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Abstract

Deep learning models often learn and exploit
spurious correlations in training data, using
these non-target features to inform their pre-
dictions. Such reliance leads to performance
degradation and poor generalization on unseen
data. To address these limitations, we intro-
duce a more general form of counterfactual
data augmentation, termed counterbias data
augmentation, which simultaneously tackles
multiple biases (e.g., gender bias, simplicity
bias) and enhances out-of-distribution robust-
ness. We present COBA, a unified framework
that operates at the semantic triple level: first
decomposing text into subject-predicate-object
triples, then selectively modifying these triples
to disrupt spurious correlations. By reconstruct-
ing the text from these adjusted triples, COBA
generates counterbias data that mitigates spuri-
ous patterns. Through extensive experiments,
we demonstrate that COBA not only improves
downstream task performance, but also effec-
tively reduces biases and strengthens out-of-
distribution resilience, offering a versatile and
robust solution to the challenges posed by spu-
rious correlations.

1 Introduction

Despite deep learning’s success across various do-
mains, spurious correlations continue to pose sig-
nificant challenges in training effective models (Ye
et al., 2024). Spurious correlations are patterns that
appear in datasets but do not represent genuine re-
lationships, such as correlations with background
or textures (Beery et al., 2018; Geirhos et al., 2019;
Sagawa et al., 2020). This phenomenon is also
prevalent in text data, where spurious correlations
frequently emerge at the word-level. In such cases,
certain words or phrases become associated with
specific labels due to their co-occurrence in partic-
ular contexts. This association often fails to reflect
the actual meaning or intent, resulting in perfor-
mance degradation in models (Wang et al., 2022;

Joshi et al., 2022; Chew et al., 2024). Furthermore,
spurious correlations are linked to various biases,
including gender bias, simplicity bias, and chal-
lenges related to out-of-distribution (OOD) robust-
ness. Consequently, mitigating these correlations
is crucial for enhancing deep learning models in
a broader context (McMilin, 2022; Liusie et al.,
2022; Ming et al., 2022).

While several methods have been proposed
to mitigate spurious correlations from a model-
centric perspective by identifying spurious fea-
tures, recent studies have shifted the focus toward
a data-centric approach, particularly in the field
of natural language processing (Ye et al., 2024).
Early approaches suggested reweighting data sam-
ples to mitigate spurious features; however, this
strategy can inadvertently introduce new biases
by overemphasizing irrelevant features (Han and
Tsvetkov, 2021; Shi et al., 2023). Subsequently,
researchers have been exploring data manipula-
tion techniques aimed at enhancing the generality
and diversity of data distribution. These methods
seek to improve model capabilities by reducing
the impact of spurious correlations present in the
original data (Ye et al., 2024). Recent studies sug-
gest that augmenting datasets with counterfactual
data—entailing minimal modifications to the orig-
inal sentences—can effectively mitigate spurious
correlations (Kaushik et al., 2020; Udomcharoen-
chaikit et al., 2022; Chan et al., 2023). While early
studies relied on human-annotated counterfactuals,
more recent works propose automatically generat-
ing them through data augmentation, demonstrat-
ing their effectiveness in reducing spurious correla-
tions (Zeng et al., 2020; Wang and Culotta, 2021;
Wen et al., 2022; Treviso et al., 2023; Sachdeva
et al., 2024). However, due to the minimal mod-
ifications, this approach may lack diversity, po-
tentially leading to issues such as overfitting and
subsequent performance degradation (Qiu et al.,
2024).



In this study, we extend current research on coun-
terfactual data augmentation to counterbias data
augmentation, which simultaneously addresses var-
ious biases and challenges, such as gender bias,
simplicity bias, and out-of-distribution robustness.
Although counterfactual data has been effective in
mitigating spurious correlations, there remains sig-
nificant potential for a unified approach that can
concurrently tackle these diverse challenges. To ex-
plore this, we propose transforming the given text
into a set of semantic triples using a large language
model (LLM), with each triple encapsulating com-
pressed information from the sentences. By gener-
ating counterfactual triples through modifications
of the original triples and reconstructing text from
these debiased triples using an LLM, we can create
augmented counterbias data. This triple-level mod-
ification simplifies the generation of counterfactu-
als, as triples naturally contain the key elements of
sentences. Additionally, with the support of LLMs
in reconstructing text from triples, our framework
can effectively diversify augmented text. Counter-
bias data augmentation differs from previous coun-
terfactual data augmentation approaches, which
aim to make minimal changes while flipping the
original data’s label.

Additionally, we conducted an analysis to iden-
tify principal words in various models using word
importance measurements, revealing that each
model has a distinct set of principal words. This
finding suggests that counterbias data generated for
a single model may not be effective for other mod-
els. To address this finding, we employ a majority-
voting-based ensemble method to identify words
that may contribute to spurious correlations. This
approach is effective for augmenting counterbias
data that can be universally applied across various
models. Through experiments validating the effec-
tiveness of our proposed framework, COBA, we
observed that it effectively alleviates various biases
and challenges while also augmenting counterbias
data applicable across different models.

