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Abstract

Language models often require external knowl-001
edge for causal reasoning in QA settings and002
employ public knowledge sources such as Con-003
ceptNet. Causality is inherently contextual, re-004
quiring models to reason about causal relations005
within specific situations. However, existing006
knowledge sources present causal facts as iso-007
lated universal triples (e.g., ⟨lit match; cause-008
effect; fire⟩) with limited contextual details. As009
a result, these repositories often fail to capture010
the causal context necessary for reasoning ap-011
plications. To address this gap, we introduce012
CASK-Schema and CASK-Db. Inspired by013
mechanism theory, CASK-Schema formalizes014
causal systems and augments causal facts with015
relevant temporal, influential, and quantitative016
relations. We then construct CASK-Db, a pub-017
lic causal knowledge base of ∼5.4K syntheti-018
cally enriched causal systems. Our extensive019
empirical evaluation demonstrates that CASK-020
Db improves causal QA performance across six021
tasks in two knowledge augmentation settings:022
knowledge injection (average improvement of023
14% / 9pp) and retrieval-augmented zero-shot024
QA (average improvement of 13% / 6pp).025

1 Introduction026

As AI research advances, language models and027

LLMs increasingly serve as conjecture machines,028

capable of generating hypotheses, producing expla-029

nations, and reasoning about the world (Valentino030

et al., 2021; Valentino and Freitas, 2022). They are031

applied to a wide range of causal reasoning tasks,032

including question answering (Hassanzadeh et al.,033

2020), scientific discovery(Wysocki et al., 2024),034

and medical diagnosis (Zhou et al., 2024). A cru-035

cial component of such systems is external causal036

knowledge extracted from public knowledge bases037

such as CauseNet (Heindorf et al., 2020) and Con-038

ceptNet(Speer et al., 2017). Prior work has shown039

that augmenting language models with external040

causal knowledge can improve accuracy on causal041

Figure 1: Extracted causal explanations from Concept-
Net and CASK-Db (ours) for forest fires.

QA tasks (Sharp et al., 2016; Dalal et al., 2021; 042

Hosseini et al., 2022). However, existing knowl- 043

edge repositories are fundamentally limited in their 044

ability to capture causal knowledge for effective 045

causal reasoning. 046

Knowledge bases consist of declarative knowl- 047

edge, i.e., explicit facts about the world that are 048

assumed to be objectively and universally true 049

(Zhong et al., 2023). Facts are encoded and stored 050

as independent knowledge triples (e.g., ⟨lit match; 051

cause-effect; fire⟩). Knowledge graphs are con- 052

structed by extracting triples sharing head and tail 053

entities and linking multiple facts to represent more 054

complex concepts such as event chains. Public 055

knowledge bases assume monotonicity (facts are 056

temporally invariant unless explicitly updated), uni- 057

versality (context-independent and globally true), 058

and an open-world model (while incomplete, new 059

facts are inferable) (Levesque and Lakemeyer, 060

2001). However, these assumptions are misaligned 061

for causal reasoning as causality is non-monotonic 062

and highly context-dependent (Bochman, 2007). 063

For instance, new causes of fire have been discov- 064

ered and lit matches are not the cause of all fires. 065

Under open-world assumptions, all stored facts are 066

considered true, and extracting causal graphs from 067

knowledge bases risks spurious context, as not all 068

adjacent facts are causally relevant. Consider the 069

extracted causal explanations for forest fires from 070

ConceptNet in Figure 1. 071
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ConceptNet erroneously includes baking a cake072

and smoking in bed as causes of forest fires while073

also indirectly implying listening to music. Further,074

the graph lacks causal context, such as contributing075

factors (e.g., dry vegetation and strong winds) and076

temporal details (e.g., preceding droughts). Gen-077

erally, existing knowledge bases contain sparse or078

even no causal context. For instance, CauseNet079

contains over 11 million cause-effect triples but080

no other contextual relations. Finally, there is no081

unified semantic definition of causal context, as082

knowledge bases use arbitrary relations, limiting083

interoperability. To address these limitations, we084

introduce Causal Systems Knowledge (CASK)085

Schema and Database (Db).086

We take inspiration from mechanism theory087

(Johnson and Ahn, 2017), which posits that causal-088

ity must be understood systematically. Integral to089

this perspective are causal systems, which specify090

systemic interactions between events, entities, and091

concepts that produce predictable causal outcomes.092

With CASK-Schema, we formalize causal systems093

into a semantic schema to enrich causal facts with094

influential, temporal, and other relevant causal con-095

texts. We then construct CASK-Db, the first causal096

systems knowledge base consisting of ∼5.4K syn-097

thetically enriched causal systems. Finally, we val-098

idate CASK-Db through extensive empirical evalu-099

ations in two knowledge-augmentation settings. In100

the knowledge injection experiments, CASK-Db101

with our SyntheticQA method improves causal102

QA performance on average by 14% (9pp). In103

the retrieval-augmented generation (RAG) set-104

ting, CASK-Db increases zero-shot causal QA105

accuracy on average by 13% (6pp). All resources106

are publicly available on HuggingFace Datasets 1107

and GitHub 2 to support future research.108

2 Related Work109

Causal Knowledge Public repositories of causal110

knowledge are generally populated by automati-111

cally mining causal relations from public knowl-112

edge sources such as Wikipedia or published news113

articles (Khoo et al., 1998; Hassanzadeh et al.,114

2020) using linguistic cues and lexical triggers115

(Girju et al., 2007; Neeleman and van de Koot,116

2012), extracted, and converted into knowledge117

triples. Public causal knowledge sources include118

1anonymous_url
2https://anonymous.4open.science/r/

cask-paper-D67D

CauseNet, ConceptNet, ATOMIC (Sap et al., 2019), 119

and Wikidata (Vrandečić and Krötzsch, 2014). 120

PublicKB is constructed from these knowledge 121

sources as a baseline for our experiments. 122

Synthetic Data LLMs parameterize factual and 123

relational knowledge, which can be extracted to 124

support downstream applications (Petroni et al., 125

2019). LLM-generated synthetic data have substan- 126

tially improved QA accuracy and elicited emergent 127

capabilities in smaller LLMs. For instance, Taori 128

et al. (2023) generated 52K instruction-following 129

examples to enable Llama 7B (Touvron et al., 2023) 130

to match the performance of the 175B-parameter 131

GPT-3 model. Li et al. (2023) created synthetic 132

textbooks to train high-performance "small" LLMs. 133

Mukherjee et al. (2023) introduced progressive 134

learning, iteratively generating more complex train- 135

ing examples for LLM training. Our pipeline for 136

constructing CASK-Db was inspired by these ap- 137

proaches and uses generative AI to produce seman- 138

tically structured causal systems. 139

Knowledge-Augmented Causal QA Prior stud- 140

ies found that augmenting language models with 141

external knowledge can improve causal QA per- 142

formance. The most common approach involved 143

injecting external knowledge during continual pre- 144

training by modifying the MLM objective (Devlin 145

et al., 2019; Sun et al., 2020) to strategically mask 146

causal (Hosseini et al., 2022) or commonsense 147

triples (Sap et al., 2019). (Sharp et al., 2016; Dalal 148

et al., 2021) explored enriching language models 149

with derived causal knowledge graph embeddings. 150

However, prior work primarily evaluated causal QA 151

on a single dataset (COPA (Gordon et al., 2012)) 152

and did not examine the influence of causal knowl- 153

edge on distinct causal reasoning tasks. Our empir- 154

ical evaluation provides a comprehensive analysis 155

by assessing multiple causal QA datasets to sys- 156

tematically identify the strengths and limitations 157

of external causal knowledge across various causal 158

reasoning tasks. 159

3 Semantically Structured Causal 160

Systems 161

CASK-Schema is strongly inspired by cognitive 162

theories. Induction theory (Griffiths, 2017) posits 163

that humans acquire causal knowledge through 164

lived experiences and education, cognitively or- 165

ganizing it into ontological schemas rather than as 166

enumerated facts. Schematic representations are 167

memory-efficient, composable, and hierarchical, 168
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Relation Type Description Domain/Range

cause-effect causal Establishes a direct causal link between concepts. D ⊆ {A,X , E ,V,S}
R ⊆ {A,X , E ,V,S}

has-contributing-factor influential Auxiliary factors that influence but do not directly
cause an outcome.

