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Abstract

Background: The rapid global spread of COVID-19 has led to an unprecedented
demand for effective methods to mitigate the spread of the disease, and various
digital contact tracing (DCT) methods have emerged as a component of the solution.
In order to make informed public health choices, there is a need for tools which
allow evaluation and comparison of DCT methods.
Methods: We introduce an agent-based compartmental simulator we call COVI-
AgentSim, integrating detailed consideration of virology, disease progression, social
contact networks, and behaviour/mobility patterns, based on parameters derived
from empirical research. We verify by comparing to real data that COVI-AgentSim
is able to reproduce realistic COVID-19 spread dynamics, and perform a sensitivity
analysis to verify that the relative performance of contact tracing methods are con-
sistent across a range of settings. We use COVI-AgentSim to perform cost-benefit
analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that
assigns binary recommendations based on binary test results; and 2) a rule-based
method for feature-based contact tracing (FCT) that assigns a graded level of
recommendation based on diverse individual features.
Findings: We find all DCT methods consistently reduce the spread of the disease,
and that the advantage of FCT over BCT is maintained over a wide range of adop-
tion rates. Feature-based methods of contact tracing avert more disability-adjusted
life years (DALYs) per socioeconomic cost (measured by productive hours lost).
Interpretation: This research provides a useful testbed to compare and optimize
real-world implementations of contact tracing (CT) schemes, a first step in re-
sponsible and informed use of CT as an epidemic intervention tool. Our results
suggest any DCT method can help save lives, support re-opening of economies, and
prevent second-wave outbreaks, and that FCT methods are a promising direction
for enriching BCT using self-reported symptoms, yielding earlier warning signals
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and a significantly reduced spread of the virus per socioeconomic cost.

Keywords: Epidemiology, Digital contact tracing, Agent-based model, COVID-19,
SARS-CoV-2, Simulation, Intervention evaluation

1. Introduction

While vaccine development is underway, countries facing the COVID-
19 pandemic are confronted with a limited choice of non-pharmaceutical
interventions to control virus propagation. Mathematical modelling and
econometric studies show that lockdown has been effective in containing the
COVID-19 pandemic in many settings [1, 2]. However, sustained limitation
of human contact is likely not viable with regards to individuals’ mental
health [3], financial security [4], children’s development [5], or national and
global economies [6]. Improving effectiveness of non-pharmaceutical public
health strategies is therefore of paramount importance to mitigate the spread
of the disease, at least in the short and medium term.

Contact tracing (CT) is a public health strategy for mitigating the
spread of infectious diseases, and consists of alerting individuals that they
have recently been in close contact with an infected person (hereafter, an
‘index case’) and taking preventative measures. In manual contact tracing
(MCT), this process is undertaken by public health workers who telephone,
email, and/or interview confirmed index cases and subsequently do the same
for all persons the index case has been in contact with during their suspected
window of infectiousness (hereafter, ‘contacts’). While MCT has been used
successfully to contain previous respiratory infection epidemics (e.g. SARS
in 2003), the massive scale of the COVID-19 pandemic has overwhelmed
the capacity of many public health departments undertaking MCT [7]. The
efficacy of MCT is also limited by peoples’ recall of their contacts, which is
problematic especially when asymptomatic or presymptomatic transmission
plays a large role, as appears to be the case for COVID-19 [8, 9].

Digital contact tracing (DCT), which uses smartphone apps to send
messages between contacts with little to no delay, has been successfully
deployed in some settings (e.g. Singapore and South Korea [7]) to supplement
the limited manpower available for MCT. By enabling large-scale processing
of individual-level data (e.g. on testing, presence of symptoms), facilitating
communication with potentially-exposed individuals (e.g. through phone
alerts), and allowing for non-identifying location-based tracing, DCT has the
potential to both maximize efficiency of CT, as well as provide real-time data
to inform understanding of COVID-19 and public health decision-making.

2



DCT, however, is not free of disadvantages. Due to a wide range of privacy
concerns about smartphone communications, DCT suffers from poor adoption
by the public [10].

Additionally, most countries using DCT have adopted a simple form which
informs and recommends quarantine to all digitally-recorded contacts of cases
confirmed through testing. We call these systems Binary Contact Tracing
(BCT) because they recommend users either to quarantine or not (binary
decisions) based on whether a past contact took place with a confirmed
index case (binary input feature). COVID-19 is a challenging disease to
mitigate with BCT for two primary reasons (i) BCT currently relies on
reverse transcriptase PCR (RT-PCR) tests which have high disease
phase-dependent false negative rates. To make it worse, these tests are
expensive, and may require a long time to obtain results [11, 12] (ii) the
majority of transmissions of SARS-CoV-2 take place before the infector shows
any symptoms, thereby reducing the likelihood that a potential infector would
have been tested before transmission [13].

We observe that there are a wide variety of clues potentially available
to a contact tracing app that would allow for non-binary, individualized
recommendations, thereby offering significant improvements to BCT. We call
these methods feature-based contact tracing (FCT), and hypothesize
they could provide an important and effective means of reducing the spread
of the disease, perhaps even more effectively than BCT at lower adoption
rates.

Recognizing this potential, we propose COVI-AgentSim - a software
testbed2 to design, evaluate and benchmark DCT methods using cost-benefit
analysis in terms of lives saved, reduction in effective reproductive number
(Rt) of the virus, disability-adjusted life years (DALYs) averted, and produc-
tive hours lost. By using an agent-based model (ABM) as the foundation
of this testbed, we are able to simulate a rich set of individual-level input
features. COVI-AgentSim can be adapted to a region of interest by providing
appropriate demographics and contact pattern information for that region.
It can then be calibrated to match published data for that region of interest.

We calibrate COVI-AgentSim to reproduce COVID-19 case and hos-
pitalization data for the region of Montreal, Canada. In order to ensure
the simulator is a fair and reliable testbed, we also check that the relative
ordering of methods is preserved across wide ranges of simulator parameters
and over several metrics. We propose a simple rule-based FCT method which

2Code available here: https://github.com/mila-iqia/COVI-AgentSim
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leverages individual-level features to make non-binary recommendations, and
compare this approach to BCT and compare both to no-DCT via cost-benefit
analyses. We find that both BCT and FCT methods are able to reduce spread
of the disease, and our results echo those of recent research [14] suggesting
that DCT methods can still save lives even at low adoption rates. We find
evidence that FCT approaches, which leverage rich individual-level features
to make graded recommendations, are promising for improving DCT even
further.

Additionally, by stratifying DALYs over age groups, we observe the most
DALYs averted per person for those over 80 years of age, even with low
app adoption rates in that age group, thus showing the protective effects of
younger people using DCT. These results are conservative in estimating the
benefits for the most vulnerable populations, since we randomly assign DCT
app usage proportional to smartphone usage, yet more vulnerable people (or
those close to more vulnerable people) may be more likely to use DCT. Our
results thus strongly support the usage of DCT methods as a component
of effective public health strategies, and we hope COVI-AgentSim will be a
useful resource for development, benchmarking, evaluation, and improvement
of DCT methods.

2. Related work

2.1. Agent-based epidemic modeling

Agent-based models (ABMs) are frequently used to study geospatial and
other patterns of disease which vary at an individual level (e.g. [15, 16]).
They are thus often useful for studying differential effects of policy decisions
and interventions on different subgroups of the population; for instance
[17] use an ABM to study which post-lockdown measures most effectively
protect the most vulnerable, in terms of disease incidence, mortality, and ICU
occupancy, and [18] and [19] study patterns of COVID-19 spread in different
representative locations (university, workplace, and highschools), and the
impact of different intervention scenarios in each of these locations. One of
the interventions studied by these works is DCT, and both find evidence that
it can reduce ICU admissions and help curb the spread of the disease. ABMs
are also useful for modeling the impact of outlier individuals or events such
as super-spreading, e.g. [20], which are not easily captured by mathematical
models of population-level spread.
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2.2. Comparing contact tracing methods

Several works have studied the use of smartphone apps in epidemic man-
agement, e.g. [21, 22], and some work has begun specifically on COVID-19.
For instance, Ferretti et al [23] propose a mathematical model of infectious-
ness based on early epidemic data in China and compare binary contact
tracing to manual tracing. They quantify the contribution of different
transmission patterns (infection through symptomatic individuals, presymp-
tomatic individuals, and from the environment) and the requirements for
effective contact tracing. Assuming a 3-day delay in notification (and thereby
quarantine of the individual), the authors demonstrate MCT could not bring
Rt below 1 and hence, could not control the epidemic. Instantaneous contact
tracing by a digital tracing application on smartphones could do so (Rt <1).
Shamil et al. [24] follow a similar approach, but with an ABM taking into
account realistic contact patterns, studying the potential efficacy of BCT in
controlling the spread of the disease. They find strong dependence of the
efficacy of digital contact tracing on app adoption, suggesting that BCT
alone is insufficient to control a pandemic unless over 60% of the population
is using the app. [14] find similar results, emphasizing however that even at
very low adoption rates DCT is able to save lives. This suggests that DCT
should be considered an important component of public health strategy for
mitigating COVID-19. We find similarly that BCT and FCT are unlikely
to control a pandemic on their own at low adoption rates (see Section 8),
showing that even at 60% adoption rate these methods must be combined
with other strategies to contain the disease.

Perhaps most similar to our work is Hinch et al. [25], who also propose an
open-source ABM which allows manual and digital contact tracing methods
to be compared, with benefits stratified across age. Developed concurrently
to our simulator, similarities between the two approaches highlight the
importance of several design decisions made independently but converging to
the same solutions, e.g. the use of ABMs, a python interface, and the need for
empirical testbeds of this nature. A key difference in our simulator is the rich
set of individual-level features (including e.g. pre-existing medical conditions),
which allow us to benchmark feature-based contact tracing methods, and
also allow for stratification over a larger variety of subgroups. The cost of
this level of detail is computation; our simulator models smaller populations
at higher fidelity for the same computational budget. We perform a scaling
analysis (Appendix K) in order to ensure the dynamics we produce on these
smaller populations are representative of larger populations. However, the
simulator of [25] may be preferable for studying binary-only contact tracing
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methods, or when faster computation is needed relative to individual-level
detail.

