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Abstract

Language models often require external knowl-
edge for causal reasoning in QA settings and
employ public knowledge sources such as Con-
ceptNet. Causality is inherently contextual, re-
quiring models to reason about causal relations
within specific situations. However, existing
knowledge sources present causal facts as iso-
lated universal triples (e.g., (lit match; cause-
effect; fire)) with limited contextual details. As
a result, these repositories often fail to capture
the causal context necessary for reasoning ap-
plications. To address this gap, we introduce
CASK-Schema and CASK-Db. Inspired by
mechanism theory, CASK-Schema formalizes
causal systems and augments causal facts with
relevant temporal, influential, and quantitative
relations. We then construct CASK-Db, a pub-
lic causal knowledge base of ~5.4K syntheti-
cally enriched causal systems. Our extensive
empirical evaluation demonstrates that CASK-
Db improves causal QA performance across six
tasks in two knowledge augmentation settings:
knowledge injection (average improvement of
14% / 9pp) and retrieval-augmented zero-shot
QA (average improvement of 13% / 6pp).

1 Introduction

As Al research advances, language models and
LLMs increasingly serve as conjecture machines,
capable of generating hypotheses, producing expla-
nations, and reasoning about the world (Valentino
et al., 2021; Valentino and Freitas, 2022). They are
applied to a wide range of causal reasoning tasks,
including question answering (Hassanzadeh et al.,
2020), scientific discovery(Wysocki et al., 2024),
and medical diagnosis (Zhou et al., 2024). A cru-
cial component of such systems is external causal
knowledge extracted from public knowledge bases
such as CauseNet (Heindorf et al., 2020) and Con-
ceptNet(Speer et al., 2017). Prior work has shown
that augmenting language models with external
causal knowledge can improve accuracy on causal
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Figure 1: Extracted causal explanations from Concept-
Net and CASK-Db (ours) for forest fires.

QA tasks (Sharp et al., 2016; Dalal et al., 2021;
Hosseini et al., 2022). However, existing knowl-
edge repositories are fundamentally limited in their
ability to capture causal knowledge for effective
causal reasoning.

Knowledge bases consist of declarative knowl-
edge, i.e., explicit facts about the world that are
assumed to be objectively and universally true
(Zhong et al., 2023). Facts are encoded and stored
as independent knowledge triples (e.g., (lit match;
cause-effect; fire)). Knowledge graphs are con-
structed by extracting triples sharing head and tail
entities and linking multiple facts to represent more
complex concepts such as event chains. Public
knowledge bases assume monotonicity (facts are
temporally invariant unless explicitly updated), uni-
versality (context-independent and globally true),
and an open-world model (while incomplete, new
facts are inferable) (Levesque and Lakemeyer,
2001). However, these assumptions are misaligned
for causal reasoning as causality is non-monotonic
and highly context-dependent (Bochman, 2007).
For instance, new causes of fire have been discov-
ered and lit matches are not the cause of all fires.
Under open-world assumptions, all stored facts are
considered true, and extracting causal graphs from
knowledge bases risks spurious context, as not all
adjacent facts are causally relevant. Consider the
extracted causal explanations for forest fires from
ConceptNet in Figure 1.
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ConceptNet erroneously includes baking a cake
and smoking in bed as causes of forest fires while
also indirectly implying listening to music. Further,
the graph lacks causal context, such as contributing
factors (e.g., dry vegetation and strong winds) and
temporal details (e.g., preceding droughts). Gen-
erally, existing knowledge bases contain sparse or
even no causal context. For instance, CauseNet
contains over 11 million cause-effect triples but
no other contextual relations. Finally, there is no
unified semantic definition of causal context, as
knowledge bases use arbitrary relations, limiting
interoperability. To address these limitations, we
introduce Causal Systems Knowledge (CASK)
Schema and Database (Db).

We take inspiration from mechanism theory
(Johnson and Ahn, 2017), which posits that causal-
ity must be understood systematically. Integral to
this perspective are causal systems, which specify
systemic interactions between events, entities, and
concepts that produce predictable causal outcomes.
With CASK-Schema, we formalize causal systems
into a semantic schema to enrich causal facts with
influential, temporal, and other relevant causal con-
texts. We then construct CASK-Db, the first causal
systems knowledge base consisting of ~5.4K syn-
thetically enriched causal systems. Finally, we val-
idate CASK-Db through extensive empirical evalu-
ations in two knowledge-augmentation settings. In
the knowledge injection experiments, CASK-Db
with our SyntheticOA method improves causal
QA performance on average by 14% (9pp). In
the retrieval-augmented generation (RAG) set-
ting, CASK-Db increases zero-shot causal QA
accuracy on average by 13% (6pp). All resources
are publicly available on HuggingFace Datasets !
and GitHub ? to support future research.

2 Related Work

Causal Knowledge Public repositories of causal
knowledge are generally populated by automati-
cally mining causal relations from public knowl-
edge sources such as Wikipedia or published news
articles (Khoo et al., 1998; Hassanzadeh et al.,
2020) using linguistic cues and lexical triggers
(Girju et al., 2007; Neeleman and van de Koot,
2012), extracted, and converted into knowledge
triples. Public causal knowledge sources include
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CauseNet, ConceptNet, ATOMIC (Sap et al., 2019),
and Wikidata (Vrandeci¢ and Krotzsch, 2014).
PublicKB is constructed from these knowledge
sources as a baseline for our experiments.

Synthetic Data LLMs parameterize factual and
relational knowledge, which can be extracted to
support downstream applications (Petroni et al.,
2019). LLM-generated synthetic data have substan-
tially improved QA accuracy and elicited emergent
capabilities in smaller LLMs. For instance, Taori
et al. (2023) generated 52K instruction-following
examples to enable Llama 7B (Touvron et al., 2023)
to match the performance of the 175B-parameter
GPT-3 model. Li et al. (2023) created synthetic
textbooks to train high-performance "small" LLMs.
Mukherjee et al. (2023) introduced progressive
learning, iteratively generating more complex train-
ing examples for LLM training. Our pipeline for
constructing CASK-Db was inspired by these ap-
proaches and uses generative Al to produce seman-
tically structured causal systems.

Knowledge-Augmented Causal QA Prior stud-
ies found that augmenting language models with
external knowledge can improve causal QA per-
formance. The most common approach involved
injecting external knowledge during continual pre-
training by modifying the MLM objective (Devlin
et al., 2019; Sun et al., 2020) to strategically mask
causal (Hosseini et al., 2022) or commonsense
triples (Sap et al., 2019). (Sharp et al., 2016; Dalal
et al., 2021) explored enriching language models
with derived causal knowledge graph embeddings.
However, prior work primarily evaluated causal QA
on a single dataset (COPA (Gordon et al., 2012))
and did not examine the influence of causal knowl-
edge on distinct causal reasoning tasks. Our empir-
ical evaluation provides a comprehensive analysis
by assessing multiple causal QA datasets to sys-
tematically identify the strengths and limitations
of external causal knowledge across various causal
reasoning tasks.