D ⊆ {V,S}
R ⊆ {A,X ,V,S}

reacts-to influential Captures influential factors. D ⊆ {A, E ,S}
R ⊆ {X ,A, E ,V,S}

has-intent motivation Indicates the purpose or intention behind an action. D ⊆ {X}
R ⊆ {A}

magnifies quantification Increases the severity or likelihood of an event or
action.

D ⊆ {A,X ,V}
R ⊆ {A,X ,V}

mitigates quantification Decreases the intensity or likelihood of an event or
action.

D ⊆ {A,X ,V}
R ⊆ {A,X ,V}

precedes temporal Establishes temporal precedence. D ⊆ {X ,V}
R ⊆ {X ,V}

has-subevent temporal Captures successive events in a process. D ⊆ {X ,V}
R ⊆ {V}

Table 1: CASK-Schema defines a set of relations and causal concepts to formally represent the influential, temporal,
and contextual aspects of a causal system. The causal concepts specified in the domain and range include abstracts
(A), actions (X ), entities (E), events (V), and systems (S).

enabling inference in novel situations. Cognitive169

schemas represent causal knowledge as mechanism170

systems that capture covariation patterns, tempo-171

ral cues, and causal context. Mechanism systems172

are structured interactions between physical and173

abstract events, entities, and processes that produce174

predictable causal outcomes, allowing causality to175

be plausibly inferred and generalized to novel sce-176

narios.177

CASK-Schema formalizes these mechanisms by178

enriching causal triples with influential, temporal,179

and contextual relations to produce semantically180

structured causal systems. Where possible, we de-181

rive our relations from existing knowledge sources182

to ensure greater interoperability with established183

knowledge bases (see Appendix A.5).184

3.1 CASK-Schema185

We formally define a causal system CS186

as a semi-closed set of knowledge triples:187

CS = {T1, T2, . . . , Tn}. Each triple, T = (h, r, t),188

consists of a head h, relation r, and tail189

t. The head and tail elements belong to190

the set of causal concepts CC, where CC ∈191

{Actions,Abstracts,Entities,Events,Systems}.192

Relations r semantically link causal concepts to193

encode structured causal knowledge. A complete194

definition of CASK-Schema is provided in Table 1.195

Causal concepts define the components of a196

causal system, ranging from discrete elements (e.g.,197

entities) to broader constructs (e.g., abstracts). Ac-198

tions are intentional activities performed by agents199

that create changes and influence outcomes. Ab-200

stracts are non-physical elements that shape ac- 201

tions, events, and entities. Entities are agents, ob- 202

jects, or things that participate in events, initiate 203

actions, or are affected by them. Events are dis- 204

crete occurrences that establish causal context at 205

specific times and locations. Finally, systems are 206

structured interactions among entities, events, and 207

actions that produce well-defined outcomes. 208

Relations semantically connect causal concepts, 209

capturing influential, temporal, quantitative, and 210

motivational aspects of causal interactions. The 211

cause-effect relation establishes direct causal links 212

between concepts. Influential factors are repre- 213

sented by the has-contributing-factor and reacts- 214

to relations, where reacts-to describes responses 215

or reactions, and has-contributing-factor identifies 216

auxiliary factors that influence outcomes without 217

directly causing them. Temporality is modeled 218

through the precedes and has-subevent relations, 219

derived from (Mostafazadeh et al., 2016). We intro- 220

duce magnifies and mitigates to describe factors 221

that amplify or diminish the intensity or likelihood 222

of actions, events, and abstracts. Finally, the has- 223

intent relation specifies the purpose behind an ac- 224

tion. 225

3.2 CASK-DB Construction 226

Figure 2 illustrates the CASK-Db construction 227

pipeline, which uses generative AI to enrich causal 228

triples and applies validation steps to ensure the ve- 229

racity and quality of synthetically enriched causal 230

systems. The pipeline consists of three stages: (1) 231

seeding, (2) generation, and (3) refinement. 232
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Figure 2: Pipeline for constructing CASK-Db.

1. Seeding: This stage identifies a broad and233

diverse range of causal contexts for generation. We234

randomly sample 6,000 causal questions from the235

training splits of CALM-Bench (Dalal et al., 2023)236

to prevent test set leakage. For reproducibility, we237

use a fixed random seed (42) for sampling.238

2. Generation: A generative LLM is prompted239

to produce causal systems aligned with our schema.240

The model considers the seed question, identifies241

the underlying causal system and requisite knowl-242

edge, and then generates the causal system in align-243

ment with CASK-Schema. Each output contains244

a title, a one-sentence description, and a set of245

knowledge triples describing the system. To facil-246

itate post-processing, we instruct the LLM to use247

predefined headers. We use GPT-3.5 Turbo (Brown248

et al., 2020)3 for generation in our implementation.249

See Appendix A.6.1 for generation prompt.250

3. Refinement: Lastly, we validate the gener-251

ated knowledge and merge similar causal systems.252

For validation, we construct a vector database of253

ground truth knowledge. A triple is considered254

valid if at least two distinct matches in the semantic255

store have a cosine similarity of 0.75 or higher. Fur-256

ther details on the validation process are provided257

in Appendix A.6.2.258

Overlapping and redundant causal systems are259

merged. To identify merge candidates, we use260

K-nearest neighbors to cluster the causal systems.261

Within each cluster, systems with a similarity of262

0.80 or higher are selected for unification. A gen-263

erative LLM is then prompted to merge them into264

a single causal system. Implementation details are265

provided in Appendix A.6.3.266

3https://platform.openai.com/docs/models/
gpt-3-5-turbo

3.3 CASK-Db Details 267

Our final synthetic causal knowledge base consists 268

of 5,450 causal systems, 32,638 unique knowledge 269

triples, and 40,360 concepts. On average, each 270

causal system contains 7 knowledge triples and 271

10 unique causal concepts. Of the causal systems 272

in CASK-Db, 45% are science-related, 38% com- 273

monsense knowledge, and 17% pertain to social 274

interactions. CASK-Db is publicly available under 275

the Apache 2.0 license. 276

Quality analysis 150 causal systems, contain- 277

ing a total of 846 triples, were sampled for manual 278

evaluation. We found that 4% of sampled systems 279

and less than 1% of all triples contained errors, sug- 280

gesting that most causal systems are high quality, 281

logically correct, and factually accurate. Among 282

the identified errors, 60% were named entity er- 283

rors, where generated triples failed to generalize 284

and included direct references to people or named 285

locations. Logical errors, where head and tail en- 286

tities were swapped, accounted for 18% of errors. 287

Ambiguous entities and unresolved anaphora (e.g., 288

"it," "they," "those") comprised 20% of errors. Fi- 289

nally, only 6% of errors involved incorrect facts. 290

Addressing these errors remains an area for future 291

work. 292

4 Empirical Evaluation 293

Our experiments aim to (1) validate the efficacy of 294

CASK-Db as an external causal knowledge source 295

for language models and LLMs and (2) assess 296

the benefits and limitations of causal knowledge 297

across distinct causal reasoning tasks. We eval- 298

uate CASK-Db in two knowledge augmentation 299

settings: knowledge injection and RAG for zero- 300

shot QA. 301
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Type Description Example

Cause Comparison Given competing causal contexts C1 and C2,
the goal is to identify which context is most
likely to produce effect E such that C ⇒ E.

