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Abstract

Deep learning models often learn and exploit001
spurious correlations in training data, using002
these non-target features to inform their pre-003
dictions. Such reliance leads to performance004
degradation and poor generalization on unseen005
data. To address these limitations, we intro-006
duce a more general form of counterfactual007
data augmentation, termed counterbias data008
augmentation, which simultaneously tackles009
multiple biases (e.g., gender bias, simplicity010
bias) and enhances out-of-distribution robust-011
ness. We present COBA, a unified framework012
that operates at the semantic triple level: first013
decomposing text into subject-predicate-object014
triples, then selectively modifying these triples015
to disrupt spurious correlations. By reconstruct-016
ing the text from these adjusted triples, COBA017
generates counterbias data that mitigates spuri-018
ous patterns. Through extensive experiments,019
we demonstrate that COBA not only improves020
downstream task performance, but also effec-021
tively reduces biases and strengthens out-of-022
distribution resilience, offering a versatile and023
robust solution to the challenges posed by spu-024
rious correlations.025

1 Introduction026

Despite deep learning’s success across various do-027

mains, spurious correlations continue to pose sig-028

nificant challenges in training effective models (Ye029

et al., 2024). Spurious correlations are patterns that030

appear in datasets but do not represent genuine re-031

lationships, such as correlations with background032

or textures (Beery et al., 2018; Geirhos et al., 2019;033

Sagawa et al., 2020). This phenomenon is also034

prevalent in text data, where spurious correlations035

frequently emerge at the word-level. In such cases,036

certain words or phrases become associated with037

specific labels due to their co-occurrence in partic-038

ular contexts. This association often fails to reflect039

the actual meaning or intent, resulting in perfor-040

mance degradation in models (Wang et al., 2022;041

Joshi et al., 2022; Chew et al., 2024). Furthermore, 042

spurious correlations are linked to various biases, 043

including gender bias, simplicity bias, and chal- 044

lenges related to out-of-distribution (OOD) robust- 045

ness. Consequently, mitigating these correlations 046

is crucial for enhancing deep learning models in 047

a broader context (McMilin, 2022; Liusie et al., 048

2022; Ming et al., 2022). 049

While several methods have been proposed 050

to mitigate spurious correlations from a model- 051

centric perspective by identifying spurious fea- 052

tures, recent studies have shifted the focus toward 053

a data-centric approach, particularly in the field 054

of natural language processing (Ye et al., 2024). 055

Early approaches suggested reweighting data sam- 056

ples to mitigate spurious features; however, this 057

strategy can inadvertently introduce new biases 058

by overemphasizing irrelevant features (Han and 059

Tsvetkov, 2021; Shi et al., 2023). Subsequently, 060

researchers have been exploring data manipula- 061

tion techniques aimed at enhancing the generality 062

and diversity of data distribution. These methods 063

seek to improve model capabilities by reducing 064

the impact of spurious correlations present in the 065

original data (Ye et al., 2024). Recent studies sug- 066

gest that augmenting datasets with counterfactual 067

data—entailing minimal modifications to the orig- 068

inal sentences—can effectively mitigate spurious 069

correlations (Kaushik et al., 2020; Udomcharoen- 070

chaikit et al., 2022; Chan et al., 2023). While early 071

studies relied on human-annotated counterfactuals, 072

more recent works propose automatically generat- 073

ing them through data augmentation, demonstrat- 074

ing their effectiveness in reducing spurious correla- 075

tions (Zeng et al., 2020; Wang and Culotta, 2021; 076

Wen et al., 2022; Treviso et al., 2023; Sachdeva 077

et al., 2024). However, due to the minimal mod- 078

ifications, this approach may lack diversity, po- 079

tentially leading to issues such as overfitting and 080

subsequent performance degradation (Qiu et al., 081

2024). 082
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In this study, we extend current research on coun-083

