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Abstract

Tabular biomedical data poses challenges in
machine learning because it is often high-
dimensional and typically low-sample-size
(HDLSS). Previous research has attempted to
address these challenges via local feature selec-
tion, but existing approaches often fail to achieve
optimal performance due to their limitation in
identifying globally important features and their
susceptibility to the co-adaptation problem. In
this paper, we propose ProtoGate, a prototype-
based neural model for feature selection on
HDLSS data. ProtoGate first selects instance-
wise features via adaptively balancing global and
local feature selection. Furthermore, ProtoGate
employs a non-parametric prototype-based
prediction mechanism to tackle the co-adaptation
problem, ensuring the feature selection results and
predictions are consistent with underlying data
clusters. We conduct comprehensive experiments
to evaluate the performance and interpretability
of ProtoGate on synthetic and real-world datasets.
The results show that ProtoGate generally out-
performs state-of-the-art methods in prediction
accuracy by a clear margin while providing high-
fidelity feature selection and explainable predic-
tions. Code is available at https://github.
com/SilenceX12138/ProtoGate.

1. Introduction
In biomedical research, tabular data is frequently collected
(Baxevanis et al., 2020; Lesk, 2019) for a wide range of ap-
plications such as detecting marker genes (Hsu et al., 2003)
and performing survival analysis (Fan et al., 2022). Clinical
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Figure 1. An overview of the proposed model. ProtoGate in-
troduces a novel disjoint in-model selection method. It balances
global and local feature selection, and makes explainable prototyp-
ical predictions. In contrast to (a), ProtoGate integrates a trainable
feature selector with a non-trainable predictor (i.e., no trainable
parameters in the predictor), which allows for disjointly learned
feature selector and predictor, thus mitigating the co-adaptation
problem. In contrast to (b), ProtoGate makes predictions with the
selected features, preserving their in-model explainability.

trials, whilst collecting large amounts of high-dimensional
data using modern high-throughput sequencing technolo-
gies, often consider a small number of patients due to prac-
tical reasons (Levin et al., 2022). The resulting tabular
datasets are thus often high-dimensional and typically low-
sample-size (HDLSS). Moreover, given the inherent hetero-
geneity of biomedical data, important features often vary
from sample to sample – even in the same dataset (Yang
et al., 2022; Yoon et al., 2018). Such scenarios have proven
challenging for current machine learning approaches, in-
cluding deep tabular models (Shwartz-Ziv & Armon, 2022;
Yang et al., 2022; Margeloiu et al., 2023a).

Prior work (Remeseiro & Bolon-Canedo, 2019; Arik &
Pfister, 2021; Chen et al., 2018; Yoon et al., 2018; Yang
et al., 2022; Yoshikawa & Iwata, 2022) has attempted to
address such challenges with local feature selection: rather
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Table 1. Model design comparison between ProtoGate and prior local feature selection methods. ProtoGate has different design
rationales to the benchmark methods: a novel learning paradigm with global-to-local feature selector and prototype-based predictor.

Methods Learning paradigms
Feature Selection Prediction

Co-adaptation
avoidanceGlobal Selector Local Selector Explainability Clustering

assumption

TabNet (Arik & Pfister, 2021)

Joint in-model selection

% " % % %

L2X (Chen et al., 2018) % " % % %

INVASE (Yoon et al., 2018) % " % % %

LSPIN (Yang et al., 2022) % " % % %

LLSPIN (Yang et al., 2022) % " " % %

REAL-X (Jethani et al., 2021) Disjoint post-hoc selection % " % % "

ProtoGate (Ours) Disjoint in-model selection " " " " "

than selecting a general subset of features across all samples,
local methods select specific subsets of features for each
sample and these subsets may vary from sample to sample.

However, existing methods still have three main limitations,
which are summarised in Table 1: (i) Neglecting globally
important features. In many real-world HDLSS tasks, even
simple models – such as MLP and Lasso – can outperform
the advanced methods (see Table 2 for more details). We
hypothesise that this is because the mainstream methods
(Figure 1(a) and Figure 1(b)) only perform local feature
selection without explicitly capturing globally important
features, provided the competitive global methods support
their existence. (ii) Low-fidelity feature selection. The se-
lected features by these methods can be uninformative even
when prediction accuracy is high. For instance, L2X (Chen
et al., 2018) achieves 96% accuracy in digit classification
on MNIST by using only one pixel as input (Jethani et al.,
2021). Although REAL-X mitigates this problem via dis-
jointly learning a predictor to prevent it from overfitting on
the selected features (Figure 1(b)), it sacrifices the in-model
explainability of selected features. (iii) Insufficient explain-
ability and inappropriate inductive bias. In the biomedical
domain, the clustering assumption, which states similar sam-
ples likely belong to the same class (Chapelle et al., 2006),
has been shown effective (Kolodner, 1992; Li et al., 2018;
Bichindaritz & Marling, 2006; Bichindaritz, 2008; Lu et al.,
2021). However, prior work may inappropriately incorpo-
rate such inductive bias. For instance, LSPIN (Yang et al.,
2022) selects similar features for similar samples, but it can-
not guarantee that samples of the same class cluster together
after selection (see Section 4.1 for more details). In this
paper, we aim to overcome these challenges by introduc-
ing a novel global-to-local method that selects accurate and
high-fidelity features with explainable predictions.

We propose ProtoGate (Figure 1(c)), a simple yet effective
feature selection method for tabular biomedical data. Our
approach is distinguished by three core concepts. Firstly,
ProtoGate selects features in a global-to-local manner to
adaptively balance global and local feature selection. Thus

ProtoGate can effectively capture both global and local in-
formation across samples. Secondly, ProtoGate elegantly
mitigates the co-adaptation problem through a unique learn-
ing paradigm for local feature selection: ProtoGate selects
features with a non-parametric predictor. The predictor is
non-trainable, and it can only evaluate whether the selected
features lead to accurate predictions, rather than jointly learn
to overfit the selected features for high classification accu-
racy. With the resistance to co-adaptation problem, Proto-
Gate can safely make predictions with the selected features.
Therefore, ProtoGate can improve the fidelity of selected
features while still preserving the in-model explainability
of selected features. Thirdly, ProtoGate encodes the cluster-
ing assumption into feature selection via prototype-based
prediction, which promotes feature selection that clusters
samples of the same class together. This design not only
confers ProtoGate an inductive bias aligned with the cluster-
ing assumption, but also the capability to make explainable
prototypical predictions. In addition, we propose a hybrid
sorting strategy to expedite the prototype-based prediction.

Contributions. More broadly, our contributions are: (i) We
present ProtoGate, a novel feature selection method for
tabular biomedical data (Section 3). The proposed method
is characterised by three novelties: a global-to-local feature
selection approach, a unique learning paradigm to tackle
co-adaptation, and a prototype-based prediction mechanism
that aligns with the clustering assumption. (ii) We show that
ProtoGate generally outperforms 14 benchmark methods
in seven biomedical classification tasks with fewer selected
features and shorter runtimes (Section 4.1). (iii) We further
show that ProtoGate can generalise well in non-biomedical
domains (Section 4.1). (iv) We conduct comprehensive
ablation studies to show that each component of ProtoGate
makes complementary contributions to the model perfor-
mance (Section 4.2). (v) We quantitatively and qualitatively
demonstrate that ProtoGate can provide robust interpretabil-
ity for the selected features and predictions (Section 4.3).
(vi) We provide an open-source implementation of
ProtoGate to facilitate future research and applications.
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2. Related Work
Local Feature Selection. Recent work attends to the het-
erogeneity across samples by selecting instance-wise fea-
tures for making predictions (Chen et al., 2018; Arik &
Pfister, 2021; Jethani et al., 2021; Yoon et al., 2018; Yang
et al., 2022; Yoshikawa & Iwata, 2022). Its main focus is
on designing differentiable optimisation to generate sparse
masks for feature selection. L2X uses mutual informa-
tion with Concrete distribution (Chen et al., 2018), and
INVASE models each feature’s mask value with indepen-
dent Bernoulli distributions (Yoon et al., 2018). Yamada
et al. (2020) propose a continuous relaxation of discrete
random variables, which was further extended to the exact
formulation by LSPIN (Yang et al., 2022). In this work, we
employ this exact formulation for computing differentiable
ℓ0-regularisation Table 1 and Appendix A show that there
have been few mechanisms to explicitly promote globally
important features in local feature selection. Instead, Proto-
Gate proposes to address the gap by adaptively balancing
global and local feature selection, leading to flexible feature
selection behaviours across different datasets.

Co-adaptation Problem. In local feature selection,
co-adaptation refers to the situation where the model
achieves high prediction accuracy with low-fidelity
features (Jethani et al., 2021; Adebayo et al., 2018; Hooker
et al., 2019; Samek et al., 2016). Jethani et al. (2021) prove
that co-adaptation stems from jointly learning a trainable
selector and a trainable predictor, where the predictor learns
to overfit on poorly selected features for high accuracy.
Post-hoc explanation methods (Figure 1(b)) address the
problem by training a local selector to explain a pre-trained
predictor. Instead, we propose to mitigate the problem via
a non-trainable predictor. In ProtoGate, the predictor has
no trainable parameters and cannot adapt to the feature
selector for high accuracy, eliminating the possibility of
co-adaptation while preserving the in-model explainability.

Prototype-based Machine Learning. Prototype-based
models (Biehl et al., 2016) in machine learning are closely
related to metric learning (Goldberger et al., 2004) and
case-based reasoning (Kolodner, 1992). They are built upon
the clustering assumption and aim to represent data through
prototypical exemplars (e.g., KNN (Fix, 1985)) or a set of
prototypical centroids (e.g., k-means (Ball & Hall, 1965))
that capture the fundamental characteristics of the data.
These core ideas parallel similar concepts from cognitive
psychology and neurosciences, and it is a pervasive
behaviour in everyday human problem-solving (Kolodner,
1992; Li et al., 2018; Bichindaritz & Marling, 2006;
Bichindaritz, 2008; Lu et al., 2021). Thus, in ProtoGate
we leverage the efficacy of prototype-based prediction for
feature selection, leading to more generally applicable
inductive biases and improved explainability in predictions.

3. Method
Figure 2 illustrates the architecture of ProtoGate. We first
describe our problem setup (Section 3.1). Then we present
the core components of ProtoGate: a global-to-local fea-
ture selection approach (Section 3.2), and a non-parametric
prototype-based prediction mechanism (Section 3.3). Fur-
thermore, we define a disjoint objective function to optimise
ProtoGate end-to-end (Section 3.4). We present the pseu-
docode for training and inference in Appendix B.

3.1. Problem Setup

We consider the classification task on tabular biomedical
data with Y classes. Let X :=

[
x(1), . . . ,x(N)

]⊤ ∈ RN×D

be the data matrix consisting of N samples x(i) ∈ RD with
D features, and let Y :=

[
y(1), . . . , y(N)

]⊤ ∈ RN×1 be the
corresponding labels. We denote x

(i)
d as the d-th feature of

the i-th sample. To simplify the notation, we assume all
samples in X are used for training. We mainly consider
the HDLSS datasets, where the number of features is much
greater than the number of samples (i.e., D ≫ N ).

3.2. Global-to-local Feature Selection

Our proposed global-to-local feature selection is imple-
mented via a gating network SW:RD→ [0, 1]D that sequen-
tially performs soft global selection and local selection (Fig-
ure 2A). It takes as input a sample x(i) and generates a mask
(also referred to as “gate”) s(i)local := [s

(i)
1 , . . . , s

(i)
D ] ∈ [0, 1]D

for local feature selection. The d-th feature is selected if
and only if the mask value is positive (s(i)d >0) (Figure 2B).

Soft Global Selection. ProtoGate first captures the globally
important features via applying ℓ1-regularisation on W[1],
the weights of the first layer in the gating network. The
regularisation promotes sparsity in W[1] via reducing some
weights to zero. When all weights connected to the same
input neuron are reduced to zero, the corresponding input
feature is dropped (e.g., x2 and x3 in Figure 2A). Mathemat-
ically, the sparsity in W[1] transforms the first layer’s com-
putation as W[1]x(i) = W[1](x(i) ⊙ s

(i)
global), where ⊙ rep-

resents element-wise multiplication and s
(i)
global ∈ {0, 1}D

is a binary mask, signifying dropped features as zeros. The
first layer is shared across samples, and thus the mask is
consistent for all samples (i.e., sglobal = s

(i)
global = s

(j)
global).

Furthermore, the global selection by W[1] is “soft” because
ProtoGate uses sglobal to explicitly emphasise the existence
of globally important features, serving as a foundation rather
than replacing subsequent local feature selection. Specif-
ically, the initially dropped features can be recovered in the
following local selection process (e.g., x3 in Figure 2A).
We further illustrate the interplay between soft global and
local selection with a real-world example in Appendix C.
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Figure 2. The architecture of ProtoGate. (A) Given a sample x ∈ RD , the global-to-local feature selection performs soft global feature
selection in the first layer of the gating network. The orange dashed lines denote sparsified weights (i.e., reduced to zero) in W[1] under
ℓ1-regularisation. The neural network then computes the instance-wise mask {sd}Dd=1 ∈ [0, 1]D with a thresholding function for local
feature selection. (B) The local mask slocal is applied to the sample for local feature selection by element-wise multiplication. (C) The
non-parametric prototype-based prediction further classifies x⊙ slocal by retrieving the K nearest prototypes in base B via hybrid sorting.
The majority class is used as the predicted label ŷ, and the exemplars (i.e., the nearest prototypes) provide prototypical explanations.

