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ABSTRACT

Robot manipulation in complex scenarios usually involves multiple successful ac-
tions, which requires generative models to estimate the distribution of various
successful actions. In recent years, the diffusion model has been widely studied
in many robot manipulation tasks. However, the diffusion model experiences in-
consistent noise supervision across various action labels and denoising timesteps,
which compromises accurate action prediction. On the one hand, CIDM designs
new noise supervision to avoid interference between different successful actions,
leading to consistent denoising directions. On the other hand, CIDM unifies all
denoising timesteps, avoiding inconsistent predictions of the diffusion model over
different timesteps. Moreover, we also designed a novel radial loss to make the
model focus on denoising results rather than iterative process routes. Our method
achieves a new state-of-the-art performance on RLBench with the highest success
rate of 82.3% on a multi-view setup and 83.9% on a single-view setup.

1 INTRODUCTION

As an important research field of embodied intelligence, robot arm manipulation has a wide range
of real-world application scenarios and attracts widespread attention. Robot manipulation mainly
involves two steps, acquiring effective scene representation and predicting correct actions. Due to
the complexity of action strategies in challenging scenarios, there is an increasing interest in the
policy network, which predicts well-performed actions. Additionally, introducing more complex
tasks with a diverse set of successful actions puts an extra burden on action predicting (Jia et al.,
2024). Traditional regression models as policy networks can only predict a single action, making it
difficult to understand scenes with multiple successful actions. Benefiting from the ability to model
the distribution of multiple actions, generative models show superior performance in many robotic
manipulation tasks.

Among different generative models, the diffusion model achieves leading performance in many
visual generation tasks. So far, a series of works inspired by the visual generation, make progress
on robotic manipulation using the diffusion model. Diffusion Policy (Chi et al., 2023) finds that
diffusion formulation has a strong advantage of robust manipulation and exhibits impressive training
stability. Imitating Diffusion (Pearce et al., 2023) discover that diffusion models are suitable for
learning from sequential robotic demonstrations. READ (Oba et al., 2024) designs an asymmetric
denoising process motivated by Cold Diffusion (Bansal et al., 2024).

However, different from the high sampling density in the visual generation task, robot manipulation
has a high data acquisition cost (Cui et al., 2023). It is hard for the diffusion model to learn the
accurate probability distribution with inadequate training data. Specifically, the above difficulty of
learning an accurate diffusion model for action denoising mainly comes from two aspects:

1) Difficulty in clarifying an accurate denoising direction. Since the diffusion model may pro-
duce the same noisy action over different successful actions (Ho et al., 2020), the diffusion model
will be confused about the denoising directions, leading to inaccurate noise prediction. Especially
in the initial denoising stage, the similar initial distributions of successful actions induce severe con-
fusion in the denoising direction. For the sake of clarity, assuming a simple scenario containing
two successful actions with equal prior probability, the denoising process of the diffusion model is
shown in Figure 1(a). For the noisy action (black point) sampled from the initial noisy distribution,
the diffusion model struggles to distinguish whether the denoising is aimed at the blue successful
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(a) Direction Inconsistency

(b) Ours

Successful action A

Successful action B

Noisy distribution of A

Noisy distribution of B

Denosing step of  A

Denosing step of B

(b) Timestep Inconsistency

(c) Inconsistent timesteps

Figure 1: Difficulties of the diffusion model. (a) shows the confusion of different denoising direc-
tions in the scenario with two successful actions, and (b) shows the inconsistent noise supervision
over different timesteps.

action or the red successful action. As a result, the diffusion model faces the mutual interference of
multiple successful actions, leading to inaccurate denoised actions.

2) Difficulty in learning a time-varying denoising model. In the diffusion model, the time-varying
noise addition process forms a series of time-varying distributions of noisy actions. In order to gen-
erate accurate actions through iterative denoising, the diffusion model needs to learn the denoising
ability over all timesteps. As shown in Figure 1(b), for the specific noisy action (black point), the
noises supervision signals (blue arrows) are inconsistent at different timesteps. The temporal in-
consistency of the diffusion model increases the difficulty of iterative denoising, which reduces the
accuracy of denoised actions from a practical perspective.