terfactual data augmentation to counterbias data084

augmentation, which simultaneously addresses var-085

ious biases and challenges, such as gender bias,086

simplicity bias, and out-of-distribution robustness.087

Although counterfactual data has been effective in088

mitigating spurious correlations, there remains sig-089

nificant potential for a unified approach that can090

concurrently tackle these diverse challenges. To ex-091

plore this, we propose transforming the given text092

into a set of semantic triples using a large language093

model (LLM), with each triple encapsulating com-094

pressed information from the sentences. By gener-095

ating counterfactual triples through modifications096

of the original triples and reconstructing text from097

these debiased triples using an LLM, we can create098

augmented counterbias data. This triple-level mod-099

ification simplifies the generation of counterfactu-100

als, as triples naturally contain the key elements of101

sentences. Additionally, with the support of LLMs102

in reconstructing text from triples, our framework103

can effectively diversify augmented text. Counter-104

bias data augmentation differs from previous coun-105

terfactual data augmentation approaches, which106

aim to make minimal changes while flipping the107

original data’s label.108

Additionally, we conducted an analysis to iden-109

tify principal words in various models using word110

importance measurements, revealing that each111

model has a distinct set of principal words. This112

finding suggests that counterbias data generated for113

a single model may not be effective for other mod-114

els. To address this finding, we employ a majority-115

voting-based ensemble method to identify words116

that may contribute to spurious correlations. This117

approach is effective for augmenting counterbias118

data that can be universally applied across various119

models. Through experiments validating the effec-120

tiveness of our proposed framework, COBA, we121

observed that it effectively alleviates various biases122

and challenges while also augmenting counterbias123

data applicable across different models.124

Our main contributions are as follows:125

• A Unified Framework for Counterbias Aug-126

mentation: We introduce COBA, a novel ap-127

proach that extends counterfactual data aug-128

mentation to counterbias data augmentation.129

Unlike prior methods that primarily focus on130

minimal label-flipping modifications, COBA131

targets a broader range of biases and spurious132

correlations, improving both in-distribution133

performance and out-of-distribution robust- 134

ness. 135

• Insights into Spurious Correlations Across 136

Models: Through a detailed analysis of word 137

importance, we reveal how spurious correla- 138

tions vary significantly across different model 139

architectures, underscoring the limitations of 140

relying on a single model. This insight moti- 141

vates our ensemble-based strategy to identify 142

and mitigate problematic correlations more 143

reliably. 144

• Empirical Validation and Practical Bene- 145

fits: Extensive experiments across tasks like 146

sentiment analysis, natural language infer- 147

ence, and text style transfer show that COBA 148

consistently alleviates multiple biases and en- 149

hances model resilience to distribution shifts. 150

These results highlight COBA’s versatility 151

and its potential to inform more robust, fair, 152

and generalizable deep learning solutions. 153

2 Related Work 154

Counterfactual data augmentation has been shown 155

to effectively mitigate spurious correlations. An 156

early study introduced the concept of counterfac- 157

tual data by manipulating existing data to alter the 158

label with minimal modifications (Kaushik et al., 159

2020). These counterfactual data have been demon- 160

strated to be useful for mitigating spurious patterns 161

and precisely evaluating deep learning models, par- 162

ticularly with regard to local decision boundaries 163

(Gardner et al., 2020). 164

Since these studies relied on human annotators to 165

generate counterfactual data, producing such data 166

for various datasets was challenging. As a result, 167

researchers began exploring automated methods 168

for generating counterfactual data, particularly in 169

data augmentation contexts. In early explorations, 170

predefined rules were applied to augment coun- 171

terfactual data (Zmigrod et al., 2019; Wang and 172

Culotta, 2021). 173

Beyond rule-based techniques, deep learning 174

models have been employed to augment counter- 175

factual data. For example, several studies have 176

proposed leveraging well-trained classifiers to iden- 177

tify principal words (Wang et al., 2022; Wen et al., 178

2022; Bhan et al., 2023). Additionally, generating 179

counterfactual data using deep learning models has 180

proven effective in diversifying the generated data 181

(Wu et al., 2021; Treviso et al., 2023; Sun et al., 182
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2024). Recently, researchers have also begun ex-183

ploring the use of LLMs for counterfactual data184

augmentation (Sachdeva et al., 2024; Chang et al.,185

2024; Li et al., 2024).186

3 Methodology187

3.1 Overview188

In this paper, we aim to alleviate various biases189

and obstacles by mitigating spurious correlations190

through counterbias data augmentation. Specifi-191

cally, given an original dataset Dori, which consists192

of (xi, yi) where xi and yi denote the input text193

and its corresponding label, we aim to generate194

(x̂i, ŷi), where x̂i represents the augmented coun-195

terbias text and ŷi denotes a different label from196

yi. We define counterbias text as text that shares197

spurious words and semantics with the original text198

but is assigned a different label to mitigate spurious199

correlations, similar to counterfactual text. This200

represents a broader concept of counterfactual text,201

which refers to text with minimal differences from202

the original data but with different labels (Molnar,203

2020). Unlike counterfactual data, counterbias data204

are not restricted to minimal differences; they can205

exhibit different syntactic structures and expres-206

sions compared to the original data, as long as they207

retain the spurious words and semantics of the orig-208

inal text. This distinction between counterbias data209

and counterfactual data allows counterbias data to210

introduce a wider variety of patterns, thereby am-211

plifying the augmentation effect on the model.212

To accomplish this, we first decompose xi into213

a set of semantic triples, denoted as Txi . This Txi214

consists of semantic triples tjxi
∈ Txi , each repre-215

senting a triple of a sentence in xi. A single seman-216

tic triple tjxi
has the structure of (subject, predicate,217

object). This procedure is performed by an LLM218

using a designated prompt.219

Next, we modify the decomposed tjxi
to miti-220

gate spurious correlations at the triple-level, re-221

sulting in modified triples t̂jxi
∈ T̂xi . Specifically,222

we follow a step-by-step procedure as follows: 1)223

We first identify sets of spurious words and prin-224

cipal words, Ws and Wp, representing the set of225

words that causes spurious correlations and the set226

of words that plays a crucial role in determining the227

label of xi. We use multiple well-trained classifiers228

with different backbones and word importance mea-229

surement techniques to recognize ws ∈ Ws and230

wp ∈ Wp. 2) We then obtain T̂xi by modifying tjxi
231

that includes wp while maintaining tjxi
involving232

LIME IG SV
SST-2 26.72% (83.9%) 18.53% (83.2%) 14.21% (85.3%)
IMDB 8.64% (81.4%) 7.00% (74.6%) 7.99% (81.3%)

Table 1: The ratio of duplication among the top-5 most
principal words for each model. The number in paren-
theses indicates the degree of overlap between two or
more models, but not every models.

