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An Inverse Partial Optimal Transport Framework for
Music-guided Movie Trailer Generation

Anonymous Author(s)∗

ABSTRACT
Trailer generation is a challenging video clipping task that aims
to select highlighting shots from long videos like movies and re-
organize them in an attractive way. In this study, we propose an
inverse partial optimal transport (IPOT) framework to achieve
music-guided movie trailer generation. In particular, we formu-
late the trailer generation task as selecting and sorting key movie
shots based on audio shots, which involves matching the latent
representations across visual and acoustic modalities. We learn
a multi-modal latent representation model in the proposed IPOT
framework to achieve this aim. In this framework, a two-tower en-
coder derives the latent representations of movie and music shots,
respectively, and an attention-assisted Sinkhorn matching network
parameterizes the grounding distance between the shots’ latent
representations and the distribution of the movie shots. Taking the
correspondence between the movie shots and its trailer music shots
as the observed optimal transport plan defined on the grounding
distances, we learn the model by solving an inverse partial optimal
transport problem, leading to a bi-level optimization strategy. We
collect real-world movies and their trailers to construct a dataset
with abundant label information called CMTD and, accordingly,
train and evaluate various automatic trailer generators. Compared
with state-of-the-art methods, our IPOT method consistently shows
superiority in subjective visual effects and objective quantitative
measurements.

CCS CONCEPTS
• Computing methodologies → Matching; Learning latent
representations; Video summarization.

KEYWORDS
Trailer generation, video clipping, inverse optimal transport, movie-
trailer dataset
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1 INTRODUCTION
As collections of movie highlights that may attract audiences, trail-
ers play a central role in movie promotion. Unlike video summa-
rization [31, 32, 49], which selects key frames or shots to alleviate
the redundancy of video content while keeping the completeness
of the storyline, trailer generation [19, 33, 40] needs to select at-
tractive movie highlights but reorganize them to hide the original
movie’s storyline to some extent. The selection and reorganization
of movie shots are determined by various factors, e.g., the semantics
of background music, the synchronization of visual and acoustic
content, the logical flow of characters’ dialogues, and so on, which
requires a deep understanding of the movie. Therefore, generating
a high-quality movie trailer involves sophisticated video clipping
and editing, which is time-consuming and labor-intensive (and thus,
expensive). Typically, the trailer of a Hollywood blockbuster may
require months of work by a team of professional editors to select
the movie highlights and align them with background music.

Due to the above fact, many academic and industrial researchers
have made efforts to improve the efficiency of movie trailer gener-
ation, gradually making the whole process automatic. Currently,
some music-guided movie trailer generation methods, especially
those learning-based ones [25, 42, 55], have been proposed, which
generate trailers from movies automatically based on given back-
ground music. At the same time, some commercial software like
Muvee [12] is developed to achieve music-guided video clipping
and trailer generation. However, when utilizing background music,
these methods mainly focus on synchronizing movie shots accord-
ing to the music rhythm while ignoring the semantic alignment
between visual and acoustic information. As a result, the perfor-
mance of the methods is still unsatisfactory in practical applications.
What is worse, the learning-based methods often suffer from the
scarcity of labeled training data. For example, the point process-
based method in [55] needs to learn an attractiveness model based
on the movies with audiences’ fixation information collected by
professional eye trackers. The emotion correlation-based method
in [25] requires video and audio shots to be labeled with manually
defined emotion categories. Because such annotation is difficult and
time-consuming, the datasets they used are limited in size, leading
to a high risk of overfitting.

To overcome the above challenges and boost the performance
of automatic trailer generation, in this study, we propose a novel
music-guidedmovie trailer generationmethodwith the help of com-
putational optimal transport techniques. As illustrated in Figure 1,
we formulate the music-guided trailer generation task as selecting
and sorting key movie shots based on given audio shots and estab-
lish an inverse partial optimal transport (IPOT) framework to learn
a model to achieve this aim. In particular, given a movie and its cor-
responding trailer, we first leverage a two-tower encoder to obtain
the latent representations of movie shots and trailer music shots,
respectively. Given the visual and acoustic latent representations,
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Figure 1: An illustration of our IPOT framework for learning a music-guided movie trailer generator.

our IPOT framework applies an attention-assisted Sinkhorn match-
ing network to parameterize the distribution of movie shots and
the grounding distances between the latent representation across
the two modalities. Accordingly, whether a movie shot should be
selected to construct a trailer or not is determined by the movie shot
distribution, and the alignment between the movie and music shots
is achieved by solving a partial optimal transport problem based
on the grounding distances and the movie shot distribution. In the
training phase, we learn the model by fitting the movie shot distri-
bution and the cross-modal optimal transport plan to the ground
truth movie shot indicator and movie-music shot map, leading to
the proposed IPOT framework. A bi-level optimization strategy
is applied to learn the model effectively, leading to a movie shot
selector and a movie-music shot aligner.

To train our model and compare it with state-of-the-art trailer
generators, we collect real-world movies and their official trailers
and construct a comprehensive movie-trailer dataset (CMTD) with
abundant label information. Compared to existing movie-trailer
datasets [11, 18, 47], CMTD contains multiple official trailers for
each movie and provides segmentation information for shots in all
movies, trailers, and corresponding trailer music. The movie shots
and music shots are aligned by matching the movie shots with the
corresponding trailer shots. In order to adapt to different tasks and
future studies, we also provide the metadata related to the movies,
such as subtitles, synopsis, turning points annotations, and so on.
To the best of our knowledge, CMTD might to be largest labeled
movie-trailer dataset at the current stage.