To address the above difficulties, we hope to build a more consistent denoising process, through
which all noisy actions in the action space could be correctly denoised. As low-dimension action
space is easy to cover by action samples, different from image generation space (Section A.1 in
Appendix), robot manipulation prefers to sample initial actions over the entire action space, rather
than restricted to the standard Gaussian distribution. For example, 3D Diffuser Actor (Ke et al.,
2024) already samples the initial noisy action from a Gaussian distribution with a non-zero mean
and achieves better training results. Based on the flexibility of initial action distributions, it becomes
feasible to design a more consistent denoising process.

In this paper, we propose a novel CIDM to predict more accurate denoised actions in multiple tasks.
For a specific scenario, CIDM establishes a denoising field in the action space, which gives noise
prediction for arbitrary noisy action. On the one hand, we design a more consistent denoising field
in action space, which supplies noise supervision with clear directions during training. On the other
hand, we train the CIDM in a time-invariant fashion to ensure the consistency of noise predictions
over different timesteps, avoiding the difficulty of learning a time-varying representation. Addition-
ally, We also propose a novel radial loss to pay more attention to the action samples with little noise,
which enables the iterative denoising process to converge more accurately. Our contributions can be
summarized as follows:

• Through theoretical analysis, we identify the shortcomings of the diffusion model in the
action space and gain inspiration for iterative denoising.

• We design a consistent iterative denoising model for robot manipulation, which builds the
denoising field with clear denoising directions and temporal consistency.

• We propose a new radial loss function to emphasize action samples with small noises and
achieve a more robust iterative denoising process.

• We evaluate our method on RLBench tasks, it achieves state-of-the-art performance with
the highest average success rate. We also verify the effectiveness of our components
through ablation experiments.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Diffusion model. Through the iterative denoising process, early diffusion models (Ho et al., 2020;
Song et al., 2021a) enable diverse and high-quality visual generation. Since the diffusion process
could be modeled as a stochastic differential equation (Song et al., 2021b), the continuous diffusion
models (Dockhorn et al., 2022; Jolicoeur-Martineau et al., 2021) achieve more efficient generation
with fewer steps. The widely-regarded stable diffusion adopts a latent space (Rombach et al., 2022;
Vahdat et al., 2021) to achieve computational efficiency, while the lower bound on the dimension
of the latent space is still limited by the need to decode images. In the last few years, more than
speeding up the denoising process, recent work has also provided a more in-depth analysis of diffu-
sion models. Cold Diffusion (Bansal et al., 2024) designs a more robust iteration to revert arbitrary
degradation. Inversion by Direct Iteration (Delbracio & Milanfar, 2023) pursues a simpler form
to get rid of the limitations of traditional diffusion. Some recent works Lin et al. (2024); Zhang
et al. (2024) have noticed and attempted to address the subtle differences in sampling distributions
between training and inference, which were previously ignored. Research on a few samples (Wu
et al., 2024b) is done through fine-tuning rather than complete retraining, which also reflects the
dependence of diffusion models on sufficient training data.

Diffusion model in robotic manipulation. In recent years, a series of works have verified the po-
tential of diffusion models in robot manipulation. Different from using diffusion models to generate
more visual scene information (Wu et al., 2024a), the potential of diffusion models to predict actions
has also been explored. Diffusion Policy (Chi et al., 2023) successfully models the probability of
trajectory sequences in different tasks. 3D Diffusion Policy (Ze et al., 2024) incorporates the power
of 3D visual representations into conditional diffusion models. DNActor (Yan et al., 2024) distill
2D semantic features from foundation models, such as Stable Diffusion (Rombach et al., 2022) and
state representation on NeRF (Driess et al., 2022), to a 3D space in its pretrain phase. With the
continuous improvement of diffusion models in the field of visual generation, works are designing
new diffusion paradigms in robotic manipulation. Hierarchical Diffusion Policy (Ma et al., 2024)
adds a new robot kinematic constraint on the diffusion models. READ (Oba et al., 2024) preserves
the kinematic feasibility of the generated action via forward diffusion in a low-dimensional latent
space, while using cold diffusion to achieve high-resolution action via back diffusion in the original
task space. These methods inspire us to enhance the diffusion model for generating actions that
align with the characteristics of robot manipulation.

3 ITERATIVE CONSISTENT DENOISING MODEL

To provide a clearer explanation of the background and our method, this section is organized as
follows: (1) We start by introducing notations and analyzing existing difficulties in the Preliminaries.
(2) Then we introduce the Overview of the consistent iterative denoising model (CIDM). (3) Finally,
we analyze the rationality of the two main components of CIDM: Consistent Denoising Field and
Radial Loss Function.