ws. This configuration allows us to make minimal 233

changes that differentiate the label but maintain the 234

spurious words, resulting in the generation of coun- 235

terfactual triples. 3) To introduce diverse patterns 236

into the augmented data, thereby enhancing OOD 237

robustness, we randomly permute the order and 238

delete several triples in T̂xi . 239

Finally, we augment x̂i by reconstructing coun- 240

terbias text from the modified T̂xi using the LLM 241

with a designated prompt. Since we have modified 242

Txi to T̂xi to retain ŷi instead of yi by modifying tjxi
243

with wp, the reconstructed x̂i receives the label ŷi, 244

which differs from yi. This results in a counterbias- 245

augmented dataset Dcb, which is used to train a 246

downstream task model in combination with the 247

original dataset, Dori ∪ Dcb. Figure 1 illustrates 248

this overall procedure. 249

3.2 Analysis on Important Words 250

Before introducing COBA in detail, we first present 251

an analysis to investigate the differences in princi- 252

pal words across various models from two different 253

perspectives. Implementation details are provided 254

in the technical appendix A.1. 255

3.2.1 Word-level Importance Analysis 256

We used the three techniques mentioned above to 257

measure the top-5 important words for each model 258

on the SST-2 and IMDB datasets. Afterward, we 259

evaluated the ratio of duplicated words among the 260

important words identified by each model. Specifi- 261

cally, we counted the instances where all four mod- 262

els contained at least one duplicated word. Table 1 263

presents the result of this analysis. The findings 264

suggest that the number of words consistently re- 265

garded as important across all models is small. No- 266

tably, this ratio was less than 10% of the total words 267

in the IMDB, which contains relatively longer text 268

compared to SST-2. Although the models used 269

in this analysis share BERT-family architecture, 270

they focus on different words within the input text 271

when making predictions. However, when exam- 272

ining the overlap in important words between just 273

two models at a time, we found that the majority 274
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Figure 1: Overall procedure of COBA.

SST-2 Noun Verb Adjective & Adverb Others
BERT-base 50.9 10.1 18.1 20.9
BERT-large 48.6 2.3 35.1 14.0

RoBERTa-large 67.9 9.8 15.6 6.7
BART-base 35.3 22.0 21.0 21.6

IMDB Noun Verb Adjective & Adverb Others
BERT-base 22.6 12.2 16.0 49.2
BERT-large 28.4 12.4 8.3 50.8

RoBERTa-large 46.7 16.0 29.1 8.2
BART-base 26.8 11.3 24.9 37.0

Table 2: The ratio of POS tags among top-5 most impor-
tant words for each model on SST-2 and IMDB. Bolded
values represent the most frequent POS tag for each
model and dataset, while italicized values represent the
second most frequent POS tag.

of cases exceeded 80%. This indicates that while275

each model has its own tendencies, there is still a276

meaningful overlap in the patterns they recognize,277

suggesting that they focus on the semantics of the278

sentence in distinct yet related ways.279

3.2.2 POS Tagging Analysis280

To support the findings of the previous analysis,281

we conducted an additional analysis by performing282

POS tagging on top-5 important words identified283

from the analysis above. Table 2 presents the re-284

sult of this analysis. The findings indicate that the285

important words identified by each model have dif-286

ferent POS tags, revealing that each model focuses287

on different aspects of the given text. A qualita-288

tive evaluation of this tendency is provided in the289

technical appendix.290

These two analyses suggest that counterfactual291

data augmented by previous methods, which lever-292

aged a single model to identify important words293

from input text, may not be adequate for other mod-294

els, diminishing the efficiency to be applied univer-295

sally across various models. Inspired by this find- 296

ing, we propose leveraging multiple models and 297

using a majority-voting-based ensemble method to 298

identify important words, including spurious and 299

principal words. 300

3.3 COBA 301

In this section, we introduce the detailed proce- 302

dure of our COBA; Counterbias Augmentation 303

framework. COBA consists of three major compo- 304

nents: semantic triples decomposition, triple-level 305

manipulation, and reconstruction of counterbias 306

text. Each of these components will be explained 307

in detail. The overall procedure is illustrated in 308

Figure 1. 309

3.3.1 Semantic Triple Decomposition 310

To augment the given xi into x̂i, we first decom- 311

pose xi into Txi , where Txi denotes a set of se- 312

mantic triples tjxi
∈ Txi . Each tjxi

represents a 313

sentence or phrase from xi, and follows the struc- 314

ture of (subject, predicate, object). For instance, 315

given xi as “I love In-N-Out. Their burger feels 316

incredibly fresh”, the desired Txi is {(I, love, In-N- 317

Out), (Their burger, feels, incredibly fresh)}. While 318

various techniques exist for triple decomposition, 319

they primarily focus on decomposing a single sen- 320

tence into semantic triples, which differs from our 321

purpose (Tan et al., 2019; Ye et al., 2021; Chen 322

et al., 2021). 323

To effectively decompose text containing mul- 324

tiple sentences into semantic triples, we utilize 325

LLMs, which can perform various tasks when 326

given proper instructions through prompts (Brown 327

et al., 2020; Ouyang et al., 2022). We achieve 328

this by designing a dedicated prompt pext for an 329
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LLM L1. Consequently, the desired set of semantic330