Local Selection. After the initial selection of globally im-
portant features, ProtoGate further refines sglobal to gen-
erate instance-wise masks s

(i)
local for local feature selec-

tion. This stage involves processing the embedded out-
put W[1](x(i)⊙ sglobal) through subsequent network layers,
yielding the vector µ(i). Given the range of µ(i) is not neces-
sarily [0, 1]D, we threshold it to compute the instance-wise
masks and then apply ℓ0-regularisation to promote sparse
masks. However, the non-differentiability of ||s(i)local||0 poses
a challenge for efficient optimisation via backpropagation.
Building on prior work (Louizos et al., 2018; Rolfe, 2016;
Yamada et al., 2020; Yang et al., 2022), we re-formalise
the local mask as a vector of random variables, defined by
s
(i)
local = max(0,min(1,µ(i) + ϵ(i))), where ϵ(i) is Gaus-

sian noise sampled from N (0,Σ). This formulation al-
lows for the differentiable estimation of ℓ0-regularisation
through its expectation (i.e., ||s(i)local||0 ∝ E[||s(i)local||0]). In
addition, the thresholded mask values are continuous (i.e.,
s
(i)
local ∈ [0, 1]D), which are considered to be more expressive

than binary masks (Gros et al., 2021).

The integration of these two phases is encapsulated in Proto-
Gate’s weighted sparsity regularisation for feature selection

Rselect := Rglobal(sglobal) +Rlocal(s
(i)
local)

∝ λglobal

∥∥∥W[1]
∥∥∥
1
+ λlocal

D∑
d=1

∫ ∞

µ̂
(i)
d

exp(− t2

2
)dt

(1)

where (λglobal, λlocal) is a pair of hyperparameters to bal-
ance the regularisation strength between global and local
feature selection, and µ̂

(i)
d is the standardised output of SW.

Comprehensive theoretical justifications are in Appendix D.

Complementary regularisations. ProtoGate employs
different regularisations for its two-stage selection process
to address distinct objectives. Firstly, the soft global
selection focuses on efficiently identifying a globally im-
portant lower-dimension feature set (i.e. sglobal). Therefore,

ProtoGate promotes sparsity in sglobal via the faster ℓ1-
regularisation because it does not require the computation
of complex surrogates like ℓ0-regularisation. Secondly, the
local selection aims to identify locally important features
for accurate predictions and high interpretability, which
prioritises selecting fewer features (i.e., s(i)local contains
more “exact zeros”). Note that small mask values (e.g.,
0.1) still signify a selected feature. Therefore, we choose
ℓ0-regularisation for local selection because it generally
leads to more exact zeros (Louizos et al., 2018). Note
that, while ℓ1-regularisation can also promote exact zeros
with greater regularisation strength, we find that it can
detrimentally impact model performance, aligning with
findings from previous study (Louizos et al., 2018).

3.3. Non-parametric Prototype-based Prediction

The non-parametric prototype-based prediction (Figure 2C)
is implemented via a differentiable k-Nearest Neighbours
(KNN), denoted as Fθ :RD→Y , which takes as input the
masked sample x(i) ⊙ s

(i)
local and predicts its label ŷ(i). Note

that θ here refers to hyperparameters for a non-parametric
model, rather than trainable parameters as W of SW.

During the training period, ProtoGate first constructs a pro-
totype base B with the masked training samples. Recall
that we assume all x(i) are used as training samples. Thus
ProtoGate retains the pairs of the masked sample and its
label p(i) :=

(
x(i) ⊙ s

(i)
local, y

(i)
)

as prototypes in the base.
With the acquired prototypes, ProtoGate can classify a ran-
domly picked query sample xquery ∈ X by retrieving similar
prototypes in the base B. Specifically, ProtoGate sorts the
prototypes by their similarities (i.e., Euclidean distance) to
the masked query sample and makes predictions according
to the majority class of the K nearest prototypes. Tech-
nically, during training, we use the masked samples from
the same batch as prototypes; during inference, we use the
masked samples from the whole training set as prototypes.
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Hybrid Sorting. The standard sorting operation (e.g.,
QuickSort (Hoare, 1961)) is non-differentiable and the
model cannot be optimised via backpropagation. In contrast,
the differentiable sorting operation (e.g., NeuralSort (Grover
et al., 2018)) allows backpropagation, but the high time
complexity can be a bottleneck. With these in mind, we take
a step further and propose hybrid sorting. We integrate two
kinds of sorting operations to amalgamate their strengths:
ProtoGate first trains with NeuralSort for backpropagating
gradients from the sorted prototypes, and then substitutes
NeuralSort for QuickSort during inference. During the
training phase, given a random training sample as query
sample xquery := x(i) ∈ X , we sort the base B via com-
puting a row-stochastic matrix P̂ ∈ RN×N , and P̂[n,m]
denotes the probability that the m-th prototype in B is the
n-th nearest to query sample. Given n ∼ U{1,K}, we can
improve the accuracy via max EP̂[n,:][1(y

(m) = yquery)]

where P̂[n, :] is the n-th row of P̂, and 1(·) is the indicator
function (i.e., maximising the number of prototypes that
have the same label as xquery). Therefore, the prediction
loss per query sample is given by:

Lpred := K −
K∑

n=1

EP̂[n,:]

[
1(y(m) = yquery)

]
(2)

where yquery = y(i). Note that we set m ̸= i to avoid using
xquery itself as a prototype. Equation (2) estimates the num-
ber of prototypes that have different labels to xquery among
the K nearest prototypes (we provide theoretical analysis
in Appendix D). By optimising the gating network, Proto-
Gate learns to generate local masks that cluster samples of
the same class together. During inference, the prototypes
are fixed and query samples are from unseen test data. We
find that the hybrid strategy decreases the inference time by
almost half while preserving the identical predictive perfor-
mance as only using differentiable sorting (Appendix H.3).

Differentiability vs. Non-trainability. The two concepts
are not contradictory. For hybrid sorting, the differentiabil-
ity allows backpropagating gradients from sorted prototypes.
On the other hand, its non-parametric nature leads to a non-
trainable predictor Fθ that consistently evaluates whether
the masked samples align with the clustering assumption.
And Fθ cannot overfit on s

(i)
local from SW through training,

leading to disjointly learned SW and Fθ. Therefore, Proto-
Gate can be resistant to the co-adaptation problem.

3.4. Disjoint Training Loss

We further incorporate the core components into the estima-
tor of ProtoGate’s training loss:

Ltotal(W) := E(X,Y ) [Lpred +Rselect] . (3)

We can see that the gating network SW is the only trainable
component, denoting disjointly learned feature selector and

predictor (i.e., ProtoGate’s training objective only needs to
optimise W). Moreover, the training loss is fully differen-
tiable, allowing ProtoGate to be optimised end-to-end in a
single stage with standard gradient-based approaches.

4. Experiments
We evaluate ProtoGate by answering three questions:

Performance (Q1): Can ProtoGate achieve competitive
accuracy in classification and sparsity in feature selection
against those of the benchmark methods?

Ablation Impacts (Q2): What contributions to model per-
formance do individual components of ProtoGate make?

Interpretability (Q3): Can ProtoGate improve the inter-
pretability of selected features and predictions?

To answer these questions, we first compare ProtoGate
against 16 benchmark methods on real-world classifica-
tion tasks (Section 4.1). Next, we investigate the ef-
fectiveness of global-to-local feature selection and non-
parametric prototype-based prediction with ablation studies
(Section 4.2). Finally, we quantitatively and qualitatively
evaluate ProtoGate’s interpretability by analysing the se-
lected features and predictions (Section 4.3).

Real-world datasets. We use seven open-source HDLSS
tabular biomedical datasets (Margeloiu et al., 2023a),
which contain 2,000-5,966 features with 62-197 samples
of 2-4 different classes. We also select four challenging
non-HDLSS and non-biomedical tabular datasets from the
TabZilla benchmark (McElfresh et al., 2023), which contain
19-857 features with 846-2,000 samples of 4-100 classes.
Full descriptions are in Appendix E.1.

Synthetic datasets. We generate three challenging synthetic
datasets (Syn1, Syn2 and Syn3) by adapting those in prior
studies (Yang et al., 2022; Yoon et al., 2018; Jethani et al.,
2021). In our settings, each dataset has 200 samples of
100 features, which is only 10% of the samples and 10
times more features compared to Yang et al. (2022). Each
dataset has two classes, and we introduce an imbalance by
generating 50 and 150 samples, respectively. The exact
synthetic datasets are described in Appendix E.2.

Benchmark methods. We compare ProtoGate against
16 benchmark methods, including four standard baselines:
Ridge Regression (Ridge) (Cox, 1958), SVM (Cortes &
Vapnik, 1995), KNN (Fix, 1985) and MLP (Gorishniy
et al., 2021); six global feature selection methods (also
referred to as “global methods”): Lasso (Tibshirani, 1996),
Random Forest (RF) (Breiman, 2001), XGBoost (Chen &
Guestrin, 2016), CatBoost (Prokhorenkova et al., 2018),
LightGBM (Ke et al., 2017) and STG (Yamada et al., 2020);
six local feature selection methods (also referred to as “local
methods”): TabNet (Arik & Pfister, 2021), L2X (Chen et al.,
2018), INVASE (Yoon et al., 2018), REAL-X (Jethani et al.,
2021) and LSPIN/LLSPIN (Yang et al., 2022).
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Table 2. Classification accuracy (%) on seven HDLSS real-world tabular datasets. We report the mean ± std balanced accuracy and
average accuracy rank across datasets. A higher rank implies higher accuracy. Note that “−” denotes failed convergence, and the rank is
computed with the balanced accuracy of other methods. We highlight the First, Second and Third ranking accuracy for each dataset.
ProtoGate consistently ranks Top-3 across datasets and achieves the best overall performance.

Methods colon lung meta-dr meta-pam prostate tcga-2y toxicity Rank

B
as

el
in

e Ridge 77.50±9.43 92.77±6.45 59.19±9.78 92.16±7.69 87.22±8.56 57.73±5.83 91.88±5.49 6.71±2.75
SVM 70.75±13.93 72.77±8.33 50.64±2.24 61.46±7.65 85.75±6.63 52.63±4.02 66.75±7.86 15.14±1.68
KNN 71.65±12.03 91.06±5.41 54.64±7.92 82.79±7.95 78.78±9.20 58.83±6.71 83.86±7.07 10.86±3.98
MLP 80.00±8.70 96.47±2.69 57.89±9.63 96.17±2.59 87.22±7.41 60.18±7.24 94.48±4.28 3.86±3.34

G
lo

ba
l

Lasso 79.40±10.18 94.47±4.39 58.58±9.17 95.15±2.83 91.18±6.39 56.99±5.21 91.86±6.03 5.00±2.89
RF 80.05±10.37 91.73±6.61 51.48±3.41 88.73±6.24 90.38±7.31 58.70±6.84 79.78±7.10 8.71±5.02
XGBoost 72.60±12.59 86.61±8.72 58.09±8.65 92.65±5.40 82.55±10.22 55.91±6.97 70.13±7.85 11.71±2.69
CatBoost 72.65±10.12 91.57±5.74 57.08±5.74 95.93±4.39 90.24±6.87 55.09±7.52 81.95±7.47 9.00±3.56
LightGBM 76.60±11.67 93.42±5.91 58.23±8.56 94.98±5.19 91.38±5.71 57.09±7.87 81.98±6.25 6.43±3.21
STG 79.55±10.53 93.30±6.28 58.15±8.67 76.13±8.19 89.38±5.85 57.04±5.76 87.95±5.01 7.43±3.60

Lo
ca

l

TabNet 56.75±15.20 80.14±12.23 53.87±7.31 82.66±11.56 66.55±15.33 52.16±8.20 41.68±9.03 15.29±1.60
L2X 57.60±13.48 50.02±14.26 52.54±8.30 62.64±13.75 61.78±13.69 52.30±6.29 31.72±9.11 14.29±0.70
INVASE − 91.22±6.16 − 91.70±6.84 − 55.98±6.45 79.94±6.60 11.29±0.95
REAL-X 76.75±12.21 93.27±4.32 60.01±7.12 95.59±3.04 86.75±6.68 59.30±7.49 90.79±4.75 5.86±3.18
LSPIN 81.30±7.97 76.92±9.38 53.98±8.00 97.18±3.16 87.75±6.74 55.95±7.45 83.47±8.59 8.29±5.19
LLSPIN 79.35±7.74 70.10±12.31 56.77±9.65 95.50±3.60 88.71±5.98 57.88±6.02 81.67±9.01 9.00±3.65

ProtoGate (Ours) 83.95±9.82 93.44±6.37 60.43±7.62 95.96±3.93 90.58±5.72 61.18±6.47 92.34±5.67 2.00±1.00

Experimental setup. For each dataset, we use 5-fold cross-
validation and repeat it for five times, summing up to 25 runs.
For the training fold, we randomly select 10% of samples
as the validation set. For each model and each dataset, we
tune its hyperparameters according to the aggregated perfor-
mance on validation sets across 25 runs. Our setup with val-
idation sets leads to less training data, but it is more realistic
than those in prior work (Yang et al., 2022), where no valida-
tion sets are used for model selection on “colon” and “toxic-
ity” datasets. Note that the reported results are averaged over
25 runs on test sets by default. When aggregating results
across datasets, we use the average distance to the minimum
(ADTM) metric via affine renormalisation between the top-
performing and worse-performing models (Grinsztajn et al.,
2022). Full experimental details are in Appendix E.

