empowers end-
users to directly create demonstrations and deploy our agent without heavy computational resources
or training expertise.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We model the autonomous digital agent as a solution to a partially observable Markov decision
process (POMDP), following the definitions in Xie et al. (2024) and Agashe et al. (2025). A POMDP
is defined as M = (S,O,A, T,R), where:

• S is the state space,

• O is the observation space,

• A is the action space,

• T : S ×A → S is the transition function, and

• R : S ×A → R is the reward function.

In our context, the state space S corresponds to the digital device’s state, which may include the
desktop environment, webpage, or application status. The observation space O typically consists
of screenshots representing each state. In addition, we initialize the observation O0 with step-by-
step instructions generated from human demonstration. We name this module as the Instructor.
The reward function R measures task success, i.e., it indicates whether the agent has successfully
completed the assigned task.

Similarly, we formalize the instructor’s task. The instructor receives a sequence of (A,S) pairs and
must convert this sequence into a natural language description, which serves as part of the initial
observation O0 for the agent.

3.2 AGENT ARCHITECTURE

The overall agent architecture is composed of two modules Instructor and Actor as shown in Fig-
ure: 1. The instructor uses human recorded trajectory and output a step-by-step instruction, The
actor then follows the step by step instruction and carry out each step for the same task. The Actor
is further composed of Verifier, Grounder, Executor and Backtracker. In Instructor, Actor, Verifier
and Executor, we use GPT-4o as the backend LLM. In the grounding module, we use UI-Tars 1.5 to
get the grounding coordinates. All LLMs usage happens at test time only and there are no training
involved.

3.2.1 INSTRUCTOR

The instructor module consists of two main components: the Recorder and the Instruction Gener-
ator as show in Figure: 4. Our setup requires high-quality trajectory recordings, especially precise
state-action pairs. In our framework, the state is represented by screenshots—we do not use acces-
sibility trees or HTML. For input actions, we capture only keyboard and mouse inputs.

Although screen recording videos and tutorials are widely available online, most cannot be directly
leveraged for instruction generation, as they typically do not capture the user’s input events. Even
when user inputs are visible in some recordings (such as those demo videos provided by Xie et al.
(2024)), these inputs are usually not precisely aligned with the corresponding states which is the
screenshot at the exact time point, making it unusable for our purpose. Therefore, an ad-hoc human

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: An overview of Instruction Agent

demonstration is still required for the agent. For each user action during the recording phase, we
capture the screenshot immediately preceding that action.

During the instruction generation phase, we call a LLM, with the input consists of the user action log
and its associated screenshot and prompt it to generate the a natural language description of the user
action. For click actions, we annotate the input coordinates on the screenshot to enable the language
model to generate more precise, location-aware descriptions, which are critical for grounding model
in the actor agent. Additionally, we found it beneficial to include the screenshot after the action at
the same time, as it provides useful functional feedback for describing the action’s effect.

Figure 4: Instruction Generation

3.2.2 ACTOR

The actor module is responsible for interacting with the environment and executing the instructions
provided by the instructor. It is composed of four main components: the Grounder, the Verifier,
the Backtracker, and the Executor.

Given an instruction list consisting of steps s1, s2, . . . , sn, where each si is an action description
recorded in the demonstration trajectory, the actor iterates through the instruction list as follows:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

For each step si, the agent first uses the UI Grounder to generate a specific command (e.g., click,
type, scroll) based on the instruction. This command is then sent to the Executor, which converts
it into executable code (i.e., using PyAutoGUI) to interact with the environment. After execution,
the Verifier compares the screenshots before and after the action to determine whether the step was
successfully performed. If the verifier confirms success, the agent proceeds to the next instruction;
otherwise, it enters the backtracking loop to retry or recover from the failed action.

UI Grounder: Our agent is compatible with open-source grounding models such as U-
Ground Gou et al. (2025) and UI-Tars Qin et al. (2025). In our experiment, we use UI-Tars 1.5
7B2. Although UI-Tars is capable of directly generating end to end executable code, we found rely-
ing on its executable code does not get satisfactory performance in our use case. Instead, we only
use the UI coordinates it identifies and use a separate LLM(GPT-4o) for code generation.

Verifier: The verifier is a critical component of our agent. Because the agent must follow instruc-
tions step by step, it needs to know when a step has been successfully completed and it is safe to
proceed, versus when a step has failed and should be retried. Without a verifier, the agent would
execute steps blindly and can’t complete any task when any step fails.