triples Txi is obtained by Txi = L(xi, pext).331

3.3.2 Triple-level Manipulation332

Since Txi contains compressed information about333

the original xi, we aim to modify this compressed334

Txi to mitigate the underlying spurious correlations.335

The procedure is detailed as follows:336

First, we employ a set of multiple well-trained337

classifiers M, where each mi ∈ M represents an338

individual classifier trained on Dori. After training339

M, we perform word importance measurement on340

xi using each mi and extract K important words,341

denoted as Wmi . We then count the frequency of342

each word’s appearance in the Wmi . If a certain343

word appears in Wmi more than the threshold τ 2,344

indicating its importance across various models,345

we include it in Wp, the set of principal words346

crucial for determining the label of xi. Words in347

Wmi that are not included in Wp are categorized348

into Ws, as they are important only for certain349

models and not universally significant, implying350

that such words may induce spurious correlations351

in the model. Additionally, arbitrary words that352

are known to introduce spurious correlations and353

biases can also be included in Ws if needed.354

Second, we modify Txi to mitigate spurious cor-355

relations at the triple-level. Specifically, we first356

categorize each tjxi
in Txi as a spurious triple if tjxi

357

contains a word from Ws. Other triples that con-358

tain a word from Wp are categorized as principal359

triples. After categorization, we obtain T̂xi by mod-360

ifying only the principal triples while maintaining361

the spurious triples. In particular, we use L to alter362

the label of xi by modifying the principal triples,363

which play a crucial role in determining the label.364

This process results in the generation of modified365

principal triple, t̂jxi
= L(tjxi

, ŷi, pmod), where ŷi366

denotes the desired label different from the original367

yi. This targeted manipulation preserves the spuri-368

ous words and semantics of the original data while369

flipping the label, leading to the augmentation of370

counterbias data.371

Finally, to effectively leverage the flexibility of372

counterbias data, which allows for various changes373

compared to the original data, such as different syn-374

tactic structures, we randomly permute the order of375

normal triples that are not categorized as spurious376

1Please refer to our technical appendix for full details on
pext and other prompts.

2We simply set τ as |M|+1
2

, where |M| denotes the num-
ber of classifier models used. Note that |M| is an odd number.

or principal triples within T̂xi . Additionally, gen- 377

der bias-inducing words are replaced with words 378

of the opposite gender at the triple-level to mitigate 379

gender bias. We used the WinoBias dataset (Zhao 380

et al., 2018) to replace gender-related words. Fur- 381

thermore, we randomly delete some of the normal 382

triples with a small, predefined probability. Re- 383

stricting the shuffling and deletion to normal triples 384

helps introduce diverse patterns into the augmented 385

data while preserving the core semantics. The com- 386

pletion of this process produces the final candidate 387

set of triples for reconstruction, T̂xi . 388

3.3.3 Reconstruction of Counterbias Text 389

Finally, we augment counterbias text x̂i by recon- 390

structing text given the processed T̂xi . Specifically, 391

we utilize L to achieve this, which is formulated 392

as x̂i = L(T̂xi , prec). As a consequence, we obtain 393

the counterbias data (x̂i, ŷi). Note that we can eas- 394

ily generate multiple x̂i using different configura- 395

tions of decoding strategies for L or even different 396

arrangements of T̂xi . This is different from conven- 397

tional counterfactual data augmentation, which is 398

difficult to augment multiple data as they require 399

minimal changes compared to original data. 400

4 Experiments 401

4.1 Improvement on Task Performance 402

We evaluated performance improvements in down- 403

stream tasks to determine if COBA effectively mit- 404

igates spurious correlations and outperforms con- 405

ventional data augmentation methods, including 406

counterfactual data augmentation. For this purpose, 407

we primarily used natural language inference (NLI) 408

and sentiment analysis tasks. We used SNLI (Bow- 409

man et al., 2015) and MNLI (Williams et al., 2018) 410

for NLI tasks and SST-2 (Socher et al., 2013) and 411

IMDB (Maas et al., 2011) for sentiment analysis 412

tasks. Implementation details and baseline methods 413

are provided in the appendix A.2 and appendix A.3. 414

Table 3 demonstrates the result of the experi- 415

ment. A key finding is that COBA outperformed 416

other baselines, including counterfactual data aug- 417

mentation methods, in most cases. Although coun- 418

terfactual data augmentation methods effectively 419

mitigate spurious patterns, they limit data diversity 420

by introducing minimal modifications when con- 421

verting labels. On the other hand, conventional data 422

augmentation methods, particularly LLM-based 423

methods such as GPT3Mix and AugGPT exhibit 424

the variation in augmented data; they do not take 425
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SST-2 IMDB SNLI MNLI
Baseline w/o Augmentation 92.8 / 94.0 / 94.5 91.5 / 91.6 / 92.3 86.2 / 86.6 / 85.4 82.4 / 84.5 / 83.8

EDA 93.1 / 93.1 / 92.9 90.8 / 91.6 / 91.6 86.8 / 86.2 / 88.8 80.6 / 81.5 / 82.6
Back-translation 93.2 / 93.5 / 89.3 91.4 / 92.2 / 88.2 87.7 / 84.1 / 88.1 83.1 / 82.8 / 83.4

C-BERT 91.9 / 94.0 / 93.2 92.1 / 91.0 / 90.8 84.4 / 89.0 / 91.2 82.1 / 84.7 / 85.4
Human-CAD - 93.2 / 93.8 / 95.1 88.0 / 89.9 / 89.9 -

AutoCAD 94.9 / 96.4 / 95.2 92.8 / 93.3 / 93.4 88.0 / 90.1 / 89.1 89.8 / 91.3 / 92.0
GPT3Mix 93.2 / 95.2 / 95.3 93.9 / 94.1 / 93.9 - -
AugGPT 94.2 / 95.4 / 95.7 92.2 / 94.0 / 94.2 90.3 / 87.5 / 88.9 88.7 / 87.6 / 85.1

COBA (LLM-Identification) 94.6 / 96.7 / 95.9 94.4 / 94.0 / 93.8 89.9 / 88.2 / 90.5 90.6 / 90.6 / 89.2
COBA 94.9 / 96.5 / 96.2 95.4 / 94.1 / 95.3 90.1 / 90.1 / 90.5 91.1 / 91.7 / 91.3

Table 3: The comparison of downstream task performance of the model trained with each data augmentation strategy.
The best performance in each group is boldfaced, and the second-best performance is italicized. The performance
is presented in the form of “BERT / DeBERTaV3 / T5-Base”. Note that Human-CAD only provides counterfactual
datasets for IMDB and SNLI, and the official source code of GPT3Mix is limited to processing large datasets such
as SNLI and MNLI.