3. COVI-AgentSim Overview

The simulator is an agent-based compartmental model [26] implemented
in Python [27] and C [28], using Simpy [29], a process-based discrete-event
simulation framework. For each agent the simulator tracks transitions through
Susceptible, Exposed, Infectious, and Recovered (SEIR) states, as well as a
variety of individual characteristics, including pre-existing medical conditions,
self-reported symptoms, and test results. This rich set of individual features
enable the simulation of contact tracing apps which make use of such features.
At the same time, we parameterize our simulator using real-world data when
available, and when no data is available we make weak assumptions and
investigate the sensitivity of our results with respect to these assumptions
(see Section 5.3).

3.1. Demographics

COVI-AgentSim simulates the spread of the SARS-CoV-2 virus in a city
through contagion events between agents. Simulator is initialized with a
synthetic population along with the mobility and contact patterns informed
by census and empirically derived data. It can be configured easily for any
region of interest (see Appendix F). Each agent i in the simulation has
individual characteristics (e.g. age, sex, pre-existing medical conditions)
denoted Xi. Dwelling characteristics, workplace association, and contact
patterns are derived from age-stratified surveys and empirical studies (see
Appendix E.2).

3.2. Mobility Patterns and Disease Spread

At start of a simulation, a fraction α of the agent population is randomly
exposed to COVID-19. Infection spreads through communities via conta-
gion events at households, workplaces, schools and other random locations.
Agents move around the city transitioning between locations like households,
workplaces and other locations. The pattern of each individual’s mobility
(i.e., which locations they visit, how often they visit them, and how they
interact with other individuals at these locations) is set according to [30, 31].
While at a location, agents sample contacts according to age-stratified contact
matrices derived from [32]. A detailed discussion of agents’ mobility patterns
and location dependent contact pattern is provided in Appendix E. Figure 1
compares simulated age-stratified contact patterns with surveyed matrices.
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Figure 1: Overall simulated contact pattern (left) yield a similar pattern to empirically
derived matrix (right). For location specific contact patterns and mobility of agents see
Appendix E.

3.3. Transmission Characteristics

Virus transmission takes place anytime an infectious and a susceptible
individual are within 2 meters of each other for at least 15 minutes, thereby
possibly transmitting viral load to a newly infected agent. We model the prob-
ability of COVID-19 transmission P according to [23]. Borrowing notation
from the authors, briefly, this probability is proportional to age-dependent
susceptibility Sa of the susceptible agent with age a, location-dependent
multiplicative factor Bn (for location n), symptom status (asymptomatic,
mild, severe) dependent ratio As of the infectious agent, and a surrogate
for cumulative viral load (EVL) transmitted from the infectious agent for
duration δt. We discuss EVL in the next section. A proportionality factor
r is used to calibrate the reproductive number of the disease spread. For
the sake of completeness, a mathematical form of this transmission model is
presented in Eq 1 and Eq 2.

λ(δt, Sa, As, n) =
rSaAsBn

Ī

∫
δt

EVL, (1)

P (δt, Sa, As, n) = 1− e−λ(δt,Sa,As,n), (2)
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where P (δt, Sa, As, n) is the probability of the contagion event. We use the
same values for constants as used by authors in their open-sourced code3.

3.4. Individual Disease Trajectory

After such a contagion event, we sample for the infected agent the
variables controlling the course of the disease, including symptoms and
severity. Additionally, we sample a time-series of a quantity proportional to
viral load as measured by [33, 34], which we call effective viral load EV L;
this quantity represents the interaction of the virus with the host’s immune
system. We further discuss (EV L), its dependence on age and preexisting
conditions, and how it is sampled in Appendix B. A model for sampling
symptoms for each agent conditional on whether the agent has cold, flu, or
COVID-19 is discussed in details in Appendix J.

3.5. RT-PCR Testing

In COVI-AgentSim, we model RT-PCR testing and its relation to contact
tracing applications. As discussed earlier, the disease trajectory for each
agent depends on their age and preexisting conditions. Thus, there are
agents who experience symptoms on a spectrum from none (asymptomatic)
to severe: agents who experience more severe symptoms are more likely to
seek an RT-PCR test. Given the limited testing capacity at the onset of the
pandemic, we model a testing facility with a fixed maximum capacity. For
an infectious agent, the outcome of a test is modeled according to disease
phase dependent false negative rates as per [35]. As an example, 4 days after
a SARS-CoV-2 infection, the infected agent will have a false negative rate of
67%. Upon receiving a positive test result, the agent is put to self-isolation
for dmax days with a probability of not following such interaction modeled
via dropout parameters. We discuss details about testing in Appendix C
and hospitalization in Appendix D.

3.6. Agent Behavior

Unlike existing COVID-19 ABMs, our agents are designed to follow
varying levels of contact patterns. For example, number of contacts sampled
by an agent in level k at location l corresponds to a fraction (γlk) reduction in
contacts with respect to pre-pandemic number of contacts for that location.
These pre-pandemic number of contacts are available through surveyed

3https://github.com/BDI-pathogens/OpenABM-Covid19/blob/master/

documentation/parameters/infection_parameters.md
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studies [32] which we discuss in Appendix E. Thus, if there are n+ 1 such
levels ranging from 0, 1, ..., n, an agent at location l in level 0 will draw
contacts using pre-pandemic number of contacts (γlk = 0), and an agent at
location l in level n is in quarantine i.e. samples no contacts (γlk = 1). Fraction
γlk for intermediate levels k ∈ {1, ..., n − 1} are obtained by interpolation
scheme (e.g. linear) between γl0 and γln. Our choice is motivated by the desire
to have a simple model grouping together the effect of choices individuals
can make to reduce their likelihood of becoming infected like washing hands,
wearing a mask, and physical distancing.

Each of these levels are further associated with a dropout parameter
that represents the fraction of time an agent in level k will drop to level 0,
returning to a higher level of activity (specifically, pre-pandemic numbers of
contacts). COVI-AgentSim can be configured to quarantine individuals due
to any of the following triggers (a) confirmed positive test (b) self-reporting
of symptoms, (c) recommended by the app, and (d) household member of
any of the above cases. Additionally, in order to model population-wide
mobility restrictions we use a Bernoulli distribution with parameter β ∈ [0, 1]
to sample contacts. Thus, an agent that usually draws 12 contacts will now
draw β ∗ 12 contacts on average. This modeling choice is a simplification of
the varying degrees of government imposed mobility restrictions, controlled
by a population-wide β.

3.7. Communication between Agents

DCT methods rely on capturing high-risk contacts and communicating
risk information. The population-level app adoption rate is a key parameter
because the fraction of contacts captured by this system will be proportional
to the square of the app-using fraction of the population. To distribute apps
throughout our simulated population, we use an age-dependent distribution
across smartphone owners. We use an age-based breakdown of smartphone
users as in [23], and use an UPTAKE parameter to vary the population-level
adoption rate. If an agent is assigned an app, there is a provision to report
individual characteristics like age and preexisting conditions as well as daily
symptoms. We further model dropout rates for reporting symptoms as well
as a ”drop-in” rate for falsely reporting symptoms to account for malicious
users and other confounding factors that produce symptom inputs, such as
colds or flu.

When app users i and j have a significant encounter on day d (which can
lead to contagion) the CT method can exchange messages between them, on
the same day or later. We have considered two kinds of messages: a contact
message exchanged on day d allows i and j to keep track of the encounter
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event (such as when it happened) as well as a handle allowing them to send
each other messages later (potentially via some server), while minimizing
breaches in privacy. A contact message could also contain information about
the current degree of contagiousness risk they pose to each other on day d.
Later, if i observes new clues suggesting their contagiousness on day d was
actually higher, i can send an update message to j, with information which
can help j update their own evaluation of contagiousness.

We denote Md
i,j(t) the risk message sent on day t by i to j regarding their

encounter on day d. If t = d this is the initial (contact) message, whereas
for t > d this is used to update the information j will have at day t about
their encounter with i on day d. Note that i may send multiple update
messages to j, as they acquire more information about having been infectious
on day d. Additionally, we restrict the frequency of communication: if t′ is
the time of the last risk message sent by i about some encounter, the next
message is sent at time t

′′
only if Md

i,j(t
′′) 6= Md

i,j(t
′). The clues which agent

i may use to come up with its risk messages include symptoms, test results,
pre-existing conditions and received risk messages. The way to come up with
these risk messages, as well as how to adjust behavior based on estimated
risk, is specified by the CT method, such as those described below.

4. Digital Contact Tracing methods

In digital contact tracing we have two goals: to reduce the individual’s
spread of disease (by recommending a reduction in mobility to risky indi-
viduals), and to inform contacts of additional risk. Agent’s adherence to a
recommendation level k entails sampling location specific contact patterns
according to that level (see Section 3.6). We denote agent i’s behavior level
on day d by ζid such that for a total of n+ 1 behavior levels, ζid ∈ {0, 1, ..., n}.

Determination of this recommendation level is done via a risk estimator
that uses a rich suite of features to evaluate agent i’s risk history on day
t. That risk history is denoted rit, where we constrain risk levels to be
non-negative integers with a maximum value of Rmax. We use rit,d to denote
estimated risk of agent i for day d such that t− dmax < d < t. If an agent i
had an encounter with an agent j on day d such that t− d < dmax, rit,d is

sent to the past contacts as a risk message Md
i,j(t) = rit,d if j was a contact of

i on day d (see Section 3.7). This determines what information is available
to agent’s contacts such that they may modify their own behavior or to
propagate risk further.

Useful Notations We use N (i) to denote a set of agent indices that
had at least one digitally recorded contact with agent i in the past dmax days.
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Further, we use the colon symbol (:) to iterate through all possibilities for
the variable at that position. For example, Md

i,:(:) represents risk messages
from agent i to all agents j ∈ N (i) for encounter on day d, if there was
one. Similarly, M :

i,:(:) represents risk messages sent by agent i to agent N (i)
within the past dmax days.

We denote agent i’s test result on day d by testid ∈ {+1, 0,−1}, where
+1 denotes a positive test result, −1 denotes a negative test result, and 0
denotes no test was taken. As a simplifying assumption, we assume that a
positive test is retained for dmax days while a negative test is retained for
dmin days (we use dmin = 2 in our experiments). Thus, an agent i getting a
negative test result on day d i.e. testid = −1 will have this variable set to
−1 for the next two days i.e. testid+1 = −1, and testid+2 = −1, after which,
in the absence of any test testid+3 = 0. As an input to the Test-based BCT
method, we further denote a history of test results for dmax days in the
past by a vector Ti

d ∈ {+1, 0,−1}dmax . We refer to the test result on day d′

(where d− dmax < d′ ≤ d) as Ti
d,d′ = testid′ as known on day d.