4.1. Prediction on Real-world Datasets (Q1)

We compare ProtoGate against benchmark methods in real-
world scenarios. We evaluate the models from four aspects:
(i) classification accuracy, (ii) feature selection sparsity, (iii)
computation efficiency and (iv) model generalisability.

Classification accuracy. We evaluate the performance in
real-world classification tasks via balanced accuracy and the
corresponding rank. Typically, higher classification accu-
racy denotes that the selected features are more informative.

Table 2 shows that ProtoGate exhibits robust performance
in real-world HDLSS tasks, with notably high results on
“colon”, “meta-dr” and “tcga-2y” datasets. It consistently
ranks in the top three for balanced accuracy across datasets,

outperforming the benchmark methods in average rank. In
particular, ProtoGate surpasses the best-performing bench-
mark local method, REAL-X, by a clear margin: from
5.86→2.00 in average rank. In addition, ProtoGate pro-
vides in-model explainability of selected features, while
REAL-X only provides post-hoc explainability. Although
other local methods can achieve high classification accuracy
(e.g., LSPIN on “meta-pam” dataset), they are susceptible to
co-adaptation problem and hence the interpretability of their
selected features cannot be fairly compared to ProtoGate’s
(see Section 4.3). Another important finding is that simple
Lasso and MLP can outperform local methods on HDLSS
datasets, but not ProtoGate.

The results suggest that ProtoGate can be a robust feature se-
lection method for HDLSS tasks. We attribute ProtoGate’s
competitive performance to three main reasons. Firstly,
ProtoGate takes advantage of both global and local selec-
tion. ProtoGate selects instance-wise features after explic-
itly capturing the globally important features, which adap-
tively balances global and local feature selection. Secondly,
ProtoGate meticulously attends to the similarity in high-
dimensional space. For instance, LSPIN has constraints to
generate similar masks for similar samples in the original
input space. However, the poor accuracy of KNN shows
that the similarity between samples before feature selection
can be misleading for predictions, thus harming the model
performance. In contrast, ProtoGate inherently leverages
the similarity between samples after feature selection. Fur-
thermore, ProtoGate is better aligned with the clustering
assumption because it encourages samples of the same class
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Figure 3. Left: Mean normalised feature selection sparsity vs. mean normalised balanced accuracy. We exclude the outliers (TabNet, L2X
and INVASE) due to their suboptimal results or failed convergence. Middle: Median runtime vs. mean normalised balanced accuracy.
Right: Median model size vs. mean normalised balanced accuracy. ProtoGate generally achieves higher accuracy and fewer selected
features with higher computation efficiency than other local methods.

to have similar representations, not similar masks. Thirdly,
ProtoGate is parameter-efficient. In contrast to other lo-
cal methods that can easily be over-parameterised due to
complex network-based architectures, ProtoGate has a spar-
sified gating network and a non-parametric predictor, which
notably reduces the number of trainable parameters.

Feature selection sparsity. We evaluate the sparsity via
proportion of features selected per sample for in-model se-
lection methods. In Figure 3 (Left), we plot the “sparsity vs.
accuracy” by aggregating the results across datasets. The nu-
merical results and visualisation of selected features are in
Appendix F.1. Overall, ProtoGate stably achieves higher ac-
curacy with a lower proportion of features selected per sam-
ple than benchmark methods, suggesting that the features
selected by ProtoGate are easier to interpret by humans.

Feature selection behaviour. We further analyse the
behaviour of ProtoGate via the composition of the selected
features (i.e., the proportions of “both selected” and “locally
recovered” features in s(i)local). We find that ProtoGate ex-
hibits adaptive feature selection behaviour. On most datasets
(e.g., the “colon” dataset), the majority proportion of s(i)local is
generally included in sglobal (i.e., the proportion of “both se-
lected” features generally exceeds that of “locally recovered”
features), suggesting ProtoGate can behave more globally in
feature selection. In contrast, on the other datasets (e.g., the
“meta-dr” dataset), ProtoGate tends to recover more features
locally than reusing the globally selected features, highlight-
ing a more pronounced local selection strategy. Full results
and discussion are in Appendix F.1.3 and Appendix G.2.

Computation efficiency. We evaluate the speed and model
size via inference time and number of trainable parameters.
In Figure 3 (Middle), the trade-off between accuracy and
inference speed shows ProtoGate excels benchmark local
methods in maintaining high accuracy while keeping the
inference time short. In Figure 3 (Right), the trade-off

between accuracy and model size further shows ProtoGate
is more parameter-efficient than benchmark local methods.
More results on computation efficiency are in Appendix F.2.
The results suggest that ProtoGate can be a highly efficient
local method for HDLSS tasks.

Model generalisability. We further evaluate classification
performance on four non-HDLSS and non-biomedical
datasets. Although ProtoGate is designed for the HDLSS
regime, the evaluation results show that ProtoGate gen-
eralises well on non-HDLSS real-world datasets, which
contain a much larger number of samples and classes than
the considered HDLSS datasets. Specifically, ProtoGate can
achieve competitive accuracy against benchmark methods,
including the gradient boosting trees. Detailed results and
discussion are in Appendix F.3.

4.2. Ablation Studies (Q2)

We investigate the efficacy of ProtoGate’s two main com-
ponents: (i) Global-to-local Feature Selection and (ii) Non-
parametric Prototype-based Prediction.

Soft global selection and local selection are comple-
mentary, rather than interchangeable. We illustrate
how ProtoGate balances global and local feature selection
by performing ablation experiments on the interplay
between λglobal and λlocal. We compare ProtoGate (λglobal ̸=
0, λlocal ̸= 0) against two variants: (i) removeRlocal(s

(i)
local):

ProtoGate-global (λglobal ̸= 0, λlocal = 0) and (ii) remove
Rglobal(sglobal): ProtoGate-local (λglobal = 0, λlocal ̸= 0).
Detailed experimental setup is in Appendix G.

Table 3 shows that ProtoGate consistently outperforms
its variants in accuracy, suggesting that either removing
global selection (ProtoGate-local) or removing local selec-
tion (ProtoGate-global) leads to performance degradation.
Therefore, the two stages are complementary for more accu-
rate selection results.
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Table 3. Classification accuracy (%) of ProtoGate and its two variants. We bold the highest accuracy for each dataset. ProtoGate
consistently achieves the best accuracy across all datasets, showing the complementary effects of global and local selection.

Methods colon lung meta-dr meta-pam prostate tcga-2y toxicity

ProtoGate-global 75.95±11.63 90.20±6.67 50.66±4.08 92.80±6.00 89.02±5.38 56.46±6.15 70.27±10.31
ProtoGate-local 81.45±10.87 90.51±8.36 58.88±8.88 92.60±6.07 89.58±5.96 59.26±6.34 87.44±6.84
ProtoGate (Global-to-local) 83.95±9.82 93.56±6.29 60.43±7.62 95.96±3.93 90.58±5.72 61.18±6.47 92.34±5.67
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Figure 4. Fidelity evaluation of selected features on three synthetic datasets. Left: Mean normalised F1 score of selected features
(F1select) vs. mean normalised balanced accuracy (ACCpred). Right: Rank difference between F1select and ACCpred. A positive value
(highlighted in red) indicates low-fidelity feature selection. Note that we plot short bars at zeros for visual clearance. ProtoGate has
competitive trade-off between F1select and ACCpred, and consistently non-positive rank differences, showing robustness to co-adaptation.

Table 3 further shows the effects of explicitly leveraging
global information in feature selection. Note that we do not
claim that the purely local methods, such as ProtoGate-local,
omit global information completely. Indeed, they can
promote global selection by increasing the regularisation
strength for local selection to render smaller feature sets per
sample. However, the ablation studies on feature selection
sparsity (Appendix G) show that even when ProtoGate
and ProtoGate-local achieve similar sparsity, the accuracy
gap remains. This demonstrates that ProtoGate selects
different features to ProtoGate-local (we will also see this
in Figure 5). On the other hand, they can also reduce the
regularisation strength to render larger feature sets per
sample (i.e., increasing the likelihood of selecting the same
features for different samples). However, larger feature sets
do not guarantee that the additionally selected “common”
features are informative, leading to lower accuracy. In
contrast, ProtoGate explicitly promotes global information
by applying ℓ1-regularisation on W[1] and thus generates
smaller feature sets per sample. Therefore, the soft global
selection and local selection are complementary to help
ProtoGate exhibit unique feature selection behaviours.

Non-parametric prototype-based prediction is ap-
propriate for biomedical tasks. We investigate how
the prototype-based predictor impacts classification
accuracy. Specifically, we compare ProtoGate against two
variants with different predictors and investigate different
numbers of different nearest neighbours. The further
studies (Appendix H) show the efficacy and robustness of
non-parametric prototype-based prediction.

4.3. Interpretability Evaluation (Q3)

We evaluate ProtoGate’s interpretability by focusing on
three aspects of the selected features and predictions: (i)
fidelity of selected features, (ii) transferability of selected
features and (iii) explainability of predictions.

Note that our criteria are more realistic and comprehensive
than prior work (Alvarez Melis & Jaakkola, 2018; Jethani
et al., 2021; Yang et al., 2022). In addition to fidelity and
transferability of selected features, we also evaluate the
explainability of predictions for local feature selection
methods. More discussion on the metrics for interpretability
evaluation is in Appendix I.1.

Fidelity of selected features. This criterion focuses on
“Can the classification accuracy denote feature selection per-
formance, i.e., does the model achieve high accuracy with
poorly selected features?”, and we quantitatively evaluate
it on synthetic datasets via the rank difference between fea-
ture selection and prediction (Figure 4). Specifically, we
first compute the F1 score of selected features (F1select) and
the balanced accuracy of predictions (ACCpred). Then we
compute the rank difference between F1select and ACCpred.
A positive difference demonstrates the model makes accu-
rate predictions with relatively low-fidelity features. The
complete numerical results are in Appendix I.2.

Figure 4 (Left) shows that ProtoGate achieves competitive
trade-off between F1select and ACCpred against the bench-
mark methods. In contrast, some existing methods, such
as LSPIN, can achieve high accuracy in prediction, while
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Figure 5. Normalised balanced accuracy (%) of simple models
with different feature selectors. ProtoGate, with global-to-local
selection, selects highly transferable features that generally im-
prove the classification performance of KNN and SVM.

the feature selection is relatively inaccurate, indicating
poor fidelity of selected features. Figure 4 (Right) further
demonstrates that ProtoGate is the only in-model local
feature selection method that consistently has non-positive
rank differences between F1select and ACCpred. Although
REAL-X also has non-positive values across datasets, its
post-hoc explainability of selected features cannot improve
the prediction performance, leading to poor classification
accuracy. In contrast, the in-model explainability helps
ProtoGate to achieve high fidelity of selected features while
guaranteeing high classification accuracy.

Furthermore, the results raise concerns over the reliability
of high accuracy achieved by other benchmark local
methods in Section 4.1. For instance, LSPIN achieves the
best classification accuracy on Syn1, but the correctness of
selected features is much worse, with a rank of six out of ten
methods. Consequently, LSPIN’s high accuracy may not
correspond to selecting the real informative features, and
this is also true for other local methods that are susceptible
to co-adaption. In contrast, ProtoGate’s well-aligned
performance between feature selection and classification
guarantees the fidelity of selected features.

Transferability of selected features. This criterion focuses
on “Can the selected features improve the performance of
other simpler models?”. We evaluate the balanced accuracy
of downstream classifiers trained on the features selected by
ProtoGate. Specifically, we first process the HDLSS datasets
by applying x⊙ slocal – where the mask slocal is generated
by ProtoGate, ProtoGate-global or ProtoGate-local – and
then train a KNN and SVM on the masked datasets. For
each simple model, we aggregate the balanced accuracy
across datasets with the ADTM metric.