In summary, the contributions of this work include two folds:
• Wepropose a novel and effective IPOT framework formusic-

guided movie trailer generation. Applying the proposed
learning framework leads to a new optimal transport-based
solution to music-guided movie trailer generation task.

• We construct a new public1 comprehensive movie-trailer
dataset for movie trailer generation and future video under-
standing tasks. We train and evaluate various trailer gen-
erators on the dataset. Experimental results demonstrate
the superiority of our IPOT-based trailer generator on both
objective measurements and subjective effects.

1We will release the dataset after acceptance. The trade-off between research accelera-
tion and intellectual property protection is discussed in Section 4.2.

2 RELATEDWORK
2.1 Video understanding and trailer generation
Video understanding is an extensive research field that involves
exploring the semantics of video content and aligning it with other
modalities, such as texts and audio. As typical video understanding
tasks, video retrieval [7, 10] aims to search videos according to their
relevance to textual queries, and video tagging [29, 48] and tem-
poral action localization [26, 58, 60] aim to annotate videos or the
scenes in them automatically. The development of deep learning
further triggers the studies of complicated video understanding
tasks, such as video captioning (i.e., generating textual descriptions
of videos) [13, 45], video question answering (VQA, i.e., answering
questions based on given videos) [22, 59], and video summariza-
tion and storytelling [31, 32, 49]. Recently, many video generation
methods have been proposed and achieved encouraging perfor-
mance, e.g., SORA and other related work [17, 39], indicating that
the GPT-driven generative models may own strong capability of
video semantic understanding in the human level.

As one of the most challenging video understanding tasks, trailer
generation selects impressive shots based on understanding the
video content and reorganizes the selected shots in an attractive
way. The early methods mainly select and sort video shots based
on the utilization of side information. To our knowledge, the work
in [28] proposes the first user attention model for trailer generation.
Early work in [19, 40] intends to identify impressive audio-visual
components by affective content analysis to aid in trailer generation.
Thework in [1] selects trailer moments in soap operas by combining
visual and dialogue information. With the development of machine
learning techniques, some learning-based methods are proposed
to generate trailers under the guidance of music and texts. The
work in [55] considers background music in trailer generation and
presents a visual attractiveness model based on point process theory.
The work in [25] depends on emotion categories to align images,
text, and audio in latent space, selecting and reorganizing video
shots by maximizing emotion score.

However, the above methods do not consider the semantic con-
sistency between visual and acoustic embeddings, and they heavily
rely on videos with detailed annotations or side information, such
as frame-level fixation scores, manually defined emotion labels,
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and so on. However, the current movie-trailer datasets [11, 18, 47]
are far from satisfactory. They neither contain multiple trailers
corresponding to one movie to achieve conditional learning nor
have fine-grained annotations for useful supervision. As a result,
the current learning-based trailer generators often suffer from se-
vere overfitting issues. Motivated by the scarcity of high-quality
data, we built a movie-trailer dataset with detailed annotations and
abundant metadata in this study.

2.2 Optimal transport for matching
As a validmetric of probabilitymeasures, optimal transport (OT) [44]
has been widely used for distribution comparison and matching.
In particular, given two distributions defined in a sample space,
we can measure their discrepancy and infer the correspondence
between their samples by solving an optimal transport problem and
deriving an optimal transport plan (or called coupling [44]) between
them accordingly. Therefore, many machine learning tasks that
involve matching problems can be modeled as optimal transport
problems, e.g., domain adaptation [2, 56], graphmatching [4, 36, 54],
point cloud registration [37, 38], cross-modal alignment [3, 15, 23],
and so on, which all achieve promising results. Typically, the OT
problem aims to derive an optimal transport plan to minimize the
transport costs between two distributions, which corresponds to a
linear programming problem. To solve the problem efficiently (and
approximately), Sinkhorn-scaling algorithm [6], proximal point
method [51], and Bregman alternating direction method of multi-
pliers (BADMM) [26, 46, 52] are proposed and greatly alleviate the
computational complexity of the problem.

Recently, inverse optimal transport (IOT) has been proposed,
which aims to optimize the grounding distances associated with
samples or their latent representations given observed optimal
transport plans [5, 24, 41]. The IOT problem leads to a new learn-
ing paradigm to solve a set of latent representation and matching
problems, which has been used in many applications. The work
in [57] proposes an IOT-based model called IOT-Match for legal
case matching, which can generate natural language explanations
for matched legal cases and is robust to label insufficiency. The
work in [49] proposes to learn a projection layer to achieve seman-
tic alignment between visual and textual representations via IOT
techniques in a self-supervised setting. Typically, the IOT problem
corresponds to a bi-level optimization problem, which can be solved
effectively by the hypergradient method in [27, 50]. In this study,
the correspondence between movies and trailers in our dataset
can naturally be seen as observed OT plans, which motivates us
to propose the inverse partial optimal transport framework for
music-guided trailer generation.