We similarly denote agent i’s symptoms for the past dmax days by
a matrix Sid, such that, with Nsymptoms categories of symptoms, Sid ∈
{0, 1}Nsymptoms×dmax . Additionally, agent i’s symptoms on day d− dmax <
d′ ≤ d are represented via Sd,d′ .

4.1. Binary Contact Tracing (BCT)

The most common class of digital tracing methods, Binary Contact
Tracing (BCT), can be viewed as a binary classifier with final decision
(behavior recommendation) being whether the agent should quarantine or
not. Most often, the decision boundary is simple: did the individual had a
recent contact with someone who received a positive RT-PCR test? We refer
to these methods as Test-based BCT, which we describe formally next.

In Test-based BCT method, for an agent i with testdi = +1, agents
j ∈ N (i) are notified and recommended to quarantine themselves as discussed
in Section 3. We call this particular method BCT1 because it only affects
the immediate contacts (and their household members) of individuals with
positive test results; in section 5.3 we show results for this baseline, BCT2,
where second order contacts may also be quarantined.

4.2. Feature-based Contact Tracing (FCT)

We describe a class of methods we call Feature-based Contact Tracing
(FCT), which leverage the potentially rich set of features available on a
smartphone to make graded recommendations. As discussed earlier, we
make use of following available information on an app to update an agent i’s
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estimated risk history rid on day d: (a) Test results Ti
d, (b) Symptoms Sid,

(c) Individual characteristics Xi, (d) risk messages M :
i,:(:), and (e) previous

estimated risk history rid−1. The agent’s estimated risk for the past dmax days
is then propagated as discussed in Section 3.7. In addition to risk estimation,
the agent’s behavior is set to a level ζid based on the estimated risk for that
day i.e. rd,d. In this section, we describe one such rule-based implementation
of FCT - Heuristic-FCT which forms the basis of our experiments.

4.2.1. Heuristic-FCT

With the help of available information about how COVID-19 spreads
and manifests itself in an individual in the form of symptoms, we designed
a rule-based FCT method. Specifically, for every available aforementioned
feature type, we determine the agent’s risk history for the past dmax days.
The agent’s risk history on each day d′ is taken as the maximum across these
per-feature estimated risks.

Broadly, Heuristic-FCT uses the following rules:

• Test results, Ti
d: the agent’s risk is set to rMAX = Rmax if there is

a positive test result in the past dmax days. This rule takes priority
over any other rules (assuming that a positive test gives us maximum
certainty about being in the top risk level).

• Symptoms, Sid: we identify three categories of symptoms based on how
indicative they are of COVID-19. The presence of a highly informa-
tive symptom in Sid results in a high risk level rHIGH; a moderately
informative symptom results in a moderate risk level rMODERATE; and
a mildly information symptom results in mild risk level rMILD. We
assign these risk level values for the past dmax/2 days in rid, similarly
to [25].

• Risk messages, M :
i,:(:): the risk of an agent receiving a risk message

rMAX is estimated to be ρ = rHIGH, while one receiving rHIGH is
estimated to be at ρ = rMODERATE, and so on. The rationale is that
the level of risk decreases rapidly as we move away from one agent to
its contacts, to the contacts of these contacts, etc. We then compute
the duration of time when agent i could have been infectious if this
contact had caused their infection as d′ + 1 < d′′ < d. Thus, we set the
agent’s risk to this value ρ until d′′ days in the past.

• Other rules: There are some rules that are designed to override the
above rules. For example, an agent with a negative test on day d′
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is assigned a risk of 0 from that day onwards. Further, an agent is
estimated to be at risk level 0 if there had been no positive test in dmax
days, no symptoms in the last dmax/2 days, and no high, moderate of
medium risk messages in a certain past time horizon.

We present a formal description of this risk estimator in Appendix I.

5. Calibration of the Simulator

In this section we seek to provide following evidence: (1) our simulator is
producing a reasonable approximation of real-world COVID-19 dynamics,
and (2) it is a reliable testbed for comparing contact tracing methods. We
address (1) by checking the output epidemiological characteristics match
published literature (see Figure 2 and Table 1), and by checking that the
hospitalization and mortality statistics are well-aligned with those found
in real world data (Figure 3). We address (2) by performing a sensitivity
analysis of the simulator to a wide range of parameters, and checking that
the ranking between contact-tracing methods is preserved over these settings,
for different metrics.

5.1. Validation of epidemiological characteristics

We calibrate the simulator so that the observed statistics in the simulator
are similar to what is observed for COVID-19, plotting SEIR curves in 2 and
comparing statistics to published data in 1.

Metric Simulator µ ± σ Reference

Incubation 5.505 ± 0.01 5.807 [34]
Infectiousness onset 3.357 ± 0.016 2.3 [8]
Recovery 18.886 ± 0.035 14 [8]
Generation time 4.341 ± 0.018 3.99 [36]
Daily contacts 16.355 ± 0.137 13.4 [37]
Presymptomatic transmission 0.563 ± 0.011 0.44 [8]
Asymptomatic transmission 0.226 ± 0.004 0.29 [9]

Table 1: Simulator statistics: Key statistics related to Covid-19 epidemiology. Reported
numbers are average µ in days and corresponding 1 standard deviation σ, computed over
10 random seeds on a population size of 3000. It is important to note that these statistics
are a result of the many processes happening within the ABM; there are no parameters
that specifically encode these values.
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Figure 2: SEIR Curves: (with standard errors) for a population size of 3000 people
averaged over 10 random seeds as an output of the proposed simulator.

5.2. Comparison with real hospitalization and mortality data

We run 10 simulations using random seeds and plot the mean and standard
deviation of the hospitalization and mortality statistics over 100 days. We
compare these results to the real data reported in Montreal from the same
time period. Our simulations use 30,000 people and we report results as a
proportion of population. We see that under these settings the proportion
of the population that is hospitalized or deceased aligns with the data from
Montreal (See Figure 3).

5.3. Sensitivity Analysis

A primary contribution of this work is the creation of an ABM which
can act as a testbed for comparing COVID-19 contact tracing methods.
While the majority of the parameters in our ABM are chosen according to
published literature, much about COVID-19 is still unknown or uncertain.
For this reason, we conduct a sensitivity analysis of some key parameters
which exhibit high variance across different studies.

Specifically, we study the impact of the asymptomatic proportion of the
population (see Figure 4), which is a difficult to measure without widespread
serological testing, and the initially infected proportion of the population
(Figure 5). We observe that the relative efficacy of different methods (i.e.
the ranking of methods) holds across a wide range of settings, a desirable
characteristic for a comparison testbed.
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Figure 3: Comparison of real (solid lines) and simulated (dotted lines) Quebec
COVID-19 data. We compare against the real hospitalization and mortality data (as a
percentage of population) during the first wave of COVID-19 in Quebec. It is important to
note that we only report a post-lockdown scenario. We report results with our simulator
from 10 runs with a population of 30,000 people.

Figure 4: Sensitivity to asymptomaticity: These figures show a comparison between
4 contact tracing methods (including the No Tracing setting) and varying the proportion
of the asymptomatic population between 0 and 100%. We plot two views of the same data
with different Y-axes: fraction infected and R̂t. The relative performance between the
methods are consistent across rates of asymptomaticity and choice of Y-axis. We report
the mean and standard deviation across 5 seeds with a population of 3000 people.
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Figure 5: Sensitivity to size of initially sick population: These figures compare 4
contact tracing settings and 8 settings of the proportion of the population initially infected
ranging from .1% up to 12.8%. On the left, we see that a larger population of initially sick
individuals results in a larger population of infected individuals at the end of the simulation.
On the right, we see a counter-intuitive result: the R̂t at the end of the simulation is
lower for simulations which started with a larger initially infected population. This can
be explained by noting that R̂t in some sense reports the instantaneous change in rate of
spread of the disease while the fraction infected reports the absolute extent of the spread.
Crucially, the ranking between the methods remains similar across choice of visualization
and initially infected population. We report the mean and standard deviation for 5 runs
under each condition with a population of 3000 people.

6. Experiments

6.1. Setup

We focus our analysis on the region of Montreal for the period between
March and June. Our agents are initialized with dwelling and workplace
characteristics informed from publicly available census data [38]. We use
n+1 = 4 recommendation levels γi, with γ0 = 0 (full pre-pandemic mobility),
γ4 = 1 (full quarantine), γ3 as per post-lockdown contact patterns reported
in [39], and rest of the levels as γk = γk+1/2. Given a memory intensive
infrastructure required for managing risk messages, we run simulations on a
smaller population size of 3000 people. We initialize each simulation with
0.2% of the population as infected (6 infections), and run 10 different seeds
for each value of β ∈ {0.25, 0.275, 0.30, ..., 0.85} resulting in a total of 420
runs. These values are chosen so that we can get estimates ∆R̂ of the change
in the reproduction number of the virus, as discussed in Section 6.3.

6.2. Baselines

We compare the Heuristic-FCT method proposed in Section 4.2 with
the Test-based BCT method discussed in Section 4.1, and a No Tracing
scenario. The scenario of No Tracing corresponds to agents initialized at
level 1 (post-lockdown contacts with some restriction advised) instead of level
0 (pre-pandemic contacts), in order to compare our methods in the context
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of the scenario where economies are gradually reopening. We use Test-based
BCT1 and Test-based BCT2 to distinguish between the two variants when
necessary, otherwise we use Test-based BCT to imply Test-based BCT1 which
is the method being considered by most of the countries.

6.3. Evaluation

We compute the following metrics to evaluate various scenarios:

• Average number of contacts per day per human (C): We empirically
compute the average number of daily contacts per agent in simulation.

• Proxy R (R̂): We use an empirical calculation to estimate the repro-
ductive number R, we call this estimate R̂. At any timepoint in the
simulation we may approximate Rt by R̂t, by computing the infection
tree and taking the ratio of number of children

number of parents , where parents are recov-
ered agents. This ratio gives an approximate rate of growth of the tree.
We use R̂t at the end of the simulation as our R̂.