3 Semantically Structured Causal
Systems

CASK-Schema is strongly inspired by cognitive
theories. Induction theory (Griffiths, 2017) posits
that humans acquire causal knowledge through
lived experiences and education, cognitively or-
ganizing it into ontological schemas rather than as
enumerated facts. Schematic representations are
memory-efficient, composable, and hierarchical,
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Relation Type Description Domain/Range
cause-effect causal Establishes a direct causal link between concepts. D C{A X EV,S}
RC{A X EV,S}
has-contributing-factor influential Auxiliary factors that influence but do not directly D C {V,S}
cause an outcome. RC{A X,V S}
reacts-to influential Captures influential factors. D C{AE,S}
RC{X, AEV,S}
has-intent motivation Indicates the purpose or intention behind an action. D C {X'}
RC {A}
magnifies quantification Increases the severity or likelihood of an event or D C{A XV}
action. RC{A XV}
mitigates quantification Decreases the intensity or likelihood of an eventor D C {A, X, V}
action. RC{A XV}
precedes temporal Establishes temporal precedence. D C{x,v}
RC{x,V}
has-subevent temporal Captures successive events in a process. D C{x,V}
RC{V}

Table 1: CASK-Schema defines a set of relations and causal concepts to formally represent the influential, temporal,
and contextual aspects of a causal system. The causal concepts specified in the domain and range include abstracts

(A), actions (X)), entities (£), events (1)), and systems (S).

enabling inference in novel situations. Cognitive
schemas represent causal knowledge as mechanism
systems that capture covariation patterns, tempo-
ral cues, and causal context. Mechanism systems
are structured interactions between physical and
abstract events, entities, and processes that produce
predictable causal outcomes, allowing causality to
be plausibly inferred and generalized to novel sce-
narios.

CASK-Schema formalizes these mechanisms by
enriching causal triples with influential, temporal,
and contextual relations to produce semantically
structured causal systems. Where possible, we de-
rive our relations from existing knowledge sources
to ensure greater interoperability with established
knowledge bases (see Appendix A.5).

3.1 CASK-Schema

We formally define a causal system CS
as a semi-closed set of knowledge triples:
CS={T1,7T2,...,Tn}. Each triple, T' = (h,r,t),
consists of a head h, relation r, and tail
t. The head and tail elements belong to
the set of causal concepts CC, where CC €
{Actions, Abstracts, Entities, Events, Systems }.
Relations r semantically link causal concepts to
encode structured causal knowledge. A complete
definition of CASK-Schema is provided in Table 1.
Causal concepts define the components of a
causal system, ranging from discrete elements (e.g.,
entities) to broader constructs (e.g., abstracts). Ac-
tions are intentional activities performed by agents
that create changes and influence outcomes. Ab-

stracts are non-physical elements that shape ac-
tions, events, and entities. Entities are agents, ob-
jects, or things that participate in events, initiate
actions, or are affected by them. Events are dis-
crete occurrences that establish causal context at
specific times and locations. Finally, systems are
structured interactions among entities, events, and
actions that produce well-defined outcomes.

Relations semantically connect causal concepts,
capturing influential, temporal, quantitative, and
motivational aspects of causal interactions. The
cause-effect relation establishes direct causal links
between concepts. Influential factors are repre-
sented by the has-contributing-factor and reacts-
to relations, where reacts-to describes responses
or reactions, and has-contributing-factor identifies
auxiliary factors that influence outcomes without
directly causing them. Temporality is modeled
through the precedes and has-subevent relations,
derived from (Mostafazadeh et al., 2016). We intro-
duce magnifies and mitigates to describe factors
that amplify or diminish the intensity or likelihood
of actions, events, and abstracts. Finally, the has-
intent relation specifies the purpose behind an ac-
tion.

3.2 CASK-DB Construction

Figure 2 illustrates the CASK-Db construction
pipeline, which uses generative Al to enrich causal
triples and applies validation steps to ensure the ve-
racity and quality of synthetically enriched causal
systems. The pipeline consists of three stages: (1)
seeding, (2) generation, and (3) refinement.
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Figure 2: Pipeline for constructing CASK-Db.

1. Seeding: This stage identifies a broad and
diverse range of causal contexts for generation. We
randomly sample 6,000 causal questions from the
training splits of CALM-Bench (Dalal et al., 2023)
to prevent test set leakage. For reproducibility, we
use a fixed random seed (42) for sampling.

2. Generation: A generative LLM is prompted
to produce causal systems aligned with our schema.
The model considers the seed question, identifies
the underlying causal system and requisite knowl-
edge, and then generates the causal system in align-
ment with CASK-Schema. Each output contains
a title, a one-sentence description, and a set of
knowledge triples describing the system. To facil-
itate post-processing, we instruct the LLM to use
predefined headers. We use GPT-3.5 Turbo (Brown
et al., 2020)® for generation in our implementation.
See Appendix A.6.1 for generation prompt.

3. Refinement: Lastly, we validate the gener-
ated knowledge and merge similar causal systems.
For validation, we construct a vector database of
ground truth knowledge. A triple is considered
valid if at least two distinct matches in the semantic
store have a cosine similarity of 0.75 or higher. Fur-
ther details on the validation process are provided
in Appendix A.6.2.

Overlapping and redundant causal systems are
merged. To identify merge candidates, we use
K-nearest neighbors to cluster the causal systems.
Within each cluster, systems with a similarity of
0.80 or higher are selected for unification. A gen-
erative LLM is then prompted to merge them into
a single causal system. Implementation details are
provided in Appendix A.6.3.
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3.3 CASK-DDb Details

Our final synthetic causal knowledge base consists
of 5,450 causal systems, 32,638 unique knowledge
triples, and 40,360 concepts. On average, each
causal system contains 7 knowledge triples and
10 unique causal concepts. Of the causal systems
in CASK-Db, 45% are science-related, 38% com-
monsense knowledge, and 17% pertain to social
interactions. CASK-Db is publicly available under
the Apache 2.0 license.

Quality analysis 150 causal systems, contain-
ing a total of 846 triples, were sampled for manual
evaluation. We found that 4% of sampled systems
and less than 1% of all triples contained errors, sug-
gesting that most causal systems are high quality,
logically correct, and factually accurate. Among
the identified errors, 60% were named entity er-
rors, where generated triples failed to generalize
and included direct references to people or named
locations. Logical errors, where head and tail en-
tities were swapped, accounted for 18% of errors.
Ambiguous entities and unresolved anaphora (e.g.,
"it," "they," "those") comprised 20% of errors. Fi-
nally, only 6% of errors involved incorrect facts.
Addressing these errors remains an area for future
work.

4 Empirical Evaluation

Our experiments aim to (1) validate the efficacy of
CASK-Db as an external causal knowledge source
for language models and LLMs and (2) assess
the benefits and limitations of causal knowledge
across distinct causal reasoning tasks. We eval-
uate CASK-Db in two knowledge augmentation
settings: knowledge injection and RAG for zero-
shot QA.
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Type

Description

Example

Cause Comparison

Given competing causal contexts C; and Ca,
the goal is to identify which context is most
likely to produce effect E such that C' = E.

There are two planets Glarnak and Bornak. Glar-
nak is experiencing global warming while Bor-
nak is not. Which planet is more likely to have
more pollution in the atmosphere?