In Figure 5, the features selected by ProtoGate generally
improve the performance of KNN and SVM across datasets.
In contrast, the benefits conferred by ProtoGate-global
and ProtoGate-local are limited, even leading to lower
accuracy than vanilla SVM. The fine-grained results on
the accuracy improvements per dataset (see Appendix I.3
for more details) reveal that features selected by ProtoGate

Input samples Masked samples 

Prototypical explanations:
The patient is diagnosed as
normal, because they are the
most similar to three normal
prototypes: Prototype 32, 34 and
25 (from near to far). 𝑝("#)

𝑝("%)
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Figure 6. Visualisation of ProtoGate’s inference on the “colon”
dataset. The circles in “Masked samples” denote prototype base
B learned by ProtoGate, containing normal and cancer prototypes
p(i). The star is a new patient (i.e., a sample in the test set).
ProtoGate provides an explainable diagnosis for the new patient.

consistently avoid performance degradation for simple
models, while ProtoGate-global and ProtoGate-local can
cause a considerable drop in accuracy. These findings
also support that ProtoGate selects different features to its
variants that rely solely on either global or local selection,
showing the efficacy of global-to-local feature selection.

Explainability of predictions. This criterion focuses on
“Can the predictions be easily understood by practitioners?”,
and we qualitatively evaluate it by providing specific ex-
amples of predictions. Figure 6 presents UMAP (McInnes
et al., 2018) on the “colon” dataset to show ProtoGate’s
inference process. In this split, ProtoGate classifies the new
sample by explicitly pointing out the three (K = 3) nearest
prototypes as evidence. ProtoGate’s prototypical predic-
tions are easy to interpret because they resemble human
behaviour (Kolodner, 1992; Lu et al., 2021).

5. Conclusion
We introduce ProtoGate, a prototype-based neural model
for feature selection in the high-dimensional and low-
sample-size regime. ProtoGate proposes to select features
in a global-to-local manner and perform non-parametric
prototype-based prediction via hybrid sorting. The experi-
mental results on real-world datasets demonstrate that Pro-
toGate generally improves the accuracy and feature selec-
tion sparsity of local methods on tabular datasets without
sacrificing computation efficiency. The interpretability eval-
uation further validates that ProtoGate can effectively guar-
antee the fidelity and transferability of selected features
by elegantly mitigating the co-adaptation problem. Proto-
Gate’s robust performance and the ability to generate human-
understandable explanations for its prototypical predictions
has the potential to enhance practitioners’ experience in
decision-making processes beyond the biomedical domain.
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Impact Statement
This paper presents a novel feature selection method that
aims to advance the field of machine learning by address-
ing challenges in the high-dimensional and low-sample-size
regime. Furthermore, ProtoGate offers an elegant solution
to the prevalent co-adaptation problem in machine learning
models, which helps to pave the path to more robust and
applicable feature selection methods. These characteristics
can be particularly useful in high-stakes and data-scarce
domains like healthcare, such as preclinical drug evalu-
ation in early-stage clinical trials (Bespalov et al., 2016;
Morford et al., 2011). Moreover, ProtoGate can provide
patient-wise insights with informative features and similar
prototypes as explanations, facilitating automatic diagnosis
systems (Fansi Tchango et al., 2022; Nazari et al., 2022).

ProtoGate’s impact further extends to enabling broader ma-
chine learning applications in low-resource regions, such as
low-income countries where medical resources are limited.
Indeed, improving machine learning models’ accuracy and
interpretability in low-sample-size regimes can help elevate
healthcare quality and foster medical equity (Alami et al.,
2020; Ciecierski-Holmes et al., 2022; Mollura et al., 2020).
ProtoGate can further facilitate research and enhance ma-
chine learning accessibility in various communities. With-
out foreseeing harmful applications, ProtoGate is designed
to enhance the availability and fairness of AI across various
societal and scientific domains.
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A. Summary of Related Work
As a supplement to Section 2, we further provide a detailed summary of the related work on local feature selection and
highlight the differences between ProtoGate and the prior studies.

Joint in-model selection (Figure 1(a)). This line of work attempts to predict instance-wise masks for local feature selection
via jointly learning a local selector and a predictor (Chen et al., 2018; Yoon et al., 2018; Arik & Pfister, 2021; Yang
et al., 2022; Yoshikawa & Iwata, 2022). TabNet uses sequential attention to select instance-wise features for different
samples (Arik & Pfister, 2021), but it can suffer from overfitting on HDLSS datasets with the complex transformer
architecture (Margeloiu et al., 2023a). L2X uses mutual information with Concrete distribution, but it requires specifying the
number of selected features (Chen et al., 2018). INVASE addresses such limitation by modelling each feature’s mask/gate
value with independent Bernoulli distributions (Yoon et al., 2018). However, both L2X and INVASE utilise computationally
expensive gradient estimators like REINFORCE (Williams, 1992) or REBAR (Tucker et al., 2017) to generate sparse
masks. Based on STG (Yamada et al., 2020) and Localized Lasso (Yamada et al., 2017), LSPIN (Yang et al., 2022)
further extends the estimation of ℓ0-regularisation to the exact formulation. To date, few contributions have been made to
investigate the efficacy of globally important features in local feature selection. The recent Contextual Lasso (Thompson
et al., 2024) attempts to introduce context information for local feature selection, but it requires domain knowledge to
partition the features into contextual features and explanatory features, which is impractical for HDLSS regimes. Although
LassoNet (Lemhadri et al., 2021) features penalisation on the residual layer parameters and constraints on the first layer’s
parameters, it can only select features globally and has an unstable training process, even failed convergence, on HDLSS
datasets (Margeloiu et al., 2023a;b). In addition, the paradigm to jointly learn a feature selector and a predictor is susceptible
to the co-adaptation problem, leading to a considerable loss in the fidelity of selected features (Jethani et al., 2021; Adebayo
et al., 2018; Hooker et al., 2019). Moreover, these methods typically make predictions without a tailored inductive bias for
biomedical data, further highlighting their limitations.

These challenges in this relatively underexplored field suggest the complexity and non-trivial nature of proposing seemingly
straightforward ideas. Indeed, our work bridges these gaps by (i) exploring the interplay between global and local selection,
(ii) tackling the co-adaptation problem via incorporating a trainable feature selector with a non-trainable predictor and (iii)
encoding the clustering assumption as an inductive bias by performing prototype-based prediction.

Disjoint post-hoc selection (Figure 1(b)). Another promising line of work addresses the heterogeneity across samples
by designing models to explain a trained predictor via local feature selection (Jethani et al., 2021; Ribeiro et al., 2016;
Lundberg & Lee, 2017; Shrikumar et al., 2017; Simonyan et al., 2014; Lundberg et al., 2018; Bach et al., 2015). However,
these methods can have limited applicability because they can only provide post-hoc analysis of the important features.
Furthermore, the features they identify do not enhance prediction performance, given that the predictor has already been
trained using all features. In contrast, ProtoGate directly utilises the selected features for predictions, thereby not only
boosting the non-parametric predictor’s accuracy but also preserving the in-model explainability of selected features.
Moreover, ProtoGate surpasses post-hoc selection approaches such as REAL-X in computation efficiency, as it mitigates the
need to enumerate various mask possibilities for an accurate approximation of the predictor’s decision boundary.

Table 4. Model design comparison between ProtoGate and prior local feature selection methods. ProtoGate has novel design
rationales and leverages different feature selectors and predictors to the benchmark methods.

Methods Category Key ideas
Feature Selection Prediction

Co-adaptation
avoidanceGlobal Selector Local Selector Explainability Clustering

assumption

TabNet

Joint in-model selection

Uses sequential attention
to select important features % " % % %

L2X Mutual Information maximization
with Concrete distribution % " % % %

INVASE Modelling instance-wise mask value
with independent Bernoulli distribution % " % % %

LSPIN Formalising the mask value
with Normal distribution % " % % %

LLSPIN Replace LSPIN’s predictor
with a linear prediction head % " " % %

REAL-X Disjoint post-hoc selection Decoupling the training objectives
of the feature selector and predictor % " % % "

ProtoGate (Ours) Disjoint in-model selection
Balances global and local selection

and avoiding co-adaptation with
non-parametetric prototype-based prediction

" " " " "
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B. Pseudocode for ProtoGate Training and Inference

Algorithm 1 Training procedure of ProtoGate

Input: training samples X ∈ RN×D, labels Y ∈ RN×1, global-to-local feature selector SW, prototype-based predictor Fθ,
sparsity hyperparameters (λglobal, λlocal), number of nearest neighbours K, total training epochs E, learning rate α

Output: trained feature selector SW, prototype base B
W← GaussianInitialisation() {Initialise the weights of feature selector}
for e← 1 to E do
B ← {} {Initialise the prototype base as an empty set}
sglobal ←W[1] {Compute the global mask from W[1]}
for i← 1 to N do
s
(i)
local ← SW(x(i) ⊙ sglobal) {Predict the local mask for a specific training sample}

p(i) ← (x(i) ⊙ s
(i)
local, y

(i)) {Construct a prototype with the masked training sample and its label}
B ← B ∪ {p(i)} {Retain the prototype in the base}

end for
for j ← 1 to N do
x
(j)
query ← RandomSampling(X) {Randomly pick a training sample as the query sample}

x
(j)
masked ← x

(j)
query ⊙ SW(x

(j)
query ⊙ sglobal) {Perform local feature selection for the query sample}

P̂
(j)
query ← HybridSort(XB,x

(j)
masked) {Compute the permutation matrix based on the similarity to the query sample}

ŷ
(j)
query ← MajorityClass

(
(P̂

(j)
queryYB)[1 : K]

)
{Predict with the majority class of the K nearest prototypes}

end for
Ltotal ← E(X,Y ) [Lpred +Rselect] {Compute the training loss according to Equation (1) and Equation (2)}
W←W − α∇WLtotal {Update the weights of feature selector}

end for
return SW, B

Algorithm 2 Inference procedure of ProtoGate

Input: test sample xtest ∈ RD

Output: predicted label ŷtest ∈ R, prototypical explanations Cexplanation
sglobal ←W[1] {Compute the global mask from W[1]}
slocal ← SW(xtest ⊙ sglobal) {Predict the local mask for the test sample}
xmasked ← xquery ⊙ SW(xquery ⊙ sglobal) {Perform local feature selection on the test sample}
P̂test ← HybridSort(XB,xmasked) {Compute the permutation matrix based on the similarity to the test sample}
ŷtest ← MajorityClass

(
(P̂testYB)[1 : K]

)
{Predict with the majority class of the K nearest prototypes}

Cexplanation ←
(
(P̂testXB)[1 : K], (P̂testYB)[1 : K]

)
{Use the K nearest prototypes as prototypical explanations}

return ŷtest, Cexplanation
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C. Illustration of Global-to-local Feature Selection
In Figure 7, we illustrate the interplay between soft global selection and local selection with a real-world example from the
“colon” dataset. Specifically, we randomly pick a data split and visualise the mask values of the first training sample (i.e.,
sglobal and s

(1)
local). We can see the four different feature selection behaviours: (i) Both selected: the 61st feature is selected by

both global and local selection; (ii) Locally dropped: the 828th feature is globally selected, but it is locally dropped for
this sample; (iii) Locally recovered: the 1355th feature is globally dropped, but it is locally recovered for this sample; (iv)
Both dropped: the 1759th feature is dropped globally and locally. These results show ProtoGate’s flexible feature selection
process, thus allowing the model to adapt to various datasets via balancing global and local selection.

𝒔!"#$%" Binarised 𝒔"#&%"
(()

Type1: Both selected (𝑥!"
("))

Type2: Locally dropped (𝑥%&%
(") )

Type3: Locally recovered (𝑥"'((
(") )

Type4: Both dropped (𝑥")(*
(") )

(𝒔+,-./, 61 = 1)	&	(𝒔,-0/,
" 61 > 0)

(𝒔+,-./, 828 = 1)	&	(𝒔,-0/,
" 828 = 0)

(𝒔+,-./, 1355 = 0)	&	(𝒔,-0/,
" 1355 > 0)

(𝒔+,-./, 1759 = 0)	&	(𝒔,-0/,
" 1759 = 0)

Figure 7. Illustration of the global-to-local feature selection. We visualise the mask values of the first training sample (i.e., x(1))
from the “colon” dataset. Note that we binarise the local mask via 1(s(1)

local > 0). The heatmap presents four different feature selection
behaviours, showing ProtoGate’s capability to adaptatively balance global and local selection.
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D. Theoretical Analysis
We now provide the proof sketch for readers to understand the key ideas of ProtoGate, which revolves around computing
gradients for the approximation of non-differentiable operations. Therefore, Ltotal boils down to deriving the empirical
estimations of ℓ0 norm of local masks

∥∥∥s(i)local

∥∥∥
0

and permutation matrix P, which we show below respectively.