• Daily cases (%): Percentage of population exposed, i.e., new cases on
any given day of a simulation.

• Cumulative cases (%): Percentage of agents in exposed, infectious, or
recovered state up until a particular day of a simulation.

• Prevalence (%): Percentage of population in infectious or exposed state
on any given day of a simulation

• Incidence (%): Number of agents exposed per 1000 susceptible agents
on any given day of a simulation. It is also referred to as attack rate.

As the contact tracing methods proposed in this paper change agents’
behaviour to varying degrees, it is crucial to compare different methods
across similar social mobility restrictions. For example, BCT can only use
levels 1 and n while FCT can use all levels from 1 to n. Therefore, at the
same value of β, BCT will likely under perform as it can not reduce infections
by using intermediate levels. Thus, for a fair comparison of BCT with FCT,
we run simulations with varying values of β ∈ (0, 1) and match them for
average number of contacts.

To compare the performance of different methods for the same mobility
restriction we empirically compute pairwise difference in mean R̂ for a fixed
number of contacts C. This is achieved by obtaining the performance in terms
of R̂ of a method across a spectrum of values of C (by varying β), and fitting
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a Gaussian Process (GP) regression [40] to obtain a functional dependence
for each method between C and R̂. We denote this fitted regression for
method A by R̂GPA . To compute the advantage of method A over B, we find

C = x for which A yields R̂GPA = 1. Next we compute the advantage ∆R̂AB
of A over B as R̂GPB (x)− 1.

∆R̂AB = R̂GPB (x)− 1,where, x is such that R̂GPA (x) = 1. (3)

Note that R = 1 is the threshold between exponential growth and exponential
decay of the virus and serves as a good point of interest when comparing
methods since the objective is to choose a method which brings R below 1,
all else being equal (e.g., general restrictions on social mobility).

6.4. Comparison of methods

Figure 6 shows a comparison of the GP regression fits between afore-
mentioned DCT methods at 60% adoption rate, and a No Tracing scenario,
across a range of values of C. We observe that Heuristic-FCT significantly
improves over Test-based BCT by reducing R̂ by 6.7%. Of note is the region
around C = 5.61 ± 0.5 where R̂ = 1.2 for No Tracing. We compare the
performance of DCT methods in this region to set our comparisons in the
context of current scenarios (partial lockdown) where government-imposed
restrictions keep R under control.

To further investigate the reason for the improvement of Heuristic-FCT
over Test-based BCT, we peek into the simulations in the concerned region of
C. Figure 7 shows that on average, Heuristic-FCT exhibits lower incidence
as well as prevalence on any given simulation day. This is expected as
Heuristic-FCT makes use of far richer features as compared to binary test
results used by Test-based BCT to evaluate individual’s risk of infecting
others.

Finally, due to network effects, it is likely that adoption rate plays an
important role in the performance of DCT methods. Thus, we evaluate
DCT methods at various adoption rates. To do this, we run simulations
of DCT methods at different adoption rates in a similar way as explained
in Section 6.3, and concern our analysis on simulations chosen according
to the selection criterion described above. Figure 8 shows the performance
of the considered DCT methods at different adoption rates. As expected,
the performance diminishes with lower adoption rates, for all the methods.
However, we observe that Heuristic-FCT retains its advantage over BCT
methods even at the lower adoption rates. At the same time, we also note
that poor adoption brings both the DCT methods close to No Tracing,

18



Figure 6: Pareto front. We compare DCT methods at 60% adoption rate, and a No
Tracing scenario. For each method, a GP regression is fit as discussed in Section 6.3,
approximating a trade-off between mobility and spread of disease. We plot the mean fitted
function along with 95% confidence intervals. Relative to the No Tracing scenario, we
observe a statistically significant 17.4% reduction in R̂ by Heuristic-FCT as compared to
10.7% by Test-based BCT method.
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Figure 7: Case curves. We investigate the dynamics of the simulations chosen as per the
criterion mentioned in Section 6.4 to compare the performance of DCT methods at 60%
adoption rate in the context of partial-lockdown. Shown are the mean with one standard
error band of the metrics described in Section 6.3. Simulations under Heuristic-FCT exhibit
lower attack rates (incidence) as compared to Test-based BCT method, thereby explaining
the advantage visible in Figure 6.
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thereby making it more difficult to measure significant advantages over the
partial lockdown scenario. Thus, we argue that by continuity while at any
adoption rate DCT methods can save lives, adoption rate is crucial for their
efficacy.

Figure 8: Effect of adoption rates. Performance of DCT methods is heavily dependent
on adoption rates. However, Heuristic-FCT retains its advantage over Test-based BCT
across this spectrum.

7. Cost-benefit analysis

COVID-19 has been a challenge for health agencies and economic policy
decision makers alike. Countries around the world have taken unprecedented
measures to prevent the collapse of health and economic welfare of people.
Yet, at times, these two objectives have seemed to be at odds with each
other in efforts to contain the pandemic. Therefore, we acknowledge that
the evaluation of DCT methods should also stand on sound assumptions
of utility maximization in economic theory. In this section, we attempt to
relate simulation dynamics to economic outcomes that policy makers can use
for decision making.

To assess the socio-economic burden of COVID-19, we examine the
following metrics: (a) Disability-Adjusted Life Years (DALYs) averted [41],
a measure of lost years of healthy life, and (b) Temporary Productivity Loss
(TPL), a measure of economic cost to society of restrictive measures. Of
particular interest is the trade-off between these two measures. We use TPL
per DALY averted to compare the cost-effectiveness of DCT methods with
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respect to the No Tracing baseline. This can be thought of as an Incremental
Cost-Effectiveness Ratio (ICER), which answers the following question: how
much more does each unit of additional benefit (in averted DALYs) cost with
respect to the No Tracing baseline? A breakdown of the methodology used
to calculate DALYs and TPL can be found in Appendix L. One assumption
made in computing TPL is that total foregone work hours due to quarantine
are scaled by a factor of 0.49[42] to account for the proportion of agents able
to work from home.

7.1. Setup

To assess the impact of the aforementioned CT methods on DALYs
and TPL, we run 10 simulations of 3000 agents for each method. For a
reliable economic analysis, it is necessary to have data on the full trajectory
of simulations reaching a post-epidemic steady state comprised of agents
that are either susceptible or recovered. Such a trajectory would help assess
whether the DCT methods actually avert the loss of life years, or simply delay
them. Since CT methods are used to stop individuals from spreading the
disease, it is important to know whether the CT methods have successfully
reduced the overall proportion of individuals, or if they have simply delayed
these infections.

If the simulations are only run for 60 days with 0.2% infections seeded at
the start, then the epidemic does not reach a post-pandemic steady state,
resulting in a possible overestimation of the benefits of the aforementioned
CT methods. Thus, we run longer simulations of 90 days with 5% infections
seeded at the start of simulations. This particular choice lets us draw
preliminary insights into the cost-effectiveness of CT methods without having
to scale up the simulations which are extremely compute intensive.

7.2. Results
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8. Limitations

We attempted to create an easily configurable platform to assist in
evaluation of DCT methods and variants thereof. Further, we proposed an
FCT method that has a potential to improve upon BCT methods, that is
widely used in practice. However, we would like to point out some of the
limitations our work.

First, although most of the parameters in COVI-AgentSim are informed
from published literature, there are assumptions we had to take in the absence
of available data. In this paper, we have enlisted most of these parameters
and corresponding references that informs them. It is important to note that
as more about COVID-19 will be known these parameters are subjected to
change, thereby affecting results in Section 6. Additionally, we introduced
intermediate levels of user behavior to contrast FCT with BCT. This is done
with the help of introducing a factor γn for level n that represents fraction
reduction in number of contacts relative to pre-pandemic number of contacts
(γ0), empirical estimates of which have been widely used in epidemiological
modeling. To obtain intermediate levels, we used interpolation such that
γk = γk+1/2. Although it is trivial to experiment with various interpolation
schemes, in the absence of user-behavior research, there is not enough that
can be done in this regard other than providing the sensitivity analysis of the
parameters involved therein. In addition to this, we foresee the use of such
assumptions to be translated into government policies such that resulting
number of contacts can approximate these assumptions.

Second, our modeling framework of FCT relies on certain assumptions of
technology which might not hold in practice. For example, our assumptions
of proximity detection using bluetooth signals (Appendix G) might be unre-
alistic. However, [43]’s work on improving the reliability of bluetooth signal
can be a way to address this. Further, we assume the app to be active (in
foreground) to be able to communicate with nearby phones all the time, an
assumption that might not hold depending on the app design. There are a
variety of such technological and ethical considerations which are discussed
in [44] to design a successful peer-to-peer FCT app. COVI-AgentSim incorpo-
rates most of the technological assumptions in [44], however, with additional
effort, other assumptions can also be incorporated in COVI-AgentSim to
evaluate DCT methods in different settings.

Third, we designed the Heuristic-FCT method using rules that were
informed by domain knowledge about COVID-19’s spread characteristics.
At this point, we acknowledge that there should be room for improvement in
these rules which can be brought upon by amalgamation of ideas in disciplines
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such as epidemiology, user behavior research, computer science, and statistics
to name a few. Alternatively, machine learning methods could be used to
learn such rules. Thus, we think that a unified mathematical framework
to analyze FCT methods might help further in development of better FCT
methods.

9. Conclusion

This work presents COVI-AgentSim, a simulation testbed for evaluation
of DCT methods. COVI-AgentSim is an agent-based compartmental model
that is initialized with a synthetic population sampled from the census data.
Daily activities as well as interactions for each agent are sampled according
to the empirically derived contact matrices. We calibrate COVI-AgentSim
to approximate the spread of COVID-19 virus to the region of Montreal,
however, the simulator can be easily configured for other regions via change
of an appropriate configuration file.

Finally, we propose the FCT class of contact tracing methods that utilize
a richer set of input features as compared to BCT methods (which rely on
binary signals like presence or absence of a positive test result). In doing
this, we aim to provide infected individuals with a warning signal earlier
than BCT methods. To put FCT in practice, we designed Heuristic-FCT
which uses hand-designed rules to inform an individual’s risk of infection
and infectiousness to others.