Cause Prediction

Given an event description D, the question
requires identifying the most likely cause C'
such that C' = D.

Pollution in the city worsened? What was the
cause?

Effect Comparison

Given competing event descriptions D and
Do, the goal is to identify which event would
most likely result from a provided cause C'
such that C' = D.

There are two planets Glarnak and Bornak which
have breathable atmospheres for humans. Glar-
nak’s atmosphere has a higher concentration of
CO2 in contrast to Bornak. Which planet is
more likely to have implemented environmen-
tal regulation policies?

Effect Prediction

Given an event description D, the question
requires identifying the most likely effect
that results from D such that D = E.

The city is determined to control air pollution.
What is the effect?

Effect Quantification

Given an event chain consisting of tempo-
rally ordered subevents S1, .52, ..., S, and
a causal intervention I, the goal is to quan-
tify the effect of the causal intervention on

1. A seed is in soil. 2. The seed germinates. 3.
The plant grows roots. 4. The plant grows out of
the ground. 5: The plant flowers. 6: The flower
produces fruit. 7: The fruit releases seeds. 8:

the event Q(E|I, S1...n).

The plant dies. Suppose less pollution in the
environment happens, how will it affect the
overall population of plants?

Table 2: Typology of common of causal causal reasoning tasks found in CALM-Bench.

4.1 Data

4.1.1 Causal Knowledge

CASK-Db (Section 3.3) is the primary causal
knowledge resource evaluated in all experiments.
For a fair comparison with public causal knowl-
edge sources, we construct PublicKB as a base-
line. PublicKB consists of 357,706 triples extracted
from ATOMIC, CauseNet, ConceptNet, and Wiki-
data. In addition to cause-effect triples, we ex-
tract all analogous relations (e.g., has-subevent,
has-prerequisite, etc.) that map to contextual rela-
tions in CASK-Schema (see Table 8).

PublicKB contains nearly 11x more triples than
CASK-Db (~357K vs.~32K), yet we hypothesize
that causal systems knowledge better aligns with
the causal reasoning needs of language models
and should improve downstream QA accuracy over
PublicKB. Further details are provided in Appendix
AT

4.1.2 Causal QA Tasks

We employ CALM-Bench (Dalal et al., 2023) as
the source of causal QA tasks. CALM-Bench
comprises six diverse QA benchmark datasets that
require causal knowledge and reasoning. These
tasks include abductive reasoning, commonsense
causal reasoning, procedural reasoning, and reason-
ing over paragraph effects. Further details on the
benchmark tasks are provided in Appendix A.3.

4.1.3 Causal Reasoning Typology

Due to the diversity of question formats and tasks
encountered, we define a typology to categorize the
common types of causal reasoning tasks in CALM-
Bench. Questions are classified along two dimen-
sions: directionality and inferential requirements.
Directionality specifies whether the question seeks
likely causes or effects. Inferential requirements de-
fine the type of causal reasoning needed to answer
the question (e.g., comparing contexts or quantify-
ing effects). Details of the typology and examples
are provided in Table 2.

4.2 Experiment Details

4.2.1 Experiment Environment

All experiments were conducted on a single
AWS EC2 g5.8xlarge instance®, equipped with an
NVIDIA A20 24GB GPU, 32 vCPUs, and 400GB
of storage.

4.2.2 Knowledge Injection Experiments

Our experiments assess whether injected causal sys-
tems knowledge enhances causal QA performance
and how pretraining strategy impacts downstream
reasoning. Knowledge injection methods imbue
language models with external knowledge to im-
prove performance in knowledge-intensive tasks

4https ://aws.amazon.com/ec2/instance-types/
g5/
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(Hu et al., 2023). The most common approaches
mask knowledge triples, requiring the model to re-
cover the masked elements during training (Sun
et al., 2020; Lu et al., 2022). However, prior work
has primarily evaluated these methods on factual
QA rather than causal reasoning. We hypothesize
that masking-based strategies are misaligned with
causal QA and propose SyntheticQA as a more ef-
fective alternative.

Knowledge-Guided Pretraining Strategies.
We explore two masking-based methods (random
masking and concept masking) and introduce
SyntheticQA. In random masking, knowledge
triples are linearized using sentence templates and
randomly masked during pretraining (Hosseini
et al., 2022). Concept masking selectively masks
specific elements (e.g., head entity) within a lin-
earized sentence (Bosselut et al., 2019). Synthet-
icQA replaces masking with multiple-choice ques-
tions generated from causal system descriptions.
During pretraining, the model is given a causal de-
scription as context and must answer an associated
question. Implementation details are provided in
Appendix A.8.2.

Experimental Setup. We use FLAN-TS (Chung
et al., 2022), a 250M parameter encoder-decoder
model pretrained on 1.8K diverse tasks in the
FLAN collection (Longpre et al., 2023), achiev-
ing SOTA performance across QA tasks. As a
baseline, we evaluate the model before knowledge
injection. Experiments involve finetuning for 5
epochs on pretraining examples from CASK-Db
or PublicKB. After knowledge-guided pretraining,
we checkpoint the model, further finetune it on the
benchmark task, and report QA accuracy on the test
set. The model is then reverted to the pretraining
checkpoint to ensure only transferred knowledge
from CASK-Db is measured. Training specifics are
in Appendix A.8.3.

4.2.3 RAG Zero-Shot QA Experiments

Our experiments examine whether CASK-Db is
broadly valuable for LLMs as an external resource
for providing in-context causal knowledge in zero-
shot causal QA. RAG (Lewis et al., 2020) has be-
come the de facto method for augmenting LLMs
with external knowledge, helping reduce halluci-
nations (Shuster et al., 2021) and improve domain-
specific reasoning (Gao et al., 2024).
Experimental Setup. We implement a stan-
dard RAG system with a vector knowledge store,
retrieval model, and a generative LLM for QA

inference (Gao et al., 2024). First, we mea-
sure the baseline zero-shot capabilities of the
evaluated LLMs by providing only the ques-
tion. In RAG experiments, each causal sys-
tem is treated as an independent knowledge
record, linearized into paragraph descriptions, en-
coded as vectors, and stored in ChromaDB? us-
ing multi-qa-mpnet-base-dot-v1° for encoding
and retrieval. During inference, the most relevant
causal system is retrieved based on cosine simi-
larity and provided as in-context evidence. For
multiple-choice questions, LLMs return the cor-
responding letter; for open-ended questions, only
exact matches are considered correct. QA accuracy
is reported for all experiments. Further technical
details are provided in Appendix A.10.

Evaluated LLMs. We evaluate CASK-Db using
four diverse LLMs: Phi-2 3B (Li et al., 2023), Mis-
tral 7B (Jiang et al., 2023), Llama 2 13B (Touvron
et al., 2023), and GPT-3.5-Turbo. GPT-3.5-Turbo
is accessed via the OpenAl API, while the other
models are loaded with QLoRA (Dettmers et al.,
2023) quantization for efficient inference. Quan-
tization configurations and prompt templates are
provided in Table 13 and Table 14.