There are two planets Glarnak and Bornak. Glar-
nak is experiencing global warming while Bor-
nak is not. Which planet is more likely to have
more pollution in the atmosphere?

Cause Prediction Given an event description D, the question
requires identifying the most likely cause C
such that C ⇒ D.

Pollution in the city worsened? What was the
cause?

Effect Comparison Given competing event descriptions D1 and
D2, the goal is to identify which event would
most likely result from a provided cause C
such that C ⇒ D.

There are two planets Glarnak and Bornak which
have breathable atmospheres for humans. Glar-
nak’s atmosphere has a higher concentration of
CO2 in contrast to Bornak. Which planet is
more likely to have implemented environmen-
tal regulation policies?

Effect Prediction Given an event description D, the question
requires identifying the most likely effect
that results from D such that D ⇒ E.

The city is determined to control air pollution.
What is the effect?

Effect Quantification Given an event chain consisting of tempo-
rally ordered subevents S1, S2, . . . , Sn and
a causal intervention I , the goal is to quan-
tify the effect of the causal intervention on
the event Q(E|I, S1...n).

1. A seed is in soil. 2. The seed germinates. 3.
The plant grows roots. 4. The plant grows out of
the ground. 5: The plant flowers. 6: The flower
produces fruit. 7: The fruit releases seeds. 8:
The plant dies. Suppose less pollution in the
environment happens, how will it affect the
overall population of plants?

Table 2: Typology of common of causal causal reasoning tasks found in CALM-Bench.

4.1 Data302

4.1.1 Causal Knowledge303

CASK-Db (Section 3.3) is the primary causal304

knowledge resource evaluated in all experiments.305

For a fair comparison with public causal knowl-306

edge sources, we construct PublicKB as a base-307

line. PublicKB consists of 357,706 triples extracted308

from ATOMIC, CauseNet, ConceptNet, and Wiki-309

data. In addition to cause-effect triples, we ex-310

tract all analogous relations (e.g., has-subevent,311

has-prerequisite, etc.) that map to contextual rela-312

tions in CASK-Schema (see Table 8).313

PublicKB contains nearly 11× more triples than314

CASK-Db (∼357K vs.∼32K), yet we hypothesize315

that causal systems knowledge better aligns with316

the causal reasoning needs of language models317

and should improve downstream QA accuracy over318

PublicKB. Further details are provided in Appendix319

A.7.320

4.1.2 Causal QA Tasks321

We employ CALM-Bench (Dalal et al., 2023) as322

the source of causal QA tasks. CALM-Bench323

comprises six diverse QA benchmark datasets that324

require causal knowledge and reasoning. These325

tasks include abductive reasoning, commonsense326

causal reasoning, procedural reasoning, and reason-327

ing over paragraph effects. Further details on the328

benchmark tasks are provided in Appendix A.3.329

4.1.3 Causal Reasoning Typology 330

Due to the diversity of question formats and tasks 331

encountered, we define a typology to categorize the 332

common types of causal reasoning tasks in CALM- 333

Bench. Questions are classified along two dimen- 334

sions: directionality and inferential requirements. 335

Directionality specifies whether the question seeks 336

likely causes or effects. Inferential requirements de- 337

fine the type of causal reasoning needed to answer 338

the question (e.g., comparing contexts or quantify- 339

ing effects). Details of the typology and examples 340

are provided in Table 2. 341

4.2 Experiment Details 342

4.2.1 Experiment Environment 343

All experiments were conducted on a single 344

AWS EC2 g5.8xlarge instance4, equipped with an 345

NVIDIA A20 24GB GPU, 32 vCPUs, and 400GB 346

of storage. 347

4.2.2 Knowledge Injection Experiments 348

Our experiments assess whether injected causal sys- 349

tems knowledge enhances causal QA performance 350

and how pretraining strategy impacts downstream 351

reasoning. Knowledge injection methods imbue 352

language models with external knowledge to im- 353

prove performance in knowledge-intensive tasks 354

4https://aws.amazon.com/ec2/instance-types/
g5/
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(Hu et al., 2023). The most common approaches355

mask knowledge triples, requiring the model to re-356

cover the masked elements during training (Sun357

et al., 2020; Lu et al., 2022). However, prior work358

has primarily evaluated these methods on factual359

QA rather than causal reasoning. We hypothesize360

that masking-based strategies are misaligned with361

causal QA and propose SyntheticQA as a more ef-362

fective alternative.363

Knowledge-Guided Pretraining Strategies.364

We explore two masking-based methods (random365

masking and concept masking) and introduce366

SyntheticQA. In random masking, knowledge367

triples are linearized using sentence templates and368

randomly masked during pretraining (Hosseini369

et al., 2022). Concept masking selectively masks370

specific elements (e.g., head entity) within a lin-371

earized sentence (Bosselut et al., 2019). Synthet-372

icQA replaces masking with multiple-choice ques-373

tions generated from causal system descriptions.374

During pretraining, the model is given a causal de-375

scription as context and must answer an associated376

question. Implementation details are provided in377

Appendix A.8.2.378

Experimental Setup. We use FLAN-T5 (Chung379

et al., 2022), a 250M parameter encoder-decoder380

model pretrained on 1.8K diverse tasks in the381

FLAN collection (Longpre et al., 2023), achiev-382

ing SOTA performance across QA tasks. As a383

baseline, we evaluate the model before knowledge384

injection. Experiments involve finetuning for 5385

epochs on pretraining examples from CASK-Db386

or PublicKB. After knowledge-guided pretraining,387

we checkpoint the model, further finetune it on the388

benchmark task, and report QA accuracy on the test389

set. The model is then reverted to the pretraining390

checkpoint to ensure only transferred knowledge391

from CASK-Db is measured. Training specifics are392

in Appendix A.8.3.393

4.2.3 RAG Zero-Shot QA Experiments394

Our experiments examine whether CASK-Db is395

broadly valuable for LLMs as an external resource396

for providing in-context causal knowledge in zero-397

shot causal QA. RAG (Lewis et al., 2020) has be-398

come the de facto method for augmenting LLMs399

with external knowledge, helping reduce halluci-400

nations (Shuster et al., 2021) and improve domain-401

specific reasoning (Gao et al., 2024).402

Experimental Setup. We implement a stan-403

dard RAG system with a vector knowledge store,404

retrieval model, and a generative LLM for QA405

inference (Gao et al., 2024). First, we mea- 406

sure the baseline zero-shot capabilities of the 407

evaluated LLMs by providing only the ques- 408

tion. In RAG experiments, each causal sys- 409

tem is treated as an independent knowledge 410

record, linearized into paragraph descriptions, en- 411

coded as vectors, and stored in ChromaDB5 us- 412

ing multi-qa-mpnet-base-dot-v16 for encoding 413

and retrieval. During inference, the most relevant 414

causal system is retrieved based on cosine simi- 415

larity and provided as in-context evidence. For 416

multiple-choice questions, LLMs return the cor- 417

responding letter; for open-ended questions, only 418

exact matches are considered correct. QA accuracy 419

is reported for all experiments. Further technical 420

details are provided in Appendix A.10. 421

Evaluated LLMs. We evaluate CASK-Db using 422

four diverse LLMs: Phi-2 3B (Li et al., 2023), Mis- 423

tral 7B (Jiang et al., 2023), Llama 2 13B (Touvron 424

et al., 2023), and GPT-3.5-Turbo. GPT-3.5-Turbo 425

is accessed via the OpenAI API, while the other 426

models are loaded with QLoRA (Dettmers et al., 427

2023) quantization for efficient inference. Quan- 428

tization configurations and prompt templates are 429

provided in Table 13 and Table 14. 430

5 Empirical Findings 431

5.1 Main Results 432

Figure 3: Comparison of pretraining strategies. Results
are reported as relative changes from the finetuned base-
line.