Our empirical results show that Heuristic-FCT results in 6.5% improve-
ment in Rt over BCT methods, and both the methods themselves provide a
significant improvement over a partial lockdown scenario. Experiments with
varying adoption rates suggest that the efficacy of DCT methods is heavily
dependent upon adoption rates. It is, however, observed that Heuristic-FCT
retains its benefit over Test-based BCT method across the adoption rate
spectrum, but this advantage was not statistically significant in the face of
very low adoption rates, at the scale of our simulations.

Using an agent-based compartmental model as the foundation of this
testbed allows us to simulate a rich set of individual-level features, which
we show can potentially be leveraged by DCT methods to improve over the
existing BCT methods. We hope that the baselines established in this work
will encourage and enable the informed development of DCT methods as a
first step in their responsible deployment as an epidemic intervention tool,
potentially saving lives at lower economic cost during deconfinement and/or
second-wave prevention.
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Finally, this work joins a growing body of work in considering novel
methodologies for rigorous evaluation of interdisciplinary technologies. Epi-
demiology is fundamentally an intersectional science, touching sociology,
biology, behavioural psychology, geography, political science, ecology, math-
ematical and computational modeling, and many other fields, in a society
which is increasingly digitized and globalized. By working together across
fields, with careful empirical study, we have hope in dealing with the impor-
tant issues we face.

10. Future Work

A major direction for future work is to benchmark a wider variety of
CT methods, including probabilistic and machine-learning based methods
which could make even better use of the features our simulator provides than
the Heuristic-FCT proposed here. The data generated by our simulator are
potentially of interest for training such models to estimate individual-level
characteristics which are predictive of the spread of the disease.

Our cost-benefit analysis using DALYs and TPL is a first step towards
an integrated framework to help policy makers in their decision process. We
see imbuing economically sound decisions in our simulated agents as a step
in creating an integrated framework for richer evaluation of DCT methods.

Although COVI-AgentSim is designed to evaluate DCT methods, we
foresee directions for the simulator to investigate the impact of a gamut of
non-pharmaceutical interventions on containing COVID-19. For example,
with some work and expertise in manual CT methods, one can compare and
evaluate various variants thereof. Another example is to analyse various
COVID-19 testing strategies in conjunction with DCT methods. Studies of
this nature could potentially help public health agencies as well as policy
makers in their decision process. A far cry, though worth mentioning,
is the fact that COVI-AgentSim has essential components for simulating
an outbreak, thereby enabling adaptation to other infectious diseases like
influenza or tuberculosis.
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Appendix

A. ABM Demographics

Information on the Montreal population regarding age, sex and occupation
distribution was retrieved from Canadian Census data [38]. Prevalences of
selected medical conditions considered as COVID-19 infection and prognosis
risk factors were determined based on prevalence estimates from nationally
representative surveys or medical surveillance programs in Canada: heart
disease [45, 46, 47, 48], stroke [47], asthma [46, 47], chronic obstructive
pulmonary disease (COPD) [46, 47, 48], cancer [46, 47, 49], diabetes [46, 47,
48, 50], obesity [46, 47, 48, 51, 52], chronic kidney disease (CKD) [46, 47,
48, 53], immuno-suppressed conditions [47] and smoking [54, 55]. National
prevalence estimates were extracted based on age group (<10, 11-20, 21-30,
31-40, 41-50, 51-60, 61-70, 71-80 and >80 years of age) and sex.

We determined conditional probability of developing COVID-19 in ABM
based on symptoms and risk factors associated with COVID-19 in published
literature. A mathematical modelling study of the epidemic with Canadian-
specific estimates [56] was used to model COVID-19 susceptibility in the
pediatric population of the simulator.

B. Inoculum & Effective Viral Load

We model inoculum, the amount of virus transmitted during an expo-
sure event, as a random variable uniformly distributed between 0. and 1..
The magnitude of inoculum is used to determine the type and severity of
symptoms.

We sample parameters for a piece-wise linear model of what we call
effective viral load (EVL)4. We think of EVL as a piecewise linear func-
tion, attributes of which are sampled for each individual separately. This
approximation follows empirical studies on viral load progression [57, 34].
Figure B.10 is the mean of sampled effective viral load curve.

C. Testing & Quarantine

We model RT-PCR test allocation as a priority queue. When an agent
experiences symptoms, or is advised by a contact tracing application to seek

4Viral load is the number of actual viral RNA in a person; we model a number between
0-1 which could be converted to an actual viral load via multiplying by the maximum
amount of viral RNA detectable by a given test.
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Figure B.9: Schematic showing the viral load curve, and associated phases of symptoms
with severity indicators: infectiousness onset occurs on average 2.5 days after exposure,
viral load peaks 0.7 days before symptom onset, which occurs an average of 5 incubation
days after exposure. Symptoms are most severe after viral load peak and symptom onset,
when the virus has had time to infect many cells. Recovery takes on average 14 days from
symptom onset.

Figure B.10: Mean ± 95% C.I of sampled effective viral load of 40 agents. Note that the
individual viral load curves are sampled as discussed in Appendix B.
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a test, this agent is added to the queue. For different symptom severities, we
assign a different probability of seeking a test. At some points during the
pandemic, Montreal experienced a restricted testing capacity. In order to
model that setting, we limit the daily testing capacity to a proportion of the
population (generally set to 0.1%).

To determine which people get tested under such a restriction, we allocate
tests to people with more severe symptoms and app-based recommendations.
After a test has been conducted, there is a delay before results are returned
(2 days in our experiments). During this period, the individual who is being
tested is isolated, and if the test returns positive then an additional 12 days
of isolation is recommended. Any quarantine which is applied to the person
receiving the test is also applied to other members of their household.

D. Hospitalization

We adopt a simple model of hospitalization and interaction within them.
To simulate post-lockdown scenarios, we assumed no infections in hospitals.
We adopt a probabilistic model of hospitalization where likelihood of being
admitted to the hospital or ICU depends on symptom severity and age.
Mortality rates are conditioned on age-group following data from Quebec
public health (date?) [58]. The duration of a hospitalization, likelihood of
requiring critical care, and mortality rate given critical care by age follow
nationally conducted surveys available publicly5. The number of hospitals
is defined in relation to the population, using the same ratio of hospitals
to people as are found in Quebec (1.99 hospitals per 100,000 people). The
number of hospital beds per capita, and occupancy ratios are taken from 6 ,
and the number of icu beds per capita and occupancy ratios are taken from
7. Hospitals are staffed by doctors and nurses, who are modelled as people
with a profession that requires they work at the hospital and have protected
interactions with patients.

Literature on the link between underlying medical conditions and COVID-
19 encompasses risk of being hospitalized due to COVID-19, risk of severe
complications (e.g. mechanical ventilation) and risk of mortality. Pre-
existing medical conditions were used to model: 1) hospitalizations and
deaths outcomes and 2) conditional probability of symptoms. To model

5https://health-infobase.canada.ca/COVID-19/epidemiological-summary-COVID-19-cases.

html#a8
6https://www.cdc.gov/nchs/data/hus/2017/089.pdf
7https://www.sccm.org/Communications/Critical-Care-Statistics
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hospitalizations and deaths in the population, we used risk ratio estimates
from studies focusing on risk of hospitalisation and risk of death as outcomes.
Risk ratios adjusted for other individual characteristics were preferred over
crude estimates.

To inform the hospitalisation and death outcome model from the simula-
tor, we selected the following risks ratios: diagnosis of heart disease, 1.17 [47],
stroke history, 2.16 [47], asthma with recent oral corticosteroid use, 1.13 [47],
COPD, 1.08 [46], cancer (excluding haematological malignancy), 1.72 [47],
diabetes, 2.24 [46], obesity stages 1 and 2 (body mass index (BMI) = 30-39.9
kg/m2), 1.8, obesity stage 3 (BMI >40 kg/m2), 2.45 [46], CKD, 2.60 [46],
immuno-suppressed because of asplenia, 1.34 and because of immunosuppres-
sive conditions (excluding asplenia and haematological malignancy), 1.70 [47].
Given the uncertainty on the association between smoking and COVID-19
prognosis [55], we did not consider this risk factor in the simulator.

E. Contact Patterns

In this section we describe contact patterns in pre-pandemic situation.
Scenarios of lockdown and contact patterns in intermediate behavior levels
are a modification by a factor γn as discussed in the section 3.

E.1. Empirical Matrices

We use empirically derived matrices in 2017 from [32] for Canada that
we further project on to Montreal’s demographical structure. Projection
of country-wide matrix to a regional matrix is done via method described
in [59]. However, ABM can be configured to bypass the step of regional
projection of contact matrices. Given a discrepancy between population wide
mean daily contacts inferred from projected matrices and Montreal’s number
of contacts reported in a 2020 survey [39], we scale the projected matrices
appropriately. We ran 12 simulations with no infected agent i.e. α = 0
to observe the pre-pandemic contact patterns to yield simulated contact
patterns in this section. Additionally, the simulated contact patterns shown
in this section are descaled with the same multiplicative factor that is used
to scale the projected matrices.

E.2. Dwelling Characteristics

As discussed in the main section, agents are grouped into houses according
to census data [60]. Thus, we simulate dwelling characteristics of the city of
Montreal. However, it can be configured easily for any other city by using
appropriate parameter values. We consider house of sizes ranging from 1 to
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5. Age distribution of agents living solo also follows census data. Further,
house sizes ranging from 2 to 5 consider three broad categories of dwelling
characteristics - (a) couple with x kids, (b) single parent with x kids, (c)
random allocation, where x represents number of kids required to complete
the house size. For example, for a house with single parent and of size 5,
x = 4. The distribution of these characteristics also follow from census data.
Finally, we also consider senior residencies where a proportion of agents
above age 65 live. We inform this proportion from the census data as well8.

Figure E.11: Housing allocation of agents is calibrated to yield a contact pattern (left) simi-
lar to the empirically derived household contact matrices (right) described in Appendix E.1.
We explicitly model older adults living in assisted care resulting in oversampling of contacts
in that age group. We discuss it further in the Appendix E.2

As a result of housing allocation discussed above, we yield a contact
pattern as shown in Figure E.11. We make two observations (a) there is an
oversampling of contacts towards the older age groups: It is because older
agents grouped in collectives like senior residencies are modelled explicitly.
This choice was motivated from [61] which suggests inclusion of collectives
in proper response to the COVID-19 pandemic, (b) a slight discrepancy we
observe in the intensity of the main diagonal is due to insufficient social
gatherings at households.