Estimation of
∥∥∥s(i)local

∥∥∥
0
. The derivation of differentiable ℓ0-regularisation follows prior work (Louizos et al., 2018; Rolfe,

2016; Yamada et al., 2020; Yang et al., 2022). Recall the local mask is computed by s
(i)
local = max(0,min(1,µ(i) + ϵ(i))),

where ϵ(i) is Gaussian noise sampled from N (0,Σ). Given that ϵ(i) is sampled from a Gaussian distribution with mean
vector 0 and covariance matrix Σ, and noting the independence and identical distribution (i.i.d.) of the noise across
dimensions, Σ simplifies to σI, where I ∈ RD×D is an identity matrix. The standard deviation σ = 0.5 is fixed during
training, and it is removed during the inference time for deterministic mask values. Subsequently, the relaxed sparsity
regularisation for the local mask can be re-formalised as an expectation over the probabilistic distribution induced by the
Gaussian noise:

Rlocal(s
(i)
local) = λlocal

∥∥∥s(i)local

∥∥∥
0
∝ λlocalE

[∥∥∥s(i)local

∥∥∥
0

]
∝ λlocalEϵ(i)∼N (0,σI)

[∥∥∥max
(
0,min

(
1,µ(i) + ϵ(i)

))∥∥∥
0

]
∝ λlocal

D∑
d=1

P
(
µ
(i)
d + ϵ

(i)
d > 0

)
∝ λlocal

D∑
d=1

P

(
ϵ
(i)
d

σ
> −µ

(i)
d

σ

)

∝ λlocal

D∑
d=1

Q

(
−µ

(i)
d

σ

)

∝ λlocal

D∑
d=1

∫ ∞

µ̂
(i)
d

exp(− t2

2
)dt

(4)

where µ̂
(i)
d = −µ

(i)
d

σ is the standardised output of SW. Hence, the complete sparsity regularisation can be approximated via:

Rselect(sglobal, s
(i)
local) := Rglobal(sglobal) +Rlocal(s

(i)
local)

∝ λglobal

∥∥∥W[1]
∥∥∥
1
+ λlocal

D∑
d=1

∫ ∞

µ̂
(i)
d

exp(− t2

2
)dt.

(5)

Estimation of P. The essence of prototype-based prediction is to sort the prototypes based on their similarities to the
query sample. Consider the matrix of the prototype features XB := [x(1) ⊙ s

(1)
local, . . . ,x

(N) ⊙ s
(N)
local]

⊤ ∈ RN×D Sorting the
prototypes is equivalent to performing row operations on XB via left-multiplying by a permutation matrix P ∈ RN×N .
Definition D.1. Let v ∈ RN represent the vector of similarity, where each element v[n] signifies the reciprocal of the
distance between the query sample and the n-th prototype (i.e., 1

dist(xquery,x(n)⊙s
(n)
local)

). Let A ∈ RN×N denote the matrix of

absolute pairwise differences of the distances such that A[n,m] = |vn − vm|, and 1 ∈ RN×1 denote a column vector of all
ones. The permutation matrix can be defined as follows:

P[n,m] =

{
1, if m = argmax [(N + 1− 2n)v −A1]
0, otherwise (6)

To circumvent the non-differentiability of argmax, we use its continuous approximation softmax to compute the relaxed
permutation matrix:

P̂[n, :](τ) = softmax

[
((N + 1− 2n)v −A1)

τ

]
(7)

where τ > 0 is a temperature parameter.
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Lemma D.2. For the relaxed permutation matrix P̂, assuming the entries of v are independently drawn from a distribution
continuously relative to the Lebesgue measure on R, then the convergence holds almost surely:

lim
τ→0+

P̂[n, :](τ) = P[n, :], ∀n ∼ U{1, N} (8)

where U denotes a discrete uniform distribution. This convergence is substantiated by “Theorem 4” in Grover et al. (2018).

Theorem D.3. In the context outlined above, the prediction loss of ProtoGate (Equation (2)) estimates the count of
prototypes whose labels are different to that of the query sample.

Proof. Invoking Lemma D.2, the prediction loss limit is computed as follows:

lim
τ→0+

Lpred = K − lim
τ→0+

K∑
n=1

EP̂[n,:](τ)

[
1(y(m) = yquery)

]
= K −

K∑
n=1

N∑
m=1

P[n,m]1(y(m) = yquery)

(9)

Since P is a binary, row-stochastic matrix, it holds that

N∑
m=1

P[n,m] =

{
1, if (PYB)[n] = yquery

0, otherwise
(10)

Here, (PYB)[n] represents the label of the n-th nearest prototype. Equation (10) indicates whether the n-th nearest prototype
shares the same label as the query sample. Summing over the top K rows of P then calculates the count of prototypes that
belong to the same class as the query sample among the top K nearest prototypes.

Therefore, minimising Equation (2) is equivalent to reducing the number of nearest prototypes with labels differing from the
query sample, thereby potentially enhancing classification accuracy.
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E. Reproducibility
E.1. Real-word Datasets

HDLSS datasets. All seven HDLSS datasets are publicly available, and the details are listed in Table 5. Four of them are
available online (https://jundongl.github.io/scikit-feature/datasets): lung (Bhattacharjee et al.,
2001), Prostate-GE (referred to as “prostate”) (Singh et al., 2002), TOX-171 (referred to as “toxicity”) (Bajwa et al., 2016)
and colon (Ding & Peng, 2005). The methods to build the other three datasets are detailed below.

In accordance with the methodology presented in (Margeloiu et al., 2023a), we derived two datasets from the METABRIC
dataset (Curtis et al., 2012). We combined the molecular data with the clinical label “DR” to create the “meta-dr” dataset,
and we combined the molecular data with the clinical label “Pam50Subtype” to create the “meta-pam” dataset. Because the
label “Pam50Subtype” was very imbalanced, we transformed the task into a binary task of basal vs non-basal by combining
the classes “LumA”, “LumB”, “Her2”, “Normal” into one class and using the remaining class “Basal” as the second class.
For both “meta-dr” and “meta-pam”, we selected the Hallmark gene set (Liberzon et al., 2015) associated with breast
cancer, and the new datasets contain 4160 expressions (features) for each patient. We randomly sampled 200 patients while
maintaining stratification to create the final datasets, as our focus is on the HDLSS regime.

Following the procedure by Margeloiu et al. (2023a), we also derived “tcga-2y” dataset from the TCGA dataset (Tomczak
et al., 2015). We combined the molecular data and the label “X2yr.RF.Surv” to create the “tcga-2ysurvival” dataset. Similar
to the previous datasets, we selected the Hallmark gene set (Liberzon et al., 2015) associated with breast cancer, resulting in
4381 expressions (features). We randomly sampled 200 patients while maintaining stratification to create the final datasets,
as our primary focus is on the HDLSS regime.

Table 5. Details of seven HDLSS real-world tabular datasets.
Dataset # Samples # Features # Classes # Samples per class

colon 62 2,000 2 [40, 22]
lung 197 3,312 4 [139, 21, 20, 17]
meta-dr 200 4,160 2 [139, 61]
meta-pam 200 4,160 2 [167, 33]
prostate 102 5,966 2 [52, 50]
tcga-2y 200 4,381 2 [122, 78]
toxicity 171 5,748 4 [45, 45, 42, 39]

non-HDLSS datasets. To show the generalisability of ProtoGate, we select four representative and challenging non-
HDLSS datasets from the open-source TabZilla benchmark (McElfresh et al., 2023). Firstly, their dimensionalities are
smaller than the number of samples (i.e., N > D). Secondly, they are from various domains beyond the biomedical
scenarios. For instance, “cnae-9” is relevant to business descriptions. Thirdly, they have many more classes than the HDLSS
datasets we mentioned. For instance, “100-plant-texture” has up to 100 classes.

Table 6. Details of four non-HDLSS real-world tabular datasets.
Dataset # Samples # Features # Classes # Samples per class

100-plants-texture 1,599 65 100 16 per class except 15 of “Class 100”
cnae-9 1,080 857 9 120 per class
mfeat-fourier 2,000 77 10 200 per class
vehicle 846 19 4 [218, 217, 212, 199]

E.2. Synthetic Datasets

The synthetic datasets are adapted from the nonlinear datasets proposed by Yoon et al. (2018). Specifically, we generate
three synthetic datasets: Syn1 (also referred to as “Syn1(+)”), Syn2 (also referred to as “Syn2(+)”), and Syn3 (also referred
to as “Syn3(−)”), which are designed for the classification task. Each sample is characterised by 100 features, where the
feature values are independently sampled from a Gaussian distribution N (0, I), with I representing a 100× 100 identity
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matrix. The ground truth label (target) y for each sample is computed by:

y = 1(
1

1 + logit(x)
> 0.5) (11)

where 1(·) is the indicator function. For each samples, the logit(x) is computed with a small proportion of its features:

Syn1(+) : logit =

{
exp(x1x2 − x3) if x11 < 0

exp(x2
3 + x2

4 + x2
5 + x2

6 − 4) otherwise
(12)

Syn2(+) : logit =

{
exp(x2

3 + x2
4 + x2

5 + x2
6 + x2

7 − 4) if x11 < 0

exp(−10 sin(0.2x7) + |x8|+ x2
9 + exp(−x10)− 2.4) otherwise

(13)

Syn3(−) : logit =

{
exp(x1x2 + |x9|) if x11 < 0

exp(−10 sin(0.2x7) + |x8|+ x2
9 + exp(−x10)− 2.4) otherwise

(14)

Within each dataset, the two classes have a minimum of two informative features in common. For example, in Syn1(+), both
class one and class two share (x3, x11) as the informative features. To introduce class imbalance, we intentionally generate
150 samples for class one and 50 samples for class two.

Note that we purposely design Syn3(−) to examine the clustering assumption in ProtoGate by adding even function |x9| to
Class One. The absolute value function is an even function. Two samples with opposite values of the same feature are likely
to have equal logit values, and then they belong to the same class. However, the opposite values mean a long distance between
them, and they should not belong to the same class according to the clustering assumption. Therefore, prototype-based models
are expected to perform poorly in this regime. We implement it by adding absolute value function |x9| in the first class of
Syn3(−) to observe the performance degradation in ProtoGate. Because of the evenness of absolute value, two samples with
opposite values of x9 are likely to be of Class One, which is against the clustering assumption. Although Syn1(+) and Syn2(+)

also contain even functions like square and absolute value, they also have many other informative features that do not utilise
the even functions to compute logit value. Therefore, the side effect of even functions is diluted in Syn1(+) and Syn2(+).

Differences to prior work. Compared to previous studies (Yang et al., 2022; Yoon et al., 2018), we focus on more realistic
and challenging synthetic datasets by considering four key aspects. Firstly, we only generate 200 samples for each dataset,
which is only 10% of the samples in prior work (Yang et al., 2022). Secondly, each sample has 100 features, which is ten
times more than that in prior work (Yang et al., 2022). Thirdly, our synthetic datasets are imbalanced, while those in prior
work have balanced class distribution (Yang et al., 2022). Lastly, we incorporate a greater number of overlapping informative
features between the two classes, while those in prior work may have no overlapping features (Yang et al., 2022).

E.3. Data Preprocessing

Following the methodology presented by Margeloiu et al. (2023a), we perform Z-score normalisation on each dataset before
training the models. This normalisation process involves two steps. First, we compute the mean and standard deviation
of each feature in the training data. Using these statistics, we transform the training samples to have a mean of zero and
a variance of one for each feature. Subsequently, we apply the same transformation to the validation and test data before
conducting evaluations.

E.4. Computing Resources

We trained over 15,000 models (including over 3,000 of ProtoGate) for evaluations. All the experiments were conducted on
a machine equipped with an NVIDIA A100 GPU with 40GB memory and an Intel(R) Xeon(R) CPU (at 2.20GHz) with six
cores. The operating system used was Ubuntu 20.04.5 LTS.

E.5. Training Details and hyperparameter Tuning

Software implementation. We implemented ProtoGate with Pytorch Lightning (Falcon & The PyTorch Light-
ning team, 2019): the global-to-local feature selector is implemented from scratch, and the relaxed sorting

21



ProtoGate: Prototype-based Neural Networks with Global-to-local Feature Selection for Tabular Biomedical Data

predictor is adapted from the official implementation of NeuralSort (https://github.com/ermongroup/
neuralsort). Note that we further optimised the speed of the official implementation with matrix operators in
PyTorch (Paszke et al., 2019). We re-implemented LSPIN/LLSPIN because the official implementation (https:
//github.com/jcyang34/lspin) used a different evaluation setup from ours: we report the mean ± std num-
ber of selected features, while they report the median number of selected features. We implemented XGBoost
(https://xgboost.readthedocs.io/en/stable/), CatBoost (https://catboost.ai/) and LightGBM
(https://github.com/microsoft/LightGBM) using their open-source implementations. With scikit-learn (Pe-
dregosa et al., 2011), we implemented Random Forest (https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier), KNN (https://scikit-learn.org/
stable/modules/generated/sklearn.neighbors.KNeighborsClassifier) and Lasso (https://
scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso). For other bench-
mark methods, we used their open-source implementations: STG (https://github.com/runopti/stg), TabNet
(https://github.com/dreamquark-ai/tabnet), L2X (https://github.com/Jianbo-Lab/L2X), IN-
VASE (https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/invase) and
REAL-X (https://github.com/rajesh-lab/realx).

We implemented a uniform pipeline using PyTorch Lightning to ensure consistency and reproducibility. We further fixed the
random seeds for data loading and evaluation throughout the training and evaluation process. This ensured that ProtoGate
and all benchmark models were trained and evaluated on the same set of samples. The experimental environment settings,
including library dependencies, are specified in the associated code for reference and replication purposes.