5 Empirical Findings
5.1 Main Results

Comparison of Knowledge-Injection Methods by Causal QA Category
+18.0%
mmm Random Masking 16.9% .
Concept Masking +16.4%
15 SyntheticQA

+13.1%

49.0% +9.0%

Relative Improvement

Figure 3: Comparison of pretraining strategies. Results
are reported as relative changes from the finetuned base-
line.

Knowledge injection results are reported in Ta-
ble 3, and RAG results in Table 4. CASK-Db sub-
stantively improves causal QA accuracy in both
augmentation settings, with an average relative im-
provement of 14% (9pp) using SyntheticQA for

Shttps://docs. trychroma.com/
https://huggingface.co/sentence-transformers/
multi-ga-mpnet-base-dot-v1
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Cause Comp. Cause Pred. Effect Comp.

Effect Pred. Effect Quant.

Baseline 0.58 0.61 0.61 0.65 0.67
Knowledge: Public KB
Random Masking 0.57 0.62 0.56 0.6 0.68
Concept Masking 0.57 0.6 0.58 0.67 0.71
SyntheticQA 0.5 0.66 0.58 0.7 0.7
Knowledge: CALM-KB (ours)
Random Masking 0.54 0.62 0.59 0.66 0.73
Concept Masking 0.56 0.66 0.6 0.69 0.73
SyntheticQA 0.62 0.69 0.72 0.76 0.78

Table 3: Evaluation of CASK-Db and PublicKB in the knowledge injection setting across various pretraining
strategies. Improvements over the finetuned baseline are shaded green, and regressions are shaded red.

Cause Comp. Cause Pred. Effect Comp. Effect Pred. Effect Quant.
Base +KB Base +KB | Base +KB Base +KB | Base +KB
GPT3.5 0.3 0.66 | 0.72 | 0.54 0.74 = 0.79 | 0.58 0.66
Llama2 13B  0.57 0.59 0.47 0.58 0.59 0.50 0.51 0.53
Mistral 7B 0.48 0.52 068  0.72 | 0.60 0.62 076 = 0.80 | 0.46 0.48
Phi-2 3B 0.50 0.54 047 | 0.56 | 0.48 0.54 0.50 | 0.60 | 0.48 0.49

Table 4: Evaluation of CASK-Db for zero-shot QA with RAG. The "Base" column represents baseline zero-shot
accuracy, while +KB reflects accuracy using the RAG pipeline with CASK-Db. Relative improvements over the
baseline are shaded in green, while regressions are shaded in red.

knowledge injection and 13% (6pp) across all
LLMs for zero-shot QA.

5.2 Knowledge Injection Findings

Which pretraining strategy best improves causal
reasoning? A direct comparison of pretraining
strategies for CASK-Db are provided in Figure 3.
SyntheticQA is the only strategy that yields consis-
tent improvements across all reasoning categories,
increasing accuracy by an average of 14%, making
it the preferred method for causal knowledge injec-
tion. In contrast, masking-based strategies improve
causal reasoning by only 2% on average across
tasks. Additionally, masking-based strategies tend
to reduce accuracy in cause and effect comparison
tasks, with an average performance regression of
-4%, while offering modest improvements of 7%
for cause prediction, effect prediction, and effect
quantification. The results also indicate that Syn-
theticQA is particularly beneficial for effect-related
reasoning, improving effect comparison by 18%
and averaging a 17% gain for effect-related tasks
compared to 10% for cause-related tasks.

To what extent does transferred causal knowl-
edge affect reasoning? Transferred causal knowl-
edge is most effective for cause prediction, effect

comparison, effect prediction, and effect quantifi-
cation, yielding an average accuracy gain of 16%,
compared to just 6% for cause comparison. Syn-
theticQA’s format may be limited for cause com-
parison as the questions are generated from single
causal systems, whereas cause comparison requires
multiple contexts.

We also observe a consistent directionality bias:
effect-related tasks achieve higher accuracy than
cause-related tasks both before and after knowledge
injection (75% vs. 65% on average). This may
stem from causal sufficiency challenges, where the
space of possible causes is larger than the con-
strained space of effects. While causal knowledge
injection improves reasoning, its effectiveness is
limited by the model’s ability to generalize across
causal contexts.

How does CASK-Db compare to public
sources of knowledge? A direct comparison be-
tween CASK-Db and PublicKB is shown in Fig-
ure 4. Despite being 30x smaller than PublicKB,
CASK-Db is consistent and better improves down-
stream causal QA performance. Further PublicKB
negatively impacts effect quantification decreasing
accuracy by 10%.
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Figure 4: Comparison of CALM-KB to PublicKB

Does QA format impact causal knowledge
transfer? Figure 5 compares the impact of QA
format in SyntheticQA on accuracy. The results
indicate that multiple-choice is the superior format,
yielding an average relative gain of 14% compared
to just 2% for open-ended QA. Moreover, the open-
ended format reduces performance on the effect
quantification task by 10%, limiting its effective-
ness in cause prediction, effect comparison, and
effect prediction tasks.

Comparison of QA Formats for SyntheticQA
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Figure 5: Comparison of multiple-choice vs open-ended
as the QA format for SyntheticQA.

5.3 Zero-Shot Causal QA with RAG Findings

How Do LLMs Differ in Their Use of External
Knowledge? In Figure 6, A. highlights that LLMs
utilize causal knowledge differently, as relative im-
provements vary across reasoning categories. In
B, we find that CASK-Db yields the highest gains
in cause comparison, cause prediction, and effect
prediction, with an average improvement of 16%.
However, effect comparison and quantification see
smaller gains, averaging 7%. Interestingly, while
pretraining experiments showed greater improve-
ments for effect prediction, knowledge-augmented
LLMs exhibit the opposite trend.

A. CQA Improvements by LLM

o Cause Comparison

- Cause Prediction
Effect Comparison

o Effect Prediction

o Effect Quantification

Improvement (%)

Mistral 78 Phi-2 38
C. Average Improvement by LLM

00" Gpr3s5 Llama 2 138
B. Average Improvement by CQA Type

+19.0%

+16.0% 4550,

15.0
10.0
+8.2%
+6.0%
. .
0.0

+17.5%

Cause  Cause  Effect  Effect  Effect
Comp.  Pred. Pred.  Comp.  Quant

GPT3.5

Llama2 138 Phi-2 38

Mistral 78

Figure 6: Patterns of LLM behavior when utilizing
CASK-Db.

Does LLM scale affect causal knowledge uti-
lization? Subfigure C shows that CASK-Db im-
proves QA performance across all evaluated LLMs.
While larger models generally utilize causal knowl-
edge more effectively, this trend is inconsistent, as
seen with Mistral 7B. GPT-3.5 benefits the most
overall but performs the worst on cause compar-
ison, indicating that LLM size does not directly
correlate with causal knowledge utilization. Addi-
tionally, in certain tasks like cause prediction and
effect comparison, smaller models (e.g., Mistral
7B) perform comparably to augmented GPT-3.5.
These findings suggest that LLMs process causal
knowledge differently depending on task structure
and reasoning requirements.