8https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/covid19/

table2-eng.cfm?geo=A0002&S=1&O=A
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E.3. Workplace Allocation

We consider an age-dependent workplace allocation such that agents in
each age group have a probability of attending a school or a workplace. We
consider schools for the following age groups (a∗) 2-4 years old (y.o) (b) 4-5
y.o (c) 5-12 y.o (d) 12-17 y.o (e∗) 17-19 y.o: (f∗) 19-24 y.o (g∗) 25-29 y.o,
where ∗ marks the age group in which only a fraction (informed by census
data) of agent population was allocated schools. Further, we assume 100%
employment so that all agents older than 17 y.o and younger than 65 y.o.
were allocated a workplace. Agents in senior residencies are allocated a
common room as their workplace where they get together during working
hours. Such allocation of younger agents to schools give a contact pattern as
shown in Figure E.13, while a workplace allocation of adults yield a contact
pattern shown in Figure E.12.

Figure E.12: Simulated contact pattern (left) at workplaces follow empirically derived
matrix (right) projected onto regional demographical structure as described in Appendix E.1

E.4. Random (Other) Locations

To model infections at locations other than workplace and house, we
consider locations where agents remain for a relatively shorter duration as
compared to house and workplace. Specifically, we model interactions at
locations like restaurants, grocery stores, and parks. Note that this category
of locations is also termed as “other” in [32]. Further, as the mean number of
contacts at house are greater than the number of residents, it was important
to consider socializing activities organized at houses. To do this, we maintain
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Figure E.13: Simulated contact pattern at schools (left) yield a similar pattern to empirically
derived matrix (right) as described in Appendix E.1.

a pool of agents that an agent interacts with, and bring them together for
a social activity at either a restaurant or at the agent’s house. We discuss
scheduling of these activities next. A contact pattern resulting at these
random locations is shown in Figure E.14.

E.5. Activity Scheduling & Mobility Pattern

We consider adult supervision for agents below 14 y.o i.e. except for when
agent goes to school, at least one adult agent (older than 14 y.o) has to be
present all the time. Thus, we pre-plan the schedule of agents older than 14
y.o at the start of the simulation, and plan the schedule of agents younger
than 14 y.o during the simulation. Planning the schedule takes into account
workplace opening hours as well as regularly scheduled activities like social
gatherings9, exercising, and grocery shopping10. Thus, an agent who has
gone to a grocery store or a restaurant on one day will be less likely to go
again during that same week, and so on. The schedule additionally depends
on the day of the week. For instance, agents with school as workplaces are
scheduled to be at school on weekdays, whereas most of their time will be
spent at home on weekends.

On the day of activity, however, these activities might stand cancel due

9https://www150.statcan.gc.ca/n1/pub/89-652-x/89-652-x2014006-eng.htm
10https://www.statista.com/statistics/944310/how-often-consumers-visit-food-stores-canada/
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Figure E.14: Simulated contact pattern at ”Other” locations (left) yield a similar pattern
to empirically derived matrix (right) as described in Appendix E.1. Agents spend relatively
shorter duration of time at these locations as compared to house or workplaces. Examples
of such locations include parks, restaurants, and grocery stores. We observe a slight
undersampling of such contacts due to improper estimates of time spent at such activities.

to sickness, quarantining requirements, or hospitalization. In these situations,
location of activity is appropriately changed for a required duration. At the
same time, if an agent requiring adult supervision is sick, has to quarantine,
or is hospitalized, an adult from the same house has to cancel the activity to
stay with the agent. Of note, agent’s mobility i.e. presence in locations other
than house is reduced when they are experiencing symptoms (to a degree
proportional to symptom severity). Note that we do not change the schedule
unless the agent is quarantining i.e. normal mobility is maintained all the
time unless the agent is put in the level n. Figure E.15 show a breakdown of
contacts at each location on weekdays and weekends.

E.6. Sampling of Contacts

We implement age-stratified contact sampling as informed from empir-
ically derived contact matrices as described in Appendix E.1. Specifically,
for each agent we draw number of contacts as per the location-specific age-
stratified number of contacts obtained from the contact matrices. We use
a negative binomial distribution [63] to draw number of contacts. Further,
we use these matrices to infer probability of interaction with other agents
in each age group, thereby, implementing location dependent assortativity
in interactions. We call these interactions as encounter. Finally, we also
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Figure E.15: Simulated mean daily contacts on weekdays and weekends broken down by
age groups. Agent activities are scheduled such that the mean number of contacts on work
and non-work days follow surveyed data as reported in [62, 37]
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draw amount of time spent in each encounter as per the survey conducted
in California [64] standardized to the demographics of Montreal. Thus, we
obtain an aggregated contact pattern as shown in Figure E.16.

Figure E.16: Overall simulated contact pattern (left) yield a similar pattern to empirically
derived matrix (right) as described in Appendix E.1.

F. Simulator Customization

We briefly describe the required steps for customization of the simulator.
Location-specific demographic and contact data may be modified simply
by adding a new configuration file to the configs folder. Configuration
files are written using YAML, a human friendly data serialization standard.
Essentially, these files contain key-value pairs. The values for a new region
must be specified and contained in the new configuration file. Examples
of modifications required to model a new region include: population-level
distribution of age, housing distribution i.e. number of houses from size
1 to 5, occupation characteristics including age for kids to go to schools,
retirement age, etc. and, finally, how often people go out to stores, socialize,

G. Privacy, Security, and Phone technology

We provide details of the messaging protocol that uses Bluetooth signals
to exchange tokens. The privacy protocol which provides anonymous message
exchange between phones which have exchanged these tokens is covered in
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more depth in another paper 11. In the context of the current work, we focus
on the description of how we model the Bluetooth communication range of
phones and on the description of the clustering algorithm we use to prepare
received messages for input to a risk prediction model.

Bluetooth Details

Given a ground-truth distance and duration for our encounter, we want
to determine if two app-users should exchange encounter messages. We only
exchange encounter messages if the perceived distance is below 2 meters and
the duration greater than 15 minutes. To compute this, we use a naive model
of the Bluetooth noise which uses a per-person noise and a per-encounter
noise. Each smartphone has a different noise sampled uniformly between 0
and 1. Each encounter takes the mean of this value across both users. We
then apply a relative offset to the real encounter distance by multiplying
the combined user noise and a uniform random variable centered at 0 with
range [0.5,−0.5]. The magnitude of the distance offset is up to 2 metres
when the real distance is 2 metres, and up to 0.5 metres when the ground
truth distance is 1 metre.

Encounter Messages

An encounter message menc is composed of the day the encounter occurred
d and the sender’s quantized risk at the time of the encounter rd. The formal
definition of a risk message is:

menc = (rd, d) ∈Menc

An app user (say “Alice”) receives new encounter messages four times per
day in batches; we call the set of new encounter messages on day d, Mnew.
The risk messages which Alice has already clustered are noted Menc (which
is an empty set when Alice first installs the app). It is useful to think
of encounter messages as database records. Alice inserts records into her
database whenever she encounters other app users (“Bobs”) with their current
risk estimate. Update messages are like database update statements, and
are used to change the risk values in old encounter messages.

11full citation to be provided in the camera-ready version
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Risk Update Messages

If a user (say “Bob”) had many encounters with Alice, and Bob subse-
quently receives a positive test result, becomes sick (reporting symptoms),
or otherwise re-evaluates his risk, then Bob will send risk update messages
to Alice. Similar to encounter messages, these risk update messages may be
sent through the server up to four times per day. More specifically, if Bob
updates his estimate of his risk on some previous day dold, then Bob will
construct a risk update message for every encounter message that he had on
dold and these messages are sent to the users with whom Bob had a contact.
If this update message is sent on day d, it is composed of the current day d,
his new risk rnew, his previous risk estimate for that day rold and the day of
the encounter dold. Therefore, the formal definition of a risk update message
is: mupdate = (rnew, d, rold, dold) ∈Mupdates

Encounter and Update Message Clustering

By virtue of the strong privacy protocol in place, we are not able to
create message clusters that correspond the true chains of contacts for the
encountered users. The only information we have to create clusters is the
day and risk level of the encounters. Our hypothesis is that a user’s contact
patterns can provide a rough idea on the number of individual people they
encounter on each day.

All encounter messages received on a given day with a similar risk level
are put into the same cluster. Given that there are 16 risk levels, it is only
possible to create 16 new clusters on a given day, unless the user receives
update messages. Every update messages is created for exactly one encounter
message. If there are fewer update messages for a given day / risk combination
than there are encounter messages for that day / risk, then we split the
existing cluster for that day / risk into two, with one cluster containing
newly updated encounter messages, and another containing the rest of the
messages.

We do not claim that this clustering algorithm is optimal, that the input
format to the neural network is optimal, or that this messaging protocol
is optimal. There exists an interesting trade-off between privacy and risk
precision which we hope will be explored in future work.

H. Transmission

Agent-Agent Transmission All encounters are assumed to be at a
distance equal or less than two meters. Transmission events can only take
place between infectious and susceptible individuals. Although the ABM
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models all encounters taking place between individuals, a susceptible indi-
vidual is only considered exposed (i.e. the model considers that an effective
contact has taken place) when the encounter lasts a minimum of 15 minutes
and bernoulli distribution with probability determined via Equation 2 gives
1. The likelihood of viral transmission during a given effective contact is
proportional to the time duration of the encounter, and depends broadly on
characteristics of both the infected and susceptible individual.

We use the transmission model as explained in [23]. Thus, encounters
taking place in certain locations (i.e. senior residencies and households) are
also inherently more prone to result in a transmission event, all other factors
being equal. This is modeled via Bn. At the same time, characteristics
affecting infectiousness (of the infected individual) include progression of
the disease (i.e. effective viral load) (EV L), whether (and to what extent)
they are symptomatic (As). Susceptibility of the exposed individual depends
notably on age (Sa).

Environment-Agent Transmission Please note, that the probability
of environmental transmission is not supported by any published study, and
we consider 0 environmental transmissions in the experiments in this paper.
However, ABM can be configured to simulate environmental transmissions.
Empirical estimates of such transmissions stands at 10% as per [23], therefore,
we consider a transmission model that models environmental infections in
pre-pandemic scenario. Given the lack of such estimation in post-lockdown
scenario, we do not consider any such transmissions.