3 PROPOSED METHOD
3.1 Problem statement and modeling principle
Suppose that we have a set of movies and their corresponding
trailers, denoted as D = {(M𝑛,V𝑛,A𝑛, 𝑻𝑛)}𝑁𝑛=1. Here, M𝑛 =

{𝑚𝑖,𝑛}𝐼𝑛𝑖=1 represents the 𝐼𝑛 shots of the 𝑛-th movie, which corre-
sponds to different scenes happening in the movie.V𝑛 = {𝑣 𝑗,𝑛}𝐽𝑛𝑗=1
and A𝑛 = {𝑎 𝑗,𝑛}𝐽𝑛𝑗=1 represents the 𝑛-th trailer, which contains 𝐽𝑛
video and audio shots segmented according to the timestamps of

different scenes. In general, the trailer shots are selected from the
movie, so we can construct an alignment matrix T𝑛 = [𝑡𝑖 𝑗,𝑛] ∈
{0, 1}𝐼𝑛× 𝐽𝑛 , where 𝑡𝑖 𝑗,𝑛 = 1 indicates that the 𝑗-th trailer shot corre-
sponds to the 𝑖-th movie shot. Obviously, this alignment matrix 𝑻𝑛
also works as a movie-music shot map, providing the correspon-
dence across the visual and acoustic modalities, and accordingly,
𝝁𝑛 = 𝑻𝑛1𝐽𝑛 ∈ {0, 1}𝐼𝑛 indicates which movie shots are selected to
generate the trailer.

In this study, given a movie M and a piece of music A, we
aim to generate a trailerV for the movie. We can formulate this
music-guided movie trailer generation task as selecting and sorting
movie shots conditioned on the music shots, which corresponds
to predicting the alignment matrix 𝑻 betweenM and A (and the
associated movie shot indicator 𝝁). In the following content, we
will show that when the above dataset is available, we can learn a
multi-modal representation and matching model (as illustrated in
Figure 1) in a supervised way to achieve this aim, leading to the
proposed inverse partial optimal transport framework.

3.2 Model architecture
3.2.1 Multi-modal Self-attentive latent representation. In this study,
for an arbitrary movie with 𝐼 shots and its corresponding trailer
with 𝐽 shots, we first apply the pretrained ImageBind [14] to ex-
tract initial embeddings of the movie shots and trailer music shots,
respectively, i.e., 𝑴 = 𝑓𝑀 (M) = [𝒎𝑖 ] ∈ R𝐼×𝐷 and 𝑨 = 𝑓𝐴 (A) =
[𝒂 𝑗 ] ∈ R𝐽 ×𝐷 . To make the embedding adaptive to our task and
take the temporal correlation of the shots into account, we pass the
embeddings of the two modalities through two multi-layer percep-
trons (MLPs) and further encode each modalities’ embedding by
two self-attention (SA) modules, i.e.,

𝑴 ′ = MLP𝑀 (𝑴), 𝑨′ = MLP𝐴 (𝑨),

𝑴𝑠 = Softmax
( (𝑴 ′𝑾𝑚

1 ) (𝑴
′𝑾𝑚

2 )
⊤

√
𝐷

)
𝑴 ′𝑾𝑚

3 ,

𝑨𝑠 = Softmax
( (𝑨′𝑾𝑎

1 ) (𝑨
′𝑾𝑎

2 )
⊤

√
𝐷

)
𝑨′𝑾𝑎

3 ,

(1)

where MLP𝑀 ,MLP𝐴 : R𝐷 ↦→ R𝐷 , {𝑾𝑚
𝑖
,𝑾𝑎

𝑖
∈ R𝐷×𝐷 }3

𝑖=1, and
𝑴𝑠 = [𝒎𝑠

𝑖
] ∈ R𝐼×𝐷 and 𝑨𝑠 = [𝒂𝑠

𝑗
] ∈ R𝐽 ×𝐷 are the proposed latent

representations of movie shots and trailer music shots, respectively.
The MLPs together with the self-attention modules lead to a multi-
modal encoder with a two-tower architecture. As aforementioned,
based on the latent representations, we would like to select key
movie shots and align them with the trailer music shots, which is
achieved by the following two modules.

3.2.2 Cross-attention movie shot selector. Our trailer generator
needs to select key movie shots conditioned on given music. There-
fore, we propose a cross-attention movie shot selector to predict
which movie shots should be selected. In particular, we utilize a
cross-attention (CA) module to capture the interactions between
the visual and acoustic latent representations, i.e.,

�̄� = 𝑴𝑠 + Softmax
( (𝑴𝑠𝑾𝑚

4 ) (𝑨
𝑠𝑾𝑎

4 )
⊤

√
𝐷

)
𝑨𝑠𝑾𝑎

5 ,

�̄� = 𝑨𝑠 + Softmax
( (𝑨𝑠𝑾𝑚

5 ) (𝑴
𝑠𝑾𝑎

6 )
⊤

√
𝐷

)
𝑴𝑠𝑾𝑚

6 ,

(2)

3
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Algorithm 1 SinkhornNet(𝑫, 1
∥ �̂� ∥1 𝝁,𝜸 ; 𝜆)

1: Initialize 𝑲 = exp(−𝑫/𝜆) and 𝒂 = 1.
2: While not converge do
3: 𝒃 ← 𝜸

𝑲⊤𝒂 and then 𝒂 ← �̂�
𝐼𝑲𝒃 .

4: return �̂� = diag(𝒂)𝑲diag(𝒃)

where {𝑾𝑚
𝑖
,𝑾𝑎

𝑖
∈ R𝐷×𝐷 }6

𝑖=4, �̄� = [�̄�𝑖 ] ∈ R𝐼×𝐷 and �̄� = [𝒂𝑖 ] ∈
R𝐽 ×𝐷 are the final latent representations of the two modalities.
Passing �̄� through the following MLP results in a vector indicating
the probabilities of selecting different movie shots, i.e.,

𝝁 = [𝜇𝑖 ] = Sigmoid(MLP(�̄�)) ∈ [0, 1]𝐼 , (3)

where each 𝜇𝑖 indicates the probability that the 𝑖-th movie shot is
selected to generate a trailer.