Our main contributions are as follows:

¢ A Unified Framework for Counterbias Aug-
mentation: We introduce COBA, a novel ap-
proach that extends counterfactual data aug-
mentation to counterbias data augmentation.
Unlike prior methods that primarily focus on
minimal label-flipping modifications, COBA
targets a broader range of biases and spurious
correlations, improving both in-distribution

performance and out-of-distribution robust-
ness.

* Insights into Spurious Correlations Across
Models: Through a detailed analysis of word
importance, we reveal how spurious correla-
tions vary significantly across different model
architectures, underscoring the limitations of
relying on a single model. This insight moti-
vates our ensemble-based strategy to identify
and mitigate problematic correlations more
reliably.

* Empirical Validation and Practical Bene-
fits: Extensive experiments across tasks like
sentiment analysis, natural language infer-
ence, and text style transfer show that COBA
consistently alleviates multiple biases and en-
hances model resilience to distribution shifts.
These results highlight COBA’s versatility
and its potential to inform more robust, fair,
and generalizable deep learning solutions.

2 Related Work

Counterfactual data augmentation has been shown
to effectively mitigate spurious correlations. An
early study introduced the concept of counterfac-
tual data by manipulating existing data to alter the
label with minimal modifications (Kaushik et al.,
2020). These counterfactual data have been demon-
strated to be useful for mitigating spurious patterns
and precisely evaluating deep learning models, par-
ticularly with regard to local decision boundaries
(Gardner et al., 2020).

Since these studies relied on human annotators to
generate counterfactual data, producing such data
for various datasets was challenging. As a result,
researchers began exploring automated methods
for generating counterfactual data, particularly in
data augmentation contexts. In early explorations,
predefined rules were applied to augment coun-
terfactual data (Zmigrod et al., 2019; Wang and
Culotta, 2021).

Beyond rule-based techniques, deep learning
models have been employed to augment counter-
factual data. For example, several studies have
proposed leveraging well-trained classifiers to iden-
tify principal words (Wang et al., 2022; Wen et al.,
2022; Bhan et al., 2023). Additionally, generating
counterfactual data using deep learning models has
proven effective in diversifying the generated data
(Wu et al., 2021; Treviso et al., 2023; Sun et al.,



2024). Recently, researchers have also begun ex-
ploring the use of LLMs for counterfactual data
augmentation (Sachdeva et al., 2024; Chang et al.,
2024; Li et al., 2024).

3 Methodology

3.1 Overview

In this paper, we aim to alleviate various biases
and obstacles by mitigating spurious correlations
through counterbias data augmentation. Specifi-
cally, given an original dataset D,,;, which consists
of (x;,y;) where z; and y; denote the input text
and its corresponding label, we aim to generate
(Z4, Ui ), where &; represents the augmented coun-
terbias text and ¢j; denotes a different label from
y;. We define counterbias text as text that shares
spurious words and semantics with the original text
but is assigned a different label to mitigate spurious
correlations, similar to counterfactual text. This
represents a broader concept of counterfactual text,
which refers to text with minimal differences from
the original data but with different labels (Molnar,
2020). Unlike counterfactual data, counterbias data
are not restricted to minimal differences; they can
exhibit different syntactic structures and expres-
sions compared to the original data, as long as they
retain the spurious words and semantics of the orig-
inal text. This distinction between counterbias data
and counterfactual data allows counterbias data to
introduce a wider variety of patterns, thereby am-
plifying the augmentation effect on the model.

To accomplish this, we first decompose x; into
a set of semantic triples, denoted as T;,,. This T3,
consists of semantic triples tg[:,i € T;,, each repre-
senting a triple of a sentence in x;. A single seman-
tic triple tii has the structure of (subject, predicate,
object). This procedure is performed by an LLM
using a designated prompt.

Next, we modify the decomposed t%i to miti-
gate spurious correlations at the triple-level, re-
sulting in modified triples tAg;i e z;- Specifically,
we follow a step-by-step procedure as follows: 1)
We first identify sets of spurious words and prin-
cipal words, W, and W), representing the set of
words that causes spurious correlations and the set
of words that plays a crucial role in determining the
label of x;. We use multiple well-trained classifiers
with different backbones and word importance mea-
surement techniques to recognize ws; € W, and
wp € Wp. 2) We then obtain T, z; by modifying tgci
that includes w,, while maintaining tgcz involving
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Table 1: The ratio of duplication among the top-5 most
principal words for each model. The number in paren-
theses indicates the degree of overlap between two or
more models, but not every models.

ws. This configuration allows us to make minimal
changes that differentiate the label but maintain the
spurious words, resulting in the generation of coun-
terfactual triples. 3) To introduce diverse patterns
into the augmented data, thereby enhancing OOD
robustness, we randomly permute the order and
delete several triples in T},.

Finally, we augment 2; by reconstructing coun-
terbias text from the modified Zf’xl using the LLM
with a designated prompt. Since we have modified
T, to Txl to retain ¢j; instead of y; by modifying tg;i
with w,,, the reconstructed ; receives the label g;,
which differs from y;. This results in a counterbias-
augmented dataset D, which is used to train a
downstream task model in combination with the
original dataset, D,,; U Dp. Figure 1 illustrates
this overall procedure.