We model these transmissions by considering a linearly time-decaying
probability of location being contaminated which is triggered by the presence
of an infectious individual. Initial magnitude of contamination is depen-
dent on the agent’s current phase of the disease. Further, the duration of
such contamination is informed from experimental study [65], which lists
surfaces and the duration for which virus survives on them. We consider an
experimental environment transmission model that estimates probability of
infecting agent as proportional to (a) contamination strength of the location,
and (b) susceptibility of an agent. The proportionality factor being the
environmental transmission control knob which lets us model the disease
spread as per the observed data.

I. Heuristic-FCT

We denote SHIGH as the row indices in Sid ∈ {0, 1}Nsymptoms×dmax such
that the symptom at those indices are highly informative symptoms (see Sec.
J.8). Similarly, we obtain sets of indices SMODERATE and SMILD.
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We used n + 1 = 4 recommendation levels, thereby allowing an agent
behavior level to be either of {1, 2, 3, 4}. We also denote the set of days
{d1, d2, ...dmax} as D. The Heuristic-FCT algorithm is implemented as
Algorithm 1. We next describe each function of the Heuristic-FCT.

1. Compute Risk calls each of the below functions in order to generate
a risk history over the last dmax days and a current recommendation
level. It takes in symptom, test, and risk message data, then takes the
element-wise maximum over the risk histories associated with these
inputs. Apply Negative Test and Handle Recovery modify the merged
risk history or return an alternative (respectively) to this risk history.

2. Test Results Compute Risk covers two cases. A positive test result
within the last dmax days sets the risk over the past dmax days to rMAX

and ζid to 3.

3. Symptoms Compute Risk determines the risk and recommendation
levels due to symptoms. We group symptoms by how informative they
are of COVID-19. Highly informative symptoms experienced within
the last d− dmax/2 days sets high risk levels into rid:d−dmax/2

, and ζid
to 3. Moderately informative symptoms yield moderate risk levels, and
so on.

4. Risk Messages Compute Risk converts received risk messages into
a risk history and recommendation level. We group risk messages into
high, medium, and low risk groups, assigning corresponding risk levels
to the i’s risk history between the day of receipt of that class of risk
message and the current day.

5. Handle Recovery returns the recent risk history to 0 in the absence
of recent evidence of COVID-19. If there are no symptoms within the
last 7 days, no recent risk messages, and no positive test results, then
we set risk for the past dmax/2 days as 0.

6. Apply Negative Test overwrites the element-wise maximum over
the risk histories rid by assigning a 0 risk to the agent around the days
when a negative test was reported. Precisely, we denote by W a time
window, W ∈ N and W < dmax, such that we set a 0 risk for the agent
for W/2 days around the day on which negative test was reported.

J. Symptoms

COVID-19 and other disease symptoms. Symptoms in the model include:
Fever, Chills, Gastroenteritis (Gastro), Diarrhea, Nausea/vomiting, Sneez-
ing, Cough, Fatigue, Hard time waking up, Headache, Confused, Loss of
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Algorithm 1 Heuristic-FCT

1: function TestResultsComputeRisk(Ti
d)

2: r← {0}dmax

3: ζ ← 0
4: if

∑
d′∈D 1{Ti

d,d′=+1} ≥ 1 then

5: rd:d−dmax ← rMAX

6: ζ ← 3

7: return r, ζ

8: function SymptomsComputeRisk(Sid)
9: r← {0}dmax

10: ζ ← 0
11: if

∑
d′∈D, j∈SHIGH

Sid,{j,d′} ≥ 1 then
12: rd:d−dmax/2 ← rHIGH

13: ζ ← 3
14: else if

∑
d′∈D, j∈SMODERATE

Sid,{j,d′} ≥ 1 then
15: rd:d−dmax/2 ← rMODERATE

16: ζ ← 2
17: else if

∑
d′∈D, j∈SMILD

Sid,{j,d′} ≥ 1 then
18: rd:d−dmax/2 ← rMILD

19: ζ ← 1

20: return r, ζ

21: function RiskMessagesComputeRisk(M :
i,:(:))

22: r← {0}dmax

23: ζ ← 0
24: if

∑
j∈N (i),d′∈D,d′′ 1{Md′

i,j(d
′′)=rMAX} ≥ 1 then

25: d̂← Earliest day of receiving rMAX

26: rd:d̂ ← rMODERATE

27: ζ ← 2
28: else if

∑
j∈N (i),d′∈D,d′′ 1{Md′

i,j(d
′′)=rHIGH} ≥ 1 then

29: d̂← Earliest day of receiving rHIGH

30: rd:d̂ ← rMILD

31: ζ ← 1
32: else if

∑
j∈N (i),d′∈D,d′′ 1{Md′

i,j(d
′′)=rMODERATE} ≥ 1 then

33: d̂← Earliest day of receiving rMODERATE

34: rd:d̂ ← rMILD

35: ζ ← 1

36: return r, ζ
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Algorithm 2 Heuristic-FCT

37: function HandleRecovery(Sid, Ti
d, M

:
i,:(:), r

i
d)

38: Rx← 1
39: if

∑
Sid,{:,d:d−dmax/2} ≥ 1 or

∑
d′∈D 1{Ti

d,d′=+1} ≥ 1 then

40: Rx← 0
41: if

∑
j∈N (i), d′∈D, d′′∈{d,d−1,...d−7} 1{Md′

i,j(d
′′)=rHIGH} ≥ 1 then

42: Rx← 0
43: else if

∑
j∈N (i), d′∈D, d′′∈{d,d−1,...d−4} 1{Md′

i,j(d
′′)=rMODERATE} ≥ 1 then

44: Rx← 0
45: else if

∑
j∈N (i), d′∈D, d′′∈{d,d−1} 1{Md′

i,j(d
′′)=rMILD} ≥ 1 then

46: Rx← 0
47: if Rx = 1 then
48: rid,d:d−dmax/2

← 0

49: return rid, Rx

50: function ApplyNegativeTest(ζid, r
i
d,T

i
d,W )

51: dn ← day of the latest negative test
52: rid, dn−W/2 : dn+W/2

← 0

53: if rid,d = 0 then

54: ζid = 0

55: return rid, ζ
i
d

56: function ComputeRisk(Ti
d,S

i
d,M

:
i,:(:),Xi, r

i
d−1)

57: W ← 8
58: rit, ζ

i
t ← TestResultsComputeRisk(Ti

d)
59: ris, ζ

i
s ← SymptomsComputeRisk(Sid)

60: rim, ζ
i
m ← RiskMessagesComputeRisk(M :

i,:(:))

61: rr,Rx← HandleRecovery(Sid, Ti
d, M

:
i,:(:), r

i
d−1)

62: if Rx = 1 then
63: return rr, 0

64: rd ← max(rt, rs, rm, rd−1) . element-wise maximum
65: ζid ← max(ζt, ζs, ζm)
66: if

∑
d′∈D 1{Td,d′=−1} ≥ 1 then

67: rid, ζ
i
d ← ApplyNegativeTest(ζid, r

i
d,T

i
d,W )

68: return rid, ζ
i
d
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consciousness, Runny nose, Sore throat, Chest pain, Trouble breathing, Loss
of taste/smell, and Aches, as shown in Figure J.17. We represent symptoms
as a set of diseases that are sampled on each day.

Symptoms

Fever
[SY-4]

Chills
[SY-15]

Gastro

Diarrhea
[SY-7]

Nausea /
Vomiting
[SY-8]

Sneezing
[SY-6]

Cough
[SY-2]

Fatigue
[SY-10]

Unusual

Hard time
waking up
[SY-11]

Headache
[SY-9]

Confused
[SY-17]

Lost con-
sciousness
[SY-18]

Runny nose
[SY-14]

Sore throat
[SY-12]

Severe chest
pain

[SY-16]

Trouble
breathing
[SY-3]

Light
trouble

breathing

Mild
trouble

breathing

Moderate
trouble

breathing

Heavy
trouble

breathing

Loss of
taste

[SY-5]

Aches
[SY-13]

Figure J.17: List of the symptoms in the simulator, with the corresponding feature IDs.
The feature hierarchy is semantically meaningful – if you have (SY-17, Confused) then you
also have (SY-10, fatigue). We have constructed our symptom features this way to make
the symptom reporting screens in the mobile application easier to use, in cooperation with
a professional app-development company.

In each of the following sections we detail the probability of a given
symptom in each of 5 phases of the disease.

J.1. Fever, Chills

Disease/Phase Fever Chills

COVID-19

Incubation 0% 0%
Onset 20% 80%
Plateau 80% 50%
Post-plateau 1 0% 0%
Post-plateau 2 0% 0%

Flu

First day 70% 0%
Main 70% 0%
Last day 30% 0%

J.2. Gastroenteritis, Diarrhea, Nausea / Vomiting

If innoculum>0.6 then the probability of this person having Gastrologic
symptoms on any day is (innoculum− 0.15)/4, and if on any day they have
Gastrologic symptoms, then for each following day they will also have this
type of symptom.
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Disease/Phase Gastro Diarrhea Nausea vomiting

COVID-19

Incubation 0% 0% 0%
Onset Innoculum - 0.15 90% 70%
Plateau (Innoculum-0.15)/4 90% 70%
Post-plateau 1 (Innoculum-0.15)/10 90% 70%
Post-plateau 2 (Innoculum-0.15)/10 90% 70%

Flu

First day 70% 50% 50%
Main 70% 50% 50%
Last day 20% 50% 25%

Disease/Phase Fatigue HW Unusual Headache Confused LC

COVID-19

Incubation 0% 0% 0% 0% 0% 0%
Onset F 60% 20% 50% 10% 10%
Plateau F 60% 50% 50% 10% 10%
Post-plateau 1 1.5F+(I-0.15) 60% 50% 50% 10% 10%
Post-plateau 2 2F+(I-0.15) 60% 50% 50% 10% 10%

Flu

First day 40% 30%
Main 80% 50%
Last day 80% 40%

J.3. Fatigue, Hard Time Waking Up, Unusual, Headache, Confused, Lost
Consciousness

Let A represent Age/200, C represent Carefulness/2, and let I represent
Inoculum. Let F represent A+(I*0.6)-C. Let HW represent the symptom,
Hard time waking up, and LC represent the symptom, Lost consciousness.