Knowledge injection results are reported in Ta- 433

ble 3, and RAG results in Table 4. CASK-Db sub- 434

stantively improves causal QA accuracy in both 435

augmentation settings, with an average relative im- 436

provement of 14% (9pp) using SyntheticQA for 437

5https://docs.trychroma.com/
6https://huggingface.co/sentence-transformers/

multi-qa-mpnet-base-dot-v1
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Cause Comp. Cause Pred. Effect Comp. Effect Pred. Effect Quant.
Baseline 0.58 0.61 0.61 0.65 0.67

Knowledge: Public KB

Random Masking 0.57 0.62 0.56 0.6 0.68
Concept Masking 0.57 0.6 0.58 0.67 0.71
SyntheticQA 0.5 0.66 0.58 0.7 0.7

Knowledge: CALM-KB (ours)

Random Masking 0.54 0.62 0.59 0.66 0.73
Concept Masking 0.56 0.66 0.6 0.69 0.73
SyntheticQA 0.62 0.69 0.72 0.76 0.78

Table 3: Evaluation of CASK-Db and PublicKB in the knowledge injection setting across various pretraining
strategies. Improvements over the finetuned baseline are shaded green, and regressions are shaded red.

Cause Comp. Cause Pred. Effect Comp. Effect Pred. Effect Quant.

Base +KB Base +KB Base +KB Base +KB Base +KB
GPT3.5 0.3 0.45 0.66 0.72 0.54 0.62 0.74 0.79 0.58 0.66
Llama 2 13B 0.57 0.59 0.47 0.61 0.58 0.59 0.50 0.65 0.51 0.53
Mistral 7B 0.48 0.52 0.68 0.72 0.60 0.62 0.76 0.80 0.46 0.48
Phi-2 3B 0.50 0.54 0.47 0.56 0.48 0.54 0.50 0.60 0.48 0.49

Table 4: Evaluation of CASK-Db for zero-shot QA with RAG. The "Base" column represents baseline zero-shot
accuracy, while +KB reflects accuracy using the RAG pipeline with CASK-Db. Relative improvements over the
baseline are shaded in green, while regressions are shaded in red.

knowledge injection and 13% (6pp) across all438

LLMs for zero-shot QA.439

5.2 Knowledge Injection Findings440

Which pretraining strategy best improves causal441

reasoning? A direct comparison of pretraining442

strategies for CASK-Db are provided in Figure 3.443

SyntheticQA is the only strategy that yields consis-444

tent improvements across all reasoning categories,445

increasing accuracy by an average of 14%, making446

it the preferred method for causal knowledge injec-447

tion. In contrast, masking-based strategies improve448

causal reasoning by only 2% on average across449

tasks. Additionally, masking-based strategies tend450

to reduce accuracy in cause and effect comparison451

tasks, with an average performance regression of452

-4%, while offering modest improvements of 7%453

for cause prediction, effect prediction, and effect454

quantification. The results also indicate that Syn-455

theticQA is particularly beneficial for effect-related456

reasoning, improving effect comparison by 18%457

and averaging a 17% gain for effect-related tasks458

compared to 10% for cause-related tasks.459

To what extent does transferred causal knowl-460

edge affect reasoning? Transferred causal knowl-461

edge is most effective for cause prediction, effect462

comparison, effect prediction, and effect quantifi- 463

cation, yielding an average accuracy gain of 16%, 464

compared to just 6% for cause comparison. Syn- 465

theticQA’s format may be limited for cause com- 466

parison as the questions are generated from single 467

causal systems, whereas cause comparison requires 468

multiple contexts. 469

We also observe a consistent directionality bias: 470

effect-related tasks achieve higher accuracy than 471

cause-related tasks both before and after knowledge 472

injection (75% vs. 65% on average). This may 473

stem from causal sufficiency challenges, where the 474

space of possible causes is larger than the con- 475

strained space of effects. While causal knowledge 476

injection improves reasoning, its effectiveness is 477

limited by the model’s ability to generalize across 478

causal contexts. 479

How does CASK-Db compare to public 480

sources of knowledge? A direct comparison be- 481

tween CASK-Db and PublicKB is shown in Fig- 482

ure 4. Despite being 30× smaller than PublicKB, 483

CASK-Db is consistent and better improves down- 484

stream causal QA performance. Further PublicKB 485

negatively impacts effect quantification decreasing 486

accuracy by 10%. 487
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Figure 4: Comparison of CALM-KB to PublicKB

Does QA format impact causal knowledge488

transfer? Figure 5 compares the impact of QA489

format in SyntheticQA on accuracy. The results490

indicate that multiple-choice is the superior format,491

yielding an average relative gain of 14% compared492

to just 2% for open-ended QA. Moreover, the open-493

ended format reduces performance on the effect494

quantification task by 10%, limiting its effective-495

ness in cause prediction, effect comparison, and496

effect prediction tasks.

Figure 5: Comparison of multiple-choice vs open-ended
as the QA format for SyntheticQA.

497

5.3 Zero-Shot Causal QA with RAG Findings498

How Do LLMs Differ in Their Use of External499

Knowledge? In Figure 6, A. highlights that LLMs500

utilize causal knowledge differently, as relative im-501

provements vary across reasoning categories. In502

B, we find that CASK-Db yields the highest gains503

in cause comparison, cause prediction, and effect504

prediction, with an average improvement of 16%.505

However, effect comparison and quantification see506

smaller gains, averaging 7%. Interestingly, while507

pretraining experiments showed greater improve-508

ments for effect prediction, knowledge-augmented509

LLMs exhibit the opposite trend.510

Figure 6: Patterns of LLM behavior when utilizing
CASK-Db.

Does LLM scale affect causal knowledge uti- 511

lization? Subfigure C shows that CASK-Db im- 512

proves QA performance across all evaluated LLMs. 513

While larger models generally utilize causal knowl- 514

edge more effectively, this trend is inconsistent, as 515

seen with Mistral 7B. GPT-3.5 benefits the most 516

overall but performs the worst on cause compar- 517

ison, indicating that LLM size does not directly 518

correlate with causal knowledge utilization. Addi- 519

tionally, in certain tasks like cause prediction and 520

effect comparison, smaller models (e.g., Mistral 521

7B) perform comparably to augmented GPT-3.5. 522

These findings suggest that LLMs process causal 523

knowledge differently depending on task structure 524

and reasoning requirements. 525

6 Conclusion 526

We propose CASK-Schema, a semantic schema 527

for formally representing causal systems, and in- 528

troduce CASK-Db, a knowledge base of synthet- 529

ically constructed causal systems. Our analysis 530

demonstrates that CASK-Db enhances causal rea- 531

soning in language models across both knowledge 532

injection and retrieval-based augmentation settings. 533

We show that causal systems knowledge facilitates 534

more effective knowledge transfer and improves 535

reasoning over causal relationships. Additionally, 536

our findings highlight differences in how LLMs uti- 537

lize causal knowledge, revealing key challenges in 538

aligning external knowledge with causal QA tasks. 539

Our work establishes a foundation for future re- 540

search on causal knowledge representation, causal 541

question answering, and the systematic evaluation 542

of causal reasoning in language models. 543
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7 Limitations544

