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ABSTRACT

Existing large pre-trained models typically map text input to text output in an
end-to-end manner, such as ChatGPT, or map a segment of text input to a hierar-
chy of action decisions, such as OpenVLA. However, humans can simultaneously
generate text and actions when receiving specific input signals. For example, a
driver can make precise driving decisions while conversing with a friend in the
passenger seat. Motivated by this observation, we consider the following ques-
tion in this work: is it possible to construct a pre-trained model that can provide
both language interaction and precise decision-making capabilities in dynamic
open scenarios. We provide a definitive answer to this question by developing a
new model architecture termed Visual Language Action model for Chatting and
Decision Making (VLA4CD), and further demonstrating its performance in chal-
lenging automonous driving tasks. We build VLA4CD on the basis of transformer-
based LLM architecture. Specifically, we leverage LoRA to fine-tune a pre-trained
LLM with data of multiple modalities covering language, visual, and action. Un-
like the existing LoRA operations used for LLM fine-tuning, we have designed
new computational modules and training cost functions for VLA4CD. These de-
signs enable VLA4CD to provide continuous-valued action decisions while out-
putting text responses. In contrast, existing LLMs can only output text responses,
and current VLA models can only output action decisions. Moreover, these VLA
models handle action data by discretizing and then tokenizing the discretized ac-
tions, a method unsuitable for complex decision-making tasks involving high-
dimensional continuous-valued action vectors, such as autonomous driving. The
extensive experimental results on the closed-loop autonomous driving platform
CARLA validate that: (1) the model construction method we proposed is effec-
tive; (2) compared to the state-of-the-art VLA model, VLA4CD can provide more
accurate real-time decision-making while retaining the text interaction capability
inherent to LLMs.

1 INTRODUCTION

Since the emergence of ChatGPT, large-scale pre-trained models, represented by large language
models (LLMs), have garnered increasing attention. LL.Ms are trained on vast amounts of text and
code data on the internet, encoding a significant amount of general knowledge about the real world.
This equips them with better generalization capabilities compared to traditional Al models, such as
in-context learning abilities and certain reasoning capabilities (through techniques such as chain-of-
thought (Wei et al., 2022))). A development trend in the field of large-scale pre-trained models is that
their application domains are expanding from tasks like dialogue and text generation to decision-
making tasks in the open physical world.

How to build large-scale pre-trained models for decision-making tasks in the open physical world?
Currently, there are three major approaches. An approach is to serialize the decision-making pro-
cess and then train a sequence model, such as the decision transformer (Chen et al.| [2021), in the
same way as processing text. This method relies on the construction of large-scale high-quality
decision-making datasets. The second approach involves adopting a hierarchical modular system
design, where the pre-trained LLM provides high-level planning, such as breaking down the target
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task into a series of subtasks and then completing each subtask by calling tools or small models
aimed at the subtasks (Chen et al., 2024; |Carta et al., 2023; [Hu et al., |2024; Zhou et al., 2024). This
approach requires manual pre-design of system modularization and the establishment of interfaces
between modules. Additionally, after the model is deployed, in addition to the latency caused by
LLM inference, it also introduces the working latency of other modules, making it unsuitable for
decision-making scenarios with high-time requirements. The last approach is to train a multimodal
visual language action model (VLA) based on LLM (Padalkar et al., [2023; |[Kim et al., [2024). Un-
like the hierarchical modular method, the VLA model can provide end-to-end decision generation,
eliminating the need for manual module design and interface design between modules.

To the best of our knowledge, existing LLM or VLA models, given an input signal (a piece of text
prompt, an image, or a video), produce outputs that are single-modal (a piece of text or an action
decision). However, we know that for us humans, we can simultaneously generate text and actions
when receiving specific input signals. For example, a driver can make precise driving decisions
while conversing with a friend in the passenger seat. Inspired by the above observations, we attempt
to answer the following question in this paper:

Is it possible to develop a pre-trained model that can provide both action decision-making and
text interaction capabilities in an end-to-end manner?

We provide a definitive answer to it by developing a new model architecture termed Visual Lan-
guage Action model for Chatting and Decision Making (VLA4CD), and further demonstrating its
performance in challenging automonous driving tasks. Like existing VLA models, VLA4CD is a
multimodal pre-trained large model developed based on the transformer architecture. However, it
has significant differences from current VLAs (such as RT-X (Brohan et al., 20225 2023)):

» The operational mechanism of VLA involves executing serialized decisions after receiv-
ing text instructions, without generating text data during the decision-making process. In
contrast, VLA4CD allows for the synchronous generation of text data during real-time
decision-making.

* Current VLA models typically handle action data by discretizing it and then tokenizing
the discrete values. This approach is not suitable for complex decision-making scenarios
such as autonomous driving, where actions are high-dimensional continuous value vectors.
Our VLA4CD processes actions directly as continuous values, eliminating the need for
discretization and making it more suitable for such scenarios.

In summary, the main contributions of this work are as follows.

* We propose a new problem setting: how to synthesize the capabilities of LLM and VLA us-
ing a single model to achieve end-to-end simultaneous action decision-making and chatting
with people.

* We present a solution to the aforementioned problem. Specifically, we propose a method
for constructing VLA4CD based on pre-trained LLM and have validated the effectiveness
and superiority of this method through extensive closed-loop autonomous driving experi-
ments on CARLA (Dosovitskiy et al.,2017)). The experimental results show that the result-
ing VLA4CD model not only outputs more accurate real-time action decisions compared
to the SOTA models but also perfectly retains real-time text-based dialogue functionality.
Our method combines several experimentally validated ideas: (1) a computational module
and cost function term for generating continuous action values; (2) an image reconstruction
loss term added in the training cost function to ensure the exploitation of rich information
from the visual modality data during text generation and decision-making processes; (3) a
label smoothing strategy to maintain dialogue capabilities and enhance decision-making.

* We will open source our model, code, and dataset after the reviewing process.

2 RELATED WORK

2.1 LLMS FOR DECISION-MAKING

Since the publication of (Brown et al. [2020), generative Pre-trained Transformer (GPT) has be-
come the most popular training paradigm for building LLMs. LLMs represented by GPT-3.5 and



Under review as a conference paper at ICLR 2025

GPT-4 exhibit significantly enhanced zero-shot generalization and reasoning capabilities compared
to previous language models (OpenAl, 2023). The release of the open-source LLaMA series models
(Touvron et al., 2023azb)) has accelerated the development of LLMs. In (Wei et al.| [2022)), a gen-
eral technique to enhance LLM reasoning capabilities, known as chain-of-thought, was proposed.
The work in (Yao et al., 2022)) proposed ReAct, which uses LLMs to generate reasoning traces
and task-specific actions in an interleaved manner, thereby achieving greater synergy between the
two. Additionally, recent works have used LLMs as components in building hierarchical modular
decision-making agents, where they are only used to generate high-level plans and do not directly
generate decisions (Ahn et al., [2022; |[Fu et al., [2023} |Carta et al., 2023} |Chen et al., 2024} [Xu et al.,
2024; Sha et al.| 2023} [Liu et al.l 2023 [Hu et al., |2024; [Zhou et al.| 2024). The VLA4CD model
proposed here can be seen as a multimodal GPT model fine-tuned for a downstream application
scenario, featured by its capability to simultaneously output action decisions and textual chatting.