3.2.3 Sinkhorn-based movie-music aligner. Besides selecting key
movie shots, we need to determine the order of the selected movie
shots and make them aligned to the music shots. In this study, we
propose a Sinkhorn matching network as the movie-music aligner.
In particular, given the visual and acoustic latent representations �̄�
and �̄�, we can construct a distance matrix 𝑫 = [𝑑 (�̄�𝑖 , 𝒂 𝑗 )] ∈ R𝐼× 𝐽 ,
whose element𝑑 (�̄�𝑖 , 𝒂 𝑗 ) represents the Euclidean distance between
the latent representation of the 𝑖-th movie shot and that of the
𝑗-th music shot. The Sinkhorn matching network achieves the
cross-modal alignment of the latent representations by solving the
following entropic optimal transport (EOT) problem:

�̂� = arg min𝑻 ∈Π ( 1
∥�̂�∥1

�̂�, 𝜸 ) ⟨𝑫, 𝑻 ⟩︸ ︷︷ ︸
E𝑻 [𝑑 (�̄�,�̄�) ]

+𝜆 ⟨𝑻 , log𝑻 ⟩︸      ︷︷      ︸
Entropy reg.

,
(4)

where ⟨·, ·⟩ denotes the inner product of matrix, Π( 1
∥ �̂� ∥1 𝝁, 𝜸 ) =

{𝑻 ≥ 0|𝑻1𝐽 = 1
∥ �̂� ∥1 𝝁, 𝑻

⊤1𝐼 = 𝜸 } is the set of the doubly-stochastic
matrix, whose marginals must be on the Simplex, i.e., 1

∥ �̂� ∥1 𝝁 ∈ Δ
𝐼−1

and 𝜸 ∈ Δ𝐽 −1. As shown in (7), the optimal solution �̂� is called
optimal transport plan, which actually is the optimal distribution
of latent representation pairs that minimizes the expectation of
the distance 𝑑 (�̄�, 𝒂), whose marginal distributions are 1

∥ �̂� ∥1 𝝁 and
𝜸 , respectively. Here, 1

∥ �̂� ∥1 𝝁 determines the distribution of movie
shots, and we set it as the normalized probabilities predicted by the
movie shot selector. This setting ensures the predicted alignment
result is consistent with the selection of movie shots. On the other
hand, because each music shot is applied, we can simply set 𝜸 to be
uniform, i.e., 𝜸 = 1

𝐽
1𝐽 . Finally, the entropic regularizer of the OT

plan improves the smoothness of the problem, whose significance
is controlled by the hyperparameter 𝜆 > 0.

The EOT problem can be solved efficiently by the Sinkhorn-
scaling algorithm shown in Algorithm 1, leading to the implemen-
tation of the Sinkhorn matching network with computational com-
plexity O(𝐼 𝐽 ). Note that the whole algorithmic process is differen-
tiable for both �̂� and the distance matrix 𝑫 [27, 50], making the
backpropagation applicable in the training phase. As a result, given
�̂� = [𝑡𝑖 𝑗 ], we can select and align movie shots according to the
music shots, i.e., 𝑖 = arg max𝑖∈{1,...,𝐼 } 𝑡𝑖 𝑗 for 𝑗 = 1, ..., 𝐽 .

• Remark. It should be noted that compared with select-
ing and aligning movie shots based on the distance matrix
𝑫 (i.e., 𝑖 = arg min𝑖∈{1,...,𝐼 } 𝑑 (�̄�𝑖 , 𝒂 𝑗 ) for 𝑗 = 1, ..., 𝐽 ), the
Sinkhorn matching network often provides better align-
ment results. In particular, without any constraint, the
distance-based alignment may select the same movie shot
to match with multiple music shots, which does harm to the
diversity of the generated trailer and thus is undesired in
practice. On the contrary, the doubly stochastic constraint
encourages the optimal transport plan �̂� to achieve the one-
one correspondence between the movie and music shots.

3.3 Inverse partial optimal transport framework
3.3.1 The IPOT-based supervised learning paradigm. Denote 𝜃 as
the model parameters in the MLPs and the self- and cross-attention
modules. When the dataset D = {M𝑛,V𝑛,A𝑛, 𝑻𝑛}𝑁𝑛=1 is available,
we learn our model in a supervised way by solving the following
inverse partial optimal transport (IPOT) problem:

min𝜃
∑︁𝑁

𝑛=1
KL

(
�̂�𝑛 (𝜃 ) ∥

1
𝐽𝑛
𝑻𝑛

)
︸                  ︷︷                  ︸
Supervision of Aligner

+ 𝛿 BCE
(
𝝁𝑛 (𝜃 ), 𝝁𝑛

)
︸                  ︷︷                  ︸
Supervision of Selector

𝑠 .𝑡 . �̂�𝑛 (𝜃 ) = arg min𝑻 ∈Π (𝝁𝑛,𝜸𝑛 ) ⟨𝑫𝑛 (𝜃 ), 𝑻 ⟩ + 𝜆⟨𝑻 , log𝑻 ⟩︸                                                                ︷︷                                                                ︸
Entropic Partial Optimal Transport

,

∀𝑛 = 1, ..., 𝑁 .