We recognize several opportunities to improve our545

work and acknowledge the limitations of our meth-546

ods and empirical evaluation. While we conduct547

extensive knowledge augmentation experiments to548

validate CASK-Db, further evaluation remains nec-549

essary. In the knowledge injection setting, all ex-550

periments are limited to FLAN-T5; future work551

could explore pretraining strategies across diverse552

architectures (e.g., BERT, DeBERTa) and model553

scales.554

Our question templates primarily focus on cause555

and effect prediction, limiting the diversity of rea-556

soning tasks. Future work could incorporate a557

broader range of question types and explore gener-558

ative AI for synthetic question generation beyond559

template-based methods.560

Our knowledge validation relies on indirect ver-561

ification, evaluating triples independently rather562

than within full causal systems. An ideal approach563

would involve expert verification or an oracle sys-564

tem to assess factual accuracy. Future work could565

leverage high-performance LLMs like GPT-o for566

verification or introduce an entailment-based val-567

idation step using a fine-tuned natural language568

inference model to ensure contextual consistency.569

Additionally, we do not align our generated570

causal systems with existing semantic knowledge571

graphs such as WikiData. Future work could en-572

hance CASK-Db through entity linking, integrating573

causal concepts with structured public knowledge574

sources.575
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Denny Vrandečić and Markus Krötzsch. 2014. Wiki- 872
data: A free collaborative knowledge base. Commu- 873
nications of the ACM, 57:78–85. 874

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 875
Chaumond, Clement Delangue, Anthony Moi, Pier- 876
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 877
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 878

11

https://doi.org/10.18653/v1/W16-1007
https://doi.org/10.18653/v1/W16-1007
https://doi.org/10.18653/v1/W16-1007
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://doi.org/10.1093/acprof:oso/9780199602513.003.0002
https://doi.org/10.1093/acprof:oso/9780199602513.003.0002
https://doi.org/10.1093/acprof:oso/9780199602513.003.0002
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288


Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le879
Scao, Sylvain Gugger, Mariama Drame, Quentin880
Lhoest, and Alexander M. Rush. 2020. Transform-881
ers: State-of-the-art natural language processing. In882
Proceedings of the 2020 Conference on Empirical883
Methods in Natural Language Processing: System884
Demonstrations, pages 38–45, Online. Association885
for Computational Linguistics.886

Oskar Wysocki, Magdalena Wysocka, Danilo Carvalho,887
Alex Bogatu, and Andre Freitas. 2024. An LLM-888
based knowledge synthesis and scientific reasoning889
framework for biomedical discovery. In Proceed-890
ings of the 62nd Annual Meeting of the Association891
for Computational Linguistics (Volume 3: System892
Demonstrations), pages 355–364, Bangkok, Thai-893
land. Association for Computational Linguistics.894

Lingfeng Zhong, Jia Wu, Qian Li, Hao Peng, and Xin-895
dong Wu. 2023. A comprehensive survey on auto-896
matic knowledge graph construction. ACM Comput.897
Surv., 56(4).898

Shuang Zhou, Zidu Xu, Mian Zhang, Chunpu Xu,899
Yawen Guo, Zaifu Zhan, Sirui Ding, Jiashuo Wang,900
Kaishuai Xu, Yi Fang, Liqiao Xia, Jeremy Yeung,901
Daochen Zha, Genevieve B. Melton, Mingquan Lin,902
and Rui Zhang. 2024. Large language models for903
disease diagnosis: A scoping review. Preprint,904
arXiv:2409.00097.905

A Appendix906

A.1 Reproducibility907

CASK-Db and all relevant code are made publicly908

available. CASK-Db can be accessed on Hugging909

Face Datasets at anonymous_url, and the code is910

available on GitHub. For all experiments, we set a911

global seed of 42 to ensure reproducibility.912

A.2 Dataset Usage and Licenses913

We use all datasets in accordance with their respec-914

tive licenses. Furthermore, we provide CASK-Db915

under the Apache 2.0 license, which permits broad916

academic and commercial use to encourage further917

exploration of causal knowledge representation.918

A.3 CALM-Bench Task Descriptions919

Task-specific dataset details and an overview of920

CALM-Bench can be found in Table 7. We sum-921

marize the tasks below.922

Abductive Natural Language Inference923

(aNLI) (Bhagavatula et al., 2020) is an abductive924

reasoning task over narratives of social situations.925

Given a sequential pair of social observations, the926

model must predict which of the two provided927

hypotheses best explains the observations.928

Choice of Plausible Alternatives (COPA) (Gor- 929

don et al., 2012) is a commonsense causal reason- 930

ing task. Given a premise, the goal is to select the 931

most likely cause or effect from a pair of options. 932

(Kavumba et al., 2019) introduced 500 additional 933

training examples in Balanced-COPA to mitigate 934

corpus-level artifacts that language models could 935

exploit during fine-tuning. 936

COSMOS QA (Huang et al., 2019) is a multiple- 937

choice QA task requiring social commonsense 938

knowledge. Given a narrative about people in ev- 939

eryday situations, the goal is to identify the most 940

plausible cause or effect within the story. 941

E-Care (Du et al., 2022) consists of two causal 942

reasoning tasks. The first, similar to COPA, re- 943

quires identifying the most likely cause or effect of 944

a given premise. The second involves generating a 945

causal explanation for the correct answer. We con- 946

sider only the first task as part of CALM-Bench. 947

Reasoning over Paragraph Effects (ROPES) 948

(Lin et al., 2019) is a reading comprehension task. 949

Given a knowledge passage, the model must rea- 950

son over the causal and qualitative relations in the 951

text and apply them to answer questions about a 952

hypothetical scenario. 70% of background pas- 953

sages contain causal relations, and 26% include 954

both causal and qualitative relations. 955

What If Question-Answering (WIQA) (Tan- 956

don et al., 2019) is a multiple-choice QA task re- 957

quiring reasoning over procedural descriptions of 958

natural processes. WIQA involves predicting the 959

downstream magnitude (more, less, or no effect) of 960

a perturbation to an individual step in a procedural 961

chain. 962

A.4 Causal Reasoning Typology 963

In Figure 7, we present the overall distribution of 964

causal QA questions by causal category from out 965

typology. Cause prediction is the most represented 966

at 30%, followed by effect prediction at 26%, while 967

cause comparison is the least encountered. Figure 8 968

shows the distribution of CQA categories within 969

each CALM-Bench task. We find a general mixture 970

of all categories across tasks, with an overrepre- 971

sentation of cause prediction and effect prediction 972

examples. However, WIQA is an outlier, consisting 973

exclusively of effect quantification examples. 974

A.5 CASK-Schema Relation Mapping 975

In Table 8 we provide a mapping of CASK-Schema 976

to other public knowledge sources. 977
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Figure 7: Overall distribution of questions by causal
reasoning category.

Figure 8: Distribution of causal reasoning type within
each CALM-Bench task.