3.1 PRELIMINARIES

Robot manipulation. The key-frame robot manipulation is described by a sparse sequence of the
robot trajectory and corresponding scene information x, which contains multi-view RGB-D images,
the text instruction, and the current robot state. As parallel gripper robot arms interact with the
environment through the end effector, we use end-effort posture y to guide the action of the robot
arm, which includes the translation, the rotation, and the binary opening state of the gripper. Due
to the opening state containing little location information, only the translations and the rotations are
input as noisy actions. In the successful demonstrations for training, each scene x corresponds to a
label action ŷ, which is one of the successful actions {ŷi}ki=1.

Itervatively denoising process. The diffusion model is a typical iterative denoising method, which
has been widely used in robot manipulation. During the training of the diffusion model with timestep
t ∈ {1, 2, ..., N}, the noise addition is as the following formula:

yt = αtŷ +
√

1− α2
t ε , ε ∼ N (0, I), (1)
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where the action noise ε is predicted by the diffusion model εθ(x, y, t) with learnable parameters θ.
During inference, the diffusion model randomly samples a noisy action yN . After denoising for N
steps, the diffusion model produces the denoised action y0.

Difficulties of diffusion. Since successful actions {ŷi}ki=1 usually have the same prior probability,
the noisy distribution can be expressed as:

pt(yt) =

k∑
i=1

pt(yt|ŷi)p(ŷi) =
1

k

k∑
i=1

N (yt;αtŷ
i,
√
1− α2

t εt). (2)

When the scene information x and denoising timestep t are determined, the optimization of the
diffusion model εθ(x, y, t) is as follows (Song & Ermon, 2019):

θ = argmin
θ

Ept(yt|ŷ)p(ŷ)[λ(t)∥∇yt
log pt(yt|ŷ)− εθ(x, yt, t)∥22]. (3)

After eliminating the effects of specific successful action ŷ, the optimization process of the diffusion
model can also be expressed as follows:

θ = argmin
θ

Ept(yt)[λ(t)∥∇yt
log pt(yt)− εθ(x, yt, t)∥22]. (4)

Therefore, εθ(x, yt, t) learns to represent the score function ∇yt log pt(yt), which is independent
of specific successful action ŷ. For different noisy actions yt, the diffusion model constructs a
denoising field in the action space, which is ideally equivalent to ∇yt log pt(yt).

The first problem is that the score function ∇yt
log pt(yt) is biased as a denoising field. The t-th

denoising is towards the actions with zero noise ∇yt
log pt(yt) = 0, which has the local maximum

probability in distribution pt(y) and satisfies the following condition:

dpt(yt)

dyt
= pt(yt)∇yt

log pt(yt) = 0. (5)

However, since pt(yt) is a mixed Gaussian distribution, the action αtŷ
i are not the local maximum

probability in pt(yt):

dpt(yt)

dyt

∣∣∣∣
yt=αtŷj

=

[
1

k

k∑
i=1

N (yt;αtŷ
i,
√
1− α2

t εt)

]′

yt=αtŷj

=
1

k

k∑
i=1
i̸=j

[
N (yt;αtŷ

i,
√

1− α2
t εt)

]′
yt=αtŷj

̸= 0.

(6)

Furthermore, interference between successful actions will be more severe at the initial denoising
stage, leading to a combination of all successful actions 1

k

∑k
i=1 αN ŷi (Section A.2 in Appendix).

Another problem comes from the time-varying characteristic of the diffusion model. When a fixed
scenario x and successful action ŷ are selected, the ideal noise prediction for the same noisy action
y changes over timesteps t:

εθ(x, y, t) =
y − αtŷ√
1− α2

t

. (7)

This burden of simultaneously modeling probability distributions over all timesteps affects the ac-
curacy of the diffusion model.

3.2 OVERVIEW

In text-guided robotic manipulation, the robot needs to interact with the environment according to
the text instruction. Our framework consists of a multi-modal encoder and a time-invariant denoising
network to predict noise in an iterative process.