The verifier utilizes a LLM (GPT-4o) to determine whether an action was successful. It takes as input
the screenshots before (Oi−1) and after (Oi) the action. By analyzing changes in the observation,
the verifier decides when to proceed based on if the intended action had the desired effect.

Backtracker: When the verifier determines that an action has failed, the backtracker is invoked to
retry the step. Given the dynamic nature of computer environments, it is often necessary to restore
the previous state before retrying. The backtracker consists of a planner and an action executor (use
the same LLMs as the Actor agent). It stores the observation (screenshot) prior to si and plans a
sequence of actions to return to that state (see the Backtrack module in Figure 1). In real-world
environments, a reset button or snapshot may be available, but often, recovery requires additional
actions such as “click back” in a browser or closing unintended pop-ups. The backtracker analyzes
the current and target screenshots to make a recovery plan, then executes the actions, verifying after
each step whether the agent has returned to the desired state. To avoid infinite loops, we limit the
number of recovery attempts; if recovery fails after a few steps, the workflow is terminated or human
intervention is requested.

While it may appear paradoxical that the backtracker itself is an autonomous agent (posing a poten-
tially harder problem), we argue that, in practice, divergence caused by simple misclicks is usually
minor. Previous research Xie et al. (2024); Koh et al. (2024) shows agents perform well in such
short, localized recovery tasks. As a safeguard, the backtracker is restricted to a small number of
retries before terminate the task as failure.

Executor: The executor module, using a large language model (GPT-4o), receives the command
generated by the grounder and the current state, and outputs executable code to interact with the
environment. We use pyautogui as the primary interface for execution, which is a popular and
convenient choice.

4 EXPERIMENTS

4.1 BENCHMARK

We evaluate our agent using the widely adopted OSWorld benchmark Xie et al. (2024) for GUI
agents. For each task, we create a human demonstration trajectory and then let the agent to act
autonomously.

4.1.1 TASK SELECTION

Instruction Agents have access to high-quality plans derived from human demonstrations, giving
them a natural advantage in task completion. Therefore, evaluating them on tasks already solved by

2https://huggingface.co/ByteDance-Seed/UI-TARS-1.5-7B

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

other agents is not meaningful. Instead, we focus on tasks that failed by the top-ranked agents on the
OSWorld leaderboard3. Specifically, we selected the top three open-source agents available at the
time of writing (as of May 1, 2025) and identified tasks that all three failed to complete (Table 1).
These agents were ranked 3, 4, and 6, respectively. We excluded agents ranked 1 and 2, as their
trajectories are not publicly available. Nevertheless, the open-source agents we selected achieve
success rates comparable to the leading closed-source agents, ensuring that our evaluation remains
representative.

OSWorld contains 369 tasks in total, of which 130 were failed by all three selected agents. We
randomly sampled 20 of these 130 tasks 20 of these 130 tasks to balance coverage and evaluation
cost for our evaluation.

4.1.2 RECORDING

We hired human annotators to record expert demonstrations within Docker-hosted virtual machines.
The recording script captured mouse clicks, keyboard inputs, and screenshots before and after each
action. An instruction generator then converted these events into step-by-step textual descriptions,
which were provided to the agent.

4.1.3 AGENT EVALUATION

We leveraged OSWorld’s Docker environment to run the tasks. Each experiment was evaluated and
manually inspected to ensure accuracy.

4.1.4 RESULTS

Table 1 presents the performance comparison. On the 20 sampled tasks—each of which all top
agents failed—our agent achieved a 60% success rate. Although not perfect, this result is worth not-
ing given the difficulty of OSWorld tasks: humans achieve only 72% accuracy on overall OSWorld
tasks. Thus, our agent demonstrates competitive performance.

Agent Success Rate
Instruction Agent (ours) 60%
Human 72.36%
UI-TARS-1.5 (100 steps) - rank 3 0%
Agent S2 w/ Gemini 2.5 (50 steps) - rank 4 0%
InfantAgent (50 steps) - rank 6 0%

Table 1: Success rates of different agents on the 20 unsolved OSWorld tasks.

4.2 ABLATION STUDIES

We further conducted ablation studies to assess the contributions of the verifier and backtracker
modules (Table 2). The verifier evaluates the correctness of each executed step, while the backtracker
allows the agent to recover from errors by restoring the environment to a previous state and retrying.