Note that all the libraries utilised in this study adhere to open-source licenses. Specifically, the scikit-learn and the INVASE
implementation follow the BSD-3-Clause license, Pytorch Lightning follows the Apache-2.0 license, and the others follow
the MIT license.

Training procedures. In this section, we outline the key training settings for ProtoGate and all benchmark methods. The
complete experimental settings can be found in the accompanying code. We made diligent efforts to ensure a fair comparison
among the benchmark methods whenever possible. For example, we employed the same predictor architecture in LSPIN,
MLP and STG, as these models share similar design principles.

• ProtoGate has a three-layer feature selector. The number of neurons in the hidden layer is 200 for real-world datasets
and 100 for synthetic datasets. And the activation function is tanh in all layers for a fair comparison against prior
work (Yang et al., 2022). The model is trained for 10,000 iterations using early stopping with patience 500 on the
validation loss. We used the suggested temperature parameter τ = 16.0 in NeuralSort (Grover et al., 2018). We train
the models with a batch size of 64 and utilise an SGD optimiser with a weight decay of 1e− 4.

• TabNet has a width of eight for the decision prediction layer and the attention embedding for each mask and 1.5 for the
coefficient for feature reusage in the masks. The model is trained with Adam optimiser with momentum of 0.3 and
gradient clipping at 2.

• L2X, INVASE and REAL-X have the default architecture as published (Chen et al., 2018; Yoon et al., 2018; Jethani
et al., 2021). The feature selector network has two hidden layers of [100, 100], and the predictor network has two hidden
layers of [200, 200]. They all use the relu activation after layers. For convergence and computation efficiency, L2X is
trained for 7,000 iterations, INVASE is trained for 5,000 epochs and REAL-X is trained for 1,000 iterations.

• STG, LSPIN and LLSPIN have a feature selector with the same architecture as that in ProtoGate. For LSPIN/STG,
the predictor is a feed-forward neural network with hidden layers of [100, 100, 10] with tanh activation function. And
we used the same architecture of predictor for MLP. For LLSPIN, the architecture of the predictor is the same, but the
activation functions are removed. In other words, LLSPIN has multiple linear layers with no activations. This is proposed
in LLSPIN’s original paper (Yang et al., 2022) and the official open-source implementation (https://github.
com/jcyang34/lspin/blob/dev/Demo0.ipynb?short_path=69bb17b#L214). That being said, we
weren’t able to find discussion or reasons behind the implementation choices of the LLSPIN’s predictor with multiple
linear layers. Nevertheless, we empirically tested and found that LLSPIN with multiple linear layers generally
outperforms the variant with only one linear layer in the predictor (see Table 7). The standard deviation σ for injected
noise is 0.5. The model is trained for 7,000 iterations using early stopping with patience 500 on the validation loss.
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• Ridge is trained for 10,000 iterations to minimise the multinomial loss with Limited-memory BFGS solver (Liu &
Nocedal, 1989), and the tolerance for early stopping is set as 1e− 4.

• SVM is trained for 10,000 iterations with the RBF kernel, and the tolerance for early stopping is set as 1e− 3.

• KNN measured the distance across samples with Euclidean distance and used uniform weights to compute the majority
class in the neighbourhood.

• Lasso is trained for 10,000 iterations to minimise the weighted loss with SAGA solver (Defazio et al., 2014), and the
tolerance for early stopping is set as 1e− 4.

• Random Forest has 500 estimators, feature bagging with the square root of the number of features, and used balanced
weights from class distribution.

• XGBoost has 100 estimators. It is trained with a learning rate of 1.0 to minimise the cross-entropy loss. And the
ℓ2-regularization term on weights is set as 1e− 5.

• CatBoost has a maximum depth of 6, and it is trained with a learning rate of 0.03 to minimise the cross-entropy loss.
The ℓ2-regularization term of the cost function is 3.0.

• LightGBM has 200 estimators, feature bagging with 30% of the features, a minimum of two instances in a leaf. It is
trained for 10,000 iterations to minimise the weighted cross-entropy loss using early stopping with patience 100 on
validation loss.

Table 7. Classification accuracy (%) of two variants of LLSPIN. We bold the highest accuracy for each dataset. LLSPIN with multiple
linear layers consistently achieves higher accuracy across all datasets.

Methods colon lung meta-dr meta-pam prostate tcga-2y toxicity

LLSPIN (single linear layer) 73.75 62.50 55.95 88.31 85.45 55.21 74.65
LLSPIN (multiple linear layers) 79.35 70.10 56.77 95.50 88.71 57.88 81.67

Hyperparameter tuning. To ensure optimal performance, we initially identified a suitable range of hyperparameters for
each model to facilitate convergence. Subsequently, we conducted a grid search within this predefined range to determine
the optimal hyperparameter settings. The selection of models was based on their balanced accuracy on the validation
sets averaged over 25 runs. It is worth noting that tuning hyperparameters in LSPIN can be challenging, particularly for
real-world datasets. Therefore, we followed the recommendations in the original paper (Yang et al., 2022) and employed
Optuna (Akiba et al., 2019) to fine-tune the hyperparameters for LSPIN.

Note that the LSPIN/LLSPIN performance on “toxicity” and “colon” datasets in Table 2 is different from its original paper.
The mismatched performance stems from the experimental settings. Specifically: the LSPIN paper (Yang et al., 2022)
mentions in paragraph 3 of its Appendix B.5.2 that they did not perform cross-validation on the “colon” and “toxicity”
datasets. Namely, they did not use validation sets for model selection. In contrast, we have more realistic evaluation settings.
Specifically, we do use validation sets for all datasets, leading to smaller train sets. Therefore, the classification accuracy of
LSPIN/LLSPIN can be lower than those reported in the original paper.

Table 8 lists the searching ranges of hyperparameters in ProtoGate, and Table 9 lists the searching ranges of hyperparameters
in network-based feature selection benchmark methods.

Table 8. Searching ranges of hyperparameters in ProtoGate.

Datasets Global Sparsity λglobal Local Sparsity λlocal K Learning Rate α

Real-word {1e− 4, 2e− 4, 3e− 4, 4e− 4, 6e− 4} {1e− 3} {1, 2, 3, 4, 5} {5e− 2, 7.5e− 2, 1e− 1}
Synthetic {1e− 2, 1.5e− 2, 2e− 2} {0, 1e− 4, 3e− 4} {3} {1e− 1}

In line with prior studies (Margeloiu et al., 2023a; Yoon et al., 2018; Yang et al., 2022), we performed hyperparameter
searching for other methods within the same ranges for real-world and synthetic datasets. For Ridge, we performed a
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Table 9. Searching ranges of hyperparameters in network-based feature selection benchmark methods. Note that the range for
LSPIN/LLSPIN on real-world datasets is an interval instead of a set because we used Optuna to search for the optimal settings.

Datasets Methods Sparsity regularisation strength (λ) Learning Rate

Real-world

STG {35, 40, 45, 50, 55} {3e− 3}
TabNet {1e− 4, 1e− 3, 1e− 2, 1e− 1} {1e− 2, 2e− 2, 3e− 2}
L2X {1, 5, 10} {1e− 4}
INVASE {1, 1.5, 2} {1e− 4}
REAL-X {1, 5, 10, 30, 50} {1e− 4}
LSPIN/LLSPIN [5e− 4, 1.5e− 3] [5e− 2, 1e− 1]

Synthetic

STG {1, 3, 5} {1e− 1}
TabNet {1e− 2, 1e− 1, 5e− 1} {1e− 2}
L2X {1, 5, 10} {1e− 4}
INVASE {1, 1.5, 2} {1e− 4}
REAL-X {1, 5, 10, 30, 50} {1e− 4}
LSPIN/LLSPIN {1e− 2, 5e− 2, 1e− 1} {1e− 1}

grid search of the regularisation strength in {1, 1e1, 1e2, 1e3}. For SVM, we performed a grid search of the regularisation
strength in {1e− 3, 1e− 2, 1e− 1, 1, 1e1}. For KNN, we performed a grid search of the number of nearest neighbours in
{1, 3, 5}. For MLP, we used Optuna to find the optimal learning rate within [1e− 3, 1e− 1]. For Lasso, we performed a
grid search of the regularisation strength in {1, 1e1, 1e2, 1e3}. For Random Forest, we performed a grid search for the
maximum depth in {3, 5, 7} and the minimum number of instances in a leaf in {2, 3}. For LightGBM, we performed a grid
search for the learning rate in {1e− 2, 1e− 1} and maximum depth in {1, 2}. Please refer to the associated code for the full
details of the hyperparameter settings and their corresponding ranges.
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F. Additional Results on Real-world Prediction Tasks
F.1. Results on Feature Selection

F.1.1. NUMERICAL RESULTS FOR FEATURE SELECTION SPARSITY

As a supplement to Figure 3 (Left), we provide detailed numerical results of the feature selection sparsity here. In Table 10,
we show the number of selected features per sample. For global methods, the number of selected features is the same across
samples, and thus the standard deviation is zero. In Figure 8, we further visualise the proportion of selected features among
all features. ProtoGate generally selects fewer features than benchmark feature selection methods, indicating improved
interpretability in the selected features.

Table 10. Feature selection sparsity on real-world datasets. We report the mean ± std of the number of selected features on test
samples, averaged over 25 runs. ProtoGate generally selects fewer features than other feature selection methods.

Methods colon lung meta-dr meta-pam prostate tcga-2y toxicity

Lasso 371.40±0.00 1618.08±0.00 4159.92±0.00 4159.40±0.00 5434.68±0.00 4214.56±0.00 2951.28±0.00
RF 1629.72±0.00 504.76±0.00 577.60±0.00 1439.20±0.00 510.72±0.00 887.12±0.00 1507.44±0.00
LightGBM 70.12±0.00 82.44±0.00 29.64±0.00 336.25±0.00 117.58±0.00 31.88±0.00 1150.48±0.00
STG 2000.00±0.00 3312.00±0.00 4157.96±0.00 2992.00±0.00 5966.00±0.00 4381.00±0.00 5748.00±0.00
L2X 5.00±0.00 1.00±0.00 5.00±0.00 10.00±0.00 10.00±0.00 5.00±0.00 5.00±0.00
LSPIN 1044.32±293.67 564.83±1236.21 1138.51±1545.96 1073.04±1661.89 2120.00±1968.86 1418.35±1936.41 1979.29±2387.03
LLSPIN 1311.86±209.80 673.27±1212.20 3026.77±642.02 1180.08±1769.59 2151.05±1954.80 3486.77±696.29 1999.12±2398.65

ProtoGate 110.70±58.62 177.24±173.13 337.21±738.81 469.47±46.90 91.29±7.20 348.79±869.23 76.39±17.42
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Figure 8. Visualisation of the feature selection sparsity on real-world datasets. We report the mean ± std of the proportion of selected
features on test samples, averaged over 25 runs. ProtoGate generally selects fewer features than other local feature selection methods.

F.1.2. VISUALISATION OF SELECTED FEATURES

Figure 9 qualitatively shows that ProtoGate generally has smaller mask values than LSPIN and LLSPIN, denoting ProtoGate
selects fewer features. Furthermore, we can see different feature selection results (i.e., slocal) in ProtoGate’s heatmaps (e.g.,
the “meta-dr” dataset), showing that ProtoGate can select features locally. Additionally, ProtoGate can behave more globally
on other datasets (e.g., the “lung” dataset). The results suggest that ProtoGate can adaptively balance global and local feature
selection across different datasets, showing the effect of global-to-local feature selection.
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(a) Heatmaps of mask values from LSPIN
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(b) Heatmaps of mask values from LLSPIN
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(c) Heatmaps of mask values from ProtoGate

Figure 9. Visualisaton of the mask values on real-world datasets. We plot the heatmaps of predicted mask values s(i)
local of test samples,

where the x-axis refers to the indices of features, and the y-axis refers to the indices of samples (this is different to Figure 7). Note that
different datasets can have different numbers of samples and features, and the number of features should be more than the number of
samples in the HDLSS regime. For visualisation purposes, we align them by adjusting the aspect ratio of heatmaps. The samples are
sorted according to their ground truth labels, and the red dash lines separate samples of different classes.
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F.1.3. COMPOSITION OF SELECTED FEATURES

We further analyse the composition of the final feature selection results (i.e., the proportions of “both selected” and “locally
recovered” features in s(i)local). Table 11 shows that the majority proportion of s(i)local is generally included in sglobal on most
datasets (i.e., the proportion of “both selected” features is generally greater than “locally recovered” features). For instance,
on the “tcga-2y” dataset, 96.61% of s(i)local is included in sglobal. Table 11 also shows that ProtoGate can adaptively adjust its
selection behaviours for different datasets. On some datasets, such as the “toxicity” dataset, ProtoGate locally recovers
more features than reusing the ones from global selection. The above results show that ProtoGate always includes some
globally selected features in the subsequent local selection results. Therefore, we introduce ProtoGate by “refining the
global mask into the local mask”. In other words, the global mask sglobal empirically represents a lower-dimensional feature
set to effectively determine the local mask s(i)local.