IMDB SNLI
w/o Augmentation 52.3 70.2

AutoCAD 86.1 75.6
COBA 87.2 75.8

Table 4: The comparison of models on Human-CAD
test set. For this experiment, we trained BERT-base
model.

spurious correlations into account. By combining426

the advantages of mitigating spurious correlations427

and generating diverse augmented data, COBA was428

able to outperform other baseline methods.429

Additionally, we conducted a small ablation430

study, where LLMs were used to identify Ws and431

Wp instead of using M, a set of multiple well-432

trained classifiers. The results of this study are433

presented as “COBA (LLM-Identification)” in Ta-434

ble 3. While this approach showed remarkable435

performance compared to other baselines, its per-436

formance improvement was smaller than that of437

the original COBA. This suggests that the iden-438

tification of spurious words and principal words439

using LLM may be less effective than our majority-440

voting-based ensemble method using downstream441

task models. We hypothesize this phenomenon442

arises because a single LLM may not effectively443

capture Ws and Wp, given the difference in im-444

portant words across models, as evidenced by the445

analysis in Section 3.2.446

4.2 Mitigation of Spurious Correlation447

To verify that the effectiveness of the proposed448

method comes from mitigating spurious correla-449

tions rather than just data augmentation, we eval-450

uated the Human-CAD test set, which provides451

human-annotated examples for assessing spurious 452

correlation mitigation. For this evaluation, we 453

trained BERT-base using a combination of original 454

datasets and augmented data generated by COBA 455

and AutoCAD. 456

As shown in Table 4, the model trained without 457

augmented data exhibited significantly lower per- 458

formance on the Human-CAD test set, indicating 459

that the baseline model is vulnerable to spurious 460

correlations. In contrast, the models trained with 461

AutoCAD and COBA demonstrated more robust 462

performance compared to the baseline model. Fur- 463

thermore, COBA, our proposed method based on 464

counterbias augmentation, outperformed existing 465

counterfactual data augmentation methods, under- 466

scoring its effectiveness in mitigating spurious cor- 467

relations. 468

4.3 Alleviation of Gender Bias 469

To verify COBA’s effectiveness in reducing biases 470

by mitigating related spurious correlations, we con- 471

ducted an experiment focused on gender bias re- 472

duction. For this experiment, we adopted the list 473

of gender bias-related words from a previous study 474

(Zhao et al., 2018). By incorporating words from 475

this list into Ws, we aim to mitigate the underlying 476

spurious correlations, thereby alleviating gender 477

bias in the model. To quantify the gender bias, we 478

used two benchmarks: StereoSet (SS) (Nadeem 479

et al., 2021) and CrowS-Pairs (Nangia et al., 2020). 480

For comparison, we established various baselines. 481

BERT (Raw) refers to the original BERT model 482

without any additional training, and BERT (IMDB) 483

refers to the BERT model with additional pretrain- 484

ing on the IMDB training dataset. SentenceDe- 485
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SS CrowS
BERT (Raw) 57.8 59.0

BERT (IMDB) 58.6 59.7
SentenceDebias

(Liang et al., 2020)
53.8 58.1

Naive-masking
(Thakur et al., 2023)

56.5 60.8

Random-phrase-masking
(Thakur et al., 2023)

54.5 58.0

COBA-based 51.4 52.0

Table 5: Comparison of gender bias across methods,
as measured by SS and CrowS. A score close to 50
indicates that the model has less gender bias. Note that
all models are based on BERT-base.

EDA AutoCAD AugGPT COBA
0.9957 0.9641 0.9658 0.9531

Table 6: Cosine similarity between the embedding
vectors of the original and augmented texts for each
method.

bias is a baseline method that achieves debiasing486

at the embedding level (Liang et al., 2020). Naive-487

masking and Random-phrase-masking are methods488

based on word-level substitution (Thakur et al.,489

2023). Lastly, COBA-based refers to the BERT490

model with additional pretraining on the IMDB491

training dataset, combined with the augmented data492

generated by COBA.493

Table 5 shows the result of the experiment.494

The model trained with a combination of original495

and CoBA-augmented counterbias data achieved a496

score closest to the ideal 50, outperforming other497

baselines. Unlike other strategies, such as masking498

gender-related pronouns to neutral pronouns, our499

COBA focuses on augmenting data with represen-500

tations of the opposite gender, leading to a more501

balanced introduction of gender-related representa-502

tions. As a result, COBA contributed to mitigating503

spurious correlations, thereby alleviating gender504

bias in the model.505

4.4 OOD Robustness with Diverse Augmented506

Data507

Unlike counterfactual text augmentation, which508

introduces minimal modifications to alter labels,509

counterbias text augmentation has no such restric-510

tions, allowing for a wider range of lexical and511

semantic expressions. This flexibility plays a cru-512

cial role in enhancing model performance through513

data augmentation (Cegin et al., 2024). To vali-514

IMDB → SST-2 IMDB → Yelp
Baseline 63.2 61.2

EDA 66.2 58.2
AutoCAD 80.1 73.6
AugGPT 83.0 71.6

ReAct
(Sun et al., 2021)

84.5 75.3

COBA 83.2 74.0

Table 7: AUROC(%) performance of the models in out-
of-distribution scenario. “IMDB → SST-2” indicates a
scenario where a model trained on IMDB is tested on
SST-2, and “IMDB → Yelp” means the model trained
on IMDB is tested on Yelp. For ReAct, we follow the
reported performance from previous work (Baran et al.,
2023).