A.6 Causal System Generation Pipeline978

A.6.1 Causal System Generation Prompt979

In Table 10, we provide the prompt used to the980

generate causal systems.981

A.6.2 Causal System Validation982

The validation process consists of two steps: first,983

building an index of ground truth knowledge,984

and second, validating knowledge from the gen-985

erated causal systems. Relevant knowledge triples986

and factual statements are extracted from public987

knowledge sources, including ATOMIC, CauseNet,988

GenericsKB, and Wikidata. A mapping of CASK-989

Schema to these sources is provided in Table 8. The990

extracted triples are then linearized using sentence991

templates provided in Table 9.992

For our ground truth semantic knowledge store,993

we use ChromaDB. The all-mpnet-base-v2994

model from the SentenceTransformers library is995

used for indexing and retrieval. The vector database 996

is initialized (Table 11) to support cosine similarity 997

matching, and the linearized triples are added and 998

indexed. 999

During validation, the knowledge store is 1000

queried for matching ground truth facts. A triple is 1001

considered valid if at least two different matches 1002

are found in the semantic store with a cosine simi- 1003

larity of 0.75 or greater. 1004

A.6.3 Causal System Merging 1005

The merging process is formally described in Al- 1006

gorithm 1. First, we generate clusters based on 1007

the TF-IDF representations of causal systems. We 1008

use the K-means clustering implementation7 with 1009

default parameters, setting the number of clusters 1010

to half the number of generated causal systems. 1011

For each cluster, we iterate through the causal 1012

systems and compute the pairwise similarity be- 1013

tween the comparator system and all other systems 1014

within the cluster. Systems with a similarity score 1015

of 0.80 or greater are selected as merge candidates. 1016

All selected candidates are provided in-context to 1017

GPT-3.5 Turbo, which is instructed to unify them 1018

into a single causal system. The merged candi- 1019

dates are then removed from the cluster. The merge 1020

prompts is made available in Figure 9. 1021

A.6.4 Causal System Linearization 1022

Sample templates for triple linearization are pro- 1023

vide in Table 9. 1024

A.7 PublicKB 1025

For a fair comparison with public sources of causal 1026

knowledge, we construct PublicKB as a baseline. 1027

PublicKB consists of 347,706 causal triples ex- 1028

tracted from ATOMIC (Sap et al., 2019), CauseNet 1029

(Heindorf et al., 2020), and ConceptNet (Speer 1030

et al., 2017). CauseNet contributes the majority 1031

of triples, with 197,806 triples and 80,223 unique 1032

entities. However, the cause-effect relation is the 1033

most prevalent in CauseNet. 1034

To ensure a fair comparison with CASK-Db, 1035

we include all causality-related relations from 1036

ATOMIC and ConceptNet listed in Table 8 (e.g., 1037

/r/HasSubevent from ConceptNet or Desires from 1038

ATOMIC) that directly map to relations in CASK- 1039

Schema. However, cause-effect triples in PublicKB 1040

are not aligned with supporting context (e.g., has- 1041

Subevent, xReason, etc.), simulating the limitations 1042

7https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html
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Algorithm 1: Causal System Unification

1 Causal systems S = {s1, s2, . . . , sn},
2 sentence embedding model E,
3 similarity function sim(vs,vs′) =

vs·vs′
∥vs∥∥vs′∥

4 similarity threshold θ = 0.80,
5 merge function merge(S) Merged set of

causal systems S ′

6 Step 1: Clustering
7 Apply K-nearest neighbors algorithm to

cluster the causal systems in S.
8 Let {C1, C2, . . . , Cm} be the resulting

clusters.
9 Step 2: Encoding

10 for cluster Ci do
11 for causal system s ∈ Ci do
12 Encode s using the sentence

embedding model E.
13 Let vs be the embedding vector of

system s.
14 end
15 end
16 Step 3: Merge Candidate Identification
17 for each cluster Ci do
18 for causal system s ∈ Ci do
19 Identify the set of causal systems

S′ ⊂ Ci where sim(vs,vs′) ≥ θ.
20 Designate S′ as merge candidates.
21 end
22 end
23 Step 4: Merging
24 for set of merge candidates S′ do
25 Apply the merge function

s′ = merge(S′) to create a single
causal system s′.

26 Remove the systems in s′ from Ci and
add s′ to Si.

27 end
28 Output: Merged set of causal systems S ′.

Causal System Merging Prompt
Merge the candidate causal systems into
a single, comprehensive description. The
description should contain a title, a short
description, and a list of relevant knowledge
triples.
Guidelines:
1. Identify the underlying causal system
from the provided list of candidates.
2. Generate a concise title (2-3 words) for
the causal system.
3. Provide a generic description describing
the merged causal system. This description
should highlight the primary causal rela-
tionship.
4. Construct knowledge triples to describe
this system. Each triple should be formatted
as: - [Head Predicate]; [Relation];
[Tail Predicate].
5. Ensure that head and tail predicates are
generalized and do not contain specific
names or pronouns.
6. Merge similar knowledge triples from
the candidates into a single triple.
7. Ensure that the entities used in the triples
are consistent across the entire system.
8. Use only the following relations in
your triples: cause-effect, has-contributing-
factor, has-requirement, has-subevent,
precedes, reacts-to, has-intent, magnifies,
and mitigates.
9. Use as many of the specified relations
as possible to cover various aspects of the
causal interactions.
10. The output should contain the following
headers: Title, Description, and Triple. Use
a newline after each header.

The relations are defined as follows: [...]
Task Input:
Merge Candidates: [...]

Figure 9: Causal System Merging Prompt

of existing public causal knowledge stores. 1043

PublicKB contains nearly 63 times more triples 1044

than CASK-Db ( 350K vs. 5.4K). However, we 1045

hypothesize that causal knowledge structured as 1046

causal systems, as in CASK-Db, provides better 1047

alignment with the causal reasoning needs of lan- 1048
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guage models and should lead to improved down-1049

stream QA accuracy.1050

Figure 10: Knowledge-guided pretraining process and
strategies.