We adopt the CLIP image encoder and text encoder to extract features of visual observations and
text instructions respectively. The scene features are obtained through the multi-modal encoder with
pretrained parameters as follows:

Fx = Encoder(x), (8)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Successful Actions

Denoising Network

Noise 
prediction

Noisy action Noise label

(a) Training

Extracted 

features

Denoising Field

Sampling

Action
Denoising Network

(b) Inference

Denoising ExamplesDenoising Field

O
v

er
al

l 

O
p
ti

m
iz

at
io

n

Noise 
prediction

Scene ObservationScene Observation

Encoder

RGB-D Images

Text Instruction

Robot State

“Stack cyan blocks”

Radial Loss

LabelLabel

Figure 2: The pipeline of CIDM. CIDM builds a time-invariant denoising field ϵx(y; ŷ) for training.
After training on multiple (x, ŷ) pairs, the denoising network learns to construct a ŷ-independent
denoising field ϵx(y) for inference.

where x denotes scene information. Then, the multi-modal feature Fx together with a noisy action
y are fed into the time-invariant denoising network ϵθ to predict the action noise ϵ:

ϵ = ϵθ(Fx, y), (9)

where θ denotes the learnable parameters.

Training. As shown in Figure 2(a), we design a time-invariant denoising field ϵx(y; ŷ), which is
conditioned on successful action ŷ in the scene x. For noisy action y, we sample noisy supervisions
from the denoised field ϵx(y; ŷ). The input of the denoising network ϵθ contains the encoded features
Fx and the noisy action y. For specific training data pair (x, ŷ), the denoising network ϵθ(Fx, y) are
optimized towards ϵx(y; ŷ). Through the guidance of overall loss on all training pairs, the denoising
network learns to represent different scenes x as the following denoising field:

ϵθ(Fx, y) → ϵx(y), (10)

where the denoising field ϵx(y) is independent with specific successful action ŷ and could achieve a
correct denoising.

Inference. The iterative denoising process of CIDM is shown in Figure 2(b), where the scene
encoding is omitted. First, we randomly sample the initial action yN from the action space. Then,
we iteratively denoise the action through the denoising network as follows:

yt−1 = yt − ϵθ(Fx, yt), t ∈ {1, 2, ..., N}, (11)

where ϵθ(Fx, yt) learns to represent the denoising field ϵx(y). After iterative denoising for N steps,
our CIDM gains accurate action prediction y0.

3.3 CONSISTENT DENOISING FIELD

As CIDM relies on the denoising network ϵθ(Fx, y) for iterative denoising, it is very important to
learn from a reasonable denoising field ϵx(y). In an ideal time-invariant denoising field, arbitrary
actions y in the action space can reach a successful action within finite steps of denoising. Since
iterative denoising results in different successful actions, we divide the action space into distinct
regions, each region corresponding to a specific successful action. The reasonable denoising field
ϵx(y) as described above complies with two conditions:

(1) Since the reasonable denoising field always makes noisy action closer to its target successful
action, there must be a neighborhood of ŷ where actions reach ŷ through a single-step denoising,
expressed as follows:

∃ c<0,∀ ∥y − ŷ∥2<c, ϵx(y) = y − ŷ. (12)
(2) On the boundaries that separate different regions in the action space, the noise prediction cannot
point to either side. To achieve the best symmetry, we set ϵx(y) = 0 with y on the boundaries.
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Actually, the noise supervision of the denoising network is ϵx(y; ŷ) during training. To finally learn
a reasonable denoising field ϵx(y), we design a consistent ϵx(y; ŷ). In the scenario with a single
successful action, ϵx(y; ŷ) equals to ϵx(y). Therefore, the denoising field during training has a
similar requirement to Equ. (12):

∃ c<0,∀ ∥y − ŷ∥2<c, ϵx(y; ŷ) = y − ŷ. (13)

In the scenario with multiple successful actions, ϵx(y; ŷj) is supposed to have a small difference
from ϵx(y) in regions corresponding to {ŷi}i ̸=j . To satisfy ϵx(y) = 0 on the boundaries, a simple
idea is to have limited ∥ϵx(y; ŷj)∥2 as y moves away from ŷj . Considering the above requirements,
we design a new denoising field during training as follows:

ϵx(y; ŷ) =

{
y − ŷ for ∥y − ŷ∥2 < c ,

c(y − ŷ)/∥y − ŷ∥2 for ∥y − ŷ∥2 ≥ c ,
(14)

where hyperparameter c is smaller than the distance between two successful actions.