Baseline AugGPT COBA-based
72.10 74.50 75.70

Table 8: BLEU-4 scores (Papineni et al., 2002) for
the informal-to-formal text style transfer task on the
GYAFC dataset. The baseline model for this experiment
is T5-Base (Raffel et al., 2020).

date this, we randomly sampled 100 augmented 515

data from IMDB using each method and measured 516

the difference between the original and augmented 517

data by calculating the cosine similarity produced 518

by BERT-base. The results in Table 6 indicate that 519

COBA introduces meaningful differences in the 520

data while preserving core semantics. 521

To further support the effectiveness of this di- 522

versification in augmented data, we conducted an 523

evaluation in an OOD scenario. For this experi- 524

ment, we trained a model on IMDB but tested it on 525

SST-2 and Yelp (Zhang et al., 2015). The results of 526

this evaluation are presented in Table 7. This evalu- 527

ation suggests that our COBA exhibits remarkable 528

improvement in OOD robustness. While the per- 529

formance gain is slightly lower than that of ReAct 530

(Sun et al., 2021) baseline, it is important to note 531

that ReAct is a strategy that solely focused on en- 532

hancing OOD robustness. In contrast, our COBA 533

offers various benefits such as mitigation of spuri- 534

ous correlation and other biases. In conclusion, we 535

validated that COBA jointly offers numerous bene- 536

fits to the model, from the mitigation of spurious 537

correlation to the improvement of OOD robustness. 538

4.5 Extension to Generation Tasks 539

In this paper, we proposed COBA, which involves 540

decomposing the given text into semantic triples, 541

selecting spurious and principal triples, applying 542
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Original

Premise
A woman talks on a cellphone

while sitting in front of
blue railings that are in front of the ocean.

Hypothesis She talks to her boyfriend about plans that night.
Human-CAD

Premise
A woman talks on a cellphone

while sitting in front of
blue railings that are in front of the ocean.

Hypothesis He has a conversation on her phone outdoors.
COBA

Premise
A man is sitting in front of

blue railing while talking on a cellphone,
with the railing positioned in front of the ocean.

Hypothesis A man talks to his boyfriend while he is in a new car.

Table 9: The comparison of augmented data generated
by Human-CAD and COBA on SNLI.

bias-mitigation techniques, and then reconstructing543

the augmented text. This approach is applicable544

not only to classification tasks but also to text gen-545

eration tasks. To verify COBA’s effectiveness in546

text generation, we conducted an experiment ap-547

plying COBA to a text style transfer task using the548

GYAFC dataset (Rao and Tetreault, 2018).549

For applying COBA to the text style transfer task,550

we first decomposed the given text into semantic551

triples. Next, we utilized L to identify principal552

triples in both formal and informal sentences.3. Ad-553

ditionally, we included the gender bias alleviation554

scheme introduced in Section 4.3. After permuting555

the order of normal triples that are not principal,556

we reconstructed the augmented text.557

The results of this experiment, displayed in Ta-558

ble 8, show that COBA, the triple-based augmenta-559

tion method, exhibited a remarkable performance560

improvement compared to the AugGPT baseline.561

This underscores COBA’s extensibility to text gen-562

eration tasks. We plan to investigate the strategies563

for identifying spurious patterns in text generation564

tasks in future work.565

4.6 Qualitative Analysis566

Table 9 compares Human-CAD and CoBA for data567

augmentation in the SNLI dataset. In this example,568

the relationship between the original premise and569

hypothesis is neutral, while the augmented pairs570

exhibit a contradiction. In the Human-CAD exam-571

ple, the premise remains unchanged, and the label572

3Note that our purpose in this experiment is to verify the
usefulness of COBA, a triple-based augmentation method, in
text generation tasks, rather than to mitigate spurious correla-
tions in these tasks. Accordingly, we did not identify spurious
triples. We leave the identification and mitigation of spurious
correlations in text generation tasks as future work.

change is introduced by altering the gender in the 573

hypothesis. Conversely, COBA modifies “outdoor” 574

to “car” to change the label to a contradiction. No- 575

tably, COBA effectively generated a contradiction 576

pair without any human annotation. Additionally, 577

COBA’s modification of the premise contributes to 578

the diversity of augmented data, which likely con- 579

tributes to the performance improvements shown 580

in Table 3. Additional qualitative analysis results 581

can be found in the appendix. 582

5 Conclusion 583

We introduced counterbias data augmentation as 584

a more general and flexible extension of coun- 585

terfactual data augmentation, capable of address- 586

ing multiple forms of bias and improving out-of- 587

distribution robustness simultaneously. Through 588

an analysis of word importance across different 589

models, we highlighted the limitations of using 590

a single model to identify spurious correlations. 591

Building on these insights, we developed COBA, 592

a framework that leverages large language models 593

to decompose text into semantic triples and ap- 594

ply triple-level modifications guided by a majority- 595

voting-based ensemble. This approach enabled us 596

to effectively mitigate spurious correlations, allevi- 597

ate biases (such as gender and simplicity bias), and 598

enhance OOD robustness. 599

Our extensive experiments demonstrated 600

COBA’s versatility and effectiveness across 601

various tasks, including sentiment analysis, natural 602

language inference, and text style transfer. Unlike 603

conventional counterfactual methods that empha- 604

size minimal label-flipping modifications, COBA 605

allows for more diverse and semantically rich 606

augmentations, leading to broader improvements 607

in both accuracy and resilience. 608

Looking ahead, we plan to extend COBA to 609

more complex text generation scenarios, further ex- 610

ploring the framework’s potential to mitigate spuri- 611

ous patterns in generated text. We envision future 612

work refining the decomposition and reconstruction 613

steps, optimizing the balance between information 614

preservation and bias mitigation, and generalizing 615

our approach to a wider range of application do- 616

mains and model architectures. 617

Limitation 618

While our study demonstrates promising results in 619

mitigating various biases and spurious correlations, 620

several important limitations should be acknowl- 621
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edged. First, our triple-based approach to text rep-622