In our experiments across 20 tasks, 5 required at least one retry, and in 2 cases, an incorrect action
pushed the environment into a different state which which required the backtracker to restore a valid
state before retrying.

Agent Variant Success Rate
Instruction Agent (full) 60%
- without backtracker 45%
- without verifier and backtracker 40%

Table 2: Ablation study: contributions of the verifier and backtracker modules.

3https://os-world.github.io/

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 FAILURE ANALYSIS

In this section, we discuss the common failure modes observed during our experiments. The failures
can be broadly categorized into four types: (1) grounding errors, (2) execution errors, (3) verification
errors, and (4) backtracking errors.

Grounding Errors. In many failed tasks, the grounding model did not accurately produce the
correct coordinates, even when provided with detailed instructions. Grounding models are evolving
rapidly, and we expect these errors to diminish as models improve.

Execution Errors. A small portion of failures stemmed from incorrect Python code (via
pyautogui) generated by the Executor, despite having correct instructions and accurate grounding
coordinates. This is expected, as we relied on a general-purpose LLM(GPT-4o) with only simple
prompting for code generation. We believe such errors can be mitigated by employing models
specifically fine-tuned for GUI interaction or by designing more robust prompts.

Verification Errors. Verification errors occur when the LLM fails to correctly determine whether
a step has been successfully completed. We tackle this by adding explicit descriptions of the ex-
pected outcome of each action to our instructions. For example, instead of simply stating “click the
Windows Start icon,” we specify “click the Windows Start icon to open the Windows Start menu.”
This allows the verifier to check both the action and its effect. While this approach substantially re-
duced verification errors, they still occur in tasks involving novel UI interactions or subtle interface
changes that are difficult for the LLM to detect.

Backtracking Errors. When errors from the above sources occur, the agent attempts to backtrack
and recover. However, backtracking remains challenging: the agent may fail to restore the envi-
ronment to a valid state or may become stuck in loops. To address this, we introduced a memory
buffer that stores all previous attempts and errors encountered during backtracking, and we prompt
the agent to try alternative strategies when it becomes stuck. This reduces failure rates; however,
backtracking still struggles when the divergence caused by an earlier error is too severe to recover.

5 BROADER USE CASES

The goal of the Instruction Agent is to automate complex tasks with minimal human intervention,
and our experiments demonstrate its effectiveness. Beyond hard task automation, the agent has
broader applications: when tasks are common or part of a larger workflow, it can be packaged as
an API or tool for integration with other agents; although task-specific, its demonstrations can often
be adapted to similar tasks with only minor edits; and for tasks that remain too challenging, limited
human interaction can be introduced to guide the most difficult steps. Even in such cases, prere-
corded demonstrations minimize the need for continuous supervision while significantly improving
task performance.

6 CONCLUSION

In this work, we presented Instruction Agent, a training-free framework that leverages expert demon-
strations to automate complex GUI tasks that have be failed by current agents. Instruction Agent
offers a robust and extensible framework for reliable GUI automation, enabling broader adoption in
both everyday workflows and specialized enterprise applications.

Future work includes improving the backtracking mechanism and testing the framework with dif-
ferent LLMs, particularly smaller models that can run efficiently on edge devices. We see this as a
step toward more practical, reliable, and accessible GUI automation.

REFERENCES

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2:
A compositional generalist-specialist framework for computer use agents, 2025. URL https:
//arxiv.org/abs/2504.00906.

8

https://arxiv.org/abs/2504.00906
https://arxiv.org/abs/2504.00906


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Anthropic PBC. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku.
https://www.anthropic.com/news/3-5-models-and-computer-use, October
2024. Accessed 2 July 2025.

AxureBoutique. Navigating the maze: Examples of bad navigation in ui/ux. https://www.
youtube.com/watch?v=D-RMsyZrt38, September 2023. YouTube video, accessed 2 July
2025.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows
agent arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.org/
abs/2409.08264.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents, 2024. URL https:
//arxiv.org/abs/2401.10935.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents,
2025. URL https://arxiv.org/abs/2410.05243.

Yanheng He, Jiahe Jin, and Pengfei Liu. Efficient agent training for computer use, 2025. URL
https://arxiv.org/abs/2505.13909.