3.2 Analysis on Important Words

Before introducing COBA in detail, we first present
an analysis to investigate the differences in princi-
pal words across various models from two different
perspectives. Implementation details are provided
in the technical appendix A.1.

3.21

We used the three techniques mentioned above to
measure the top-5 important words for each model
on the SST-2 and IMDB datasets. Afterward, we
evaluated the ratio of duplicated words among the
important words identified by each model. Specifi-
cally, we counted the instances where all four mod-
els contained at least one duplicated word. Table 1
presents the result of this analysis. The findings
suggest that the number of words consistently re-
garded as important across all models is small. No-
tably, this ratio was less than 10% of the total words
in the IMDB, which contains relatively longer text
compared to SST-2. Although the models used
in this analysis share BERT-family architecture,
they focus on different words within the input text
when making predictions. However, when exam-
ining the overlap in important words between just
two models at a time, we found that the majority

Word-level Importance Analysis
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Figure 1: Overall procedure of COBA.

SST-2 ‘ Noun Verb Adjective & Adverb Others
BERT-base 509 10.1 18.1 209
BERT-large 486 23 35.1 14.0
RoBERTa-large | 67.9 9.8 15.6 6.7
BART-base 353 220 21.0 21.6

IMDB Noun Verb Adjective & Adverb Others
BERT-base 226 122 16.0 49.2
BERT-large 284 124 8.3 50.8
RoBERTa-large | 46.7 16.0 29.1 8.2
BART-base 268 113 249 37.0

Table 2: The ratio of POS tags among top-5 most impor-
tant words for each model on SST-2 and IMDB. Bolded
values represent the most frequent POS tag for each
model and dataset, while italicized values represent the
second most frequent POS tag.

of cases exceeded 80%. This indicates that while
each model has its own tendencies, there is still a
meaningful overlap in the patterns they recognize,
suggesting that they focus on the semantics of the
sentence in distinct yet related ways.

3.2.2 POS Tagging Analysis

To support the findings of the previous analysis,
we conducted an additional analysis by performing
POS tagging on top-5 important words identified
from the analysis above. Table 2 presents the re-
sult of this analysis. The findings indicate that the
important words identified by each model have dif-
ferent POS tags, revealing that each model focuses
on different aspects of the given text. A qualita-
tive evaluation of this tendency is provided in the
technical appendix.

These two analyses suggest that counterfactual
data augmented by previous methods, which lever-
aged a single model to identify important words
from input text, may not be adequate for other mod-
els, diminishing the efficiency to be applied univer-

sally across various models. Inspired by this find-
ing, we propose leveraging multiple models and
using a majority-voting-based ensemble method to
identify important words, including spurious and
principal words.

3.3 CoBA

In this section, we introduce the detailed proce-
dure of our COBA; Counterbias Augmentation
framework. COBA consists of three major compo-
nents: semantic triples decomposition, triple-level
manipulation, and reconstruction of counterbias
text. Each of these components will be explained
in detail. The overall procedure is illustrated in
Figure 1.

3.3.1 Semantic Triple Decomposition

To augment the given z; into %;, we first decom-
pose x; into 17, where T);, denotes a set of se-
mantic triples tgci € T,. Each tg;i represents a
sentence or phrase from x;, and follows the struc-
ture of (subject, predicate, object). For instance,
given z; as “I love In-N-Out. Their burger feels
incredibly fresh”, the desired 17, is {(I, love, In-N-
Out), (Their burger, feels, incredibly fresh)}. While
various techniques exist for triple decomposition,
they primarily focus on decomposing a single sen-
tence into semantic triples, which differs from our
purpose (Tan et al., 2019; Ye et al., 2021; Chen
etal., 2021).

To effectively decompose text containing mul-
tiple sentences into semantic triples, we utilize
LLMs, which can perform various tasks when
given proper instructions through prompts (Brown
et al., 2020; Ouyang et al., 2022). We achieve
this by designing a dedicated prompt pey; for an



LLM L. Consequently, the desired set of semantic
triples T, is obtained by T, = L(xi, Pext)-

3.3.2 Triple-level Manipulation

Since T, contains compressed information about
the original x;, we aim to modify this compressed
T, to mitigate the underlying spurious correlations.
The procedure is detailed as follows:

First, we employ a set of multiple well-trained
classifiers M, where each m; € M represents an
individual classifier trained on D,,;. After training
M, we perform word importance measurement on
x; using each m; and extract K important words,
denoted as WW,,,,. We then count the frequency of
each word’s appearance in the W,,,. If a certain
word appears in 1,,,, more than the threshold 72,
indicating its importance across various models,
we include it in W), the set of principal words
crucial for determining the label of z;. Words in
W, that are not included in W), are categorized
into W, as they are important only for certain
models and not universally significant, implying
that such words may induce spurious correlations
in the model. Additionally, arbitrary words that
are known to introduce spurious correlations and
biases can also be included in Wy if needed.