2.2 VLA MODEL FOR DECISON-MAKING

The VLA model is a type of model designed to handle multimodal input of vision, language, and
action to accomplish embodied decision-making tasks. Unlike traditional LLMs that are mostly
used for constructing conversational Al represented by ChatGPT, VLA has the ability to generate
a control signal for a physical entity, e.g., a Robot, that interacts with the environment. VLA has
been widely used for instruction-following tasks, wherein it endows the agent with an ability to
understand language instructions, visually perceive the environment, and generate appropriate ac-
tions (Huang et al., [2023; |L1 et al., [2023b; [Zhen et al., 2024; [Dorka et al.). Compared to deep
reinforcement learning (RL) methods, VLA has shown a remarkable performance gain in versatil-
ity, flexibility, and generality in complex environments (Padalkar et al. [2023; [Brohan et al., 2023
et al, 2024} [Team et al.| [2024; [Li et al.| [2023c; [Bai et al., 2023} |Li et al., [2022; |2023a}; [Liu et al.,
2024; [Tan & Bansal, 2019). However, such VLA models represented by RT-X (Padalkar et al.,
2023)) and OpenVLA (Kim et al., |2024), typically discretize continuous action spaces into fixed
intervals. This action discretization raises significant limitations for them to deal with fine-grained
continuous actions that are required for capturing nuanced operations necessary for some complex
tasks. This issue is particularly pronounced in scenarios that require high precision and real-time
responsiveness, such as autonomous driving.

In our VLA4CD, we propose a technique to avoid action discretization in VLA. In addition, we
consider a new problem setting that differs from the instruction-following one. In our setting, the
agent can chat with a human and make fine-grained decisions simultaneously. We found that if we
directly use current VLA models into this setting, they perform unsatisfactorily as they tend to rely
more on the text data to generate decisions while neglecting the critical role of visual information.

3 METHODOLOGY

In this section, we present how to build VLA4CD in detail, including the model architecture and the
training procedure, with a focus on the loss designs in the last output hiddens layer. An overview of
VLAA4CD is illustrated in Figure[I] To begin with, we present the problem setting of our concern.

3.1 PROBLEM SETTING

We consider a multimodal setting similar as (Xiao et al., [2020), wherein, at each time step t,
upon the agent performs an action a;, the environment returns an observation consisting of both
visual and textual modalities, denoted by {o;,w;}. Our objective is to build a generative model
m(a, We|ot—p, We— g, Gt— g1, .-, 04, W), which can generate both high-quality action decisions and
text responses, given a sequence of historic observations and actions. Here, w,; denotes a text-formed
response to the text-formed input w,. If w; is a question, then w; can be seen as its answer given by
our model. H denotes the length of the context.

3.2 MODEL ARCHITECTURE

Our model supports three different input modalities: text, image, and numeric vector. We use Llama-
7b (Touvron et al., 2023b) as the backbone model, and encode textual inputs by its pre-trained
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Figure 1: An overview of VLA4CD framework.

embedding layers. To encode the visual inputs, we follow the standard practice used in visual
language models (VLMs) (Liu et al., [2024) and VLAs (Kim et al., 2024). Specifically, we first
segment each input image o into L patches p;,l = 1,..., L,, then train a 2D convolution network
that directly maps the patches to the vector space. In addition, to deal with the input of the action
value, we train a multi-layer perceptron (MLP) module that encodes the action values to the vector
space. Finally, We concatenate encoded embeddings of all modalities together to form a sequence
of embedded trajectory 7 at time ¢ as follows:

Tt = {(ﬁ%—HV"’ﬁf—H)r(uA]tl—Hv"'7w?—H)7at—Hv"'a(ﬁtla'~~aﬁft)a(wtla'~-vw?)}7 (1)

where pi and wg denote the embeddings of i-th patch for visual observation and j-th token for
textual observation at at time ¢, respectively.

During the inference stage, the transformer backbone in VLA4CD generates the hidden embed-
dings st ... | s/ *1 ag shown in Figure |1} then these embeddings are decoded into the outputs
of different modalities. Specifically, VLA4CD supports two different output modalities: text for
chatting and numeric vector for action-level decision making. For the chatting part, we use the
pre-trained output MLP layers and tokenizer of the Llama-7b model to generate texts. For action
decision-making, our model generates one more embedding vector after the “< EOS >, an empty
placeholder token. Unlike previous work like OpenVLA (Kim et al.|[2024) and RT-X (Brohan et al.|
2023)), in which action prediction is formalized as a token generation task by splitting the action
space into discrete action bins, we train an action head consisting of a two-layer MLP module. This
action head directly maps the output embedding to action values. We empirically find that using our
approach leads to better performance compared to discretizing action values.

3.3 TRAINING PROCEDURE

We fine-tune the transformer backbone with LoRA (Hu et al., [2021) and train the image encod-
ing module, text encoding module, action encoding, and decoding modules with an offline dataset
Dzpert, Which contains demonstrated trajectories of driving vehicles with question-answer pairs
related to this driving scenario. The training objective is to predict accurate actions for vehicle con-
trol and answer domain questions such as “Summarize the current driving scenario at a high level”.
Moreover, to encourage the model to abstract key information from the images and prevent over-
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fitting, we consider image reconstruction as an auxiliary task, adding a 2D transposed convolution
layer to reconstruct input images patches from the output last hidden embeddings s;, - - - st, as illus-
trated in Figure[I] As a result, our training loss is composed of three items, corresponding to text
generation, action prediction, and image reconstruction, respectively. Next, we describe each loss
item in detail. For ease of presentation, we denote the parameters in the auxiliary image decoder as
¢ and all other trainable parameters as 6.

Text Generation In our experiment, we found that merely replacing specific numerical values in
the translation template (Chen et al., 2024) results in minimal representational differences caused
by the sequential nature of the data, making the phenomenon of model overfitting easy to happen if
we use the conventional cross-entropy loss for text generation. Refer to Appendix for details.
To mitigate this, we use the label smoothing technique to regularize the training process (Szegedy
et al., 2016)). Specifically, the hard label for token w; is smoothed by assigning a small portion of
the probability mass to incorrect classes:

1—e€ ifk= iy
qf—{ . v @)

%—7 Otherwise,

where e is the smoothing factor and K is the number of total classes, i.e., vocabulary size. That is to
say, the loss item for text generation we finally use is:

1 i
Elanguage(e) = N Z Z qvk logp(k‘T 1a 0)5 (3)
7 k

where 771 denotes the input token sequence before position 4, used for predicting token i. N
denotes the maximum padding length to unify the input text.

Action Prediction To directly predicts continuous action values instead of discrete action bins,
we train our model with a mean square error (MSE) loss between the ground-truth action value a;
and the predicted value, as follows:
1 1 &
d 2
Eaction(a) = f Z B Z[(at - 77(7-1‘,7 0)) ] “4)
t d
where D denotes the dimension of the action space. In our experiments, the action dimension is 2,
corresponding to the acceleration and steering of the vehicle, respectively.

Image Reconstruction The visual modality data contains rich information about the states of the
environment. However, we find that, with a limited dataset, directly training the image encoder from
language and action losses is not sufficient, as it leads to information losses. Inspired by [Hafner
et al.|(2019), we consider an auxiliary image reconstruction task to introduce additional supervision
in the visual modality. Specifically, we use a 2D transposed convolution layer fy to reconstruct
each image patch from its corresponding output embedding and train the model to minimize the
pixel-wise Euclidean distance between the original and reconstructed image patches:

L
Limeee(0,6) = T > MSE(or, fo(n(0(7*),0))), ©
l

1

where o, is the input image, and 7, is the input sequence up to this patch token, and gy represents
a trainable 2D convolutional network that directly maps image patches p;, - - , p} to the language
embedding space p}, - - -, pl.

Training Loss Function In summary, our training loss function is defined as follows:
£(97 ¢) = alﬁlanguage(e) + 042£action(9) + Aﬁimage(ea ¢)7 (6)

where a1, ag, A are the weight hyperparameters of three components. In our experiments, we choose
a1 =0.1, ay = 10, and A = 0.5.

4 EXPERIMENTS

In this section, we validate through experiments on the autonomous driving simulation platform
CARLA that VLA4CD can make fine-grained action decisions while maintaining dialogue function-
ality. We also examine the impact of each loss term in our loss function design on the performance of
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Other Sensors Input_0: You can see that there is a car. It is speed, straight-line distance from you, and angle in the direction
your heading are respectively 0.0 m/s, 12.4 m, 180.0 °.You are now -0.000m laterally away from your driving route.
Question_0: What should be your next steering action?