A.8 Knowledge Injection Details1051

A.8.1 Pretraining Strategies1052

Masking-Based Strategies. We consider two1053

masking-based methods (random masking and con-1054

cept masking) and propose SyntheticQA. We adopt1055

the pretraining process from Hosseini et al. (2022),1056

where knowledge triples are first converted to nat-1057

ural language sentences (linearization) before pre-1058

training. Our approach (Figure 10) processes each1059

causal system independently by first linearizing its1060

knowledge triples using predefined sentence tem-1061

plates (Table 12) and aggregating them into natural1062

language causal descriptions. These descriptions1063

are then used to construct pretraining examples.1064

Next, tokens in the causal descriptions are1065

masked. For random masking, we follow the stan-1066

dard BERT masking ratio of 15% (Devlin et al.,1067

2019) and mask tokens corresponding to whole1068

words (Cui et al., 2021). Concept masking (Sun1069

et al., 2020) extends this approach by masking1070

only entity and relation tokens from the knowl-1071

edge triples. We randomly select 15% of causal1072

concepts within the system and mask all mentions1073

in the description.1074

SyntheticQA. SyntheticQA generates multiple-1075

choice QA examples based on causal system de-1076

scriptions. The generation process is formalized1077

in Algorithm 2. Before generating questions, we1078

construct a set of templates for each relation in1079

CASK-Schema (Table 12). Each relation has two 1080

template types: one where the answer is the head el- 1081

ement and one where the answer is the tail element 1082

of the seed triple. For instance, for the cause-effect 1083

relation, templates include “What is the cause of 1084

tail?” (answer: head) and “What is the effect of 1085

head?” (answer: tail). Multiple templates intro- 1086

duce linguistic variation in the generated questions. 1087

The SyntheticQA process begins with a seed 1088

causal system and a randomly selected seed triple. 1089

The system’s triples are linearized into a paragraph- 1090

level description. The head or tail entity of the seed 1091

triple is chosen as the answer candidate, and a ques- 1092

tion template corresponding to the selected can- 1093

didate is applied. The generated multiple-choice 1094

question consists of four answer options: one cor- 1095

rect answer, one adversarial option sampled from 1096

within the causal system, and two additional distrac- 1097

tors sampled from CASK-Db more broadly. The an- 1098

swer choices are shuffled and labeled (a through d) 1099

to prevent positional biases. To encourage reason- 1100

ing, the sentence corresponding to the seed triple 1101

is removed from the causal system description. 1102

After generation, the pretraining dataset contains 1103

6,522 questions, which is split into training and 1104

validation sets using a 90-10 split. 1105

A.8.2 SyntheticQA Implementation 1106

A.8.3 Experiment Details 1107

For our experiments, we use the encoder-decoder 1108

FLAN-T5 (Chung et al., 2022) base model, which 1109

has 220 million parameters. FLAN-T5 has been 1110

extensively trained on the FLAN collection (Long- 1111

pre et al., 2023), comprising 1.8K tasks, and has 1112

demonstrated state-of-the-art performance across a 1113

wide range of QA tasks. 1114

Each experiment initializes the FLAN-T5 model 1115

with its original weights8, finetunes it for 5 epochs 1116

on a specific CALM-Bench task, and evaluates 1117

QA accuracy on the corresponding test set. Base- 1118

line measurements are obtained by evaluating the 1119

model on each benchmark task before knowledge 1120

injection. 1121

Knowledge injection experiments require an ini- 1122

tial 5-epoch finetuning phase using pretraining ex- 1123

amples from CASK-Db, applying one of the de- 1124

scribed strategies. The model is then checkpointed 1125

and subsequently finetuned for 5 additional epochs 1126

with early stopping on the benchmark task before 1127

evaluating QA accuracy. After testing, the model 1128

8https://huggingface.co/google/flan-t5-base
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Algorithm 2: Synthetic QA Generation
Data: CASK-Db, Templates: dict T
Result: Multiple-choice CQA example

1 foreach causal description CD, causal
system CS ∈ CASK-Db do

2 foreach triple (h, r, t) ∈ CS do
3 Randomly select e ∈ {h, t} as the

answer candidate;
4 Select template T = T [r][e] based

on relation r and selected answer
candidate e;

5 Generate question Q using template
T ;

6 Randomly select an adversarial
concept ca from other triples in the
causal system;

7 Randomly select two additional
concepts c1, c2 from CASK-Db;

8 Formulate the question Q with
options {e, ca, c1, c2};

9 Remove the linearized sentence
corresponding to the seed triple
(h, r, t) from CD;

10 end
11 end

is reverted to the pretraining checkpoint to isolate 1129

the impact of knowledge transfer from CASK-Db. 1130

For reproducibility, we set a global seed of 42. 1131

We use the Hugging Face (Wolf et al., 2020) FLAN- 1132

T5 implementation and base weights9. All experi- 1133

ments are conducted on a single AWS g5.8xlarge 1134

EC2 instance with an A10G GPU (24GB mem- 1135

ory), 32 vCPUs, and 400GB of storage. PyTorch 1136

Lightning10 is used for training management, and 1137

the optimizer is AdamW (Loshchilov and Hutter, 1138

2019), initialized with a constant learning rate of 1139

5e-4. 1140

A.9 Knowledge Injection Experiments 1141

A.10 RAG Details 1142

In a RAG (Lewis et al., 2020) system, knowledge 1143

is stored externally and retrieved at inference time. 1144

Contemporary RAG implementations follow a stan- 1145

dard two-stage pipeline: retrieval and generation. 1146

Formally, the RAG system consists of documents 1147

D stored in a vector database B and a generative 1148

LLM G. Documents are encoded using a dense- 1149

passage retrieval model, which also encodes the 1150

query at inference time. Given a query q, the re- 1151

trieval function R is defined as R(q|D,B) → D′, 1152

where D′ ⊆ D represents the subset of semanti- 1153

cally relevant documents retrieved by R. After 1154

retrieval, a prompt p = (q,D′) is constructed 1155

by including the query and relevant documents 1156

as in-context information. The generative model 1157

then produces an answer, expressed as G(p) → a, 1158

where a is the generated response leveraging the 1159

retrieved knowledge D′. 1160

All RAG experiments are conducted on an AWS 1161

g5.8xlarge EC2 instance with a single A20 GPU 1162

(24GB memory), 32 vCPUs, and 400GB of stor- 1163

age. For our RAG setup, we use ChromaDB as the 1164

vector database and multi-qa-mpnet-base-dot-v1 as 1165

the retrieval model. This retrieval model is a Sen- 1166

tenceTransformer (Thakur et al., 2021) finetuned 1167

on 215 million question-answer pairs for asymmet- 1168

ric semantic retrieval. 1169

All non-GPT LLMs (Phi-2, Mistral, and Llama 1170

2) are loaded using the QLoRA (Dettmers et al., 1171

2023) quantization configuration. The configura- 1172

tion used in our experiments is provided below. 1173

LLM-specific prompts are detailed in Table 14. 1174

9See footnote 3.
10https://lightning.ai/docs/pytorch/stable/
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A.11 Additional Results1175

How does pretraining specifically impact the1176

various CALM-Bench tasks?1177

In Table 6, we present the results of knowl-1178

edge injection experiments for specific CALM-1179

Bench tasks. We find that CASK-Db is generally1180

more effective than PublicKB for improving down-1181

stream causal reasoning. Across both knowledge1182

resources, SyntheticQA is the most effective pre-1183

training method for injecting causal knowledge. On1184

average, SyntheticQA with CASK-Db improves ac-1185

curacy by 11% (7pp), compared to 3% (1pp) with1186

PublicKB.1187

CASK-Db demonstrates more consistent knowl-1188

edge transfer across all pretraining strategies, with1189

degradations only observed for the ROPES and1190

WIQA tasks when using masking-based strategies.1191

In contrast, PublicKB exhibits greater variance and1192

inconsistency in knowledge transfer, reducing accu-1193

racy on aNLI by an average of -3% and on ROPES1194

by -6% across all strategies.1195

How does causal knowledge directly impact1196

zero-shot QA for specific CALM-Bench tasks?

Figure 11: We present the observed improvements that
CALM-KB provides the LLMs for zero-shot QA in
RAG setting. Subfigure A. provides the average im-
provement across all task for each evaluated LLM. Sub-
figure B. shows which tasks benefit most from CALM-
KB across all LLMs.

1197
In Table 6, we present the zero-shot QA results1198

for CALM-Bench tasks in the RAG setting, with1199

further analysis in Figure 11. We find that CASK-1200

Db improves QA accuracy across all LLMs. Llama1201

2 13B benefits the most, achieving an average im-1202

provement of 19% across all tasks, with the largest1203

gains on COPA and E-CARE. In contrast, GPT-1204

3.5 benefits the least, likely due to redundancy,1205

as it was used to generate CASK-Db. However,1206

GPT-3.5 still shows a relative improvement of 7%,1207

demonstrating the utility of CASK-Db.1208

Across all LLMs, COPA and E-CARE show the1209

most improvement with CASK-Db, averaging an1210

18.5% increase, while aNLI and WIQA benefit the1211

least, with an average improvement of 9%. 1212
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aNLI COPA CosmosQA E-Care ROPES WIQA

Baseline 0.58 0.74 0.47 0.68 0.62 0.67

Knowledge: Public KB

Random Masking 0.56 0.73 0.52 0.63 0.57 0.68

Concept Masking 0.55 0.78 0.52 0.64 0.59 0.7

SyntheticQA 0.57 0.75 0.54 0.69 0.59 0.7

Knowledge: CALM-KB (ours)

Random Masking 0.59 0.77 0.55 0.71 0.6 0.67

Concept Masking 0.6 0.78 0.57 0.73 0.6 0.68

Synthetic QA 0.61 0.81 0.6 0.73 0.63 0.78

Table 5: Evaluation of CASK-Db in the knowledge injection setting for CALM-Bench tasks. Improvements over
the baseline are shaded in green, while regressions are shaded in red.

aNLI COPA CosmosQA E-Care ROPES WIQA

Base +KB Base +KB Base +KB Base +KB Base +KB Base +KB

GPT3.5 0.74 .76 0.95 .98 0.74 .77 0.80 .89 0.44 .46 0.58 .66
Llama 2 13B 0.51 .58 0.55 .75 0.31 .36 0.52 .73 0.57 .59 0.51 .53
Mistral 7B 0.68 .75 0.9 .95 0.46 .51 0.77 .85 0.56 .60 0.47 .49
Phi-2 3B 0.53 .52 0.57 .76 0.33 .37 0.50 .53 0.48 .55 0.47 .48

Table 6: Evaluation of CASK-Db for zero-shot QA in a RAG setting. Improvements over the baseline are shaded in
green, while regressions are shaded in red.