Second, we modify T7;; to mitigate spurious cor-
relations at the triple-level. Specifically, we first
categorize each tgcl, in T3, as a spurious triple if tg%
contains a word from W. Other triples that con-
tain a word from W), are categorized as principal
triples. After categorization, we obtain Txl by mod-
ifying only the principal triples while maintaining
the spurious triples. In particular, we use L to alter
the label of x; by modifying the principal triples,
which play a crucial role in determining the label.
This process results in the generation of modified
principal triple, ff;i = L., §i, Pmoa)> Where §;
denotes the desired label different from the original
y;. This targeted manipulation preserves the spuri-
ous words and semantics of the original data while
flipping the label, leading to the augmentation of
counterbias data.

Finally, to effectively leverage the flexibility of
counterbias data, which allows for various changes
compared to the original data, such as different syn-
tactic structures, we randomly permute the order of
normal triples that are not categorized as spurious

"Please refer to our technical appendix for full details on
Pext and other prompts.
*We simply set T as W, where | M| denotes the num-

ber of classifier models used. Note that | M| is an odd number.

or principal triples within sz Additionally, gen-
der bias-inducing words are replaced with words
of the opposite gender at the triple-level to mitigate
gender bias. We used the WinoBias dataset (Zhao
et al., 2018) to replace gender-related words. Fur-
thermore, we randomly delete some of the normal
triples with a small, predefined probability. Re-
stricting the shuffling and deletion to normal triples
helps introduce diverse patterns into the augmented
data while preserving the core semantics. The com-
pletion of this process produces the final candidate
set of triples for reconstruction, sz

3.3.3 Reconstruction of Counterbias Text

Finally, we augment counterbias text z; by recon-
structing text given the processed T z;- Specifically,
we utilize £ to achieve this, which is formulated
as T; = E(Twz , Prec)- As a consequence, we obtain
the counterbias data (;, 7;). Note that we can eas-
ily generate multiple Z; using different configura-
tions of decoding strategies for £ or even different
arrangements of TxL This is different from conven-
tional counterfactual data augmentation, which is
difficult to augment multiple data as they require

minimal changes compared to original data.

4 Experiments

4.1 Improvement on Task Performance

We evaluated performance improvements in down-
stream tasks to determine if COBA effectively mit-
igates spurious correlations and outperforms con-
ventional data augmentation methods, including
counterfactual data augmentation. For this purpose,
we primarily used natural language inference (NLI)
and sentiment analysis tasks. We used SNLI (Bow-
man et al., 2015) and MNLI (Williams et al., 2018)
for NLI tasks and SST-2 (Socher et al., 2013) and
IMDB (Maas et al., 2011) for sentiment analysis
tasks. Implementation details and baseline methods
are provided in the appendix A.2 and appendix A.3.

Table 3 demonstrates the result of the experi-
ment. A key finding is that COBA outperformed
other baselines, including counterfactual data aug-
mentation methods, in most cases. Although coun-
terfactual data augmentation methods effectively
mitigate spurious patterns, they limit data diversity
by introducing minimal modifications when con-
verting labels. On the other hand, conventional data
augmentation methods, particularly LLM-based
methods such as GPT3Mix and AugGPT exhibit
the variation in augmented data; they do not take



SST-2 IMDB SNLI MNLI
Baseline w/o Augmentation | 92.8/94.0/94.5 91.5/91.6/923 86.2/86.6/854 82.4/84.5/83.8
EDA 93.1/93.1/929 90.8/91.6/91.6 86.8/86.2/88.8 80.6/81.5/82.6
Back-translation 93.2/935/89.3 91.4/922/882 87.7/84.1/88.1 83.1/82.8/83.4
C-BERT 91.9/94.0/932 92.1/91.0/90.8 84.4/89.0/91.2 82.1/84.7/85.4
Human-CAD - 93.2/93.8/95.1 88.0/89.9/89.9 -
AutoCAD 94.9/96.4/952 92.8/93.3/93.4 88.0/90.1/89.1 89.8/91.3/92.0
GPT3Mix 93.2/952/953 93.9/94.1/93.9 - -
AugGPT 94.2/95.4/957 922/94.0/94.2 90.3/87.5/889 88.7/87.6/85.1
COBA (LLM-Identification) | 94.6 /96.7/95.9 94.4/94.0/93.8 89.9/88.2/90.5 90.6/90.6/89.2
CoBA 94.9/96.5/96.2 954/94.1/953 90.1/90.1/90.5 91.1/91.7/91.3

Table 3: The comparison of downstream task performance of the model trained with each data augmentation strategy.
The best performance in each group is boldfaced, and the second-best performance is italicized. The performance
is presented in the form of “BERT / DeBERTaV3 / T5-Base”. Note that Human-CAD only provides counterfactual
datasets for IMDB and SNLI, and the official source code of GPT3Mix is limited to processing large datasets such

as SNLI and MNLI.

IMDB SNLI

w/o Augmentation | 52.3 70.2
AutoCAD 86.1  75.6
CoBA 872 758

Table 4: The comparison of models on Human-CAD
test set. For this experiment, we trained BERT-base
model.

spurious correlations into account. By combining
the advantages of mitigating spurious correlations
and generating diverse augmented data, COBA was
able to outperform other baseline methods.