VLA4CD_pred_0: Your next steering action should be to turn the steering wheel to the left.

Openvla_pred_0: your steering action, your steering action, your steering action, your steering action, your steering action,
your steering action, your steering action, your steering action, your steering action, your steering action, your steering
DriverGPT4_pred_0: 0000000000000000000000000000000000

VLA4CD(no-image)_pred_0: right

VLA4CD(no-language)_pred_0: - ,- ;- ;- ;- - == ;= ;=== = -

Other Sensors Input_1: You can see that there are 2 cars. Their speed, straight-line distance from you, and angle in the
direction your heading are respectively 5.07 2.4 m/s, 14.89 9.64 m, 14.18 179.72 °.You are now -0.029m laterally away
from your driving route.

Question_1: How does the detected car's speed impact your driving action?

VLA4CD_pred_1: The detected car's speed impacts your driving action because if the detected car's speed is 0.000
Openvla_pred_1: driving speed and your speed and your speed and your speed and your speed and your speed and
DriverGPT4_pred_1: 000000000000000000000000000000000

VLA4CD(no-image)_pred_1: The car's speed does not impact my driving action.

VLA4CD(no-language)_pred_1: -- - - - - - - - - - - )= ) )~ -

Figure 2: An example of the VLA4CD question answering process

VLAA4CD, as well as the quality of textual modality data in training data affects the decision-making
performance of the model.

4.1 EXPERIMENTAL SETTING

We conducted our experiments in a benchmark environment called gym-carla (Chen, [2020), which
is a third-party environment for OpenAl Gym, integrated with the closed-loop autonomous driving
simulator CARLA 0.9.10 (Dosovitskiy et al.| [2017). This experimental environment can provide
image observations and supplementary textual descriptions relevant to the target task, with high
demands on decision-making. During LoRA fine-tuning, we only fine-tuned the () projection and
V' projection modules, the fine-tuned parameters accounting for only 0.06% of Llama-7B’s whole
parameters. For more details on the hyperparameter settings for VLA4CD, parameters for the linear
mapping layer, and parameter settings in gym-carla, refer to Appendix

4.2 COMPARISON METHODS

The Behavior Cloning (BC) method performed in gym-carla (Chenl [2020) was used as a baseline.
The other methods involved for comparison include RL methods Dreamer (Hafner et all [2019)
and Forbes (Chen et al.| [2022), Decision Transformer (DT) (Chen et al.| [2021), and VLA models
OpenVLA (Kim et al.,2024) and DriverGPT4 (Xu et al., 2024).

4.3 TRAINING DATASETS

We trained all comparison methods based on an expert dataset Dcgper¢, Which is 5.69GB in size,
containing 13,761 frames. We used 90% of it as the training set and the remaining as the test set.
We evaluated these comparison methods online in the random mode of CARLA town03. Following
the work on DT (Chen et al., 2021), we investigated the performance of sequence fusion for both
single time steps and multiple time steps. We set the context length H = 1, resulting in a fusion se-
quence length of 489. This includes dividing the 128 x 128 image into 64 tokens and padding the text
sequences to a length of 424 tokens, including an empty placeholder token. However, due to compu-
tational constraints, we only explored trajectory sequences with a maximum length of 489*%4=1956
to validate performance in a longer context. We also explored whether the decision-making abil-
ity of VLA4CD is enhanced with longer context of trajectories in Appendix Additionally, we
evaluated performance across different modalities and generalization capabilities in town04. For
detailed information on the CARLA maps, refer to Appendix [A.2] All comparison methods were
tested online in the CARLA simulator. We conducted evaluations over 20 episodes, each consisting
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Score Rates for Different Prediction Methods

VLA4CD(no-language)

VLA4CD(no-image} 4

DriverGPT4

OpenVLA

vLA4CD -

0 20 40 00 80 100
Score Rate (%)

I Not Acceptable (< 3) Acceptable (3 = score < 6) s Good (= 6)
Figure 4: GPT-40 scores the answers from five methods for randomly generated inputs and question

of 1000 steps, with 200 involved vehicles, whose driving routes and met scenarios are generated in
random mode.

The training dataset D.ype,+ Was obtained from the EGADS framework 2024), which
designs RL and imitation learning-based agent with safety constraints, demonstrating excellent per-
formance in CARLA. Therefore, we select this agent as our experts. We let such experts drive
vehicles in town03 of CARLA to collect the dataset. Town03 is one complex map in CARLA,
closely resembling real urban road environments, including various complex scenarios such as tun-
nels, intersections, roundabouts, curves, and multi-turns, covering an area of 400m x 400m, with a
total road length of approximately 6km. As shown in Figure[3|(b), we used the layout of the town03
map for training. In the experimental environment for data collection and online evaluation, all ve-
hicles randomly select directions at intersections, follow randomly generated routes, slow down for
preceding vehicles, and stop when the traffic light ahead turns red.

Following (2024), we design a template

based parser that translates sensor data (such as posi-
tion and distance information, excluding vision and
lidar) into natural language descriptions, as shown
in “other sensors input” in Figures 1 and 2. For de-
tails on the templates, refer to Appendix [A.6] Note
that such “other sensors input” does not include any
action-related information from VLA4CD, such as
speed and heading angle. In this way, we can test
whether VLA4CD can leverage informative text data

to enhance the quality of action decisons. Figure 3: The (a) shows a sample view of
the simulation environment, while the (b)

presents a bird-eye view of our task scenario.

(b)

4.4 PERFORMANCE METRICS

Performance metrics for evaluating the chatting ability = We used the powerful model GPT-
40 to compare the quality of answers given by VLA4CD with baseline models.
Specifically, we first chose 50 pieces of randomly generated environment information and questions
in CARLA. Then, given a piece of environment information and a question, we let VLA4CD and
a baseline model each generate an answer. Then we used GPT-4o to score them, with a maximum
score of 10. The scoring criteria are as follows: Not Acceptable (< 3), Acceptable (3 < score < 6),
Good (> 6). Additionally, to assess the impact of the language and image components on dialogue
capabilities, we included VLA4CD (no-language) and VLA4CD (no-image), two simplified ver-
sions of VLA4CD trained by removing the loss items corresponding to text generation and image
reconstruction, respectively: Laciion +Limage» Laction +Llanguage-

Performance metrics for evaluating the decision-making ability = We deployed our trained
model on a car for use in navigating through a town. We considered commonly used metrics to
evaluate the driving performance, including Collision Rate (CR), Off-road Rate (OR), Episode Com-
pletion Rate (ER), Average Safe Driving Distance (ASD), Average Reward (AR), and Driving Score
(DS). DS is a composite indicator reflecting the overall performance of the vehicle in terms of safety,
efficiency, and compliance with traffic rules. In addition, we use the reward function f as described



Under review as a conference paper at ICLR 2025

Table 1: Evaluation results for different methods in town03 (random), H=1
Method Input DS 1 AR(f)t | ASD(m)1  ER(%)?t OR(%) | CR(%) |
BC image 20214£7.46  175.34£72.86 | 54.2146.41  9.0840.56  54.86420.04 60.00+11.23

DriverGPT4  image, text - - - - - -
Openvla image, text -13.02£4.02 -199.164+38.73 | 24.34+5.02  5.25+0.39  24.36+4.17  95.004+0.00
VLA4CD  image, text 92.78+23.75 466.80+91.66 | 71.77+£9.40 16.35+1.56  15.33+4.36  55.00+11.41

Table 2: Evaluation results for different methods in town03 (random), H=4

Method Tnput DS 1 AR(f)T | ASDm)?  ER(%)?1 OR(%) | CR(%) |
BC image 36.39+£13.37  314.66:£86.02 | 64.08£10.48 9.04+0.62 37.56+£16.44 45.00+11.41