By training on all (x, ŷ) pairs, the denoising network ϵθ(Fx, y) learns to predict noise without de-
pendence on specific ŷ. Unlike the diffusion model, which converges to αtŷ at timestep t, our CIDM
converges to ŷ consistently over all timesteps. Due to the unification of our denoising fields over
different timesteps, the denoised field ϵx(y) could be more accurately predicted by the denoising
network ϵθ(Fx, y). Consequently, we achieve accurate iterative denoising during inference based on
better noise prediction.

3.4 RADIAL LOSS FUNCTION

As the design of the ϵx(y; ŷ) during training is only necessary but not sufficient to learn a reasonable
ϵx(y), we design the radial loss function L to optimize the denoising network ϵθ(Fx, y). Essentially,
the optimization of the denoising network on all training data is as follows:

θ = argmin
θ

Ep(y|ŷ)p(x,ŷ)L
(
ϵθ(Fx, y), ϵx(y; ŷ)

)
. (15)

Assuming that the denoising network has sufficient fitting ability, ϵθ(Fx, y) is supposed to represent
the target denoising field ϵx(y) expressed as follows:

ϵx(y) = argmin
ϵ

Ep(y|ŷ)p(x,ŷ)L
(
ϵ, ϵx(y; ŷ)

)
. (16)

Our radial loss function L should make ϵx(y) close to ϵx(y; ŷ
j) when y is close to ŷj . In addition,

a small noise prediction error is acceptable for actions requiring multi-step denoising. Therefore,
when noisy action y gets closer to successful actions {ŷi}ki=1, the loss function should pay more
attention to it. Based on the above perceptions, we designed a radial loss function as follows:

L(y, ŷ) = δ(∥y − ŷ∥2) L1

(
ϵθ(Fx, y), ϵx(y; ŷ)

)
, (17)

where L1 denotes the L1 loss function and δ(·) denotes the radial weight as follows:

δ(r) = min(1/
√
r, 10). (18)

The δ(r) ensures that small radial distance r = ∥y− ŷ∥2 corresponds to a large weight in the overall
loss. We set an upper bound of 10 for δ to avoid excessive loss, which leads to unstable training.
Compared with L2 loss, the gradient of L1 loss does not increase with a larger prediction error. The
L1 loss makes the target denoising field ϵx(y) focus on specific successful action corresponding to
y, instead of being affected by all successful actions.

The target denoised field ϵx(y) obtains good properties through the radial loss function. On the
one hand, ϵx(y) can also accurately denoise in a single step when y is close to a successful action
ŷ (Section A.3 in Appendix). On the other hand, ϵx(y) enables the correct denoising of noisy
actions that are far from successful actions. Therefore, our radial loss helps to learn an accurate and
consistent denoising process.
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Figure 3: List of 14 tasks. These challenging tasks are highly representative.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset and simulation. We evaluate our CIDM on a multi-task manipulation benchmark devel-
oped in RLBench (James et al., 2020). We use 18 distinct tasks, each comprising 150 demonstra-
tions, with 14 of them illustrated in Figure 3. Each task includes various text instructions, which
feature between 2 to 60 variations. These variations consist of several types, such as variations in
position and color. The demonstrations are collected in a simulation environment built by Cop-
peliaSim (Rohmer et al., 2013). The 256 × 256 RGB-D images in demonstrations are captured by
four noiseless cameras positioned at the front, left shoulder, right shoulder, and wrist of the robot.
In addition, we verify our performance in the simulation environment.

Training and evaluation details. Our CIDM is trained on 4 NVIDIA 3090Ti 10GB GPUs for 60K
steps with a cosine learning rate decay schedule. We adopt a batch size of 32 and initialize the
learning rate to 10−4. Among the 150 pre-generated demonstrations, 100 are used for training, 25
for validation, and 25 for testing. During training, we prefer to sample points close to successful
actions. We evaluate CIDM in both multi-view and single-view settings. As the action planner in
the simulation environment has a certain degree of randomness, we evaluate each task four times
and take the average success probability as the performance metric.

Baselines. In text-guided robot manipulation, we compare CIDM with the existing baselines, which
have made significant advancements and achieved excellent performance. The following work has
improved scene representation methods in robotic manipulation: PolarNet (Chen et al., 2023), Hive-
Former (Guhur et al., 2023), PerAct (Shridhar et al., 2023), Act3D (Gervet et al., 2023), RVT (Goyal
et al., 2023). Additionally, RVT2 (Goyal et al., 2024) using action-value graphs and 3D Diffuser Ac-
tor Ke et al. (2024) using the diffusion model make progress in modeling multiple successful actions.