6 Conclusion

We propose CASK-Schema, a semantic schema
for formally representing causal systems, and in-
troduce CASK-Db, a knowledge base of synthet-
ically constructed causal systems. Our analysis
demonstrates that CASK-Db enhances causal rea-
soning in language models across both knowledge
injection and retrieval-based augmentation settings.
We show that causal systems knowledge facilitates
more effective knowledge transfer and improves
reasoning over causal relationships. Additionally,
our findings highlight differences in how LLMs uti-
lize causal knowledge, revealing key challenges in
aligning external knowledge with causal QA tasks.
Our work establishes a foundation for future re-
search on causal knowledge representation, causal
question answering, and the systematic evaluation
of causal reasoning in language models.



7 Limitations

We recognize several opportunities to improve our
work and acknowledge the limitations of our meth-
ods and empirical evaluation. While we conduct
extensive knowledge augmentation experiments to
validate CASK-Db, further evaluation remains nec-
essary. In the knowledge injection setting, all ex-
periments are limited to FLAN-TS; future work
could explore pretraining strategies across diverse
architectures (e.g., BERT, DeBERTa) and model
scales.

Our question templates primarily focus on cause
and effect prediction, limiting the diversity of rea-
soning tasks. Future work could incorporate a
broader range of question types and explore gener-
ative Al for synthetic question generation beyond
template-based methods.

Our knowledge validation relies on indirect ver-
ification, evaluating triples independently rather
than within full causal systems. An ideal approach
would involve expert verification or an oracle sys-
tem to assess factual accuracy. Future work could
leverage high-performance LLMs like GPT-o for
verification or introduce an entailment-based val-
idation step using a fine-tuned natural language
inference model to ensure contextual consistency.

Additionally, we do not align our generated
causal systems with existing semantic knowledge
graphs such as WikiData. Future work could en-
hance CASK-Db through entity linking, integrating
causal concepts with structured public knowledge
sources.
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A Appendix

A.1 Reproducibility

CASK-Db and all relevant code are made publicly
available. CASK-Db can be accessed on Hugging
Face Datasets at anonymous_url, and the code is
available on GitHub. For all experiments, we set a
global seed of 42 to ensure reproducibility.

A.2 Dataset Usage and Licenses

We use all datasets in accordance with their respec-
tive licenses. Furthermore, we provide CASK-Db
under the Apache 2.0 license, which permits broad
academic and commercial use to encourage further
exploration of causal knowledge representation.

A.3 CALM-Bench Task Descriptions

Task-specific dataset details and an overview of
CALM-Bench can be found in Table 7. We sum-
marize the tasks below.

Abductive Natural Language Inference
(aNLI) (Bhagavatula et al., 2020) is an abductive
reasoning task over narratives of social situations.
Given a sequential pair of social observations, the
model must predict which of the two provided
hypotheses best explains the observations.
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Choice of Plausible Alternatives (COPA) (Gor-
don et al., 2012) is a commonsense causal reason-
ing task. Given a premise, the goal is to select the
most likely cause or effect from a pair of options.
(Kavumba et al., 2019) introduced 500 additional
training examples in Balanced-COPA to mitigate
corpus-level artifacts that language models could
exploit during fine-tuning.

COSMOS QA (Huang et al., 2019) is a multiple-
choice QA task requiring social commonsense
knowledge. Given a narrative about people in ev-
eryday situations, the goal is to identify the most
plausible cause or effect within the story.

E-Care (Du et al., 2022) consists of two causal
reasoning tasks. The first, similar to COPA, re-
quires identifying the most likely cause or effect of
a given premise. The second involves generating a
causal explanation for the correct answer. We con-
sider only the first task as part of CALM-Bench.

Reasoning over Paragraph Effects (ROPES)
(Lin et al., 2019) is a reading comprehension task.
Given a knowledge passage, the model must rea-
son over the causal and qualitative relations in the
text and apply them to answer questions about a
hypothetical scenario. 70% of background pas-
sages contain causal relations, and 26% include
both causal and qualitative relations.

What If Question-Answering (WIQA) (Tan-
don et al., 2019) is a multiple-choice QA task re-
quiring reasoning over procedural descriptions of
natural processes. WIQA involves predicting the
downstream magnitude (more, less, or no effect) of
a perturbation to an individual step in a procedural
chain.

A.4 Causal Reasoning Typology

In Figure 7, we present the overall distribution of
causal QA questions by causal category from out
typology. Cause prediction is the most represented
at 30%, followed by effect prediction at 26%, while
cause comparison is the least encountered. Figure 8
shows the distribution of CQA categories within
each CALM-Bench task. We find a general mixture
of all categories across tasks, with an overrepre-
sentation of cause prediction and effect prediction
examples. However, WIQA is an outlier, consisting
exclusively of effect quantification examples.

A.5 CASK-Schema Relation Mapping

In Table 8 we provide a mapping of CASK-Schema
to other public knowledge sources.
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Question Distribution Across Tasks
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Figure 7: Overall distribution of questions by causal
reasoning category.

A Distribution of Questions by Type

Figure 8: Distribution of causal reasoning type within
each CALM-Bench task.

A.6 Causal System Generation Pipeline

A.6.1 Causal System Generation Prompt

In Table 10, we provide the prompt used to the
generate causal systems.

A.6.2 Causal System Validation

The validation process consists of two steps: first,
building an index of ground truth knowledge,
and second, validating knowledge from the gen-
erated causal systems. Relevant knowledge triples
and factual statements are extracted from public
knowledge sources, including ATOMIC, CauseNet,
GenericsKB, and Wikidata. A mapping of CASK-
Schema to these sources is provided in Table 8. The
extracted triples are then linearized using sentence
templates provided in Table 9.

For our ground truth semantic knowledge store,
we use ChromaDB. The all-mpnet-base-v2
model from the SentenceTransformers library is
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used for indexing and retrieval. The vector database
is initialized (Table 11) to support cosine similarity
matching, and the linearized triples are added and
indexed.

During validation, the knowledge store is
queried for matching ground truth facts. A triple is
considered valid if at least two different matches
are found in the semantic store with a cosine simi-
larity of 0.75 or greater.

A.6.3 Causal System Merging

The merging process is formally described in Al-
gorithm 1. First, we generate clusters based on
the TF-IDF representations of causal systems. We
use the K-means clustering implementation’ with
default parameters, setting the number of clusters
to half the number of generated causal systems.

For each cluster, we iterate through the causal
systems and compute the pairwise similarity be-
tween the comparator system and all other systems
within the cluster. Systems with a similarity score
of 0.80 or greater are selected as merge candidates.
All selected candidates are provided in-context to
GPT-3.5 Turbo, which is instructed to unify them
into a single causal system. The merged candi-
dates are then removed from the cluster. The merge
prompts is made available in Figure 9.

A.6.4 Causal System Linearization

Sample templates for triple linearization are pro-
vide in Table 9.

A.7 PublicKB

For a fair comparison with public sources of causal
knowledge, we construct PublicKB as a baseline.
PublicKB consists of 347,706 causal triples ex-
tracted from ATOMIC (Sap et al., 2019), CauseNet
(Heindorf et al., 2020), and ConceptNet (Speer
et al., 2017). CauseNet contributes the majority
of triples, with 197,806 triples and 80,223 unique
entities. However, the cause-effect relation is the
most prevalent in CauseNet.