Dreamer image -0.0340.01  -14.96+0.09 | 0.0240.01  0.224+0.01  0.00£0.00  0.0040.00
Forbes image 0.98+£1.43  21.63+21.72 | 22.84+1.00 630+0.31  18.78+£1.03  56.67+9.20
DT image 7.68+£3.24  51.97+20.33 | 23744247  9.9240.71  10.31£2.32  65.00£10.94

DriverGPT4 image, text - - - - - -
Openvla image, text  -7.84+0.67 -160.374+7.85 | 18.03+1.92  4.76+0.19  20.77+3.36  100.0040.00
VLA4CD  image, text 105.254+14.03 349.52449.75 | 59.76+ 5.04 25.02+2.57 19.93+2.11  30.00+10.51

Table 3: Evaluation the generalization for different methods in town04 (random), H=4

Method Tnput DS 4 AR(f)T | ASDmm)t  ER(%)?1 OR(%) | CR(%) |
BC image  39.22£11.64 358.79£79.59 | 63.08£9.37 8.69+0.56  5.64£1.26  60.00+11.23

Dreamer image 20.03+£0.01  -15.03+£0.07 | 0.02+0.01 0.014£0.21  0.01£0.00  0.0040.00
Forbes image 2.63+2.75  -17.374£22.98 | 19.79+£1.20 6244069 15.80+£2.74  66.704+8.75
DT image 10.66£3.26  85.58+£27.04 | 24.94+2.92 10.554+0.58 11.38+2.15 55.00+11.41

DriverGPT4  image, text - - - - - -
Openvla image, text  -6.74+0.88  -153.354+10.26 | 13.62+1.86 4.26+£0.17 15.70+2.71 100.004+0.00
VLA4CD  image, text 94.264+15.26 384.52+51.72 | 56.93+4.03 21.494+1.86 12.75+2.28 45.00+11.41

in|Chen et al.| (2019) in the AR metric for training RL baselines. This reward function scores yaw,
collisions, speeding, and lateral velocity for ego vehicle. Finally, we selected the checkpoint with
the highest DS and AR score. For details, refer to Appendix[A.4]and Appendix

4.5 EXPERIMENTAL RESULT ON CHATTING ABILITY EVALUATION

As shown in Figures 2 and 4, VLA4CD performs significantly better that others in terms of chat-
ting ability. In contrast, OpenVLA performs poorly in question-answering because it focuses solely
on optimizing the action loss. DriverGPT4 faces challenges as both tasks share the same decoder,
causing the model to misinterpret inputs as only for action prediction, making it difficult to generate
complete text. Despite having two independent loss items, the model has not effectively balanced
these two losses. Furthermore, VLA4CD (no language) shows a significant gap in conversational
ability compared to VLA4CD, while VLA4CD (no image) performs similarly to VLA4CD, high-
lighting the importance of the language loss component for enhancing chatting abilities.

4.6 EXPERIMENTAL RESULT ON DECISION-MAKING ABILITY EVALUATION

We define the - in Tables 1, 2, and 3 as a failure standard if a complete action value is not generated
within 50 seconds. As shown in Table 1, VLA4CD significantly outperforms BC and OpenVLA in
terms of DS, AR, and ASD at a single time step, while DriverGPT4 fails to generate precise action
values. VLA4CD also shows significant improvements over other methods across multiple time
steps in Table 2, indicating sustained benefits over longer durations. We evaluated these models’
generalization capability by training them on the town(03 dataset and then evaluating them online
in town04. As shown in Table 3, the primary metric DS of VLA4CD significantly exceeds that
of the other methods, showcasing its strong generalization ability. Tables 1, 2, and 3 indicate that
DriverGPT4 faces challenges in generating precise action values for real-time control commands,
highlighting the difficulties of directly generating accurate values using a detokenizer. In contrast,
OpenVLA can generate precise values in experiments but produces identical action commands,
causing vehicles to wander or spin in a place, resulting in significant penalties. Results in Tables 2
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: Other Sensors Input: You can see that
Other Sensors Input: Youseeno | there are 3 cars, their speed, their straight-
car here, and you are now - 9.583m | line distance from you, and their Angle in the
laterally away from your driving route.l  direction your heading are 4.78 2.72 4.78 m/
s, 12.67 14.29 13.89 m, 126.66 10.93 40.25
°. You are now 18.996m laterally away from
your driving route.

Other Sensors Input: You can see that
there is 1 car. It is speed, straightline
distance from you, and angle in the direction
your heading are respectively 4.63 m/s, 5.37
m, 146.55 °. You are now 1.428m laterally
away from your driving route.

Question: When do you plan to change
lanes?

% Question: None.

(o) VLAACD is driving:
\\Y7, action=[0.0318892, 0.0132653]

& Question: What is your action and why?

}

(3 VLA4CD is driving:
N action=[0.9856287, 0.0063582]

3 VLAA4CD is driving:
action=[1.2836254, -0.1297846]

s—s VLA4CD Answer: My action is to proceed
" safely with action=[<action0>, <action1>] to
maintain safe driving given the car's position

and my current state.

(@) (b) (©)

VLAACD Answer: | will change lanes at
about 50 meters ahead because there is

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: enough space in the right lane.

Figure 5: An example show on how VLA4CD smoothly engages in conversation with a human
while simultaneously making real-time action decisions during the driving process

Table 4: Ablation studies on the loss function of VLA4CD in town03 (random), H=4

Loss function Input DS 1 AR(f)? | ASD(m)T  ER(%)1  OR(%)) CR(%) |
Limage+Lianguage+Lactionvins image, text  11.57+0.00  142.8340.01 | 22714001  8.10£0.05  30.87+0.10 100.00+0.00
Limage+Laciion image, text  45.08410.88  234.36+52.21 | 39.64+ 4.03 14.13+1.71 16.68+£3.15 30.00+10.51
Lianguage+Laciion image, text  74.85+10.97  331.78+£49.88 | 50.63£4.73 18.62+1.95 15.96+2.45 25.00-£9.93

Limage+Lianguage+Lacion (0ur)  image, text  105.25+414.03  349.52+449.75 | 59.76+ 5.04 25.0242.57 19.93+2.11 30.00+10.51

and 3 demonstrated that VLA4CD also significantly outperforms DT, Dreamer, and Forbes in terms
of decision-making and model generalization.

Finally, Figure 5 illustrates how our model smoothly engages in conversation with a human while
simultaneously making real-time action decisions during the driving process.

4.7 ABLATION STUDIES ON THE LOSS FUNCTION DESIGN

As shown in Equation (6), our loss function is composed of three losses, namely action 10ss Lacgions
language 10ss Lianguage, and image 10ss Limaee. We conducted ablation studies to investigate the
effect of each loss on the performance of VLA4CD. The experiment result is shown in Table
where the action-bins 108s Laconbins denotes the action loss used by OpenVLA and RT2. They
deal with continuous valued actions by value discretization. We included VLA4CD (no-language)
and VLA4CD (no-image), two simplified versions of VLA4CD trained by using Lacion *+Limage and
Laction +Lianguage Tespectively.

On the effect of L,ciion  As shown in Table 4, if we compare the performance metrics of Lipage +
Lianguage + Laction-bins With that of Linage + Lianguage + Laction W can see a clear advantage of using
our action 1088 Lacgion OVer using Locion-bins- Lhis explains why VLA4CD outperforms VLA models
that use the type of action loss similar to L,cion-bins, @ shown in Tables 1, 2, and 3. Specifically,
from our experiments, we found that doing action discretization and tokenization as in current VLA
models lead to low training loss but bad inference performance. This is because adjacent action
intervals are represented by consecutive token IDs (e.g., 31830 and 31831), which are close in token
space. Consequently, the model tends to output the same token (31830 or 31831) in inference, while
the actual action values corresponding to them can have significant differences. In contrast, our
approach proposed to deal with continuously valued actions can avoid this phenomenon to happen.