resentation, although effective in capturing core623

semantic relationships, inherently entails some de-624

gree of information loss. Decomposing text into625

subject-predicate-object triples simplifies complex626

linguistic structures and potentially discards con-627

textual nuances that could be relevant for certain628

tasks. This simplification, while advantageous for629

text manipulation and reconstruction, may inad-630

vertently introduce new patterns that manifest as631

alternative forms of spurious correlations.632

Another limitation arises from the trade-off be-633

tween information preservation and the flexibility634

required for effective bias mitigation. Our method635

intentionally sacrifices some semantic granularity636

to facilitate diverse text generation and broader bias637

mitigation. While this approach has proven effec-638

tive in our experiments, it’s important to recognize639

that this trade-off might not be optimal for all ap-640

plications or domains. Furthermore, the robustness641

of our majority-voting ensemble method for identi-642

fying spurious correlations, while validated in our643

tested scenarios, may vary when applied to differ-644

ent types of biases or domains beyond the scope645

of our current evaluation. Our analysis primarily646

focuses on specific biases and spurious correlations647

within the datasets examined. Although our frame-648

work has demonstrated success in these contexts,649

its generalizability to other types of biases or more650

complex spurious correlations remains to be fully651

explored.652

Additionally, while we observed improvements653

in out-of-distribution robustness, the long-term sta-654

bility of these improvements and their consistency655

across different application domains requires fur-656

ther investigation.657

These limitations highlight important directions658

for future research. Subsequent work could explore659

more sophisticated methods for preserving seman-660

tic information while maintaining the flexibility661

necessary for bias mitigation, as well as extend662

the framework’s applicability to a broader range of663

biases and domains.664

References665

Mateusz Baran, Joanna Baran, Mateusz Wójcik, Maciej666
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A Appendix948

A.1 Experimental Setup for Important Words949

Analysis950

In experiments about important word analy-951

sis in Section 3.2, we employed four mod-952

els—BERT-base, BERT-large (Devlin et al.,953

2019), RoBERTa-large (Liu et al., 2019), and954

DistilBERT—to identify the top-importance955

words (Sanh et al., 2019). We measure word-level956

importance for each model using three different957

word importance measurement techniques: local958

interpretable model-agnostic explanations (LIME)959

(Ribeiro et al., 2016), integrated gradient (IG) (Sun-960

dararajan et al., 2017), and Shapley value (SV)961

(Rozemberczki et al., 2022). In this experiment,962

we set the number of top-importance words to963

5. For training the classifier, we set the batch964

size to 32, the initial learning rate of the AdamW965

optimizer (Loshchilov and Hutter, 2019) to 5e-5,966

the maximum token length to 300, and the maxi-967

mum training epochs to 15. We selected the best968

checkpoint based on the accuracy of the validation969

set. Also, the second analysis involves performing970

part-of-speech (POS) tagging using NLTK (Loper971

and Bird, 2002) and comparing the tendencies of972

each model concerning the POS tags of important973

words. For this analysis, we employed four dif-974

ferent models: BERT-base, BERT-large (Devlin975

et al., 2019), RoBERTa-large (Liu et al., 2019),976

and DistilBERT (Sanh et al., 2019). We trained977

these models on SST-2 (Socher et al., 2013) and978

IMDB (Maas et al., 2011) datasets.979

A.2 Experimental Setup for Task980

Performance981

We employed five models: BERT-base,982

BERT-large (Devlin et al., 2019), RoBERTa-large983

(Liu et al., 2019), DistilBERT (Sanh et al., 2019),984

and BART-base to identify ws and wp. In this985

experiment, we set the number of top-k words986

to 5. We used GPT-4o-mini (OpenAI, 2024) for987

triple generation and text reconstructing. The988

generated counterfactual data was combined989

with the original dataset and used to train990

BERT-base, DeBERTaV3-base (He et al., 2023)991

and T5-base (Raffel et al., 2020) classifiers. For992

training the classifiers, we set the batch size 993

to 32, the initial learning rate of the AdamW 994

optimizer (Loshchilov and Hutter, 2019) to 5e-5, 995

and the maximum training epochs to 10. The best 996

checkpoint was selected based on validation set 997

accuracy. All experiments were conducted using 998

the Transformers library (Wolf et al., 2020). 999

A.3 Baseline Methods for Task Performance 1000

The baseline methods for comparison are as fol- 1001

lows: 1002

• EDA (Wei and Zou, 2019): A rule-based aug- 1003

mentation technique that modifies sentences 1004

through word-level modification. In this study, 1005

the modification ratio was set to 20%. 1006

• Back-translation (Sennrich et al., 2016): An 1007

augmentation technique that translates the 1008

original sentence into a pivot language and 1009

then back-translates it into the source lan- 1010

guage. 1011

• C-BERT (Wu et al., 2019): A strategy that 1012

leverages the contextual capabilities of the 1013

BERT model by filling in masked tokens. 1014

• Human-CAD (Kaushik et al., 2020): This 1015

baseline uses the Human-CAD dataset, which 1016

was created by employing human annotators 1017

to generate counterfactual data from a subset 1018

of the SNLI and IMDB datasets. Specifically, 1019

we trained a model using a combination of the 1020

Human-CAD dataset and the original dataset. 1021

• AutoCAD (Wen et al., 2022): A counterfac- 1022

tual data augmentation method that uses a text- 1023

infilling model. 1024

• GPT3Mix (Yoo et al., 2021): An LLM-based 1025

augmentation technique using few-shot exam- 1026

ples and the assignment of soft label predicted 1027

by the LLM. We used GPT-4o-mini for a fair 1028

comparison. 1029

• AugGPT (Dai et al., 2023): An augmentation 1030

approach based on ChatGPT, where LLMs are 1031

prompted to generate paraphrases of original 1032

sentences. We used GPT-4o-mini for a fair 1033

comparison. 1034
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A.4 Prompt Setting1035

A.4.1 Prompt for Semantic Triple1036

Decomposition (Sentiment Analysis)1037

System: You are a chatbot used for data augmentation. I will
provide two paragraphs or internet comments for natural
language understanding (NLU) tasks or sentiment analysis
tasks.
User: Please create semantic triples for the following
sentence.
Triple consists of three elements: subject, predicate, and
object.