4.2 MAIN RESULTS

Following the setting of PerAct (Shridhar et al., 2023), we conduct experiments on 18 tasks with
4 camera views. As shown in Table 1, our CIDM achieves the sota performance among existing
methods, boasting the highest average success rate of 82.3% and the best average ranking of 2.0
across all tasks. Specifically, our CIDM secures the best performance on 7 tasks and the suboptimal
performance on 7 tasks. Moreover, compared with the diffusion-based model 3D Diffuser Actor,
CIDM improves performance on tasks with multiple successful actions. Performance degradation
on some tasks is caused by multi-task training, where success rates fluctuate to some extent.

Following the setting of GNFactor (Ze et al., 2023), we also conduct experiments on 10 tasks (a
subset of the 18 tasks) with a single view. As shown in Table 2, our CIDM achieves the highest
average success rate of 83.9%. Significant performance improvements are achieved by CIDM on 5
tasks, including meat off grill, turn tap, put in drawer, push buttons, stack blocks. In particular, we
significantly improved performance on the most difficult task stack blocks.
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Table 1: Evaluation on RLBench with multiple camera views. Our approach achieved the highest
average task success rate. Black bold fonts indicate the best performance and underline indicate
suboptimal performance for each column.

Models
Avg.

Success.
Avg.
Rank.

Place
Cups

Stack
Cups

Sort
Shape

Push
Buttons

Stack
Blocks

Put in
Cupboard

Slide
Block

Meat off
Grill

PolarNet 46.4 6.4 0 8 12 96 4 12 56 100
PerAct 49.4 6.2 2.4 2.4 16.8 92.8 26.4 28 74 70.4

HiveFormer 45 6.6 0 0 8 84 8 68 64 100
Act3D 65 4.4 3 9 8 99 12 51 93 94
RVT 62.9 4.6 4 26.4 36 100 28.8 49.6 81.6 88
RVT2 81.4 2.4 38 69 35 100 80 66 92 99

3D Diffuser Actor 81.3 2.4 24 47.2 44 98.4 68.3 85.6 97.6 96.8
CIDM (Ours) 82.3 2.0 32 53 48 98 69 76 100 98

Models
Open

Drawer
Close

Jar
Place
Wine

Screw
Bulb

Put in
Drawer

Put in
Safe

Drag
Stick

Insert
Peg

Sweep to
Dustpan

Turn
Tap

PolarNet 84 36 40 44 32 84 92 4 52 80
PerAct 88 55.2 44.8 17.6 51.2 84 89.6 5.6 52 88

HiveFormer 52 52 80 8 68 76 76 0 28 80
Act3D 93 92 80 47 90 95 92 27 92 94
RVT 71.2 52 91 48 88 91.2 99.8 11.2 72 93.6
RVT2 74 100 95 88 96 96 99 40 100 99

3D Diffuser Actor 89.6 96 93.6 82.4 96 97.6 100 65.6 84 99.2
CIDM (Ours) 93 96 96 80 96 100 100 54 97 97

Table 2: Evaluation on RLBench with single camera view. We report success rates on 10 RL-
Bench with only the front camera view.

Models
Avg.

Success.
close
jar

open
drawer

sweep to
dustpan

meat off
grill

turn
tap

slide
block

put in
drawer

drag
stick

push
buttons

stack
blocks

GNFactor 31.7 25.3 76.0 28.0 57.3 50.7 20.0 0.0 37.3 18.7 4.0
Act3D 65.3 52.0 84.0 80 66.7 64.0 100.0 54.7 86.7 64.0 0.0

3D Diffuser Actor 78.4 82.7 89.3 94.7 88.0 80.0 92.0 77.3 98.7 69.3 12.0
CIDM (Ours) 83.9 78 88 98 92 85 90 91 100 96 21

To illustrate the advantages of our method more vividly, we visualize the iterative denoising process
in a specific scenario. As shown in Figure 4, the robot arm was ordered to stack two red blocks, and
the coordinates of red blocks are marked with red triangles in the desktop coordinate system. We
sample initial actions in the desktop flat and visualize their positions during iterative denoising. By
comparing the coordinates of the denoised actions and the red triangles, we divide the noisy actions
into correct denoising (blue points) and incorrect denoising (gray points). Although many initial
actions are incorrectly denoised through the diffusion-based model (Ke et al., 2024), our CIDM
exhibits greater robustness to different initial actions, owing to the spatial and temporal consistency
of the designed denoising field. The robot actions are visualized in Appendix A.4.