On the effect of Lianguage As shown in Table 4, if we compare performance metrics between
Limage + Laciion (corresponding to VLA4CD (no-language)) and Limage + Lianguage + Laction (COITE-
sponding to VLA4CD), we see that including Ljanguage in the loss function significantly enhances the
quality of decision-making. As shown in Figures 2 and 4, VLA4CD (no-language) has significantly
different dialogue capabilities compared to VLA4CD, while VLA4CD (no-image) performs simi-
larly to VLA4CD. It demonstrates that Ljsnguage Plays an important role for maintaining the dialogue
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Table 5: The impact of the quality of textual modality data in training data on the decision-making
performance of VLA4CD

Input Noise ratio DS 1 AR ()1 \ ASD(m) T ER(%) T OR(%) | CR(%) |
image, text 100% -0.01£1.12 -5.10+0.00 0.00£0.00  0.30£0.00  0.00£0.00  0.00£0.00
image, text 75% 2.74+2.17 16.93+29.84 | 18.63+£1.70 7.384+0.32 16.93+2.32 55.0+11.41
image, text 50% 4.41+1.87 49.12+£12.56 | 6.10£1.34  6.35+£0.67  0.00£0.00  0.00+0.00
image, text 25% 15.58+2.49  143.70+23.54 | 23.23+£3.24 8.25+1.11 26.75+1.83 10.00+6.88
image, text 0% 93.89+29.73 336.11+86.72 | 45.424+9.53 16.68+2.50 19.05+4.96  5.00+5.00

capability. To summarize, including Ljaguage in the loss function has beneficial impacts on both
dialogue and decision-making.

On the effect of Linage As shown in Table 4, when we added Ljyage in the loss function (corre-
sponding to results of Linage + Lianguage + Laction)» all performance metrics related to decision-making
are increased in value, compared t0 Lianguage + Laction- This confirms that the Limage indeed brings
remarkable benefits for enhancing decision-making performance. We argue that this is because, dur-
ing the decision-making, doing high-quality image reconstruction can further explore and utilize the
rich information related to the current scene within the image modality data, thereby benefiting the
decision-making.

4.8 HOW THE QUALITY OF TEXTUAL MODALITY DATA IN TRAINING DATA AFFECTS THE
DECISION-MAKING PERFORMANCE OF THE MODEL?

Imagine a driver is operating a car, with a friend sitting inside the vehicle and conversing with the
driver. If this friend provides valuable reminders, such as alerting the driver to a car approaching
from the blind spot, the friend’s words would be beneficial to the driver’s decision-making. On the
contrary, if the friend’s words are irrelevant noise to the current situation, it might interfere with
the driver’s ability to make accurate decisions. Therefore, we designed a set of experiments to test
whether our model exhibits similar performance to that of human drivers in decision making. The
result is presented in Table 5. As is shown, when we add more and more noisy information unrelated
to driving scenarios into the text modality data in the training dataset, the quality of the decisions
output by our model rapidly decreases. This indicates that the performance of our model is very
similar to that of human drivers.

5 CONCLUSION

In this paper, we investigated how to develop a multimodal pre-trained model that simultaneously
achieves the dialogue function of LLM and the decision-making function of VLA. We use the au-
tonomous driving scenario as an example to explain our problem setup and model development
process. Unlike the instruction-following setup used behind VLA models, our problem setup can
be described as making decisions while conversing. In the former, text data appears in the form of
instructions before the decision-making process; in the latter, text data and decision data are inter-
woven (imagine a large pre-trained model making driving decisions while chatting with people in
the car). For the aforementioned problem setup, we provide a method for constructing a multimodal
Visual Language Action model for simultaneously Chatting and Decision making (VLA4CD). Ex-
perimental results show that, thanks to our proposed way to deal with continuous valued actions,
our design of the training cost function, and the use of label smoothing technique, our VLA4CD
model significantly outperforms the SOTA VLA model, RL, and decision transformer methods in
decision-making performance, while also possessing smooth dialogue capabilities.

VLAA4CD can be seen as a functional extension of the VLA model, while its performance depends
on the quality of the training data set. Interesting future research directions include: further testing
and validation using large-scale real-world driving datasets; and applying our approach to scenarios
beyond autonomous driving, such as home robots.

10
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A APPENDIX

A.l

In this section, we respectively introduce the model parameters of VLM4EDM, the parameters of
the custom linear layers, as well as the parameters of gym-carla and evaluation, as shown in Tables

HYPERPARAMETER SETTINGS

6,7, and 8.
Table 6: Hyperparameters
Parameter Value
batch_size 64
micro_batch_size 8
num_-epochs 3
learning_rate 3e-4
cutoff_len 424
val_set_size 0.1
save_step 25
lora_r 8
lora_alpha 16
lora_dropout 0.05
lora_target_modules {q-proj, k_proj}
Other Sensors Input_types  {obs, text}
lambda_action 10
lambda_smooth 0.1
lambda_img 0.5
horizon 1
regular_action_loss False
img_patch_size 16
Table 7: Model Parameters and Layers

Parameter/Layer Details

num_patches 64

tokenizer_vocab_size 32000

split_obs_proj
inverse_split_obs_proj
split_obs_position_embedding
text_embedding

Conv2d(3, 4096, kernel_size=16, stride=16)
ConvTranspose2d(4096, 3, kernel _size=16, stride=16)
Parameter(torch.randn(1, 64, 4096))
nn.Embedding(32000, 4096)

custom_lm_head Linear(4096, 32000, bias=False)
actor_linearl Linear(4096, 2048)
actor_linear2 Linear(2048, 1024)
actor_linear3 Linear(1024, 512)

actor_linear4 Linear(512, 256)

actor_linear5 Linear(256, 128)

actor_linear6 Linear(128, 64)

actor_linear7
reconstruction_layer
action_linear

Linear(64, 2)
Linear(4096, micro_batch_size*3*128*%128)
Linear(2, 4096)

A.2 CARLA MAPS
In order to comprehensively evaluate the performance of our EGADS, we utilized five maps in

CARLA, including town03, town04 as shown in Figure 6. Town03 is a larger town with features
of a downtown urban area. The map includes some interesting road network features such as a

14
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Table 8: gym-carla and evaluation Environment Parameters

Parameter Value
Number of Vehicles 200
Number of Walkers 0
Random Seed 1

Other Sensors Input_names lidar_noground
Display Size 400

Max Past Step 1

Time Step (dt) 0.1
Discrete Control False
Continuous Acceleration Range  [-3.0, 3.0]
Continuous Steering Range [-0.2,0.2]

Ego Vehicle Filter vehicle.lincoln*
Traffic Manager Port Random integer (2000 to 9000)
Town Map town03 or town04
Task Mode Random

Max Time per Episode 2000

Max Waypoints 12

Observation Range 32

LiDAR Bin Size 0.25

Distance Behind Ego Vehicle 12

Lane Threshold 2.0

Desired Speed 8

Max Ego Vehicle Spawn Times 200

Display Route True

PIXOR Grid Size 64

PIXOR Mode False

Predict Speed True

(a) Town03

(b) Town04

Figure 6: CARLA maps

roundabout, underpasses and overpasses. The town also includes a raised metro track and a large
building under construction. Town04 is a small town with a backdrop of snow-capped mountains
and conifers. A multi-lane road circumnavigates the town in a “figure of 8”.

A.3 IS MODEL DECISION-MAKING ABILITY ENHANCED WITH LONGER CONTEXT OF

TRAJECTORIES?