The probability of a person having fatigue as a symptom is given in the
first column, while the probabilities of having the other symptoms given that
this person has fatigue are given in the columns following the Fatigue column.
In order to have unusual symptoms, the person must also be over 75 years
of age; that is, the probabilities in the table given for unusual symptoms are
the probabilities of having unusual symptoms given this person is over 75
years of age and is experiencing fatigue.
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Disease/Phase TB Sneezing Cough Runny Nose ST SCP

COVID-19

Incubation 0% 0% 0% 0% 0% 0%
Onset (I/2)-C 20% 60% 10% 50% 40%
Plateau 2*(I-C) 30% 90% 20% 80% 50%
Post-plateau 1 I-C 30% 90% 20% 80% 15%
Post-plateau 2 (I-C)/2 30% 90% 20% 80% 15%

J.4. Trouble Breathing, Sneezing, Cough, Runny Nose, Sore Throat, and
Severe Chest Pain

Let I represent Inoculum, and let C represent Carefulness/4. Let TB
represent the symptom trouble breathing, ST represent the symptom sore
throat, and SCP represent Severe chest pain.

The probability of having trouble breathing as a symptom is given in the
TB column for the corresponding COVID-19 phases. For an individual to
experience severe chest pain (SCP), the individual must also be extremely
sick; that is, the probabilities given for having SCP as a symtpom are the
probabilities of having SCP given an individual has trouble breathing and is
extremely sick.

J.5. Light/Moderate/Heavy Trouble Breathing

The probability of having light/moderate/heavy trouble breathing is given
by the probability of an individual having light/moderate/severe symptoms
of COVID-19 and the probability of having trouble breathing as a symptom.

J.6. Loss of Taste

The probability of having loss of taste as a symptom of COVID-19 is
25% during the onset phase, 35% during the plateau phase, and 0% for all
other phases of COVID-19.

J.7. Aches

Aches are not caused by COVID-19 in this simulator, but are caused by
the flu. The probabilities of having aches on the first and last days of the flu
are 30% and 80% respectively, while the probability of having aches for all
other days with the flu is 50%.
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J.8. Informative Symptoms

K. Scaling Analysis

We wish to verify that the dynamics of the simulator at the population
sizes we model are representative of larger populations. Because of the
computational demands of an agent-based model, particularly with messaging
between agents, it is more efficient to model smaller populations, as long
as the dynamics remain reprsentative. As shown in Figure K.18, we find
that population sizes above 2k to be representative of the dynamics of larger
populations across a range of metrics. We thus ensure all experiments are
run with populations of 2k and over.

L. Cost-Effectiveness Calculations

L.1. DALYs

Disability-Adjusted Life Years (DALYs) are a summary measure of the
public health burden associated to a specific cause’s premature mortality
and morbidity. To calculate DALYs, we individually compute the years of
life lost due to premature mortality (YLLs)[66] for agents that died during
the simulation, as well as the years of life lost due to disability (YLDs)[67]
for agents that were infected and symptomatic. Disability weights (DW)
are taken from the 2017 Global Burden of Disease Study[68]: they represent
health preferences such that a DW of 0 is perfect health and a DW of
1 is equivalent to death. Hence, the higher the amount of DALYs, the
worse health outcomes are. DALYs are calculated without discounting or
age-weighting, following the WHO methodology[69].

Symptomatic
agent status

Disability
weight

Equivalent to

not hospitalized 0.051 moderate lower respiratory infection
hospitalized 0.133 severe lower respiratory infection
Critical care 0.408 severe COPD without heart failure

Table L.2: Disability weights drawn from the 2017 Global Burden of Disease Study. Since
there are no published weights for COVID-19, weights for similar health conditions are
selected. As can be seen, higher weights are associated with worse health states.
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Figure K.18: Scaling analysis verifying several metrics for different population sizes from
1k to 10k. We observe that for 2k and above, dynamics are qualitatively similar, while 1k is
an outlier by several metrics. We thus use populations of 2k and above for all experiments.
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For each agent i,

Y LLi = 1i died × Li

Y LDi =

S∑
s

DWs × li,s

DALYi = Y LLi + Y LDi

where:

Li := Life expectancy of agent i

DWs := Disability weight of state s

li,s := duration of state s for agent i

1i died :=

{
1 if agent i died during the simulation

0 otherwise

L.2. TPL

TPL Temporary Productivity Loss (TPL) is the loss in productivity due
to absenteeism from work. To calculate TPL, we extract from the simulator
the number of work hours that agents aged 25 to 65 years had to forego
due to quarantine, taking care of a dependent (supervision), or illness to the
point of being unable to work. We then multiply this quantity of foregone
work hours by the 2019 average hourly wage in Montreal[70] to obtain total
TPL. We follow the methodology for calculating TPL presented in [71].

Aggregated across all agents,

n25:65 = nquarantine25:65 + nsupervision25:65 + nillness25:65

TPL = n25:65 × wmedian

where:

na25:65 := number of hours foregone due to a

waverage := average hourly wage for Montreal workforce
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Tracing method No Tracing Test-based BCT Heuristic-FCT

Metric

Foregone Work
(1000 Hours)

49.510 ±0.416 57.556 ±0.765 76.620 ±1.263

TPL
($M)

1.370 ±0.012 1.591 ±0.019 2.122 ±0.038

Table L.3: Foregone work hours and TPL for different contact tracing methods. TPL
is obtained by multiplying foregone work hours by the average Montreal salary of 27.67.
Foregone work hours are aggregated across the population for agents aged 25 to 65.

L.3. Assumptions and Limitations

Disability weights Covid-19 is a novel disease, and there are no published
disability weights for different levels of severity of the disease. Therefore,
we use similar conditions as proxies for different health states of the agents.
Agent hospitalization status is used as a proxy for actual health status, and
can be divided into three categories: agents that are symptomatic and not
hospitalized, agents that are hospitalized but not in critical are, and agents
that are in critical care. The disability weights, as well as their equivalent
causes in the GBD 2017 study can be found in Table L.2.

Full trajectory Due to the computational strain of the message-passing
within the simulations, observing the full trajectory under binary contact
tracing and feature-based contact tracing is currently unfeasible. Future work
will consider longer simulations that reach a post-pandemic steady state..

PPL In addition to Temporary Productivity Loss (TPL) due to absenteeism
from work, cost-benefit analyses following the Human Capital Model (HCA)
[71] typically include a Permanent Productivity Loss (PPL) due to premature
mortality component. When longer simulations become possible, future work
will take into account PPL. .

Delaying vs Preventing To properly evaluate the impact of different
tracing strategies on the socio-economic burden of a disease, it is important
to evaluate whether the proposed strategies avert DALYs, or simply delay
them [72]. Such evaluations require a longer trajectory to arrive at a post-
pandemic steady state, which we will consider in future work. .

Sensitivity Analysis The focus of this paper is not the cost-benefit analysis
of the outcomes of the simulator, but rather the simulator itself, a sensitivity
analysis of the cost-benefit results has been relegated to future work..
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L.4. Additional data

No Tracing Test-based BCT Heuristic-FCT

Age DALYs YLD YLL DALYs YLD YLL DALYs YLD YLL

0-9 0.70 0.70 0.00 0.64 0.64 0.00 0.30 0.30 0.00
10-19 1.15 1.15 0.00 1.13 1.13 0.00 0.75 0.75 0.00
20-29 30.93 1.15 29.79 26.85 1.14 25.71 12.92 0.74 12.18
30-39 24.70 1.32 23.37 19.93 1.29 18.64 12.49 1.01 11.48
40-49 18.54 1.75 16.79 20.88 1.71 19.17 22.84 1.27 21.57
50-59 47.37 1.82 45.55 50.79 1.78 49.01 31.32 1.18 30.14
60-69 72.01 1.26 70.75 71.38 1.16 70.21 26.39 0.59 25.79
70-79 155.87 1.92 153.94 106.63 1.89 104.74 86.38 1.22 85.17
80-89 213.44 1.54 211.90 203.94 1.49 202.45 123.73 1.00 122.73
90-99 149.23 1.80 147.42 122.42 1.70 120.72 92.41 1.21 91.20
100+ 87.27 2.16 85.12 87.01 2.02 84.99 67.36 1.46 65.90

Sex

male 26.36 1.39 24.97 25.61 1.34 24.27 13.05 0.89 12.16
female 44.53 1.39 43.14 40.99 1.35 39.64 30.01 0.91 29.10

Table L.4: YLL, YLD and DALYs ×1000 for different CT methods. In all three cases,
the bulk of DALYs is due to Years of Life Lost due to premature mortality (YLL), rather
than Years of Life Disabled (YLD). Women are also disproportionately affected in all three
scenarios.

As can be seen in Figure L.19, under No Tracing, the total DALYs is
129.42, and the TPL is $1.370M. Test-based BCT slightly affects the health
and economic outcomes: the TPL is $1.591M and the total DALYs is 119.42.
However, Heuristic-FCT has a comparatively large effect on the total DALYs,
which drops to 71.31. However, this is contrasted by a rise in the TPL to
$2.122M: health outcomes are drastically improved at the cost of a greater
drop in productivity. Of note is the difference in impact of both tracing
methods: whereas Test-based BCT has very little effect on the health and
economic outcomes, Heuristic-FCT reduces total DALYs by 44.90% at the
expense of an increase in TPL by 54.89%.

Bootstrapping DALYs and TPL are computed for each seed separately
before being aggregated to obtain a mean and standard error. When measures
are calculated across subgroups of the simulation’s population, such as across
age groups, bootstrapping is used to capture TODO
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Figure L.19: Impact of different CT methods on DALYs and total foregone work hours.
No Tracing foregoes the least amount of work, but results in a high amount of DALYs.
Test-based BCT foregoes more work, but still results in a large loss of health. Heuristic-FCT
foregoes even more work than No Tracing does, but results in a large decrease of DALYs,
alleviating the health burden. Total foregone hours due to quarantine, aggregated across
individuals, are scaled by a factor of 0.49[42] to account for the proportion of agents able
to work from home. Standard errors are computed by bootstrapping 100 samples of 6 runs
over 10 seeds.
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