(5)

As shown in (5), the IPOT problem is a bi-level optimization problem.
In the upper-level problem, given each observed alignment matrix
𝑻𝑛 , we take its normalized version 1

𝐽𝑛
𝑻𝑛 as the ground truth optimal

transport plan betweenM𝑛 and A𝑛 and supervise the learning of
our movie-music aligner. 𝝁𝑛 = 𝑻𝑛1𝐽𝑛 denotes the ground truth of
movie shot selection, which supervises the learning of our movie
shot selector. For each movie-music pair, the first term in the upper-
level problem penalizes the KL-divergence between the predicted
alignment result �̂�𝑛 (𝜃 ) and the ground truth 1

𝐽𝑛
𝑻𝑛 . The second

term penalizes the binary cross-entropy (BCE) loss between the
predicted selection probabilities 𝝁𝑛 (𝜃 ) and the ground truth 𝝁𝑛 .
𝛿 > 0 controls the trade-off between the two terms.

The constraint of the upper-level problem corresponds to the
lower-level optimization problem deriving the optimal transport
plan. Compared with the EOT problem in (7), the lower-level prob-
lem in (5) takes the ground truth 𝝁𝑛 as the marginal distribution
directly. Because of the sparsity of 𝝁𝑛 , this problem is formulated
as an entropic partial optimal transport problem — the rows of
�̂�𝑛 (𝜃 ) corresponding to those unselected movie shots are set to
be all-zeros so that we do not need to consider them during train-
ing. Such a strategy helps to decouple the learning objectives in
the upper-level problem. In particular, while the BCE term focuses
on learning the movie shot selector, by filtering out unselected
movie shots, the KL-divergence term in the upper-level problem
supervises the learning of the movie-music aligner for the selected
movie shots and the music shots, which avoids the unnecessary
mismatching with unselected movie shots.

3.3.2 Learning algorithm. This IPOT problem can be solved effi-
ciently by a stochastic gradient descent (SGD) algorithm. Given

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

An Inverse Partial Optimal Transport Framework for Music-guided Movie Trailer Generation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

a batch of movie-music pairs, i.e., B ⊂ D, we first solve a set of
entropic partial optimal transport problems and obtain the optimal
transport plans for each movie-music pair, i.e., for 𝑛 ∈ B, we ob-
tain �̂�𝑛 (𝜃 ) = SinkhornNet(𝑫𝑛 (𝜃 ), 𝝁𝑛, 1

𝐽𝑛
1𝐽𝑛 ; 𝜆). Then, we update

the model parameters using SGD. Denote the objective function of
the upper-level problem corresponding to the batch as 𝐿(𝜃 ). When
computing the gradient of 𝐿(𝜃 ), we leverage the hypergradient
method in [27, 51], i.e.,

∇𝜃𝐿(𝜃 ) =
∑︁

𝑛∈B
𝜕𝐿(𝜃 )
𝜕𝑫𝑛 (𝜃 )

𝜕𝑫𝑛 (𝜃 )
𝜕𝜃

+ 𝜕𝐿(𝜃 )
𝜕�̂�𝑛 (𝜃 )

𝜕�̂�𝑛 (𝜃 )
𝜕𝜃

, (6)

in which the second term involves the hypergradient term 𝜕𝑻𝑛 (𝜃 )
𝜕𝜃

,
which requires us to unroll the Sinkhorn-scaling iterations in Algo-
rithm 1. In general, this hypergradient term can be derived either by
auto-differentiation [16, 53]. In our case, because �̂�𝑛 (𝜃 ) is the solu-
tion of an entropic optimal transport problem, this term can also be
derived in a closed form. Please refer to Theorem 2 in [50] for more
details. The remaining terms in (6) are derived by backpropagation.

3.4 Trailer generation pipeline
Given a well-trained model 𝜃∗, we can achieve music-guided movie
trailer generation by an efficient pipeline. In particular, given a
movie, we first resize it to 320p and then apply the video segmenta-
tion tool BaSSL [30] to obtain movie shots, i.e.,M = {𝑚𝑖 }𝐼𝑖=1. When
a piece of music is provided, we first use the Ultimate Vocal Remover
(UVR) tool to eliminate the vocal part, leaving only the background
track, and then obtain music shots by the music segmentation tool
Ruptures [43] method, i.e., A = {𝑎 𝑗 }𝐽𝑗=1. As aforementioned, both
the movie and music shots are initially embedded by a pre-trained
ImageBind [14].

By utilizing the well-trained movie shot selector and the latent
representation model, we calculate the probability vector 𝝁 (𝜃∗)
for movie shots and select the shots with 𝐽 highest probabilities to
construct the trailer, i.e.,V = arg sort-𝐽 𝑖∈{1,...,𝐼 ′ }𝜇𝑖 . Here, 𝐼 ′ = 0.9𝐼 ,
which means that we only consider the first 90% of movie shots
instead of all shots for spoiler prevention. After deriving the final
latent representations of selected movie shots and music shots, i.e.,
�̄� = [𝒗 𝑗 ] ∈ R𝐽 ×𝐷 and �̄� = [𝒂 𝑗 ] ∈ R𝐽 ×𝐷 , we infer the one-one
correspondence between them by solving an EOT problem:

�̂� = arg min𝑻 ∈Π ( 1
𝐽
1𝐽 , 1

𝐽
1𝐽 ) ⟨𝑫, 𝑻 ⟩ + 𝜆⟨𝑻 , log𝑻 ⟩, (7)

where the distance matrix 𝑫 = [𝑑𝑖 𝑗 ] ∈ R𝐽 × 𝐽 contains the discrep-
ancy between each selected movie shot and each music shot. In this
study, we define its elements as

𝑑𝑖 𝑗 = ∥𝒗𝑖 − 𝒂 𝑗 ∥22︸      ︷︷      ︸
Semantic dis.