4.3 ABLATIONS AND ANALYSES

In this section, We conduct a series of ablation studies to assess the effectiveness of the different
components in our proposed method. Based on the results of the ablation experiments, we provide
a brief analysis of the underlying reasons.

Ablation on sampling strategy. Similar to the diffusion model, we use a central sampling manner
to get noisy actions during training, where noisy actions y close to successful action have a higher
probability of being sampled. In row 2, we utilize the uniform distribution in action space to sample
noisy actions. Since central sampling focuses more on successful actions, it gains an improvement
of 7.3% success rate, emphasizing the importance of small noise actions.
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Test Scene
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Figure 4: Visualization of the task to stack two red blocks. Red triangles denote red blocks. Blue
points are denoised into successful actions and gray points are denoised into wrong actions.

Table 3: Some Ablations on RLBench
Row
ID

Central
Sampling

Consistent
Denoising Field

Radial
Loss

Avg.
Success.

Avg. Success.
diff. wrt. base

1 ✓ ✓ ✓ 82.3 0
2 ✗ ✓ ✓ 75.0 -7.3
3 ✓ ✗ ✓ 79.5 -2.8
4 ✓ ✓ ✗ 79.3 -3.0

Ablation on denoising field. To variation the efficiency of our denoising field during training,
we use the denoising field εx(y; ŷ) = y − ŷ of the diffusion model in row 3, comparing with
the consistent denoising field ϵx(y; ŷ) in row 1. From row 1 and row 3, our proposed consistent
denoising field achieves a success rate improvement of 2.8% in multiple tasks.

Ablation on loss function. As shown in Table 3, we conduct the ablation experiment to verify the
effect of the radial loss function. In row 1, the radial loss sets higher weights to noisy actions with
smaller noise. In row 4, we use the L2 loss function, the same as the diffusion model. From row
1 and row 4, the radial loss obtains a success rate improvement of 3.0% by focusing more on the
neighborhood of successful actions.

Table 4: Ablation on temporal consistency
Time Coefficient αN 0.01 0.5 1
Avg. Success Rate 74.8 80.8 82.0

Ablation on time variability. To analyze the importance of temporal consistency, we used a time-
variable denoising field ϵx(y;αtŷ) during training with the time coefficient αt. Following the time-
varying denoising process of the diffusion method, time coefficient αt decreases from α0 = 1− to
αN . With the same steps N = 100, the smaller αN corresponds to the larger time variation, which
is more difficult for the denoising network to represent. As shown in Table 4, the effectiveness of
temporal consistency with αN = 1 has been verified by its leading performance.

5 CONCLUSION

In this paper, we propose the consistent iterative denoising model (CIDM) for text-guided robot
manipulation. We build a more consistent denoising field than the diffusion model, by designing
noise supervision and unifying the timesteps during training. Moreover, utilizing the radial loss,
CIDM avoids interference from other successful actions and obtains accurate denoised actions. On
diverse simulated robot manipulation tasks, CIDM achieves state-of-the-art performance in both
multi-view and single-view settings. Ablation studies are conducted on various components within
CIDM, providing further clarity on their efficiency.

9
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A APPENDIX

A.1 GAP BETWEEN ROBOT MANIPULATION AND IMAGE GENERATION

In the iterative denoising process for robot manipulation and image generation, the denoising net-
work needs to denoise the samples in an Euclidean space. Due to the powerful representation ability
of deep networks, we need a large number of discrete samples during training. If the Euclidean
space is discretized into a point set with a sufficiently small distance ν, the continuity of the network
ensures that represent on the discrete point set {x} could be approximately interpolated into the
continuous space:

f(x+ γν) = (1− γ)f(x) + γf(x+ ν) + o(ν), (19)
where x, x+ν ∈ {x}, and o(ν) denotes the higher-order infinitesimals and 0 < γ < 1. As ν takes a
sufficiently small value, o(ν) becomes negligible. Since the value range of images and robot actions
is bounded, their space can be normalized as follows:

x = [x(1), x(2), ..., x(n)] ∈ Rn, ∥x(i)∥ ≤ 1. (20)

By gridding we can cover the sampling space with as few points as possible, the approximate number
of points is estimated as

(
2
ν

)n
. Since common image spaces correspond to n > 104, the denoising

network can’t fit the denoising field at so many points simultaneously. Thanks to the low-dimension
action space with n = 9, we can train the denoising network on the entire action space.