As shown in Table 9, we observed that although the context length H of input trajectories is longer,
the overall DS and AR of VLA4CD show some improvement, but the increase is not significant.
This improvement is primarily attributed to the higher route completion and lower collision rates
associated with longer time steps. According to Section 4.3, when H = 4, the sequence length

15
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Table 9: Evaluation VLA4CD longer context results for mulitmodal input in town03 (random)

Input Limage H DS T AR(f)T | ASD(m)? ER(%) 1 OR(%) | CR(%) |
image X 1 29.55+6.17  226.914+42.24 | 54.24+4.30 11.85+0.68 20.22+5.57  70.00£10.5
image X 4 22.38+4.96 155.794+31.87 | 32.45+£1.74 14.41+£0.59 15.93+2.65 40.00£11.23
text X 1 37.44410.11 248.89+52.91 | 47.37+5.43 15.63+1.98 17.02+2.71 40.00+11.24
text X 4 44.16£7.39  252.104£38.94 | 46.96+3.23 15.66+£1.06 12.86+2.45 60.00£11.23
image, text X 1 68.10£13.20 417.24+57.41 | 58.81+6.55 13.71£1.26 11.39£2.41 40.00+11.24
image, text X 4 74.85+10.97 331.78+49.88 | 50.63+4.73 18.62+1.95 15.96+2.45 25.00£9.93
image, text v 1 92.78423.75 466.80+£91.66 | 71.77£9.40 16.35+1.56 15.33+4.36 55.00+11.41
image, text v 4 105.25+14.03 349.52449.75 | 59.76+ 5.04 25.02+2.57 19.93+2.11 30.00+10.51

extends to 1956, representing a fourfold increase in sequence length. Despite this, the improvement
in DS and AR scores is not pronounced. Notably, in metrics such as AR and ADS, the performance
of H =4 is even worse than that of H = 1. This suggests that the input information might be
redundant, and excessively long trajectories could negatively impact decision-making ability.

This result highlights several key issues. First, while longer context lengths provide the model with
more historical context and information, an excessive amount of information may hinder the ability
of model to effectively filter and extract useful decision signals, leading to information redundancy.
Redundant information not only increases the computational complexity but also may distract the
attention of model, reducing its capacity to capture critical features and thereby affecting overall
decision-making. Therefore, shorter context length sequences provide more concise and precise in-
puts, facilitating quicker and more accurate judgments by the model. This indicates that the current
fusion method has limited performance improvements. |Chen et al.|(2021); [Hung et al.| (2019) sug-
gest that longer context lengths can bring more benefits for decision control, so we also consider how
to compress historical information and efficiently fuse it in the future to enhance decision-making.

A.4 REWARD FUNCTION

We use the default reward function of the Gym-Carla benchmark (Chenl [2020) to evaluate all exper-
imental methods, as follows:

f = 2007, + vjon + 1077 + 75 — 50 + 0.2r14; — 0.1 (7)

where 7. is the reward related to collision, which is set to -1 if the ego vehicle collides and 0
otherwise. vy, is the longitudinal speed of the ego vehicle. 7 is the reward related to running too
fast, which is set to —1 if it exceeds the desired speed (8 m/s here) and 0 otherwise. r, is set to —1
if the ego vehicle runs out of the lane, and 0 otherwise. « is the steering angle of the ego vehicle in
radians. 7,4 is the reward related to lateral acceleration, which is calculated by 74 = —|] - 0120”-
The last constant term is added to prevent the ego vehicle from standing still.

A.5 MEASURE PERFORMANCE METRICS

We use multiple key metrics to evaluate the performance of autonomous driving models in various
driving scenarios. Collision Rate (CR): the frequency at which the vehicle collides with obstacles
or other vehicles. This metric is critical for assessing the safety of the driving model. Outlane Rate
(OR): the rate at which the vehicle deviates from its designated lane. This metric evaluates the ability
of modes to maintain proper lane discipline. Episode Completion Rate (ER): the percentage of driv-
ing tasks or episodes that the vehicle successfully completes. Higher completion rates indicate better
task performance. Average Safe Driving Distance (ASD): the average distance driven without inci-
dents, such as collisions or off-road events. This metric highlights the capability to drive safely over
extended periods. Average Return (AR): A metric that measures the cumulative reward collected by
the vehicle during its driving tasks, often reflecting both task performance and adherence to safety
guidelines. Driving Score (DS): A comprehensive metric that reflects the overall performance of the
vehicle in terms of safety, efficiency, and compliance with traffic rules.

CR = Neotisions ,OR _ Not_road_events ER = Ncompleted,sleps (8)

bl

N, total_episodes N, total_episodes N, total _steps
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Nepisades : .
Asp = =t distance: 1o pp AR ©

]Vtotal,episodes

Where Neoliisions 18 the number of collisions during the episode, and Nigal episodes 18 the total number
of episodes in the test. Where Nogf road_events 1S the number of times the vehicle went off-road, and
Niotal_steps 18 the total number of episodes. Where distance; is the distance driven during the i-th safe
driving episode, and Ngfe episodes 18 the number of episodes without incidents (such as collisions or
off-road events). Where Ncompleted_sieps 18 the number of successfully completed steps, and Nyggal_steps
is the total number of steps in the episode. Where AR is the average reward f collected during the
episode.

A.6 THE NATURAL LANGUAGE TEMPLATE FOR TEXT INPUT

We obtained information from the CARLA environment using other sensors (such as speed sensors
and position sensors), excluding the acceleration and steering (action) of the ego vehicle). This
information is transformed into a natural language template that the VLA can understand, as shown
below:

<lateral_dis, delta_yaw, speed, vehicles_info> = <observation_vehicle_state>

<vehicles_num> = <len(vehicles_info)>

<multi_dis += str(vehicles_info[i][0])+" ", multi_yaw += str(vehicles_info[i][1])+"”, multi_speed
+= str(vehicles_info[i][2])+" ">

<if vehicles_num=1:>

<new_input="You can see that there is a car. It is speed, straight-line distance from you, and angle
in the direction your heading are respectively {multi_speed} m/s, {multi_dis} m, {multi_yaw}°.”
”You are now {lateral_dis }m laterally away from your driving route. ”>

<elif vehicles_num>1:>

<new_input="You can see that there are vehicles num cars. Their speed, straight-line distance
from you, and angle in the direction your heading are respectively {multi_speed} m/s, {multi_dis}
m, {multi_yaw}°.” ”You are now {lateral_dis}m laterally away from your driving route. ”>

<elif vehicles_num=0:>

<new_input="You see no car here, and you are now {lateral dis}m laterally away from your
driving route.” >

A.7 THE BENEFITS OF CROSS-ENTROPY LOSS AND LABEL SMOOTHING LOSS FOR VLA4CD

We found that merely replacing specific numerical values in the translation template (Chen et al.,
2024) results in minimal representational differences caused by the sequential nature of data, making
it easy for conventional cross-entropy loss to lead to overfitting in text generation tasks. As shown
in Table 10, we tested on both town03 and town04, which led to a decline in the decision-making
performance of model. Compared to cross-entropy loss, cross-entropy loss with smoothed labels
performed better. Therefore, we chose cross-entropy loss with smoothed labels as the loss for text
generation in VLA4CD in our experiments.