To ensure a fair comparison with CASK-Db,
we include all causality-related relations from
ATOMIC and ConceptNet listed in Table 8 (e.g.,
/r/HasSubevent from ConceptNet or Desires from
ATOMIC) that directly map to relations in CASK-
Schema. However, cause-effect triples in PublicKB
are not aligned with supporting context (e.g., has-
Subevent, xReason, etc.), simulating the limitations

"https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html
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Algorithm 1: Causal System Unification
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26

27
28

Causal systems S = {s1, $2,...,5n},
sentence embedding model F,
similarity function sim(vs, vy ) =
similarity threshold 6 = 0.80,
merge function merge(.S) Merged set of
causal systems S’
Step 1: Clustering
Apply K-nearest neighbors algorithm to
cluster the causal systems in S.
Let {C1,Cy,...,Cy,} be the resulting
clusters.
Step 2: Encoding
for cluster C; do
for causal system s € C; do
Encode s using the sentence
embedding model E.
Let v be the embedding vector of
system s.
end

end
Step 3: Merge Candidate Identification
for each cluster C; do
for causal system s € C; do
Identify the set of causal systems
S’ C C; where sim(vg, vy ) > 6.
Designate S’ as merge candidates.
end
end
Step 4: Merging
for set of merge candidates S’ do
Apply the merge function
s" = merge(S’) to create a single
causal system s’.
Remove the systems in s’ from C; and
add s’ to S;.
end
Output: Merged set of causal systems S’.
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Causal System Merging Prompt

Merge the candidate causal systems into
a single, comprehensive description. The
description should contain a title, a short
description, and a list of relevant knowledge
triples.

Guidelines:

1. Identify the underlying causal system
from the provided list of candidates.

2. Generate a concise title (2-3 words) for
the causal system.

3. Provide a generic description describing
the merged causal system. This description
should highlight the primary causal rela-
tionship.

4. Construct knowledge triples to describe
this system. Each triple should be formatted
as: - [Head Predicate]; [Relation];
[Tail Predicate].

5. Ensure that head and tail predicates are
generalized and do not contain specific
names or pronouns.

6. Merge similar knowledge triples from
the candidates into a single triple.

7. Ensure that the entities used in the triples
are consistent across the entire system.

8. Use only the following relations in
your triples: cause-effect, has-contributing-
factor, has-requirement, has-subevent,
precedes, reacts-to, has-intent, magnifies,
and mitigates.

9. Use as many of the specified relations
as possible to cover various aspects of the
causal interactions.

10. The output should contain the following
headers: Title, Description, and Triple. Use
a newline after each header.

The relations are defined as follows: [...]
Task Input:
Merge Candidates: [...]

Figure 9: Causal System Merging Prompt

of existing public causal knowledge stores.
PublicKB contains nearly 63 times more triples
than CASK-Db ( 350K vs. 5.4K). However, we
hypothesize that causal knowledge structured as
causal systems, as in CASK-Db, provides better
alignment with the causal reasoning needs of lan-



guage models and should lead to improved down-
stream QA accuracy.

| 1. Casual System 2. Linearization ‘

Global Warming

The causal system of global warming.
Factory production has the

subevent carbon emissions. Carbon
emissions can cause air pollution. Air
pollution magnifies greenhouse gases.
Greenhouse gases can cause climate
change. A contributing factor for global
warming is greenhouse gases. [...]

« factory production; has-subvent; carbon
emissions

« carbon emissions; cause-effect; air
pollution :

« air pollution; magnifies; greenhouse gases

« greenhouse gases; cause-effect; climate ;
change

o [.]

3. Pretraining

Random Masking SyntheticQA

The causal system [MASK] global [Mask].
Factory production has [MASK] subevent
[MASK] emissions. Carbon [MASK] can cause
air pollution. Air pollution magnifies greenhouse
gases. ...

The causal system of global warming.

subevent-earben-emissions: Carbon
emissions can cause air pollution. Air
pollution magnifies greenhouse
gases. Greenhouse gases can cause
climate change. ...

What is a subevent of factory
production in the causal system of
global warming?

a) emission standards b) carbon
emissions c) cancer d) trees

Concept Masking

The causal system of global warming.
[MASK] has the subevent carbon emissions.
Carbon emissions can cause [MASK]. Air
pollution magnifies greenhouse

gases. [MASK] can cause [MASK]. ...

Figure 10: Knowledge-guided pretraining process and
strategies.

A.8 Knowledge Injection Details
A.8.1 Pretraining Strategies

Masking-Based Strategies. We consider two
masking-based methods (random masking and con-
cept masking) and propose SyntheticQA. We adopt
the pretraining process from Hosseini et al. (2022),
where knowledge triples are first converted to nat-
ural language sentences (linearization) before pre-
training. Our approach (Figure 10) processes each
causal system independently by first linearizing its
knowledge triples using predefined sentence tem-
plates (Table 12) and aggregating them into natural
language causal descriptions. These descriptions
are then used to construct pretraining examples.

Next, tokens in the causal descriptions are
masked. For random masking, we follow the stan-
dard BERT masking ratio of 15% (Devlin et al.,
2019) and mask tokens corresponding to whole
words (Cui et al., 2021). Concept masking (Sun
et al., 2020) extends this approach by masking
only entity and relation tokens from the knowl-
edge triples. We randomly select 15% of causal
concepts within the system and mask all mentions
in the description.

SyntheticQA. SyntheticOQA generates multiple-
choice QA examples based on causal system de-
scriptions. The generation process is formalized
in Algorithm 2. Before generating questions, we
construct a set of templates for each relation in
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CASK-Schema (Table 12). Each relation has two
template types: one where the answer is the head el-
ement and one where the answer is the tail element
of the seed triple. For instance, for the cause-effect
relation, templates include “What is the cause of
tail?” (answer: head) and “What is the effect of
head?” (answer: tail). Multiple templates intro-
duce linguistic variation in the generated questions.

The SyntheticQA process begins with a seed
causal system and a randomly selected seed triple.
The system’s triples are linearized into a paragraph-
level description. The head or tail entity of the seed
triple is chosen as the answer candidate, and a ques-
tion template corresponding to the selected can-
didate is applied. The generated multiple-choice
question consists of four answer options: one cor-
rect answer, one adversarial option sampled from
within the causal system, and two additional distrac-
tors sampled from CASK-Db more broadly. The an-
swer choices are shuffled and labeled (a through d)
to prevent positional biases. To encourage reason-
ing, the sentence corresponding to the seed triple
is removed from the causal system description.

After generation, the pretraining dataset contains
6,522 questions, which is split into training and
validation sets using a 90-10 split.

A.8.2 SyntheticQA Implementation
A.8.3 Experiment Details

For our experiments, we use the encoder-decoder
FLAN-T5 (Chung et al., 2022) base model, which
has 220 million parameters. FLAN-TS has been
extensively trained on the FLAN collection (Long-
pre et al., 2023), comprising 1.8K tasks, and has
demonstrated state-of-the-art performance across a
wide range of QA tasks.

Each experiment initializes the FLAN-T5 model
with its original weights®, finetunes it for 5 epochs
on a specific CALM-Bench task, and evaluates
QA accuracy on the corresponding test set. Base-
line measurements are obtained by evaluating the
model on each benchmark task before knowledge
injection.