A.2 DENOISING ON INITIAL NOISY ACTIONS

During the training of the diffusion model, it is necessary to sample successful actions ŷ, denoising
timesteps t, and noise ε. The complete loss function in terms of conditional probability is expressed
as follows:

loss = Et,pt(y|ŷ),p(x,ŷ)[λ(t)∥∇x log pt(y|ŷ)− εθ(x, y, t)∥22]. (21)
When the network εθ(y, t) can well fit the score function at all times, it can be considered that there
is no significant conflict between the optimization of model parameters at different times. So that
we can break down the parameter optimization at a specific timestep t and scene x:

loss(t,x) = λ(t)Ept(y|ŷ),px(ŷ)∥∇x log pt(y|ŷ)− εθ(x, y, t)∥22. (22)

According to the DDPM noise addition in Equ. (1)and the discrete prior distribution of successful
actions px(ŷi) = 1

k , i ∈ {1, 2, ..., k}, we can further obtain :

loss(t,x) =
λ(t)

k

k∑
i=1

∫
y

pt(y|ŷi)∥∇x log pt(y|ŷi)− εθ(x, y, t)∥22dy (23)

In actual training, we will discretely sample noisy action {yj}, j ∈ {1, 2, ...,M} on distribution
pt(y|ŷi). In particular, when t → N , all conditional distributions pt(y|ŷi) are approximately the
same, leading to following formula with t = N :

loss(N,x) =
λ(N)

k

k∑
i=1

M∑
j=1

∥∇x log pN (yj |ŷi)− εθ(x, yj , N)∥22 (24)

=
λ(N)

k

M∑
j=1

(

k∑
i=1

∥∇x log pN (yj |ŷi)− εθ(x, yj , N)∥22). (25)

Assuming the model fitting ability is strong enough, we can get the following formula:

if θ̂ = argmin
θ

loss(N,x), (26)

s.t. εθ̂(x, yj , N) = argmin
ε

k∑
i=1

∥∇x log pN (yj |ŷi)− ε∥22. (27)

The result of minimizing the loss function of the model is shown below:

εθ̂(x, yj , N) =
1

k

k∑
i=1

∇x log pN (yj |ŷi). (28)
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A.3 FURTHER ANALYSIS OF RADIAL LOSS

Combine the Equ. (16) and Equ. (17), we can get the ideal target denoising field ϵx(y) as follows:

ϵx(y) = argmin
ϵ

Ep(y|ŷ)p(x,ŷ)
[
δ(∥y − ŷ∥2)L1

(
ϵ, ϵx(y; ŷ)

)]
= argmin

ϵ
Ep(y|ŷ)p(x)

[
p(ŷ|x)δ(∥y − ŷ∥2) L1

(
ϵ, ϵx(y; ŷ)

)]
.

(29)

When scene information x and noisy action y are determined, ϵx(y) could be simplified with
p(ŷ|x) = 1

k as follows:

ϵx(y) = argmin
ϵ

1

k

k∑
i=1

δ(∥y − ŷi∥2) L1

(
ϵ, ϵx(y; ŷ

i)
)

(30)

For arbitrary successful action ŷj ∈ {ŷi}ki=1, δ(∥y − ŷj∥2) increases when y gets closer to ŷj .
Considering that the number of successful actions k < max(δ) = 10 , ϵx(y) converges to ŷj on the
neighborhood of ŷj as follows:

∃ c<0,∀ ∥y − ŷj∥2<c, ϵx(y) = ϵx(y; ŷ
j) = y − ŷj . (31)

A.4 VISUALIZATION OF ITERATIVE DENOISING

In this section, we show more visualizations of the iterative denoising process. As shown in Fig-
ure 5, some initial noisy actions lead to incorrect denoised action in the 3D Diffuser Actor with the
diffusion model. The diffusion-based model picks a blue block when requires red blocks, and an
olive block when requires green blocks. The modeling of time-varying complex noise causes the
diffusion model to ignore color differences to a certain extent.
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Figure 5: Visualization of action sequence. CIDM is less likely to denoise to wrong actions com-
pared with the diffusion-based method.
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