Additionally, we conducted a small ablation
study, where LLMs were used to identify W, and
W), instead of using M, a set of multiple well-
trained classifiers. The results of this study are
presented as “COBA (LLM-Identification)” in Ta-
ble 3. While this approach showed remarkable
performance compared to other baselines, its per-
formance improvement was smaller than that of
the original COBA. This suggests that the iden-
tification of spurious words and principal words
using LLM may be less effective than our majority-
voting-based ensemble method using downstream
task models. We hypothesize this phenomenon
arises because a single LLM may not effectively
capture W, and W, given the difference in im-
portant words across models, as evidenced by the
analysis in Section 3.2.

4.2 Mitigation of Spurious Correlation

To verify that the effectiveness of the proposed
method comes from mitigating spurious correla-
tions rather than just data augmentation, we eval-
uated the Human-CAD test set, which provides

human-annotated examples for assessing spurious
correlation mitigation. For this evaluation, we
trained BERT-base using a combination of original
datasets and augmented data generated by COBA
and AutoCAD.

As shown in Table 4, the model trained without
augmented data exhibited significantly lower per-
formance on the Human-CAD test set, indicating
that the baseline model is vulnerable to spurious
correlations. In contrast, the models trained with
AutoCAD and COBA demonstrated more robust
performance compared to the baseline model. Fur-
thermore, COBA, our proposed method based on
counterbias augmentation, outperformed existing
counterfactual data augmentation methods, under-
scoring its effectiveness in mitigating spurious cor-
relations.

4.3 Alleviation of Gender Bias

To verify COBA’s effectiveness in reducing biases
by mitigating related spurious correlations, we con-
ducted an experiment focused on gender bias re-
duction. For this experiment, we adopted the list
of gender bias-related words from a previous study
(Zhao et al., 2018). By incorporating words from
this list into W, we aim to mitigate the underlying
spurious correlations, thereby alleviating gender
bias in the model. To quantify the gender bias, we
used two benchmarks: StereoSet (SS) (Nadeem
et al., 2021) and CrowS-Pairs (Nangia et al., 2020).
For comparison, we established various baselines.
BERT (Raw) refers to the original BERT model
without any additional training, and BERT (IMDB)
refers to the BERT model with additional pretrain-
ing on the IMDB training dataset. SentenceDe-



| SS  CrowS

BERT (Raw) 57.8  59.0

BERT (IMDB) 58.6  59.7
SentenceDebias

(Liang et al., 2020) 38 S8
Naive-masking

(Thakur et al., 2023) 65 6038

Random-phrase-masking
(Thakur et al., 2023) 45 380
CoBA-based 514 520

Table 5: Comparison of gender bias across methods,
as measured by SS and CrowS. A score close to 50
indicates that the model has less gender bias. Note that
all models are based on BERT-base.

EDA | AutoCAD | AugGPT | CoBA
0.9957 | 09641 [ 0.9658 | 0.9531

Table 6: Cosine similarity between the embedding
vectors of the original and augmented texts for each
method.

bias is a baseline method that achieves debiasing
at the embedding level (Liang et al., 2020). Naive-
masking and Random-phrase-masking are methods
based on word-level substitution (Thakur et al.,
2023). Lastly, COBA-based refers to the BERT
model with additional pretraining on the IMDB
training dataset, combined with the augmented data
generated by COBA.

Table 5 shows the result of the experiment.
The model trained with a combination of original
and CoBA-augmented counterbias data achieved a
score closest to the ideal 50, outperforming other
baselines. Unlike other strategies, such as masking
gender-related pronouns to neutral pronouns, our
COBA focuses on augmenting data with represen-
tations of the opposite gender, leading to a more
balanced introduction of gender-related representa-
tions. As a result, COBA contributed to mitigating
spurious correlations, thereby alleviating gender
bias in the model.

4.4 OOD Robustness with Diverse Augmented
Data

Unlike counterfactual text augmentation, which
introduces minimal modifications to alter labels,
counterbias text augmentation has no such restric-
tions, allowing for a wider range of lexical and
semantic expressions. This flexibility plays a cru-
cial role in enhancing model performance through
data augmentation (Cegin et al., 2024). To vali-

IMDB — SST-2 IMDB — Yelp

Baseline 63.2 61.2

EDA 66.2 58.2

AutoCAD 80.1 73.6

AugGPT 83.0 71.6
ReAct

(Sun et al., 2021) 84.5 75.3

CoOBA 83.2 74.0

Table 7: AUROC(%) performance of the models in out-
of-distribution scenario. “IMDB — SST-2” indicates a
scenario where a model trained on IMDB is tested on
SST-2, and “IMDB — Yelp” means the model trained
on IMDRB is tested on Yelp. For ReAct, we follow the
reported performance from previous work (Baran et al.,
2023).

Baseline | AugGPT | COBA-based
7210 | 7450 | 75.70

Table 8: BLEU-4 scores (Papineni et al., 2002) for
the informal-to-formal text style transfer task on the
GYAFC dataset. The baseline model for this experiment
is T5-Base (Raffel et al., 2020).

date this, we randomly sampled 100 augmented
data from IMDB using each method and measured
the difference between the original and augmented
data by calculating the cosine similarity produced
by BERT-base. The results in Table 6 indicate that
COBA introduces meaningful differences in the
data while preserving core semantics.