+𝜂 |𝜏𝑚𝑖 − 𝜏
𝑎
𝑗 |︸     ︷︷     ︸

Temporal dis.

, ∀𝑖, 𝑗 = 1, ..., 𝐽 . (8)

Here, for the 𝑖-th selected movie shot and the 𝑗-th music shot, the
first term in (8) indicates the semantic discrepancy between their
latent representations, while the second term in (8) indicates their
temporal discrepancy, where 𝜏𝑚

𝑖
and 𝜏𝑎

𝑗
denote the lengths of the

two shots. Typically, it is easy to synchronize the two shots when
|𝜏𝑚
𝑖
− 𝜏𝑎

𝑗
| is small. The hyperparameter 𝜂 > 0 achieves the trade-

off between the two terms. Note that, in the training phase, we
do not consider the temporal discrepancy when constructing the
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Figure 2: Visualization of the publication year distribution
and the category proportions of movies in CMTD.

𝑫𝑛 (𝜃 )’s in (5) because the aligned shots in our training data have
the same duration while those unaligned shots often have different
lengths. Introducing the temporal discrepancy would oversimplify
the learning task and weaken the supervision on our model.

After inferring the aligned shot pairs based on �̂� , we engage
in post-processing the aligned movie shots to adapt the duration
of the music shots. For each music shot, when the corresponding
movie shot exceeds its duration, we cut the movie shot to match its
duration. When the corresponding movie shot falls short on length,
we extend the movie shot by incorporating one or more adjacent
movie shots based on their probabilities (i.e., 𝝁 (𝜃∗)). Finally, we
concatenate the post-processed movie shots and take the music as
the soundtrack, composing the ultimate movie trailer.

4 THE CMTD DATASET FOR TRAINING
Implementing our IPOT learning framework needs a movie-trailer
dataset with detailed annotations (e.g., the segmentation and align-
ment information). Unfortunately, existing datasets, e.g., Large-
Scale Movie and Trailer Dataset (LSMTD) [18], Trailer Momont
Detection Dataset (TMDD) [47] and Movie Highlight Detection
Dataset (MovieLights) [11], are non-public and fail to meet our
requirement. The movies and trailers in LSMTD are not paired.
Although the movies and trailers in TMDD and MovieLights are
paired, each movie is only associated with a single trailer (and its
music). In the music-guided trailer generation task, we expect that
each movie corresponds to multiple trailers, which helps suppress
the risk of over-fitting. The above problems motivate us to build
our Comprehensive Movie-Trailer Dataset, called CMTD for short.

4.1 Data collection and annotation
As shown in Figure 2, CMTD contains 208 movies and 406 trailers.
These movies and trailers have sufficient richness and diversity in
content and year, which are categorized into 18 classes based on
their tags at IMDB.2. Each movie corresponds to one to six trailers,
roughly two trailers per movie on average. The average duration
per movie and trailer is 1.91 hours and 2.17 minutes, respectively.
We apply BaSSL [30] to segment each movie/trailer into shots and
aggregate adjacency shots in the scene level. The average shot
number and scene number per movie are 1909 and 57, respectively.

To obtain the alignment matrix automatically with high accuracy,
for each movie-trailer pair, we first obtain frame-level visual em-
beddings for the movie and the trailer by ImageBind [14]. Based on

2http://www.imdb.com/
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Figure 3: An illustration of the annotations associated with the movie "The Great Gatsby" in CMTD.

Dataset LSMTD [18] TMDD [47] MovieLights [11] CMTD
#Movie 508 150 174 208
#Trailer 34,219 150 174 406
Multi-trailer
Segments
Alignment
Metadata
Table 1: A comparison for various datasets. We use green
ticks to mark the information used for trailer generation.

the embeddings, we then apply Faiss [8, 20] to efficiently compute
the visual similarity between the trailer’s frames and the movie’s.
For each trailer frame, we can get the top-4 movie frames that most
closely resemble it. For a trailer shot having 𝐾 frames, we can se-
lect 4𝐾 most similar movie shots — each trailer frame is matched
with four movie shots where the corresponding top-4 movie frames
belong to. Among the 4𝐾 movie shots, the shot with the highest
number of occurrences is annotated as the correspondence of the
trailer shot. Applying this annotation method to all trailer shots, we
can calculate the alignment matrix 𝑻 between the movie and trailer
shots. By random sampling and manual verification, we confirm
the reliability of this annotation method.

Besides the shot-level alignment information, CMTD also pro-
vides abundant auxiliary information as metadata, including subti-
tles, synopsis, turning points annotations, and so on. In particular,
for each movie, we collect its subtitle from Subscene3 and collect its
synopsis from the movie’s Wikipedia page. Based on the synopsis,
we further annotate five turning points (i.e., the key moments in the
storyline) that define the narrative structure of the movie [34, 35].
Figure 3 illustrates the annotations associated with a movie, and
Table 1 shows the comparison among different datasets. Note that,
although we just apply the segment and alignment information in
the trailer generation task (for a fair comparison with baseline meth-
ods), the metadata in CMTD can support more applications and
thus contribute to promoting more studies of video understanding.