Knowledge injection experiments require an ini-
tial 5-epoch finetuning phase using pretraining ex-
amples from CASK-Db, applying one of the de-
scribed strategies. The model is then checkpointed
and subsequently finetuned for 5 additional epochs
with early stopping on the benchmark task before
evaluating QA accuracy. After testing, the model

8https: //huggingface.co/google/flan-t5-base


https://huggingface.co/google/flan-t5-base

Algorithm 2: Synthetic QA Generation

Data: CASK-Db, Templates: dict 7
Result: Multiple-choice CQA example
1 foreach causal description CD, causal
system C'S € CASK-Db do
2 foreach triple (h,r,t) € C'S do

3 Randomly select e € {h,t} as the
answer candidate;
4 Select template T' = 7 [r|[e] based

on relation r and selected answer
candidate e;

5 Generate question () using template
T
6 Randomly select an adversarial

concept ¢, from other triples in the
causal system;

7 Randomly select two additional
concepts ci, co from CASK-Db;

8 Formulate the question ) with
options {e, cq, c1,C2};

9 Remove the linearized sentence

corresponding to the seed triple
(h,r,t) from CD;

10 end
11 end
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is reverted to the pretraining checkpoint to isolate
the impact of knowledge transfer from CASK-Db.

For reproducibility, we set a global seed of 42.
We use the Hugging Face (Wolf et al., 2020) FLAN-
TS implementation and base weights”. All experi-
ments are conducted on a single AWS g5.8xlarge
EC2 instance with an A10G GPU (24GB mem-
ory), 32 vCPUs, and 400GB of storage. PyTorch
Lightning'? is used for training management, and
the optimizer is AdamW (Loshchilov and Hutter,
2019), initialized with a constant learning rate of
Se-4.

A.9 Knowledge Injection Experiments
A.10 RAG Details

In a RAG (Lewis et al., 2020) system, knowledge
is stored externally and retrieved at inference time.
Contemporary RAG implementations follow a stan-
dard two-stage pipeline: retrieval and generation.
Formally, the RAG system consists of documents
D stored in a vector database B and a generative
LLM G. Documents are encoded using a dense-
passage retrieval model, which also encodes the
query at inference time. Given a query ¢, the re-
trieval function R is defined as R(q|D, B) — D/,
where D’ C D represents the subset of semanti-
cally relevant documents retrieved by R. After
retrieval, a prompt p = (¢, D’) is constructed
by including the query and relevant documents
as in-context information. The generative model
then produces an answer, expressed as G(p) — a,
where a is the generated response leveraging the
retrieved knowledge D'.

All RAG experiments are conducted on an AWS
g5.8xlarge EC2 instance with a single A20 GPU
(24GB memory), 32 vCPUs, and 400GB of stor-
age. For our RAG setup, we use ChromaDB as the
vector database and multi-qa-mpnet-base-dot-v1 as
the retrieval model. This retrieval model is a Sen-
tenceTransformer (Thakur et al., 2021) finetuned
on 215 million question-answer pairs for asymmet-
ric semantic retrieval.

All non-GPT LLMs (Phi-2, Mistral, and Llama
2) are loaded using the QLoRA (Dettmers et al.,
2023) quantization configuration. The configura-
tion used in our experiments is provided below.
LLM-specific prompts are detailed in Table 14.

9See footnote 3.
Yhttps://1lightning.ai/docs/pytorch/stable/
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A.11 Additional Results

How does pretraining specifically impact the
various CALM-Bench tasks?

In Table 6, we present the results of knowl-
edge injection experiments for specific CALM-
Bench tasks. We find that CASK-Db is generally
more effective than PublicKB for improving down-
stream causal reasoning. Across both knowledge
resources, SyntheticQA is the most effective pre-
training method for injecting causal knowledge. On
average, SyntheticQA with CASK-Db improves ac-
curacy by 11% (7pp), compared to 3% (1pp) with
PublicKB.

CASK-Db demonstrates more consistent knowl-
edge transfer across all pretraining strategies, with
degradations only observed for the ROPES and
WIQA tasks when using masking-based strategies.
In contrast, PublicKB exhibits greater variance and
inconsistency in knowledge transfer, reducing accu-
racy on aNLI by an average of -3% and on ROPES
by -6% across all strategies.

How does causal knowledge directly impact
zero-shot QA for specific CALM-Bench tasks?

5. Average Task Imrovement Across LLMs
. age Task
-
2
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o I . .
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Figure 11: We present the observed improvements that
CALM-KB provides the LLMs for zero-shot QA in
RAG setting. Subfigure A. provides the average im-
provement across all task for each evaluated LLM. Sub-
figure B. shows which tasks benefit most from CALM-
KB across all LLMs.

In Table 6, we present the zero-shot QA results
for CALM-Bench tasks in the RAG setting, with
further analysis in Figure 11. We find that CASK-
Db improves QA accuracy across all LLMs. Llama
2 13B benefits the most, achieving an average im-
provement of 19% across all tasks, with the largest
gains on COPA and E-CARE. In contrast, GPT-
3.5 benefits the least, likely due to redundancy,
as it was used to generate CASK-Db. However,
GPT-3.5 still shows a relative improvement of 7%,
demonstrating the utility of CASK-Db.

Across all LLMs, COPA and E-CARE show the
most improvement with CASK-Db, averaging an
18.5% increase, while aNLI and WIQA benefit the
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least, with an average improvement of 9%.



aNLI COPA CosmosQA E-Care ROPES WIQA
Baseline 0.58 0.74 0.47 0.68 0.62 0.67
Knowledge: Public KB
Random Masking = 0.56 0.73 0.52 0.63 0.57 0.68
Concept Masking | 0.55 0.78 0.52 0.64 0.59 0.7
SyntheticQA 0.57 0.75 0.54 0.69 0.59 0.7
Knowledge: CALM-KB (ours)
Random Masking  0.59 0.77 0.55 0.71 0.6 0.67
Concept Masking 0.6 0.78 0.57 0.73 0.6 0.68
Synthetic QA 0.61 0.81 0.6 0.73 0.63 0.78

Table 5: Evaluation of CASK-Db in the knowledge injection setting for CALM-Bench tasks. Improvements over
the baseline are shaded in green, while regressions are shaded in red.

aNLI

COPA

CosmosQA

GPT3.5
Llama 2 13B
Mistral 7B
Phi-2 3B

Base +KB ‘ Base +KB ‘ Base +KB ‘ Base +KB ‘ Base +KB ‘ Base +KB

0.74
0.51
0.68
0.53

76 | 095 .98
58 | 0.55 S
75 | 09 .9

52 0.57 |76

E-Care ROPES WIQA
.77 1 0.80 | .89 | 044 46 | 0.58 .66
36 | 052 73 057 .59 | 051 .53
S1 | 077 .85 | 056 .60 | 047 .49
37 050 .53 048 .55 047 48

Table 6: Evaluation of CASK-Db for zero-shot QA in a RAG setting. Improvements over the baseline are shaded in
green, while regressions are shaded in red.