To further support the effectiveness of this di-
versification in augmented data, we conducted an
evaluation in an OOD scenario. For this experi-
ment, we trained a model on IMDB but tested it on
SST-2 and Yelp (Zhang et al., 2015). The results of
this evaluation are presented in Table 7. This evalu-
ation suggests that our COBA exhibits remarkable
improvement in OOD robustness. While the per-
formance gain is slightly lower than that of ReAct
(Sun et al., 2021) baseline, it is important to note
that ReAct is a strategy that solely focused on en-
hancing OOD robustness. In contrast, our COBA
offers various benefits such as mitigation of spuri-
ous correlation and other biases. In conclusion, we
validated that COBA jointly offers numerous bene-
fits to the model, from the mitigation of spurious
correlation to the improvement of OOD robustness.

4.5 Extension to Generation Tasks

In this paper, we proposed COBA, which involves
decomposing the given text into semantic triples,
selecting spurious and principal triples, applying



‘ Original

A woman talks on a cellphone
while sitting in front of
blue railings that are in front of the ocean.
She talks to her boyfriend about plans that night.
Human-CAD

A woman talks on a cellphone
while sitting in front of
blue railings that are in front of the ocean.
He has a conversation on her phone outdoors.
COoBA
A man is sitting in front of
blue railing while talking on a cellphone,
with the railing positioned in front of the ocean.
A man talks to his boyfriend while he is in a new car.

Premise

Hypothesis

Premise

Hypothesis

Premise

Hypothesis

Table 9: The comparison of augmented data generated
by Human-CAD and COBA on SNLI.

bias-mitigation techniques, and then reconstructing
the augmented text. This approach is applicable
not only to classification tasks but also to text gen-
eration tasks. To verify COBA’s effectiveness in
text generation, we conducted an experiment ap-
plying COBA to a text style transfer task using the
GYAFC dataset (Rao and Tetreault, 2018).

For applying COBA to the text style transfer task,
we first decomposed the given text into semantic
triples. Next, we utilized £ to identify principal
triples in both formal and informal sentences.’. Ad-
ditionally, we included the gender bias alleviation
scheme introduced in Section 4.3. After permuting
the order of normal triples that are not principal,
we reconstructed the augmented text.

The results of this experiment, displayed in Ta-
ble 8, show that COBA, the triple-based augmenta-
tion method, exhibited a remarkable performance
improvement compared to the AugGPT baseline.
This underscores COBA’s extensibility to text gen-
eration tasks. We plan to investigate the strategies
for identifying spurious patterns in text generation
tasks in future work.

4.6 Qualitative Analysis

Table 9 compares Human-CAD and CoBA for data
augmentation in the SNLI dataset. In this example,
the relationship between the original premise and
hypothesis is neutral, while the augmented pairs
exhibit a contradiction. In the Human-CAD exam-
ple, the premise remains unchanged, and the label

3Note that our purpose in this experiment is to verify the
usefulness of COBA, a triple-based augmentation method, in
text generation tasks, rather than to mitigate spurious correla-
tions in these tasks. Accordingly, we did not identify spurious
triples. We leave the identification and mitigation of spurious
correlations in text generation tasks as future work.

change is introduced by altering the gender in the
hypothesis. Conversely, COBA modifies “outdoor”
to “car” to change the label to a contradiction. No-
tably, COBA effectively generated a contradiction
pair without any human annotation. Additionally,
CoOBA’s modification of the premise contributes to
the diversity of augmented data, which likely con-
tributes to the performance improvements shown
in Table 3. Additional qualitative analysis results
can be found in the appendix.

5 Conclusion

We introduced counterbias data augmentation as
a more general and flexible extension of coun-
terfactual data augmentation, capable of address-
ing multiple forms of bias and improving out-of-
distribution robustness simultaneously. Through
an analysis of word importance across different
models, we highlighted the limitations of using
a single model to identify spurious correlations.
Building on these insights, we developed COBA,
a framework that leverages large language models
to decompose text into semantic triples and ap-
ply triple-level modifications guided by a majority-
voting-based ensemble. This approach enabled us
to effectively mitigate spurious correlations, allevi-
ate biases (such as gender and simplicity bias), and
enhance OOD robustness.

Our extensive experiments demonstrated
COBA’s versatility and effectiveness across
various tasks, including sentiment analysis, natural
language inference, and text style transfer. Unlike
conventional counterfactual methods that empha-
size minimal label-flipping modifications, COBA
allows for more diverse and semantically rich
augmentations, leading to broader improvements
in both accuracy and resilience.

Looking ahead, we plan to extend COBA to
more complex text generation scenarios, further ex-
ploring the framework’s potential to mitigate spuri-
ous patterns in generated text. We envision future
work refining the decomposition and reconstruction
steps, optimizing the balance between information
preservation and bias mitigation, and generalizing
our approach to a wider range of application do-
mains and model architectures.

Limitation

While our study demonstrates promising results in
mitigating various biases and spurious correlations,
several important limitations should be acknowl-



edged. First, our triple-based approach to text rep-
resentation, although effective in capturing core
semantic relationships, inherently entails some de-
gree of information loss. Decomposing text into
subject-predicate-object triples simplifies complex
linguistic structures and potentially discards con-
textual nuances that could be relevant for certain
tasks. This simplification, while advantageous for
text manipulation and reconstruction, may inad-
vertently introduce new patterns that manifest as
alternative forms of spurious correlations.

