
Journal of Data-centric Machine Learning Research (2025) Submitted 3/25; Revised 6/25; Published 8/25

TopoBench: A Framework for Benchmarking Topological Deep
Learning

Lev Telyatnikov∗1, Guillermo Bernárdez∗2, Marco Montagna1, Mustafa Hajij3, Martin
Carrasco4, Pavlo Vasylenko5, Mathilde Papillon2, Ghada Zamzmi6, Michael T. Schaub7,
Jonas Verhellen8, Pavel Snopov9, Bertran Miquel-Oliver10,11, Manel Gil-Sorribes12, Alexis
Molina12, Victor Guallar10,13, Theodore Long14, Julian Suk15, Patryk Rygiel15, Alexander
Nikitin16, Giordan Escalona17, Michael Banf18, Dominik Filipiak19,18, Max Schattauer18,
Liliya Imasheva18, Alvaro Martinez20, Halley Fritze21, Marissa Masden22, Valentina
Sánchez23, Manuel Lecha24, Andrea Cavallo25, Claudio Battiloro26, Matt Piekenbrock27,
Mauricio Tec26, George Dasoulas26, Nina Miolane2, Simone Scardapane1, Theodore Pa-
pamarkou28

1Sapienza University of Rome, 2UC Santa Barbara, 3VU Amsterdam, 4University of Fribourg,
5Instituto Superior Técnico, 6University of South Florida, 7RWTH Aachen University, 8University
of Copenhagen, 9University of Texas Rio Grande Valley 10Barcelona Supercomputing Center,
11Universitat Politècnica de Catalunya, 12Nostrum Biodiscovery, 13Catalan Institution for Research
and Advanced Studies, 14Atalaya Capital Management, 15University of Twente, 16Aalto University,
17University of Rochester, 18Perelyn GmbH, 19Adam Mickiewicz University, 20Columbia Univer-
sity, 21University of Oregon, 22University of Puget Sound, 23Tilburg University, 24Istituto Italiano
di Tecnologia, 25Delft University of Technology, 26Harvard University, 27Northeastern University,
28PolyShape

Reviewed on OpenReview: https://openreview.net/forum?id=07sTzyEVtY

Editor: Yi Liu

Abstract

This work introduces TopoBench, an open-source library designed to standardize bench-
marking and accelerate research in topological deep learning (TDL). TopoBench decomposes
TDL into a sequence of independent modules for data generation, loading, transforming and
processing, as well as model training, optimization and evaluation. This modular organiza-
tion provides flexibility for modifications and facilitates the adaptation and optimization
of various TDL pipelines. A key feature of TopoBench is its support for transformations
and lifting across topological domains. Mapping the topology and features of a graph
to higher-order topological domains, such as simplicial and cell complexes, enables richer
data representations and more fine-grained analyses. The applicability of TopoBench is
demonstrated by benchmarking several TDL architectures across diverse tasks and datasets.

Keywords: Benchmark, topological deep learning, topological neural networks.

∗ Equal contribution.

©2025 Lev Telyatnikov, Guillermo Bernárdez et al .

https://openreview.net/forum?id=07sTzyEVtY

Telyatnikov et al.