Table 11. Proportions (%) of “both selected” and “locally recovered” features in ProtoGate’s local selection results (i.e., s(i)local).
ProtoGate adaptively adjust its selection behaviours to be more global or more local for different datasets.

Selection behaviours colon lung meta-dr meta-pam prostate tcga-2y toxicity

Both selected 56.99 79.54 33.33 69.64 84.56 96.61 10.80
Locally recovered 43.01 20.46 66.67 30.36 15.44 3.39 89.20

F.2. Results on Computation Efficiency

As a supplement to Figure 3 (Middle), we further provide detailed numerical results on the computation efficiency. Table 12
shows that ProtoGate’s training time per epoch is consistently shorter than average. Moreover, the training time differences
per epoch between ProtoGate and the fastest methods are consistently smaller than 0.1s across all datasets, which is
practically insignificant. Table 13 further shows that ProtoGate can efficiently make predictions for new samples. The
inference time per sample of ProtoGate is shorter than 1ms, and the time differences between ProtoGate and the fastest
methods are consistently smaller than 0.5ms across all datasets.

Table 12. Training time per epoch (unit: second). We bold the average training time and ProtoGate’s training time per batch. ProtoGate’s
training time per epoch is consistently shorter than average, and the time differences per epoch between ProtoGate and the fastest methods
are consistently smaller than 0.1s across all datasets.

Methods colon lung meta-dr meta-pam prostate tcga-2y toxicity

TabNet 0.03 0.08 0.11 0.11 0.06 0.11 0.13
L2X 0.03 0.16 0.19 0.18 0.08 0.19 0.16
INVASE 0.06 0.10 0.11 0.11 0.12 0.11 0.12
REAL-X 0.03 0.30 0.37 0.40 0.19 0.40 0.33
LLSPIN 0.02 0.05 0.06 0.06 0.04 0.05 0.06
LSPIN 0.02 0.05 0.05 0.05 0.04 0.05 0.06
Avg. w/o ProtoGate 0.03 0.12 0.15 0.15 0.09 0.15 0.14

ProtoGate (Ours) 0.02 0.10 0.12 0.12 0.08 0.12 0.13

Table 13. Inference time per sample (unit: millisecond). We bold the average inference time and ProtoGate’s inference time per sample.
The inference time per sample of ProtoGate is shorter than 1ms, and the time differences per sample between ProtoGate and the fastest
methods are consistently smaller than 0.5ms across all datasets.

Methods colon lung meta-dr meta-pam prostate tcga-2y toxicity

TabNet 0.53 0.39 0.54 0.55 0.57 0.53 0.75
L2X 0.41 0.81 0.93 0.90 0.77 0.93 0.91
INVASE 1.04 0.51 0.54 0.54 1.16 0.55 0.69
REAL-X 0.41 1.55 1.86 1.98 1.88 2.00 1.95
LLSPIN 0.31 0.26 0.30 0.28 0.35 0.27 0.34
LSPIN 0.31 0.27 0.27 0.27 0.37 0.27 0.34
Avg. w/o ProtoGate 0.50 0.63 0.74 0.75 0.85 0.76 0.83

ProtoGate (Ours) 0.17 0.19 0.28 0.28 0.61 0.44 0.59

27



ProtoGate: Prototype-based Neural Networks with Global-to-local Feature Selection for Tabular Biomedical Data

Table 14 further shows that ProtoGate can have much fewer trainable parameters than benchmark methods. Note that we
focus on the model and exclude the shared training settings such as batch size, training epochs and learning rate when
counting the hyperparameters. Because the number of trainable parameters depends on the input dimensionality, we compute
the total number of trainable parameters according to the “prostate” dataset (102 samples with 5,966 features). Although
the number of trainable parameters can change across datasets, the order remains the same (INVASE>L2X>REAL-
X>LSPIN>LLSPIN>ProtoGate>TabNet) in our experimental settings.

Table 14. Number of hyperparameters and trainable parameters in ProtoGate and other local methods. We bold the number of
parameters for ProtoGate. Benchmark methods are sorted according to the number of trainable parameters. ProtoGate can have much
fewer trainable parameters than other local methods in the considered experimental settings.

Methods # hyperparameters # Trainable Parameters

INVASE 2 3.7M
L2X 3 2.4M
REAL-X 2 2.4M
LSPIN 2 1.8M
LLSPIN 2 1.8M
TabNet 3 0.4M

ProtoGate (Ours) 3 1.2M

F.3. Results on non-HDLSS Classification Tasks

Table 6 shows that ProtoGate consistently ranks within the top three for all datasets, implying robust performance. Although
ProtoGate is primarily designed for HDLSS regimes, we find it can also perform quite well in other challenging tasks, even
tied in average rank with LightGBM. Specifically, ProtoGate ranks first on the “100-plants-texture” dataset, surpassing
other local methods by a clear margin. Note that REAL-X even failed to converge well on the “100-plants-texture” dataset,
highlighting its limitations in managing datasets with a high number of classes. Moreover, ProtoGate can achieve competitive
performance on non-biomedical datasets, such as the “mfeat-fourier” dataset. These findings indicate that ProtoGate’s
applicability may well extend beyond its original scope in HDLSS biomedical applications.

Table 15. Classification accuracy (%) on four non-HDLSS real-world tabular datasets. We report the mean ± std balanced accuracy
and average accuracy rank across datasets. A higher rank implies higher accuracy. We highlight the First, Second and Third ranking
accuracy for each dataset. ProtoGate consistently ranks Top-3 across all datasets and achieves comparable overall performance as the
state-of-the-art methods.

Methods 100-plants-texture cnae-9 mfeat-fourier vehicle Rank

MLP 19.10±2.03 64.52±3.10 79.76±1.89 77.87±3.41 4.50±2.29
Lasso 52.89±2.46 74.92±3.67 76.86±1.54 70.62±2.68 5.00±0.71
RF 64.81±2.34 87.30±1.79 80.31±1.89 72.86±2.46 3.25±0.43
LightGBM 75.73±2.34 92.96±1.45 81.96±1.76 75.87±2.92 1.75±0.43
REAL-X 9.89±1.33 70.81±3.00 63.61±1.75 46.81±1.99 6.75±0.43
LSPIN 49.33±1.84 79.54±2.47 77.49±1.76 68.98±2.12 5.00±0.71

ProtoGate (Ours) 77.61±1.42 87.80±2.59 82.84±1.60 73.63±2.63 1.75±0.83

28



ProtoGate: Prototype-based Neural Networks with Global-to-local Feature Selection for Tabular Biomedical Data

G. Additional Ablation Results on Global-to-local Feature Selection
G.1. Results on Features Selection Sparsity

We perform ablation experiments to illustrate the interplay between λglobal and λlocal. Note that we summarise the combina-
tions into three cases: ProtoGate (both regularisations: λglobal ̸= 0, λlocal ̸= 0), ProtoGate-global (only ℓ1-regularisation:
λglobal ̸= 0, λlocal = 0) and ProtoGate-local (only ℓ0-regularisation: λglobal = 0, λlocal ̸= 0). Specifically, we perform grid
search within ranges of λglobal ∈ {0, 1e− 4, 3e− 4, 5e− 4, 7e− 4, 1e− 3} and λlocal ∈ {0, 5e− 4, 1e− 3, 2e− 3}.
Table 16 shows that ProtoGate and ProtoGate-local generally selects fewer features than ProtoGate-global. Note that we tried
manually increasing λglobal in ProtoGate-global to attain a sparsity level similar to ProtoGate, but it substantially degrades its
performance. Note that although when ProtoGate and ProtoGate-local achieve similar sparsity, the accuracy gap remains.
This demonstrates that ProtoGate selects different features to ProtoGate-local, showing the effects of soft global selection.

Table 16. Number of selected features of ProtoGate and its two variants. We report the mean ± std of the number of selected features
on test samples, averaged over 25 runs. We bold the fewest selected features for each dataset.

Cases colon lung meta-dr meta-pam prostate tcga-2y toxicity

ProtoGate-global 846.48±95.32 1673.92±250.13 2089.16±265.44 2601.15±170.17 2542.48±108.79 1667.31±84.74 2367.68±53.67
ProtoGate-local 115.96±16.65 82.18±14.53 85.22±12.57 69.85±23.20 291.13±58.48 131.43±15.52 154.00±25.11
ProtoGate 110.70±58.62 177.24±173.13 337.21±738.81 469.47±46.90 91.29±7.20 348.79±869.23 76.39±17.42

G.2. Results on Degree of Local Selection

To further distinguish between “similar number of selected features” and “similar selected features”, we introduce a new
metric: degree of local sparsity Q, which is computed by:

Q =
1

D ·N
N∑
j=1

card

(
N⋃
i=1

nonzero(s(i)local)− nonzero(s(j)local)

)
(15)

where card(·) returns the cardinality of a set and nonzero(·) returns the indices of non-zero elements in a vector. Q measures
the difference between the union set of selected features for all samples and the selected features for a specific sample.
Intuitively, a smallerQ denotes the method selects features more globally than a biggerQ. We perform ablation experiments
with λlocal = 1e− 3 and λglobal ∈ {0, 1e− 4, 3e− 4, 5e− 4, 7e− 4, 1e− 3}, and report the averageQ and average balanced
accuracy over 25 runs.
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Figure 10. Comparison of different values of global sparsity hyperparameter λglobal. (a) Degree of local sparsity averaged over 25 runs.
Increasing λglobal reduces the diversity of selected features across samples. (b) Balanced accuracy (%) averaged over 25 runs. Increasing
λglobal does not guarantee improvement in the prediction accuracy. Note that confidence intervals are omitted for visualisation purposes.

Table 17. Statistical analysis of performances between ProtoGate with optimal λ∗
global and λglobal = 1e− 3.

lung meta-dr meta-pam prostate tcga-2y toxicity colon Wilcoxon test

P-values 0.8856 0.0112 0.1638 0.9919 0.1272 0.3517 0.8252 0.0156
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Figure 10 shows that increasing λglobal enables ProtoGate to select features more globally. Namely, increasing λglobal can
promote the existence of global important features by performing soft global selection via ℓ1-regularisation on W[1]. We
performed statistical analysis between test accuracy with optimal λ∗

global and maximum λglobal = 1e− 3. Specifically, we
performed a corrected 2-tailed t-test as well as Wilcoxon signed-rank test of the mean accuracies (Nadeau & Bengio,
1999; Bouckaert & Frank, 2004). We find that while models with optimal λ∗

global generally tend to perform better than
their counterparts, this difference is statistically significant (at α = 0.05) only in the case of “meta-dr” dataset, which
highlights the benefits of leveraging the locally important features across samples. On the other datasets, leveraging the
locally important features is less effective, which helps to explain why global methods (e.g., Lasso) can generally outperform
some local methods in Table 2. The results show that ProtoGate can easily adapt and effectively balance global and local
feature selection for a particular dataset, rather than exclusively regularising for either of them.
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H. Additional Ablation Results on Non-parametric Prototype-based Prediction

H.1. Results on Different Predictors

To show the efficacy of clustering assumption in prediction tasks, we replace the differentiable KNN predictor with (i) a linear
head and (ii) an MLP, and then tune the hyperparameter for global sparsity λglobal by searching within {1e−4, 2e−4, 3e−4}
for fair comparison between different predictors. Table 18 shows that differentiable KNN consistently outperforms other
predictors across datasets, suggesting that the clustering assumption is beneficial for feature selection.

Table 18. Classification accuracy (%) for different predictors on real-world datasets. We bold the highest accuracy for each dataset.
The prototype-based classifier consistently outperforms linear and MLP predictors on all datasets.

Predictors colon lung meta-dr meta-pam prostate tcga-2y toxicity

MLP 80.95±7.77 69.97±9.17 56.00±6.37 93.62±6.04 89.13±6.36 54.74±8.11 90.36±5.61
Linear Head 79.45±6.23 66.51±12.45 56.10±8.95 93.20±6.18 89.87±5.80 56.60±8.20 90.29±5.93
Differentiable KNN (Ours) 83.95±9.82 93.56±6.29 60.43±7.62 95.96±3.93 90.58±5.72 61.18±6.47 92.34±5.67

H.2. Results on Different Number of Nearest Neighbours K

To evaluate the robustness of the prototype-based predictor, we further conduct experiments using different numbers of
nearest neighbours denoted as K. Considering the limited sample sizes of the datasets under investigation, we set the
maximum number of nearest samples to K = 5. All experimental settings are kept consistent to ensure fair comparisons.

Table 19 presents the results of the ablation experiments on the number of nearest neighbours, demonstrating that the optimal
value of K varies across different datasets. It is observed that using a small value of K can make the predictions more
sensitive to noise and outliers, resulting in lower accuracy. Notably, ProtoGate consistently achieves high accuracy across
the range of K ∈ {3, 4, 5}. This finding supports the validity of the prototype-based prediction for the considered real-world
datasets and ProtoGate’s robustness in prediction tasks.