4.2 Data release plan and its social impacts
We plan to make our CMTD dataset public. To achieve a trade-off be-
tween the acceleration of research and the protection of intellectual
property, we are considering the following strategies.
3http://www.subscene.com/

• We plan to develop a license agreement that further stipu-
lates the use scope and limitations, including prohibiting
redistribution, commercial use, modification, etc., to ensure
the dataset is used only for non-commercial research and
academic purposes. Before accessing our data, each user is
required to submit a signed application form and provide
his/her education email, promising to obey the agreement.

• For all movies, trailers, and music, we plan to release their
embeddings and annotations, including those metadata,
such that if the users can access the raw videos, they can
easily segment and align the videos based on the anno-
tations. Additionally, for the convenience of research, we
also consider releasing movies and trailers with extremely
low resolutions and/or watermarks, preventing them from
being used for other purposes except research.

We expect CMTD to be the first publicly available movie-trailer
dataset, advancing the academic field of video understanding and
triggering more interesting and significant research work.

5 EXPERIMENTS
To demonstrate the effectiveness of our IPOT-based trailer gener-
ator, we compare it with state-of-the-art methods through both
objective and subjective evaluations. The code, demo videos, and
more experimental results are in supplementary file.

5.1 Implementation Details
5.1.1 Baselines. We take state-of-the-art trailer generation meth-
ods as baselines, including V2T [19], M2T [42], and PPBVAM [55].
When evaluating the movie shot selector learned by our method,
we also compare it with three state-of-the-art video summariza-
tion methods (i.e., VASNet [9], CLIP-It [32], and OTVS [49]) and
one commercial video summarization software Muvee [12]. For
learning-based methods, including ours, we select 200 movies from
CMTD for training and apply the remaining eight movies for evalu-
ation. Note that, because most of the baselines only release trailers
generated from the eight movies rather than their code, we select
the eight movies for a fair comparison.

5.1.2 Evaluation Metrics. For the ground truth trailer and the gen-
erated one, we can find the indices of their shots in the corre-
sponding movie and construct two index sequences, denoted as
𝐴 = {𝛼1, ..., 𝛼𝐼 } and 𝐵 = {𝛽1, ..., 𝛽𝐼 }. Therefore, when evaluating
our movie shot selector, we take three commonly used metrics:
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Category Method Movie shot selection Movie-music alignment
P@1↑ P@3↑ P@5↑ R@1↑ R@3↑ R@5↑ F1@1↑ F1@3↑ F1@5↑ P@1↑ R@1↑ F1@1↑ KL↓

VASNet [9] 0.0237 0.0725 0.1102 0.0343 0.1096 0.1698 0.0277 0.0861 0.1317 — — — —
Video Muvee [12] 0.2130 0.3245 0.3452 0.0414 0.0612 0.0690 0.0640 0.0949 0.1059 — — — —

Summary CLIP-It [32] 0.0302 0.0863 0.1468 0.0527 0.1409 0.2429 0.0378 0.1054 0.1801 — — — —
OTVS [49] 0.0637 0.1398 0.1821 0.0941 0.2157 0.2864 0.0746 0.1669 0.2193 — — — —
M2T [42] 0.0229 0.0347 0.0444 0.0188 0.0273 0.0362 0.0193 0.0285 0.0371 0.0028 0.0031 0.0029 2417.71

Trariler V2T [19] 0.0787 0.1397 0.2031 0.0396 0.0693 0.1035 0.0508 0.0891 0.1322 0.0028 0.0031 0.0029 1855.59
Generation PPBVAM [55] 0.0687 0.1339 0.1862 0.1003 0.2000 0.2729 0.0781 0.1537 0.2117 0.0019 0.0022 0.0020 2871.03

IPOT (Ours) 0.1098 0.2248 0.3064 0.1234 0.2536 0.3446 0.1161 0.2381 0.3240 0.0075 0.0081 0.0078 1696.42

Table 2: Comparisons on movie shot selection. We bold the best results and underline the second-best results.

Top-𝐾 Precision, Recall, and F1-Score, i.e., 𝑃@𝐾 = |𝐴 ∩𝐾 𝐵 | /|𝐴|,
𝑅@𝐾 = |𝐴 ∩𝐾 𝐵 | /|𝐵 |, and 𝐹1@𝐾 =

2𝑃@𝐾 ·𝑅@𝐾
𝑃@𝐾+𝑅@𝐾 , where | · | is the

cardinality of set, 𝐾 = 1, 3, 5, and 𝐴 ∩𝐾 𝐵 = {𝑖 | |𝛼𝑖 − 𝛽𝑖 | ≤ 𝐾 − 1}
counts the number of shot pairs with close enough indices.

For each trailer generator, we use P@1, R@1, F1@1, and KL-
divergence between the estimated and observed alignment matrices
to quantitatively evaluate the alignment between movie shots and
audio shots. Additionally, the statistics of trailer shots is applied to
evaluate the quality of generated trailers as well — we record the
number and average duration of trailer shots generated by each
method and compare these values with those of official trailer shots.
Besides objective measurements, we also evaluate different methods
through subjective user study.

5.1.3 Model and hyperparameter settings. The self-attention and
cross-attention modules are implemented as Transformer encoders,
each of which has one layer and two attention heads. There are lin-
ear layers both before and after the two types of attention modules.
When training our model, we apply Adam [21] with 𝛽1 = 0.9 and
𝛽2 = 0.999. The learning rate is 1e-5 and the training epoch is 500.