Zheng Hui, Yinheng Li, Dan zhao, Tianyi Chen, Colby Banbury, and Kazuhito Koishida. Winclick:
Gui grounding with multimodal large language models, 2025. URL https://arxiv.org/
abs/2503.04730.

Faria Huq, Zora Zhiruo Wang, Frank F. Xu, Tianyue Ou, Shuyan Zhou, Jeffrey P. Bigham, and
Graham Neubig. Cowpilot: A framework for autonomous and human-agent collaborative web
navigation. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human Language Technologies (System Demonstra-
tions), pp. 163–172. Association for Computational Linguistics, 2025. doi: 10.18653/v1/2025.
naacl-demo.17. URL http://dx.doi.org/10.18653/v1/2025.naacl-demo.17.

Lawrence Jang, Yinheng Li, Dan Zhao, Charles Ding, Justin Lin, Paul Pu Liang, Rogerio Bonatti,
and Kazuhito Koishida. Videowebarena: Evaluating long context multimodal agents with video
understanding web tasks, 2025. URL https://arxiv.org/abs/2410.19100.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks, 2024. URL https://arxiv.org/abs/
2401.13649.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on ui control agents, 2024. URL https://
arxiv.org/abs/2406.03679.

Hussein Mozannar, Gagan Bansal, Cheng Tan, Adam Fourney, Victor Dibia, Jingya Chen, Jack Ger-
rits, Tyler Payne, Matheus Kunzler Maldaner, Madeleine Grunde-McLaughlin, Eric Zhu, Griffin
Bassman, Jacob Alber, Peter Chang, Ricky Loynd, Friederike Niedtner, Ece Kamar, Maya Murad,
Rafah Hosn, and Saleema Amershi. Magentic-ui: Towards human-in-the-loop agentic systems,
2025. URL https://arxiv.org/abs/2507.22358.

Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D. Manning. Nnetnav: Unsupervised
learning of browser agents through environment interaction in the wild, 2025. URL https:
//arxiv.org/abs/2410.02907.

Juho-Jaakko Oksanen. Test automation for windows gui application. Bachelor’s thesis, Oulu Univer-
sity of Applied Sciences, Oulu, Finland, 2023. URL https://www.theseus.fi/handle/
10024/801926.

OpenAI. Introducing operator. https://openai.com/index/
introducing-operator/, January 2025. Accessed 2 July 2025.

9

https://www.anthropic.com/news/3-5-models-and-computer-use
https://www.youtube.com/watch?v=D-RMsyZrt38
https://www.youtube.com/watch?v=D-RMsyZrt38
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2505.13909
https://arxiv.org/abs/2503.04730
https://arxiv.org/abs/2503.04730
http://dx.doi.org/10.18653/v1/2025.naacl-demo.17
https://arxiv.org/abs/2410.19100
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2401.13649
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2507.22358
https://arxiv.org/abs/2410.02907
https://arxiv.org/abs/2410.02907
https://www.theseus.fi/handle/10024/801926
https://www.theseus.fi/handle/10024/801926
https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-operator/


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Tianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
demonstrations for digital agents at scale, 2024. URL https://arxiv.org/abs/2409.
15637.

Arnold Overwijk, Chenyan Xiong, Xiao Liu, Cameron VandenBerg, and Jamie Callan. Clueweb22:
10 billion web documents with visual and semantic information, 2022. URL https://arxiv.
org/abs/2211.15848.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jia-
hao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin,
Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei
Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang,
Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering automated gui
interaction with native agents, 2025. URL https://arxiv.org/abs/2501.12326.

Anian Ruoss, Fabio Pardo, Harris Chan, Bonnie Li, Volodymyr Mnih, and Tim Genewein. Lmact:
A benchmark for in-context imitation learning with long multimodal demonstrations, 2025. URL
https://arxiv.org/abs/2412.01441.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, Ben Kao, Guohao Li, Junxian He, Yu Qiao, and
Zhiyong Wu. Os-genesis: Automating gui agent trajectory construction via reverse task synthesis,
2025. URL https://arxiv.org/abs/2412.19723.

Preeti Tupsakhare. Python for automation and scripting: Streamlining operations and increasing
efficiency. The Journal of Scientific and Engineering Research, pp. 222–227, 09 2019. doi:
10.5281/zenodo.13918609.