Table 19. Classification accuracy (%) for different numbers of the nearest neighbours. We bold the highest accuracy for each dataset.
A small K ∈ {1, 2} can lead to sensitivity to noise, and the model performs stably with K ∈ {3, 4, 5}.

# Prototypes colon lung meta-dr meta-pam prostate tcga-2y toxicity

K = 1 70.40±14.45 87.53±7.28 50.50±6.21 73.02±10.90 75.91±10.21 57.46±6.85 75.85±7.02
K = 2 77.35±13.46 92.30±7.28 56.06±7.29 90.28±6.01 86.93±7.33 59.40±6.24 88.81±7.01
K = 3 83.95±9.82 93.56±6.29 57.82±8.93 95.96±3.93 89.53±5.64 61.18±6.47 91.14±5.19
K = 4 75.25±13.34 90.34±7.01 60.43±7.62 95.03±4.77 88.85±5.87 60.97±5.60 91.10±4.93
K = 5 77.50±8.67 91.12±6.36 59.23±6.88 95.83±5.89 90.58±5.72 60.84±5.88 92.34±5.67

H.3. Results on Hybrid Sorting

To gauge the effect of NeuralSort, we run a proof-of-principle analysis comparing our proposed ProtoGate (w/ HybridSort)
to the one where we substitute the sorting mechanisms with only classical QuickSort or differentiable NeuralSort. The
results and conclusions are below:

Firstly, Table 20 shows that ProtoGate w/ only QuickSort (as expected) leads to faster training than HybridSort. Nevertheless,
given the problem settings we are focusing on (high-dimensional and low-sample-size tabular data), these differences are
practically insignificant. Secondly, Table 21 shows the predictive performance of using only QuickSort substantially degrades
w.r.t our proposed ProtoGate (w/ HybridSort). This large performance gap indicates that a differentiable sorting operator
is important for learning a well-performing feature selector since it allows the clustering assumption to be explicitly encoded
into the optimisation procedure (via backpropagating gradients from the sorted samples/prototypes). Thirdly, we also find
that using QuickSort for training can be less stable on the considered datasets, resulting in different and sometimes larger
selected feature sets (up to 40% of all features), compared to the ones obtained with HybridSort (consistently below 15%).
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In a nutshell, HybridSort is an effective sorting operator for prototype-based classification, which reduces the inference
time by almost half while preserving the identical predictive performance as only using the computationally expensive
differentiable sorting operators.

Table 20. Training time (per epoch) and inference time (per sample) with different sorting operators (unit: millisecond). ProtoGate
w/ only QuickSort leads to faster training and inference.

Methods Stages colon lung meta-dr meta-pam prostate tcga-2y toxicity

QuickSort training 10.66 36.78 56.72 56.09 61.76 88.91 100.06
inference 0.17 0.19 0.28 0.28 0.61 0.44 0.59

NeuralSort training 17.63 99.42 118.44 117.50 80.96 120.31 133.33
inference 0.28 0.50 0.59 0.59 0.79 0.60 0.78

HybridSort (Ours) training 17.63 99.42 118.44 117.50 80.96 120.31 133.33
inference 0.17 0.19 0.28 0.28 0.61 0.44 0.59

Table 21. Classification accuracy (%) of ProtoGate with different sorting operators. We bold the highest accuracy for each dataset.
HybridSort and NeuralSort outperform QuickSort in predictive accuracy by a clear margin.

Methods colon lung meta-dr meta-pam prostate tcga-2y toxicity

QuickSort 67.25±8.17 59.46±12.51 49.11±1.79 65.78±14.63 81.70±11.80 55.00±2.89 67.57±7.34
NeuralSort 83.95±9.82 93.56±6.29 60.43±7.62 95.96±3.93 90.58±5.72 61.18±6.47 92.34±5.67
HybridSort (Ours) 83.95±9.82 93.56±6.29 60.43±7.62 95.96±3.93 90.58±5.72 61.18±6.47 92.34±5.67
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I. Additional Results on Interpretability Evaluation
I.1. Alternative Metrics for Interpretability Evaluation

We carefully assess the existing metrics before performing the interpretability evaluation, and we find that some of them are
debatable, even with potential flaws.

Faithfulness. The faithfulness in feature selection promotes that “all selected features should be significant for predictions”.
Firstly, faithfulness (Yang et al., 2022; Alvarez Melis & Jaakkola, 2018) can be computationally impractical for high-
dimensional datasets. The real faithfulness should be evaluated in four steps: (i) Remove a feature; (ii) Retrain the model
on the new datasets without the dropped feature; (iii) Compute the correlation between the accuracy drop and the feature
importance; (iv) Repeat the above three steps for all features. On high-dimensional datasets, Step-(ii) requires retraining the
model thousands of times. Secondly, we understand that some prior work (Yang et al., 2022) omits Step-(ii) to compute a
surrogate of real faithfulness, but omitting Step-(ii) means Step-(iii) evaluates the model with a different distribution to which
the model is trained on. Following prior work (Jethani et al., 2021), our experiments are also based on the common assumption
in machine learning: models are trained and evaluated on data with the same distribution (i.e., the training and test data are
independent and identically distributed). Evaluating the surrogate of faithfulness can violate this key assumption (Jethani
et al., 2021; Hooker et al., 2019). Thirdly, the transferability of selected features directly demonstrates whether the selected
features are overall informative for accurate predictions with downstream predictors (Yang et al., 2022). Therefore, we choose
to provide an analysis of the transferability of selected features to avoid providing possibly misleading guidance for users.

Stability. The stability in feature selection promotes “samples similar in the input space should have similar informative
features” (Yang et al., 2022). Firstly, the poor accuracy of vanilla KNN shows that samples of the same class are not
always close (i.e., similar) to each other in the original high-dimensional space. In other words, the similarity in the original
high-dimensional space can be misleading. Therefore, leveraging the similarity in the original high-dimensional space can
harm the model performance. Secondly, in our experiments, we also find that LSPIN without such stability regularisation
generally performs better than LSPIN with it. The highest accuracy of LSPIN (reported in Table 2) is consistently achieved
with stability strength of 0 (i.e., no stability regularisation) across datasets. The results further show the negative effects of
such stability regularisation. Thirdly, we further analyse the source of such negative effects. The real clustering assumption
promotes “samples of the same class should have similar representations” (Chapelle et al., 2006). However, “similar masks”
is not a sufficient condition for “similar representations”. Technically, “similar representations” refer to the similarity
between masked samples (i.e., x(i) ⊙ s(i)local), rather than the masks (i.e., s(i)local). Therefore, similar samples in the input space
are not expected to have similar masks. This is also the reason why ProtoGate can achieve high accuracy by attending to the
similarity between representations, instead of masks.

Diversity. The diversity in feature selection promotes “samples of different classes should have different informative
features”. Firstly, we show with vanilla KNN (Table 2) that the similarity (also dissimilarity) in the original high-dimensional
space can be misleading for feature selection and prediction. Therefore, leveraging the similarity in the original high-
dimensional space can harm the model performance. Secondly, the real clustering assumption promotes “samples of the same
class should have similar representations” (Chapelle et al., 2006). However, “similar masks” is not a sufficient condition for
“similar representations”, and “dissimilar masks” is also not a sufficient condition for “dissimilar representations”. In other
words, similar samples are not necessarily expected to have similar masks. Likewise, dissimilar samples are not necessarily
expected to have dissimilar masks. Therefore, we chose not to evaluate stability in the considered tasks to avoid possibly
misleading guidance for users.

I.2. Results on Fidelity of Selected Features

In Table 22, ProtoGate achieves better or comparable performance in feature selection and classification than the benchmark
methods on Syn1(+) and Syn2(+). On Syn3(−), ProtoGate performs poorly as expected (see Appendix E.2 for the reason),
verifying the inductive bias of the clustering assumption. We also find the LSPIN exhibits visible misalignment in feature
selection and prediction. On Syn1(+), LSPIN achieves the best classification accuracy, but the quality of selected features is
much worse, with a rank of six out of ten methods. In other words, LSPIN simply overfits the dataset without correctly
identifying the informative features, denoting a severe co-adaptation problem and low-fidelity feature selection. In contrast,
ProtoGate has consistently non-positive rank differences between F1selec and ACCpred, showing high-fidelity feature selection.
The results demonstrate that ProtoGate can achieve a well-aligned performance of feature selection and classification,
guaranteeing the fidelity of selected features.
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Table 22. Evaluation comparison of ProtoGate and nine benchmark methods on three synthetic datasets. We report the F1 score of
selected features (F1select) and the balanced accuracy for prediction (ACCpred). “Diff.” refers to the difference between the ranks of F1select

and ACCpred, and a positive value indicates a high possibility of co-adaptation. We highlight the First, Second and Third performance for
each dataset. ProtoGate achieves well-aligned performance for feature selection and prediction.

Methods Syn1(+) Syn2(+) Syn3(−)

F1select ↑ ACCpred ↑ Diff. F1select ↑ ACCpred ↑ Diff. F1select ↑ ACCpred ↑ Diff.

Lasso 0.09±0.02 54.55±6.14 2 0.11±0.01 52.42±6.69 0 0.09±0.02 55.30±7.44 2
RF 0.15±0.04 57.08±6.48 3 0.19±0.02 59.44±5.24 1 0.22±0.02 56.33±9.08 -1
STG 0.27±0.04 58.65±9.03 -1 0.22±0.09 58.28±8.36 -2 0.28±0.18 54.00±9.09 -7
TabNet 0.08±0.02 48.59±6.55 1 0.06±0.02 49.57±5.38 0 0.06±0.02 48.45±8.31 0
L2X 0.16±0.07 52.89±7.51 -3 0.19±0.10 55.78±6.97 -1 0.10±0.09 55.92±7.30 2
INVASE 0.18±0.05 55.36±9.00 -1 0.16±0.03 60.28±8.61 6 0.13±0.03 58.75±8.70 5
REAL-X 0.19±0.04 47.54±9.51 -7 0.23±0.07 55.20±6.38 -6 0.26±0.06 56.48±9.34 -1
LSPIN 0.15±0.04 59.04±9.24 5 0.19±0.04 59.40±8.07 1 0.19±0.06 58.09±6.41 2
LLSPIN 0.11±0.02 54.96±9.49 2 0.17±0.08 56.18±5.80 1 0.10±0.06 52.35±8.32 -2

ProtoGate (Ours) 0.29±0.07 58.68±6.28 -1 0.29±0.09 60.67±8.21 0 0.17±0.06 56.16±6.82 0

I.3. Results on Transferability of Selected Features

Figure 11 shows that ProtoGate consistently improves the performance of KNN across datasets, while ProtoGate-global and
ProtoGate-local can cause performance degradation on some datasets. Although SVM does not have the same inductive bias
as ProtoGate (i.e., the clustering assumption), the selected features by ProtoGate do not cause performance degradation in
SVM, even bringing notable improvements on some datasets (e.g., 25.8% increase in balanced accuracy on the “meta-pam”
dataset). In contrast, ProtoGate-global and ProtoGate-local can cause considerable performance degradation (e.g., over 10%
drop in balanced accuracy on the “toxicity” dataset), further showing the complementary effects of soft global selection and
local selection. In a nutshell, both global and local feature selection contribute to the selection behaviours of ProtoGate, and
the features selected by ProtoGate are generally transferable and beneficial for the performance of simple models.

Table 23. Normalised balanced accuracy (%) of simple models with different feature selectors. We bold the highest accuracy for
each simple model. ProtoGate selects features that generally improve the performance of KNN and SVM.

Methods None ProtoGate-global ProtoGate-local ProtoGate (Global-to-local)

KNN 35.08±20.07 38.24±24.54 64.02±9.47 79.45±11.22
SVM 44.22±15.96 31.24±21.90 43.45±29.58 71.38±23.95
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Figure 11. Left: Accuracy improvement in KNN (%) with different feature selectors. Right: Accuracy improvement in SVM (%) with
different feature selectors. ProtoGate selects features that generally improve the performance of KNN and SVM, while ProtoGate-global
and ProtoGate-local can cause performance degradation on some datasets.
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J. Future Work
We would like to emphasise that no discussed methods, including ProtoGate, dominate the considered datasets. Indeed,
ProtoGate could be outperformed by the other top three methods, Lasso and MLP, on some HDLSS datasets, e.g.,
“lung” dataset. This is likely due to the inherently limited expressiveness of prototype-based models in comparison to
well-regularized connectionist models, as discussed in (Lu et al., 2017; Margeloiu et al., 2023a). However, the robustness
and prototypical explainability offered by ProtoGate contribute valuable perspectives for advancing reliable HDLSS
feature selection methods. A promising direction for future research is the development of more expressive non-parametric
models, which can potentially enhance feature selection models with the same learning paradigm as ProtoGate (i.e., disjoint
in-model selection). In addition, the clustering characteristics of the samples after feature selection, in conjunction with
domain knowledge, could reveal important scientific insights. Moreover, exploring the application of ProtoGate in other
high-dimensional fields where explainability is crucial, such as finance (Song et al., 2019), and environmental modelling
(Jarquı́n et al., 2014), could yield important findings.
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