1 Introduction

In geometric deep learning (GDL; Bronstein et al., 2021), graph neural networks (GNNs;
Zhou et al., 2020) have demonstrated impressive capabilities in processing relational data
represented as graphs. However, because graphs represent relationships through edges,
they inherently capture only pairwise interactions, which can be a limiting factor. For
example, social interactions often involve groups of individuals rather than just pairs, and
electrostatic interactions in proteins can span multiple atoms. Topological deep learning (TDL;
Papamarkou et al., 2024; Bodnar, 2023; Hajij et al., 2023b; Papillon et al., 2023) offers a
framework for modeling complex systems characterized by such multi-way relations among
components, leveraging to that end higher-order discrete topological domains (such as
simplicial and cell complexes, see Section 2). Topological neural networks (TNNs; Feng
et al., 2019; Bunch et al., 2020; Hajij et al., 2020; Bodnar et al., 2021a; Ebli et al., 2020;
Schaub et al., 2021; Bodnar et al., 2021b; Chien et al., 2021), which are part of TDL, have
found applications in numerous fields that involve higher-order relational data such as social
networks (Knoke and Yang, 2019), protein biology (Jha et al., 2022), physics (Wei and Fink,
2024), and computer networks (Bernárdez et al., 2025). TNNs have also shown their potential
in various machine learning tasks (Dong et al., 2020; Barbarossa and Sardellitti, 2020; Chen
et al., 2022; Roddenberry et al., 2021; Telyatnikov et al., 2025; Giusti et al., 2023).

However, as identified in a recent position paper (Papamarkou et al., 2024), the rapid
growth of TDL research has introduced challenges in ensuring reproducibility and conduct-
ing systematic comparative evaluations of TNNs. To address these challenges, this work
introduces TopoBench 1, an open-source and modular framework for TDL. By providing a
comprehensive pipeline –from data integration and processing to modeling and evaluation–,
our proposed framework facilitates both development and benchmarking of TNNs (Figure 1
illustrates the overall workflow). More specifically, TopoBench directly addresses the following
relevant limitations of current TDL models’ evaluations (Papamarkou et al., 2024):

Data availability: Although many complex systems exhibit higher-order interactions,
they are mostly collected in the form of point clouds or graphs, implying the failure to fully
capture a more nuanced interplay. For instance, in a social network, we might track friendships
between individuals but overlook whether they belong to the same group, losing valuable
higher-order relationships. This limitation arises because current experimental designs often
impose constraints on what data can be collected, making it difficult to systematically capture
complex, multi-level relationships. TopoBench mitigates the scarcity of higher-order data
in three ways. First, it provides an interface for uploading publicly available higher-order
datasets. Second, it facilitates the loading of user-defined datasets – whether higher-order
or not. Third, it implements lifting algorithms (i.e. mappings between different discrete
topological domains) to automate the construction of new topological datasets.

Standardization: There is a broad spectrum of TNNs in the TDL literature, each
using distinct techniques to preprocess and encode data within a specific higher-order
topological domain. This diversity complicates performance comparisons between models on
different datasets. To address this issue, TopoBench implements a unifying pipeline for data
preprocessing and predictive performance evaluation metrics.

1. https://github.com/geometric-intelligence/TopoBench

2

https://github.com/geometric-intelligence/TopoBench

TopoBench: A Framework for Benchmarking Topological Deep Learning

Loader

Preprocessor

Transforms

Data

manipulation

Topology

lifting

Feature lifting

Model

Evaluator

Loss

Training and

evaluation

Optimizer

Callbacks

Logger

Dataloader

Communication

Model modules

Data modulesNeural networks

Encoder

Wrapper

Readout

Backbone

pytorch_lightning

Training logic

Information flow

Interaction

!"#$%!%

tb.nn

tb.optimizer

tb.losses

tb.evaluator

tb.dataloader

tb.model

!"#!$%&'()$*'

Figure 1: Workflow of TopoBench, consisting of four main components: data modules, model
modules, training modules, and communication modules.

Benchmarking: The described challenges collectively impede the establishment of
standardized benchmarking practices within the TDL community. This work provides
the first cross-domain benchmarking of TNNs across diverse datasets, adhering to a well-
established and rigorous machine learning pipeline. Furthermore, TopoBench ensures the
complete reproducibility of the experiments.

Democratization of TDL: The emerging nature of TDL, coupled with its reliance on
advanced mathematical and computer science expertise, poses a barrier to broader adoption.
TopoBench democratizes TDL by automating and modularizing the pipeline, offering a
high-level interface to simplify coding, facilitating seamless integration through a modular
design, and ensuring complete compatibility with the PyTorch ecosystem. It provides an
accessible testbed for newcomers to experiment with topological domains, models, and
datasets, fostering innovation and expanding the scope of TDL applications.