Shuai Wang, Weiwen Liu, Jingxuan Chen, Yuqi Zhou, Weinan Gan, Xingshan Zeng, Yuhan Che,
Shuai Yu, Xinlong Hao, Kun Shao, Bin Wang, Chuhan Wu, Yasheng Wang, Ruiming Tang, and
Jianye Hao. Gui agents with foundation models: A comprehensive survey, 2025. URL https:
//arxiv.org/abs/2411.04890.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
generalist gui agents, 2024. URL https://arxiv.org/abs/2410.23218.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Sil-
vio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments, 2024. URL https://arxiv.
org/abs/2404.07972.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials, 2025. URL
https://arxiv.org/abs/2412.09605.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Qing-
wei Lin Kang, Yu and, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Ufo:
A ui-focused agent for windows os interaction. In NAACL’25, pp. 597–622, April
2025. URL https://www.microsoft.com/en-us/research/publication/
ufo-a-ui-focused-agent-for-windows-os-interaction/.

A APPENDIX

A.1 INSTRUCTION FORMAT

Below is the full instruction for task a82b78bb-7fde-4cb3-94a4-035baf10bcf0:

[basicstyle=,breaklines=true] "action": "Left click on the blue,
underlined hyperlink text ’https://minedojo.org’ located below the

10

https://arxiv.org/abs/2409.15637
https://arxiv.org/abs/2409.15637
https://arxiv.org/abs/2211.15848
https://arxiv.org/abs/2211.15848
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2412.01441
https://arxiv.org/abs/2412.19723
https://arxiv.org/abs/2411.04890
https://arxiv.org/abs/2411.04890
https://arxiv.org/abs/2410.23218
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2412.09605
https://www.microsoft.com/en-us/research/publication/ufo-a-ui-focused-agent-for-windows-os-interaction/
https://www.microsoft.com/en-us/research/publication/ufo-a-ui-focused-agent-for-windows-os-interaction/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

author affiliations near the top center of the PDF document; this action
opens the minedojo.org website in the default web browser." "action":
"Left click on the ’Team’ button, which is a white rounded rectangular
tab located at the far right of the horizontal navigation bar below
the MineDojo logo; this action scrolls the page to display the Team
section." "action": "Left click on the blue, underlined text ’Jim
(Linxi) Fan’ located below the first circular profile image in the ’Team’
section; this is a hyperlink that opens the personal website of Jim
Fan in a new browser tab." "action": "Left click on the star-shaped
bookmark icon located in the top right corner of the Chrome address
bar, which appears as an outlined star; this action opens the ’Bookmark
added’ dialog for the current page." "action": "Left click on the
dropdown menu labeled ’Bookmarks bar’ in the ’Bookmark added’ popup,
located in the upper right area of the Chrome window, which has a white
background and a blue outline; this opens the folder selection options
for saving the bookmark." "action": "Left click on the ’Choose another
folder...’ option in the dropdown menu under the ’Folder’ field of
the ’Bookmark added’ popup, located in the upper right section of the
popup; this opens the ’Edit bookmark’ window with more folder selection
and editing options." "action": "Left click the ’New folder’ button
at the bottom left of the ’Edit bookmark’ dialog, which is a rounded
rectangular button with gray text and border; this action creates a new,
editable folder named ’New folder’ under ’Bookmarks bar’." "action":
"TYPE ’Liked Authors’" "action": "Left click the blue ’Save’ button
at the bottom right of the ’Edit bookmark’ dialog; this button has
white text and a rounded shape. Clicking it closes the dialog and
saves the bookmark." "action": "Left click on the browser tab labeled
’MineDojo | Building Open...’ at the top of the Chrome window, which
is a rectangular tab element located to the left of the currently active
’Jim Fan’ tab and features the MineDojo logo and page title; this action
brings the MineDojo website to the foreground, displaying the ’Team’
section." "action": "Left click on the text link labeled ’De-An Huang’
located in the second row, third column of the ’Team’ section beneath a
circular profile photo; this action opens De-An Huang’s personal academic
webpage in a new browser tab." "action": "Left click on the star-shaped
’Bookmark this tab’ icon located at the right end of the Chrome address
bar, which is gray before clicking; this action opens a popup confirming
the tab is bookmarked." "action": "Left click on the blue ’Done’ button
in the ’Bookmark added’ popup, located to the right side of the popup
window, to close the dialog and save the bookmark." "action": "Left
click on the browser tab labeled ’MineDojo | Building Open-ended Embodied
Agents’ at the top left of the Chrome window, which has a colorful icon
and is positioned as the first tab in the row; this action switches
the view to the MineDojo website displaying the team member profiles."
"action": "Left click on the underlined text ’Yuke Zhu’ located near
the bottom right of the team members section; it is a black link below a
circular portrait and will open Yuke Zhu’s personal academic webpage in a
new browser tab." "action": "Left click on the star-shaped bookmark icon
located at the right end of the Chrome address bar, which is outlined and
turns blue when hovered; this action opens the ’Bookmark added’ popup for
the current page." "action": "Left click the blue ’Done’ button at the
bottom right of the ’Bookmark added’ popup dialog in Chrome; this button
confirms adding the bookmark and closes the popup." "action": "Left
click on the browser tab labeled ’MineDojo | Building Open...’ located
at the top left of the Chrome window, which is visually represented as
a light-colored tab with the MineDojo logo and partially visible title
text; this action brings the MineDojo team webpage to the foreground."
"action": "Left click on the text link labeled ’Anima Anandkumar’
located at the bottom right of the ’Team’ section, beneath the round