18



Task Example Size Format Domain

aNLI
(Bhagavatula
et al., 2020)

1: Jessie wants to save the planet.
2: This summer has been the hottest in all history.
Which hypothesis best explains the provided observations?
A) Jessie decides to buy a new truck.
B) Jessie decides to sell her truck and use public transporta-
tion instead.

174,226
Train: 169,654

Val: 1,532
Test: 3,040

MC social, world

COPA
(Gordon et al.,

2012)

Air pollution in the city worsened.
What is the most plausible cause?
A) Factories increased their production.
B) Factories shut down.

1,000
Train: 500
Test: 500

MC world

CosmosQA
(Huang et al.,

2019)

Two things happened today in Beijing. First off, incoming
journalists were amazed to find China had successfully
lifted the brown haze in city. Skies were crystal blue and
the air felt noticeably lighter.
Why did the sky appear clearer?
A) None of the above choices.
B) The citizens learned to ignore the gloomy skies.
C) The citizens made an effort to cut down on pollution.
D) A large storm had recently passed.

35,210
Train: 25,262

Val: 2,985
Test: 6,963

MC social, world

E-Care
(Du et al., 2022)

The city is determined to control air pollution.
What is the effect?
A) They have to reduce the number of automobiles.
B) Environmental pollution has been increased.

17,051
Train: 14,929
Test: 2,122

MC social, world,
science

ROPES
(Lin et al.,

2019)

There are two planets, Glarnak and Bornak, that share the
same atmospheric composition. The planets have nearly
identical ecosystems and topography. The main difference
between the two planets is the level of global warming on
each planet. Glarnak is experiencing a strong impact from
global warming. Bornak, though, is experiencing practically
no effects of global warming.
Which planet has more pollutants in the atmosphere?

14,322
Train: 10,924

Val: 1,688
Test: 1,710

open science,
world

WIQA
(Tandon et al.,

2019)

1. A seed is in soil. 2. The seed germinates. 3. The plant
grows roots. 4. The plant grows out of the ground. 5. The
plant gets bigger. 6. The plant flowers. 7. The flower
produces fruit. 8. The fruit releases seeds. 9. The plant
dies.
Suppose less pollution in the environment happens, how
will it affect the population of plants?
A) More B) Less C) No Effect

39,705
Train: 29,808

Val: 6,894
Test: 3,003

MC science,
world

Table 7: CALM-Bench is a multi-task causal QA benchmark consisting of six diverse QA tasks requiring both
causal reasoning and knowledge.
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Relation Atomic CauseNet ConceptNet WikiData

cause-effect Causes cause-effect /r/Causes

has cause (P828)
has effect (P1542)

immediate cause of (P1536)
has immediate cause (P1478)

has-contributing-factor n/a n/a n/a has contributing factor (P1479)

reacts-to
oReact
xReact

n/a n/a n/a

precedes isBefore n/a /r/HasPrerequisite follows (P155)

has-subevent
isAfter

hasFirstSubEvent
hasLastSubEvent

n/a
/r/HasSubevent

/r/HasFirstSubevent
/r/HasLastSubevent

followed by (P156)

magnifies n/a n/a n/a n/a

mitigates n/a n/a n/a n/a

has-intent

Desires
xNeed

xReason
xWant/CausesDesire

n/a /r/CausesDesire n/a

Table 8: A mapping of relations in CALM-Schema to public knowledge resources. CALM-Schema provides the
most complete representation of causal systems and is compatible with external resources as well.

Relation Template

cause-effect

$head can lead to $tail.
sometimes $head can result in $tail.

$head may cause $tail.

$tail can sometimes be a consequence of $head.

due to $head, $tail can occur.

has-contributing-factor

$head is a contributing factor to $tail.
$head plays a role in $tail.

$head can contribute to $tail.
$tail can be influenced by $head.

has-requirement

$head is a prerequisite for $tail.
$tail cannot occur without $head.

$head is necessary for []$tail.
without $head, $tail is not possible.

$head must be present for $tail to happen.

Table 9: Sample sentence templates for triple linearization
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Causal System Generation Prompt

Analyze the given scenario to identify the underlying causal system, then generate knowledge triples to describe this system.
Each triple should be formatted with a leading dash, e.g. "- [Head Predicate]; [Relation]; [Tail Predicate]". Ensure that the
head and tail predicates are general, not containing pronouns or specific referents. Utilize only these relations: cause-effect,
has-contributing-factor, has-requirement, has-subevent, precedes, reacts-to, has-intent, magnifies, and mitigates. Focus the
triples on general actions, events, or conditions, along with their expected outcomes or influences within a causal system.
Avoid specific names and personal pronouns. Create a concise title (2-3 words) and a generic description that captures the
essence of the general causal system, emphasizing clarity and brevity.

The relations are defined as follows: [...]

Task:

1. Concisely describe the identified causal system.

2. Generate a brief title for the causal system.

3. Produce knowledge triples based on the scenario. Maintain consistency in the head and tail entities across triples, and
incorporate as many of the 8 relevant relations as possible.

Example Scenario:
[...]

Input:
[...]

Table 10: Causal System Generation Prompt

Knowledge Store VectorDB

import chromadb
from chromadb.utils import embedding_functions

# Specify retriever model
embedder = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="all-mpnet-base-v2"
)

client = chromadb.PersistentClient(path="knowledge-cache/")
db = client.create_collection(
name="causal-kb",
embedding_function=embedder,
metadata={
"hnsw:space": "cosine",
}

Table 11: ChromaDB config for knowlege store
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Relation Head Template Tail Template

cause-effect
What is the cause of tail?
If tailhappens,whatwasthecause?

What is the effect of head?
What happens as a result of head?

has-contributing-factor
What contributes to tail?
Which factor plays a role in tail?

What is the contributing factor of head?
What is headacontributingfactorof?

has-requirement
What is required for tail?
What must happen for tailtooccur?

What is required for tail?
What must happen for tailtooccur?

Table 12: Sample QA templates used for SynetheticQA
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QLoRA Configuration

nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
#bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)

Table 13: QLoRA configuration for loading LLMs into
memory.
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Model Template

Phi-2

Instruct: Answer the question provided the scenario below. Do not provide an intro or concluding remarks in your
response. Do not provide an explanation. Just provide an answer. For multiple-choice return the letter and answer
only.

Input:
[[input]]

Output:

Mistral

[INST]
Answer the question provided the scenario below. Do not provide an intro or concluding remarks in your response.
Do not provide an explanation. Just provide an answer. For multiple-choice return the letter and answer only.

Input:
[[input]]

[/INST]
Output:

Llama 2

[INST]
Do not provide an intro or concluding remarks in your response. Be as concise as you can be when responding.
Answer the question provided the scenario below. Do not provide an intro or concluding remarks in your response.
Do not provide an explanation. Just provide an answer. For multiple-choice return the correct answer.

Example:
What is the capital of France?
Options:
a) Paris b) London c) Berlin d) Rome

Output:
a) Paris

Input:

[[input]]
[/INST]

Output:

GPT 3.5

Answer the question below. Do not provide an explanation. Provide both the letter and answer option.
Use the prefix "output:" and then provide the answer.

Input
[[input]]

Table 14: Prompt Templates used for RAG experiments
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