5.2 Quantitative and Qualitative Comparisons
Table 2 shows the performance of various methods on movie shot
selection. We can see that our IPOT-based method achieves the
best performance on most measurements. Especially in terms of
F1-Scores, our method works best in all three settings. These results
demonstrate the superiority of our method on movie shot selection
— it is more likely to select the movie shots that are used in official
trailers. In the aspect of movie-music shot alignment, we mainly
compare our method with other trailer generators. The results in
Table 2 show that our method can achieve the highest precison,
recall, and F1-score and the lowest KL-divergence, which means
that the alignment achieved by the OT plan matches better with
the ground truth than other methods. Figure 4 provides an example
comparing the generated trailers of different methods with the
official one, which visualizes the advantage of our method.

Table 3 shows the comparison on the number and average dura-
tion of trailer shots generated by various methods. The number of
shots in different trailers is distinct. Some methods choose a very
small number of shots in a trailer, such as Muvee, making these
methods achieve high precision but low recall. On the contrary,
some methods choose a massive number of trailer shots, such as
PPBVAM [55], making them dominant in recall. Our method is

Methods Test movie-1 Test movie-6
Duration (s) #Shot Duration (s) #Shot

Official Trailer 1.95±1.82 77 2.35±2.91 63
PPBVAM [55] 1.12±0.39 163 1.26±0.46 131
Muvee [12] 7.72±8.73 24 42.69±33.83 4
V2T [19] 4.06±5.72 44 2.83±2.53 58
M2T [42] 1.71±0.83 89 1.72±0.75 89
IPOT (Ours) 2.03±2.00 74 2.01±1.73 58

Table 3: Comparisons on trailer shot number and duration.

more balanced, whose number and duration of trailer shots are
close to those of official trailer shots, so that it achieves the best
performance on F1-scores.

5.3 Subjective User Study
Besides objective evaluation, we evaluate our method as well as the
baselines (i.e., V2T, M2T, PPBVAM) through subjective user studies,
comparing their user scores with those of official trailers (RT).
Following the work in [19, 55], we propose to compare different
trailers in the following five aspects:

• Character: How does the trailer include close-up shots of
the main characters in the movie?

• Rhythm: How well does the montage match the rhythm
of the background music?

• Attractiveness: How attractive is the trailer? How much
are you impressed by this trailer?

• Appropriateness: How close is the trailer to a real trailer?
• Interest: How interested do you become in watching this

movie after watching the trailer?

All trailers are processed to the same resolution (320×240). Given
the trailers generated by different methods, we establish a website
and invite 25 volunteers (7 females and 18 males) to watch them, in
which the names of the methods are anonymous and the order of
the trailers on the website is random. For each movie, a volunteer
scores the corresponding generated trailers from one (the lowest)
to seven (the highest) in each of the above five aspects, where the
score of the official trailer is set to be seven by default. Figure 5
shows the results of various methods. On average, our method
consistently outperforms the three baselines in the five aspects.
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Figure 5: The violin plot of scores for various methods in user studies. The red crosses are means and the black bars are medians.

Setting Selection Alignment
F1@1↑ F1@3↑ F1@5↑ F1@1↑ KL↓

-w/o SA 0.0280 0.0815 0.1015 0.0011 1706.50
-w/o CA 0.0317 0.0907 0.1454 0.0020 1704.48
-w/o PartialOT 0.1077 0.1536 0.1976 0.0036 1702.47
Proposed 0.1129 0.2178 0.3240 0.0078 1696.42

Table 4: Ablation study on the model components.

Note that, because the quality of the movie trailer is finally
evaluated by the audience in practice, which is highly subjective,
the above user study is necessary and can provide complementary
information compared to the objective measurements. For example,
the F1-score of M2T in movie shot selection is very low, but its
scores in the user study are better than V2T and PPBVAM. This
phenomenon implies that it may select relatively reasonable shots
that are not used in official trailers.

5.4 Ablation Study
Table 4 displays the results of some ablation experiments, demon-
strating the significance of different model components. Removal
of the self-attention (SA) mechanism from the framework results
in a significant degradation in both selection and alignment per-
formance. This may be attributed to SA’s role in establishing tem-
poral relationships among shots and enabling the integration of

contextual information. Eliminating the cross-attention (CA) mech-
anism disrupts the semantic interaction between the twomodalities,
making their alignment more challenging and leading to a notable
decrease in performance. In addition, when training the model with-
out the partial OT mechanism, i.e., replacing the 𝝁𝑛 with 𝝁𝑛 in the
lower-level problem of (5), the model performance also degrades
because of introducing unnecessary uncertainty.

6 CONCLUSION AND FUTUREWORK
In this work, we propose an inverse partial optimal transport (IPOT)
framework for music-guided trailer generation and build a compre-
hensive movie-trailer dataset to support the learning of the trailer
generator. The proposed trailer generator consists of amusic-guided
movie shot selector and a movie-music shot aligner, which can be
learned effectively by a bi-level optimization strategy. Experiments
demonstrate that our IPOT-based method outperforms state-of-the-
art trailer generation and video summarization methods on both
objective and subjective evaluation measurements.

Currently, the generated trailers are still incomparable to the
human-edited trailers in quality, as shown in Figure 5, which are
far from practical applications. In the future, we plan to further
enlarge out CMTD dataset, collecting more movies and trailers
with metadata to support the learning of the model. In addition,
we would like to utilize more side information to learn the model,
including but not limited to subtitles, turning points, and synopsis.
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