Another limitation arises from the trade-off be-
tween information preservation and the flexibility
required for effective bias mitigation. Our method
intentionally sacrifices some semantic granularity
to facilitate diverse text generation and broader bias
mitigation. While this approach has proven effec-
tive in our experiments, it’s important to recognize
that this trade-off might not be optimal for all ap-
plications or domains. Furthermore, the robustness
of our majority-voting ensemble method for identi-
fying spurious correlations, while validated in our
tested scenarios, may vary when applied to differ-
ent types of biases or domains beyond the scope
of our current evaluation. Our analysis primarily
focuses on specific biases and spurious correlations
within the datasets examined. Although our frame-
work has demonstrated success in these contexts,
its generalizability to other types of biases or more
complex spurious correlations remains to be fully
explored.

Additionally, while we observed improvements
in out-of-distribution robustness, the long-term sta-
bility of these improvements and their consistency
across different application domains requires fur-
ther investigation.

These limitations highlight important directions
for future research. Subsequent work could explore
more sophisticated methods for preserving seman-
tic information while maintaining the flexibility
necessary for bias mitigation, as well as extend
the framework’s applicability to a broader range of
biases and domains.
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A Appendix

A.1 Experimental Setup for Important Words
Analysis

In experiments about important word analy-
sis in Section 3.2, we employed four mod-
els—BERT-base, BERT-large (Devlin et al.,
2019), RoBERTa-large (Liu et al., 2019), and
DistilBERT—to identify the top-importance
words (Sanh et al., 2019). We measure word-level
importance for each model using three different
word importance measurement techniques: local
interpretable model-agnostic explanations (LIME)
(Ribeiro et al., 2016), integrated gradient (IG) (Sun-
dararajan et al., 2017), and Shapley value (SV)
(Rozemberczki et al., 2022). In this experiment,
we set the number of top-importance words to
5. For training the classifier, we set the batch
size to 32, the initial learning rate of the AdamW
optimizer (Loshchilov and Hutter, 2019) to 5e-5,
the maximum token length to 300, and the maxi-
mum training epochs to 15. We selected the best
checkpoint based on the accuracy of the validation
set. Also, the second analysis involves performing
part-of-speech (POS) tagging using NLTK (Loper
and Bird, 2002) and comparing the tendencies of
each model concerning the POS tags of important
words. For this analysis, we employed four dif-
ferent models: BERT-base, BERT-1arge (Devlin
et al., 2019), RoBERTa-1large (Liu et al., 2019),
and DistilBERT (Sanh et al., 2019). We trained
these models on SST-2 (Socher et al., 2013) and
IMDB (Maas et al., 2011) datasets.

A.2 Experimental Setup for Task
Performance

We employed five models: BERT-base,
BERT-1large (Devlin et al., 2019), RoBERTa-1arge
(Liu et al., 2019), Disti1BERT (Sanh et al., 2019),
and BART-base to identify w, and w,. In this
experiment, we set the number of top-k words
to 5. We used GPT-40-mini (OpenAl, 2024) for
triple generation and text reconstructing. The
generated counterfactual data was combined
with the original dataset and used to train
BERT-base, DeBERTaV3-base (He et al., 2023)
and T5-base (Raffel et al., 2020) classifiers. For
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training the classifiers, we set the batch size
to 32, the initial learning rate of the AdamW
optimizer (Loshchilov and Hutter, 2019) to Se-5,
and the maximum training epochs to 10. The best
checkpoint was selected based on validation set
accuracy. All experiments were conducted using
the Transformers library (Wolf et al., 2020).

A.3 Baseline Methods for Task Performance

The baseline methods for comparison are as fol-
lows:

* EDA (Wei and Zou, 2019): A rule-based aug-
mentation technique that modifies sentences
through word-level modification. In this study,
the modification ratio was set to 20%.

* Back-translation (Sennrich et al., 2016): An
augmentation technique that translates the
original sentence into a pivot language and
then back-translates it into the source lan-

guage.

* C-BERT (Wu et al.,, 2019): A strategy that
leverages the contextual capabilities of the
BERT model by filling in masked tokens.

* Human-CAD (Kaushik et al., 2020): This
baseline uses the Human-CAD dataset, which
was created by employing human annotators
to generate counterfactual data from a subset
of the SNLI and IMDB datasets. Specifically,
we trained a model using a combination of the
Human-CAD dataset and the original dataset.

e AutoCAD (Wen et al., 2022): A counterfac-
tual data augmentation method that uses a text-
infilling model.

* GPT3Mix (Yoo et al., 2021): An LLM-based
augmentation technique using few-shot exam-
ples and the assignment of soft label predicted
by the LLM. We used GPT-40-mini for a fair
comparison.

* AugGPT (Dai et al., 2023): An augmentation
approach based on ChatGPT, where LLMs are
prompted to generate paraphrases of original
sentences. We used GPT-4o0-mini for a fair
comparison.