Task Example Size Format Domain
aNLI 1: Jessie wants to save the planet. 174,226 MC social, world
(Bhagavatula ~ 2: This summer has been the hottest in all history. Train: 169,654
et al., 2020) Which hypothesis best explains the provided observations? Val: 1,532
A) Jessie decides to buy a new truck. Test: 3,040
B) Jessie decides to sell her truck and use public transporta-
tion instead.
COPA Air pollution in the city worsened. 1,000 MC world
(Gordon et al.,  What is the most plausible cause? Train: 500
2012) A) Factories increased their production. Test: 500
B) Factories shut down.
CosmosQA Two things happened today in Beijing. First off, incoming 35,210 MC social, world
(Huang et al.,  journalists were amazed to find China had successfully Train: 25,262
2019) lifted the brown haze in city. Skies were crystal blue and Val: 2,985
the air felt noticeably lighter. Test: 6,963
Why did the sky appear clearer?
A) None of the above choices.
B) The citizens learned to ignore the gloomy skies.
C) The citizens made an effort to cut down on pollution.
D) A large storm had recently passed.
E-Care The city is determined to control air pollution. 17,051 MC social, world,
(Du et al., 2022) What is the effect? Train: 14,929 science
A) They have to reduce the number of automobiles. Test: 2,122
B) Environmental pollution has been increased.
ROPES There are two planets, Glarnak and Bornak, that share the 14,322 open science,
(Lin et al., same atmospheric composition. The planets have nearly Train: 10,924 world
2019) identical ecosystems and topography. The main difference Val: 1,688
between the two planets is the level of global warming on Test: 1,710
each planet. Glarnak is experiencing a strong impact from
global warming. Bornak, though, is experiencing practically
no effects of global warming.
Which planet has more pollutants in the atmosphere?
WIQA 1. A seed is in soil. 2. The seed germinates. 3. The plant 39,705 MC science,
(Tandon et al.,  grows roots. 4. The plant grows out of the ground. 5. The Train: 29,808 world
2019) plant gets bigger. 6. The plant flowers. 7. The flower Val: 6,894
produces fruit. 8. The fruit releases seeds. 9. The plant Test: 3,003

dies.

Suppose less pollution in the environment happens, how
will it affect the population of plants?

A) More B) Less C) No Effect

Table 7: CALM-Bench is a multi-task causal QA benchmark consisting of six diverse QA tasks requiring both
causal reasoning and knowledge.
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Relation Atomic CauseNet ConceptNet WikiData
has cause (P828)
has effect (P1542)
cause-effect Causes cause-effect /t/Causes immediate cause of (P1536)
has immediate cause (P1478)
has-contributing-factor n/a n/a n/a has contributing factor (P1479)
reacts-to OReact n/a n/a n/a
xReact
precedes isBefore n/a /t/HasPrerequisite follows (P155)
isAfter /t/HasSubevent
has-subevent hasFirstSubEvent n/a /r/HasFirstSubevent followed by (P156)
hasLastSubEvent /r/HasLastSubevent
magnifies n/a n/a n/a n/a
mitigates n/a n/a n/a n/a
Desires
has-intent xNeed n/a /t/CausesDesire n/a
xReason
xWant/CausesDesire

Table 8: A mapping of relations in CALM-Schema to public knowledge resources. CALM-Schema provides the
most complete representation of causal systems and is compatible with external resources as well.

Relation Template

$head can lead to $tail.
sometimes $head can result in $tail.

$head may cause $tail.
cause-effect

$tail can sometimes be a consequence of $head.

due to $head, $tail can occur.
$head is a contributing factor to $tail.
$head plays a role in $tail.

$head can contribute to $tail.

$tail can be influenced by $head.

$head is a prerequisite for $tail.

$tail cannot occur without $head.

$head is necessary for []S$tail.
without $head, $tail is not possible.
$head must be present for $tail to happen.

has-contributing-factor

has-requirement

Table 9: Sample sentence templates for triple linearization
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Causal System Generation Prompt

Analyze the given scenario to identify the underlying causal system, then generate knowledge triples to describe this system.
Each triple should be formatted with a leading dash, e.g. "- [Head Predicate]; [Relation]; [Tail Predicate]". Ensure that the
head and tail predicates are general, not containing pronouns or specific referents. Utilize only these relations: cause-effect,
has-contributing-factor, has-requirement, has-subevent, precedes, reacts-to, has-intent, magnifies, and mitigates. Focus the
triples on general actions, events, or conditions, along with their expected outcomes or influences within a causal system.
Avoid specific names and personal pronouns. Create a concise title (2-3 words) and a generic description that captures the
essence of the general causal system, emphasizing clarity and brevity.

The relations are defined as follows: [...]

Task:

1. Concisely describe the identified causal system.
2. Generate a brief title for the causal system.

3. Produce knowledge triples based on the scenario. Maintain consistency in the head and tail entities across triples, and
incorporate as many of the 8 relevant relations as possible.

Example Scenario:

[..]

Input:
[...]

Table 10: Causal System Generation Prompt

Knowledge Store VectorDB

import chromadb
from chromadb.utils import embedding_functions

# Specify retriever model
embedder = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="all-mpnet-base-v2"

)

client = chromadb.PersistentClient(path="knowledge-cache/")
db = client.create_collection(

name="causal-kb",

embedding_function=embedder,

metadata={

"hnsw:space": "cosine",

}

Table 11: ChromaDB config for knowlege store
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Relation Head Template Tail Template

cause-effect What is the cause of tail? What is the effect of head?
If tailhappens, whatwasthecause? What happens as a result of head?
has-contributing-factor What contributes to tail? What is the contributing factor of head?
Which factor plays a role in tail? What is headacontributing factorof?
What is required for tail? What is required for tail?

has-requi t . .
as-requiremen What must happen for tailtooccur?  What must happen for tailtooccur?

Table 12: Sample QA templates used for SynetheticQA
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QLoRA Configuration

nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
#bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16

)

Table 13: QLoRA configuration for loading LLMs into
memory.
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Model

Template

Phi-2

Instruct: Answer the question provided the scenario below. Do not provide an intro or concluding remarks in your
response. Do not provide an explanation. Just provide an answer. For multiple-choice return the letter and answer
only.

Input:
[[input]]

Output:

Mistral

[INST]
Answer the question provided the scenario below. Do not provide an intro or concluding remarks in your response.
Do not provide an explanation. Just provide an answer. For multiple-choice return the letter and answer only.

Input:
[[input]]

[/INST]
Output:

Llama 2

[INST]

Do not provide an intro or concluding remarks in your response. Be as concise as you can be when responding.
Answer the question provided the scenario below. Do not provide an intro or concluding remarks in your response.
Do not provide an explanation. Just provide an answer. For multiple-choice return the correct answer.

Example:

What is the capital of France?
Options:

a) Paris b) London ¢) Berlin d) Rome

Output:
a) Paris

Input:

[[input]]
[/INST]

Output:

GPT 3.5

Answer the question below. Do not provide an explanation. Provide both the letter and answer option.
Use the prefix "output:" and then provide the answer.

Input
[[input]]

Table 14: Prompt Templates used for RAG experiments
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