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

profile image with long dark hair and a light-colored top; this action
opens a new browser tab displaying the Anima AI + Science Lab webpage."
"action": "Left click on the star icon (bookmark button) located at the
right end of the Chrome address bar, which is outlined and turns blue
when hovered; this action adds the current page to bookmarks and opens
the ’Bookmark added’ dialog." "action": "Left click on the blue ’Done’
button located at the bottom right of the ’Bookmark added’ popup dialog;
this action closes the popup and returns to the main webpage."

A.2 AGENT TRAJECTORY

Full execution trace with verifier responses for task a82b78bb-7fde-4cb3-94a4-035baf10bcf0:

[basicstyle=,breaklines=true] Running AgentM with run name: 1 Screenshot
received ... ready to act

Executing step 0: Action: Left click on the blue, underlined hyperlink
text "https://minedojo.org" ... Verification Response: YES

Executing step 1: Action: Left click on the "Team" button ...
Verification Response: YES

Executing step 2: Action: Left click on the blue, underlined text "Jim
(Linxi) Fan" ... Verification Response: YES

Executing step 3: Action: Left click on the star-shaped bookmark icon
... Verification Response: YES

Executing step 4: Action: Left click on the dropdown menu labeled
"Bookmarks bar" ... Verification Response: YES

Executing step 5: Action: Left click on the "Choose another folder..."
option ... Verification Response: YES

Executing step 6: Action: Left click the "New folder" button ...
Verification Response: YES

Executing step 7: Action: TYPE "Liked Authors" (No need to verify text
input or key press)

Executing step 8: Action: Left click the blue "Save" button ...
Verification Response: YES

Executing step 9: Action: Switch to "MineDojo | Building Open..." tab
... Verification Response: YES

Executing step 10: Action: Left click on the text link labeled "De-An
Huang" ... Verification Response: YES

Executing step 11: Action: Bookmark current tab ... Verification
Response: YES

Executing step 12: Action: Click "Done" in bookmark popup ...
Verification Response: YES

Executing step 13: Action: Switch to "MineDojo | Building Open-ended
Embodied Agents" tab ... Verification Response: YES

Executing step 14: Action: Left click on the underlined text "Yuke Zhu"
... Verification Response: YES

Executing step 15: Action: Bookmark current tab ... Verification
Response: YES

Executing step 16: Action: Click "Done" in bookmark popup ...
Verification Response: YES

Executing step 17: Action: Switch to "MineDojo | Building Open..." tab
... Verification Response: YES

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Executing step 18: Action: Left click on the text link labeled "Anima
Anandkumar" ... Verification Response: YES

Executing step 19: Action: Bookmark current tab ... Verification
Response: YES

Executing step 20: Action: Click "Done" in bookmark popup ...
Verification Response: YES

All steps completed successfully.

13


	Introduction
	Related Work
	Methodology
	Problem Formulation
	Agent Architecture
	Instructor
	Actor


	Experiments
	Benchmark
	Task Selection
	Recording
	Agent Evaluation
	Results

	Ablation Studies
	Failure Analysis

	Broader Use Cases
	Conclusion
	Appendix
	Instruction Format
	Agent Trajectory