A.4 Prompt Setting

A.4.1 Prompt for Semantic Triple
Decomposition (Sentiment Analysis)

System: You are a chatbot used for data augmentation. I will
provide two paragraphs or internet comments for natural
language understanding (NLU) tasks or sentiment analysis
tasks.

User: Please create semantic triples for the following
sentence.

Triple consists of three elements: subject, predicate, and
object.

Here is an example of a sentence and its corresponding
Semantic Triplet: A few people in a restaurant setting, one of
them is drinking orange juice.

1. A few people | are in | a restaurant setting
2. One person | is drinking | orange juice

Here is another example of a sentence and its corresponding
Semantic Triplet: A poor work that failed to provide a proper
narrative for the black woman.

1. A work | is | poor

2. A work | failed to provide | a proper narrative

3. A proper narrative | is for | the black woman

Please provide no answers other than the semantic triplet.
Output only the semantic triplet.

Here is an paragraph you should make a semantic triplet:
# Content
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A.4.2 Prompt for Reconstructing Triples into
Sentences (Sentiment Analysis)

System: You are a chatbot used for data augmentation. Your
job is reconstructing the selected triples into a sentence or
paragraph.

User: Please create sentences for the following Triples.
Here is an example of a Semantic Triples and its
corresponding reconstructed text:

1. A few people | are in | a restaurant setting

2. One person | is drinking | orange juice

Output format:

A few people in a restaurant setting, one of them is drinking
orange juice.

Here is another example of a Semantic Triples and its
corresponding reconstructed text:

2. Ilam| a student

1. I'lam | a professor

Output format:

I am a student and also a professor.

Please provide no answers other than the reconstructed text.
Output only the reconstructed text. And don’t consider the
number of sentences in the input text.

Please follow the order of the inputs strictly as they are
written. Do not consider the numbers provided in the inputs.
For example:

2. 1lam/ a student

1. I'lam | a professor

Output format:

I am a student and also a professor.

In this case, even though the sequence numbered “2" comes
first numerically, ignore the numbers and generate the output
starting with "I | am | a student" as shown in the example.

Here is a Semantic Triples you should make a text:
# Content




A.4.3 Prompt for Semantic Triple
Decomposition (Natural Language
Inference)

System: You are a chatbot used for data augmentation. I will
provide two paragraphs or internet comments for natural
language understanding tasks. This natural language
understanding task has a label of entailment, contradiction, or
neutral.

User: You should creating semantic triples from the
following paragraph, and select the most important semantic
triples. Your task is to receive two sentences along with the
label for a natural language understanding task corresponding
to those sentences. For each sentence, you need to create
semantic triples.

Here is an example of two input sentence and label:

sentl: A woman is walking across the street eating a banana,
while a man is following with his briefcase.

sent2: An actress and her favorite assistant talk a walk in the
city.

label: neutral

Here is an output example of semantic triples:

sentl:

1-1. A woman | is walking | across the street
1-2. A woman | is eating | a banana

1-3. A man | is following | a woman

1-4. A man | is carrying | a briefcase

sent2:

2-1. An actress | is walking | in the city

2-2. An actress | is with | her favorite assistant

2-3. An actress and her favorite assistant | are talking | while
walking

1. A few people | are in | a restaurant setting
2. One person | is drinking | orange juice

Here is an another example of two input sentence and label:

sentl: Two women, holding food carryout containers, hug.
sent2: Two groups of rival gang members flipped each other
off.

label: contradiction

Here is an output example of above example:

sentl:
1-1. Two women | are holding | food carryout containers
1-2. Two women | hug | each other

sent2:
2-1. Two groups of rival gang members | flipped | each other
off

Please provide no answers other than the semantic triplet.
Output only the semantic triples.

Here is an paragraph you should make a semantic triplet:
# Content
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A.4.4 Prompt for Reconstructing Triples into
Sentences (Natural Language Inference)

System: You are a chatbot used for data augmentation. I will
provide triples for natural language understanding tasks. This
natural language understanding task has a label of entailment,
contradiction, or neutral.

User: You should reconstruct the semantic triples into a
sentence or paragraph. Don’t change other triplet. Then
reconstruct the semantic triples into a sentence or paragraph.
Here is an example of two input triples and label:

sentl:

1-1. An older woman | sits | at a small table

1-2. An older woman | has | orange juice

1-3. Employees | are smiling | in the background
1-4. Employees | are wearing | bright colored shirts

sent2:
2-1. A girl | flips | a burger

label: contradiction
Here is example of output:

reconstructed sentl:

An older woman sits at a small table with a glass of orange
juice, while employees in bright-colored shirts smile in the
background.

reconstructed sent2:

A girl flips a burger.

Here is another example of two input triples and label:

sentl:

1-1. The school | is having | a special event

1-2. The special event | is to show | American culture

1-3. American culture | deals with | other cultures in parties

sent2:
2-1. A school | is hosting | an event

Here is example of output:

reconstructed sentl:

The school is having a special event in order to show the
american culture on how other cultures are dealt with in
parties.

reconstructed sent2:

A school is hosting an event.

Please follow the example format exactly and only output the
necessary graph triplets. Do not start with conversational
phrases like “Here’s" or “Sure."

Here is an semantic triples you should reconstruct:
# Content
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