A.8 THE IMPACT OF TRAINING DATA-RELATED FACTORS ON THE DECISION PERFORMANCE
OF MODEL

In the multimodal ablation experiments on the VLA4CD model, as shown in Table 11, we systemat-
ically removed or replaced individual modalities to evaluate their contribution to decision-making.
The results show that models utilizing image and text fusion significantly outperform those with
only a single image or text input in terms of decision accuracy and stability. This indicates that
the text modality in our dataset provides higher-level semantic abstraction to complement visual in-
puts, thereby enhancing overall decision-making ability. In addition, as shown in Table 11, a single
text input performs better than a single image input, indicating that the information provided by the
text modality in our dataset (especially from “other sensors input”, as shown in Figure[2) is highly
beneficial for improving the decision-making ability of model.
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Table 10: We evaluated the performance of VLA4CD using smooth label loss and cross-entropy loss
functions, H=4

Lianguage Town DS 1 AR()T | ASDm)T  ER(%)? OR(%) | CR(%) |
Cross Entropy ~ town03 ~ 48.97+7.60  296.53+40.72 | 47.10+£4.87 15.3740.85 12.41+2.73 35.00410.94
Smooth Label ~town03  105.25+14.03  349.52+49.75 | 59.76+5.04 25.02£2.57 19.93+2.11 30.00+10.51
Cross Entropy  town04 ~ 66.69+£16.97  358.11+61.10 | 52.7245.44 1543£1.11 9.63+1.42  55.00+11.41
Smooth Label ~ town04 — 94.26+15.26  384.52+51.72 | 56.93+4.03 21.494+1.86 12.75+2.28 45.00+£11.41

Table 11: Evaluating the impact of different modal inputs on the decision-making of VLA4CD in
town03 (random), H=4

Input Limage DSt AR ()T ASD(m) 1 | ER(%)1 OR(%) | CR(%) |
image X 2238+4.96  155.79+31.87 32.45+1.74 | 14414059 15.93£2.65 40.00+11.23
text x 44.16+7.39  252.10+£38.94 46.96+3.23 | 15.66+1.06 12.86+2.45 60.00+11.23
image, text X 74.85+10.97  331.78+49.88  50.63+4.73 | 18.6241.95 15.96+£2.45 25.00+9.93
image, text v 105.25+£14.03 349.52449.75 59.76+5.04 | 25.02+2.57 19.93+2.11 30.00£10.51

A.9 THE NOISE CONSISTED OF INFORMATION DATASETS

The noise consisted of information completely unrelated to the current driving scenario as follow:
{”A playful puppy brings joy and laughter to our days”, "The whisper of the wind carries secrets
of the universe”, ”A hidden garden blooms with the magic of nature’s colors”, ’The aroma of fresh
coffee awakens the senses each morning”, ”A handwritten letter feels like a warm hug from afar”,
”The glimmer of fireflies creates a magical summer night”, A spontaneous adventure can lead to
unforgettable memories”, "The serenity of a quiet lake reflects the beauty of the world”, ”A gentle
touch can convey love without a single word”, “The laughter of friends is the sweetest melody of
all”, ” A warm hug is a universal language of comfort”, ”The dance of leaves in the breeze tells stories
of change”, ”A cozy fire invites stories and shared moments”, "The beauty of art inspires creativity
and self-expression”, ”A day spent volunteering fills the heart with purpose”, ”The excitement of a
new book is like embarking on a journey”, ”A delicious meal shared brings people closer together”,
”The sound of laughter can brighten even the gloomiest day”, ”A fleeting moment can hold the
weight of a thousand memories”, ”The charm of small towns lies in their simple beauty”, ”A gentle
rain nurtures the earth and inspires growth”, ”A colorful painting captures the essence of joy”,
”The peace of a mountain retreat refreshes the soul”, ”A favorite mug holds warmth and comfort
on a chilly day”, ”The rustle of leaves underfoot reminds us of nature’s rthythm”, ”A well-crafted
story has the power to transport us anywhere”, ”The thrill of discovery keeps our spirits young and
curious”, A cherished photograph holds a lifetime of memories”, "The beauty of winter blankets
the world in quiet calm”, ”A moment of kindness can change the trajectory of a day”, "The aroma
of spices fills the kitchen with warmth and love”, ”A shared joke creates bonds that laughter alone
cannot”, "The glow of a sunrise fills the heart with hope”, ”A melody can linger in the mind long
after it fades”, ”The colors of autumn leaves create a vibrant tapestry”, ”A soft pillow cradles the
head and invites sweet dreams”, "The laughter of children brings joy and light to our lives”, A
surprise visit from a friend can brighten any day”, ”The beauty of a flower garden is a celebration
of life”, ”A good book can be a loyal companion on lonely nights”, ”The embrace of nature can
heal and rejuvenate the spirit”, A treasure hunt ignites the spirit of adventure”, "The warmth of
homemade cookies fills the home with love”, A playful kitten brings joy and mischief to our lives”,

”The scent of pine trees evokes memories of the forest”, 1}

A.10 OUR DEFINED SET OF PROBLEMS

Randomly selected a question from the set of questions. = {"What are you seeing/observing?”,
”What are you paying attention to and why?”, ”Are there any traffic lights? What’s the color of the
traffic light?”, ”"What’s your current speed and steering angle?”, ”What is your action and why?”,
”Summarize the current driving scenario at a high level.”, "How are you going to drive in this sit-
uation and why?”, ”What’s the straight-line distance to the nearest car?”’, "What is the angle of the
nearest car relative to your heading?”, ”Is there any lateral deviation from your driving route?”,
”What should be your next steering action?”, “What should be your next acceleration command?”,
”Is there any moving object around you?”, “Describe the position of the car relative to your head-
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[LIRET]

ing.”, "What is your current lateral position relative to your route?”, "What would be a safe driving
action given the detected car’s details?”, ”What is the speed of the detected car?”’, "How far is the
detected car from you?”, "What angle should you adjust your steering to avoid collision?”, ”Why is
it important to note the angle of the detected car?”, "’Is the detected car in motion?”, ”What should
you be cautious of given the car’s position?”, "What action should be taken to maintain alignment
on your driving route?”’, What should you avoid in this situation to prevent collision?, ”What consid-
erations are necessary for the detected car’s speed?”, "What’s the importance of your current lateral
position in planning the next action?”, Why did you brake just now?, "What factors are influencing
your next driving decision?”, ’Is there any obstacle directly ahead?”, "How should you interpret
the car’s angle for your steering decision?”, ”What immediate adjustments are necessary for safe
driving?”, "How does the detected car’s speed impact your driving action?”’, ”What should be your
focus given the detected car’s proximity and angle?”, ”What safe action is suggested based on the
current scenario?”’, "What should you avoid in this situation to prevent collision?”, ”Is there a need
for a speed adjustment?”, "How will your steering angle change based on the detected car’s angle?”,
”What should you consider for maintaining a safe path?”, ”How would you describe the current traf-
fic conditions?”, ”What immediate action is necessary given your current lateral position?”, ”"What
factors need to be monitored to ensure safe navigation?”, “’Is the detected car influencing your path
directly?”, ”What is the priority in adjusting your speed and direction?”,” "}

A.11 FURTHER RESULTS ON VLA4CD IN ANSWERING QUESTIONS

Other Sensors Input_32: You can see that there is a car. It is speed, straight-line distance from you,
and angle in the direction your heading are respectively 2.38 m/s, 9.77 m, 179.84 °.You are now
-0.008m laterally away from your driving route.

Question_32: What would be a safe driving action given the detected car’s details?

VLA4CD _pred_32: The car is speed, straight-line distance from you

Openvla_pred_32: detected car’s from the detected car’s and the detected car’s from the detected
car’s

DriverGPT4 _pred_32: 00000000000000000000000000000000000

VLA4CD_image_pred_32: The car is speed, straight-line distance from you, and angle in the
direction your heading are respectively 2.38 m/s, 9.77 m, 179.84 °.You are now -0.008m laterally
away from your driving route.

VLAA4CD_language pred_32: - -

Other Sensors Input_33: You can see that there is a car. It is speed, straight-line distance from you,
and angle in the direction your heading are respectively 2.45 m/s, 9.73 m, 179.82 °.You are now
-0.009m laterally away from your driving route.

Question_33: What factors need to be monitored to ensure safe navigation?

VLA4CD_pred_33: You need to monitor the speed, straight-line distance from you, and angle in the
direction your heading are respectively 2.45 m/s, 9.73 m, 179.82 °.

Openvla_pred-33: monitored to safe to ensure safe and to ensure safe monitored to safe
DriverGPT4 _pred_33: 00000000000000000000000000000000000000

VLA4CD_image_pred_33: speed, straight-line distance from you, and angle in the direction your
heading are respectively 2.45 m/s, 9.73 m, 179.82 °.You are now -0.009m laterally away from your
driving route.