Here is an example of a sentence and its corresponding
Semantic Triplet: A few people in a restaurant setting, one of
them is drinking orange juice.

1. A few people | are in | a restaurant setting
2. One person | is drinking | orange juice

Here is another example of a sentence and its corresponding
Semantic Triplet: A poor work that failed to provide a proper
narrative for the black woman.
1. A work | is | poor
2. A work | failed to provide | a proper narrative
3. A proper narrative | is for | the black woman

Please provide no answers other than the semantic triplet.
Output only the semantic triplet.

Here is an paragraph you should make a semantic triplet:
# Content

1038

A.4.2 Prompt for Reconstructing Triples into 1039

Sentences (Sentiment Analysis) 1040

System: You are a chatbot used for data augmentation. Your
job is reconstructing the selected triples into a sentence or
paragraph.
User: Please create sentences for the following Triples.
Here is an example of a Semantic Triples and its
corresponding reconstructed text:

1. A few people | are in | a restaurant setting
2. One person | is drinking | orange juice
Output format:
A few people in a restaurant setting, one of them is drinking
orange juice.

Here is another example of a Semantic Triples and its
corresponding reconstructed text:
2. I | am | a student
1. I | am | a professor
Output format:
I am a student and also a professor.

Please provide no answers other than the reconstructed text.
Output only the reconstructed text. And don’t consider the
number of sentences in the input text.

Please follow the order of the inputs strictly as they are
written. Do not consider the numbers provided in the inputs.
For example:
2. I | am | a student
1. I | am | a professor
Output format:
I am a student and also a professor.
In this case, even though the sequence numbered “2" comes
first numerically, ignore the numbers and generate the output
starting with "I | am | a student" as shown in the example.

Here is a Semantic Triples you should make a text:
# Content

1041
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A.4.3 Prompt for Semantic Triple1042

Decomposition (Natural Language1043

Inference)1044

System: You are a chatbot used for data augmentation. I will
provide two paragraphs or internet comments for natural
language understanding tasks. This natural language
understanding task has a label of entailment, contradiction, or
neutral.
User: You should creating semantic triples from the
following paragraph, and select the most important semantic
triples. Your task is to receive two sentences along with the
label for a natural language understanding task corresponding
to those sentences. For each sentence, you need to create
semantic triples.
Here is an example of two input sentence and label:

sent1: A woman is walking across the street eating a banana,
while a man is following with his briefcase.
sent2: An actress and her favorite assistant talk a walk in the
city.
label: neutral

Here is an output example of semantic triples:

sent1:
1-1. A woman | is walking | across the street
1-2. A woman | is eating | a banana
1-3. A man | is following | a woman
1-4. A man | is carrying | a briefcase

sent2:
2-1. An actress | is walking | in the city
2-2. An actress | is with | her favorite assistant
2-3. An actress and her favorite assistant | are talking | while
walking

1. A few people | are in | a restaurant setting
2. One person | is drinking | orange juice

Here is an another example of two input sentence and label:

sent1: Two women, holding food carryout containers, hug.
sent2: Two groups of rival gang members flipped each other
off.
label: contradiction

Here is an output example of above example:

sent1:
1-1. Two women | are holding | food carryout containers
1-2. Two women | hug | each other

sent2:
2-1. Two groups of rival gang members | flipped | each other
off

Please provide no answers other than the semantic triplet.
Output only the semantic triples.

Here is an paragraph you should make a semantic triplet:
# Content

1045

A.4.4 Prompt for Reconstructing Triples into 1046

Sentences (Natural Language Inference) 1047

System: You are a chatbot used for data augmentation. I will
provide triples for natural language understanding tasks. This
natural language understanding task has a label of entailment,
contradiction, or neutral.
User: You should reconstruct the semantic triples into a
sentence or paragraph. Don’t change other triplet. Then
reconstruct the semantic triples into a sentence or paragraph.
Here is an example of two input triples and label:

sent1:
1-1. An older woman | sits | at a small table
1-2. An older woman | has | orange juice
1-3. Employees | are smiling | in the background
1-4. Employees | are wearing | bright colored shirts

sent2:
2-1. A girl | flips | a burger

label: contradiction

Here is example of output:

reconstructed sent1:
An older woman sits at a small table with a glass of orange
juice, while employees in bright-colored shirts smile in the
background.
reconstructed sent2:
A girl flips a burger.

Here is another example of two input triples and label:

sent1:
1-1. The school | is having | a special event
1-2. The special event | is to show | American culture
1-3. American culture | deals with | other cultures in parties

sent2:
2-1. A school | is hosting | an event

Here is example of output:

reconstructed sent1:
The school is having a special event in order to show the
american culture on how other cultures are dealt with in
parties.
reconstructed sent2:
A school is hosting an event.

Please follow the example format exactly and only output the
necessary graph triplets. Do not start with conversational
phrases like “Here’s" or “Sure."

Here is an semantic triples you should reconstruct:
# Content

1048

1049
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