VLAA4CD _language pred_33: -

Other Sensors Input_34: You can see that there is a car. It is speed, straight-line distance from you,
and angle in the direction your heading are respectively 2.49 m/s, 9.69 m, 179.81 °.You are now
-0.011m laterally away from your driving route.

Question_34: What should be your next steering action?

VLA4CD _pred_34: Your next steering action should be to turn the steering wheel to the left.
Openvla_pred_34: your steering action and your next steering action and your steering action and
your steering action and your steering action and

DriverGPT4 _pred_34: 00000000000000000000000000000000000000000000000000
VLA4CD_image_pred_34: right
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VLA4CD_language _pred_34: -

Other Sensors Input_35: You can see that there is a car. It is speed, straight-line distance from you,
and angle in the direction your heading are respectively 2.47 m/s, 9.66 m, 179.79 °.You are now
-0.012m laterally away from your driving route.

Question_35: What’s the importance of your current lateral position in planning the next action?
VLA4CD _pred_35: The current lateral position is important in planning the next action because if
you are too far away from your driving route.

Openvla_pred_35: your current position in planning the next action

DriverGPT4 _pred_35: 000000000000000000000000000000000000

VLA4CD_image_pred_35: Your current lateral position is important in planning the next action
because if you don’t plan the next action, you will not be able to reach your destination.

VLA4CD _language _pred_35:

Other Sensors Input_36: You can see that there is a car. It is speed, straight-line distance from you,
and angle in the direction your heading are respectively 2.41 m/s, 9.64 m, 179.78 °.You are now
-0.014m laterally away from your driving route.

Question_36: What safe action is suggested based on the current scenario?

VLA4CD _pred_36: You can see that there is a car. It is speed, straight-line distance from you, and
angle in the direction your heading are respectively.

Openvla_pred_36: suggested based on the current safe action on the current

DriverGPT4_pred_36: 0000000000000000000000000000000000000

VLA4CD_image_pred_36: The car is speed, straight-line distance from you, and angle in the
direction your heading are respectively 2.41 m/s, 9.64 m, 179.78 °.You are now -0.014m laterally
away from your driving route.

VLAA4CD _language pred_36: - -

Other Sensors Input_37: You can see that there is a car. It is speed, straight-line distance from you,
and angle in the direction your heading are respectively 2.37 m/s, 9.63 m, 179.77 °.You are now
-0.016m laterally away from your driving route.

Question_37: Is there any lateral deviation from your driving route?

VLAA4CD _pred_37: There is no lateral deviation from your driving route.

Openvla_pred_37: driving route from your route and your route from your driving route from your
route from your

DriverGPT4 _pred_37: 0000000000000000000000000000000000000

VLA4CD_image_pred_37: Yes, there is lateral deviation from your driving route.
VLA4CD_language _pred_37: -

Input_38: You can see that there is a car. It is speed, straight-line distance from you, and angle in the
direction your heading are respectively 2.37 m/s, 9.63 m, 179.76 °.You are now -0.018m laterally
away from your driving route.

Question_38: How will your steering angle change based on the detected car’s angle?

VLA4CD _pred_38: Your steering angle will change based on the detected car’s angle.
Openvla_pred_38: your steering on the detected car’s steering

DriverGPT4 _pred_38: 000000000000000000000000000000000000000000000
VLA4CD_image_pred_38: The steering angle will change based on the detected car’s angle.

Input_39: You can see that there is a car. It is speed, straight-line distance from you, and angle in the
direction your heading are respectively 2.41 m/s, 9.63 m, 179.75 °.You are now -0.020m laterally
away from your driving route.

Question_39: Is there any moving object around you?

VLA4CD _pred_39: Yes, there is a car. It is speed, straight-line distance from you, and angle in the
direction your heading are respectively 2.

Openvla_pred_39: moving object of you and your work with your work?

DriverGPT4_pred_39: 000000000000000000000000000000000000000000000000
VLA4CD_image_pred_39: Yes, there is a car.
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VLA4CD_language pred_39: - -

Input_40: You can see that there is a car. It is speed, straight-line distance from you, and angle in the
direction your heading are respectively 2.45 m/s, 9.63 m, 179.74 °.You are now -0.022m laterally
away from your driving route.

Question_40: Is there any moving object around you?

VLA4CD _pred_40: Yes, there is a car. It is speed, straight-line distance from you, and angle in the
direction your heading are respectively 2.

Openvla_pred_40: moving object of you and your work with your work?

DriverGPT4 _pred_40: 00000000000000000000000000000000000000000000000
VLA4CD_image_pred_40: Yes, there is a car.

VLAA4CD_language pred_40: - -

Input_41: You can see that there is a car. It is speed, straight-line distance from you, and angle in the
direction your heading are respectively 2.46 m/s, 9.63 m, 179.73 °.You are now -0.024m laterally
away from your driving route.

Question_41: How does the detected car’s speed impact your driving action?

VLA4CD_pred_41: The detected car’s speed impacts your driving action because if the detected
car’s speed is faster than your driving speed

Openvla_pred_41: speed with your speed and your speed with your speed speed with your speed
with your speed with your speed with your speed with

DriverGPT4 _pred_41: 00000000000000000000000000000000000000000000000
VLA4CD_image_pred_41: The car’s speed impacts my driving action because the car’s speed is
increasing, which means that the car’s speed is getting faster

VLA4CD_language pred 41: - -

Input_42: You can see that there is a car. It is speed, straight-line distance from you, and angle in the
direction your heading are respectively 2.43 m/s, 9.63 m, 179.73 °.You are now -0.027m laterally
away from your driving route.

Question_42: What is your action and why?

VLA4CD _pred_42: My action is to turn left. I am turning left because I want to turn left.
Openvla_pred_42: ““ your action” and your action and your ““ your action” and your action and your
DriverGPT4 _pred_42: 00000000000000000000000000000000000000000000000
VLA4CD_image_pred_42: My action is straight-line distance from you, and why is because I am
going straight.

My action is straight-line distance from you, and why is because I am going straight. My action is
straight-line distance from you, and why is because I am going straight.
VLA4CD_language pred 42: - -

Input_43: You can see that there are 2 cars. Their speed, straight-line distance from you, and angle
in the direction your heading are respectively 5.07 2.4 m/s, 14.89 9.64 m, 14.18 179.72 °.You are
now -0.029m laterally away from your driving route.

Question_43: What safe action is suggested based on the current scenario?

VLA4CD_pred_43: What safe action is suggested based on the current scenario? What safe action
is suggested based on the current scenario? What safe action is suggested based

Openvla_pred_43: What safe action is based on the current? What safe action is based on the current
DriverGPT4_pred_43: 0000000000000000000000000000000000000000000000
VLA4CD_image_pred_43: straight-line distance from you, and angle in the direction your heading
are respectively 5.07 2.4 m/s, 14.89 9.64 m, 14.18 179.72 °.

VLA4CD_language pred 43: - - - - - .-

Input_44: You can see that there are 2 cars. Their speed, straight-line distance from you, and angle
in the direction your heading are respectively 4.98 2.38 m/s, 14.15 9.66 m, 14.95 179.71 °.You are
now -0.032m laterally away from your driving route.

Question_44: Is the detected car in motion?

VLA4CD _pred_44: Yes answer: No answer: Yes answer: No answer
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Openvla_pred_44: motion in the detected car in motion in the detected car in motion in the detected
car in motion in the detected car in motion in the detected car in motion in the detected car in
motion in the detected car in motion in the detected car in motion in the detected car in motion in
the detected car in motion in the

DriverGPT4 _pred_44: 00000000000000000000000000000000000000

VLA4CD_image_pred_44: Yes, the detected car is in motion.
VLA4CD_language pred_44: - -
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