The remainder of this paper is structured as follows: Section 2 introduces key TDL
concepts –with technical details in the appendix. Section 3 provides a review of related
software. Section 4 details TopoBench’s modules and functionality. Section 5 demonstrates
TopoBench through benchmarking experiments. Section 6 concludes with remarks and future
directions.

2 Background

This section aims to build the general intuition necessary to understand TopoBench, while
providing references to its formal mathematical foundations.

3

Telyatnikov et al.

Set Graph

���������������������������� ����������������������������
�������

Combinatorial
complex HypergraphSimplicial

complex
Cellular

complex

is part of not necessarily part of

��������

��������

����	�����

��������

���	����

��������

��

�������

: Nodes : Edges

Figure 2: Topological Deep Learning Domains. Nodes in blue, (hyper)edges in pink, and
faces in dark red. Figure adapted from Papillon et al. (2023).

Topological domains. Relational data can be represented in various forms, with graph
representation being the most common framework. However, as discussed in the Introduction,
graphs are limited to pairwise relations. TDL methodologies overcome this constraint by
encoding higher-order relationships through combinatorial and algebraic topology concepts.
Fig. 2 illustrates the standard discrete, higher-order topological spaces used to that end,
which enable more complex relational representations via part-whole and set-types rela-
tions (Papillon et al., 2023); see Appendix A.1 for the formal definition of each of these
topological domains.

Liftings. Since most relational data is traditionally collected in discrete domains, such as
point clouds and graphs, transitioning to richer topological representations requires mappings
between domains — for instance, from a graph to a simplicial complex. This process of
mapping, known as lifting, enables more flexible and expressive data representations (further
details in Section 4.3 and Appendix A.2).

Topological neural networks. Once the data is represented within a chosen topological
domain, the TDL pipeline employs neural networks specifically designed for that domain.
These models process higher-order structures, leveraging specialized inductive biases. Such
networks, referred to as Topological Neural Networks (TNNs), enable learning directly
from data represented through topological domains (see Appendix A.3). In general, TNNs
exploit a higher-order message-passing mechanism (see Appendix A.5), which generalizes the
traditional graph-based message-passing approach (see Appendix A.4), allowing for more
comprehensive information propagation through higher-order structures.

3 Existing Software

Graph-based learning and GDL are supported by several software packages, including
NetworkX (Hagberg et al., 2008), KarateClub (Rozemberczki et al., 2020), PyG (Fey and
Lenssen, 2019), DGL (Wang et al., 2019), and Open Graph Benchmark (OGB; Hu et al.,
2020, 2021). NetworkX enables computations on graphs, while KarateClub implements
unsupervised learning algorithms for graph-structured data. PyG and DGL provide functionality
for GDL as well as standard graph-based learning. Lastly, OGB provides a collection of

4

TopoBench: A Framework for Benchmarking Topological Deep Learning

graph datasets and a benchmarking framework that supports reproducible graph machine
learning research; however, it does not address TDL-specific needs.

Various tools also exist for higher-order domains. For hypergraphs, simplicial complexes,
and other topological structures, HyperNetX (Liu et al., 2021), XGI (Landry et al., 2023),
DHG (Feng et al., 2019), and TopoX (Hajij et al., 2024) each focus on different facets. HyperNetX
facilitates hypergraph computations, whereas XGI supports both hypergraphs and simplicial
complexes. DHG implements deep learning algorithms for graphs and hypergraphs. TopoX is
a suite of three packages—TopoNetX, TopoEmbedX, and TopoModelX—that provide broader
support for hypergraphs, simplicial, cellular, path, and combinatorial complexes (Hajij
et al., 2023a). TopoNetX facilitates constructing and computing on these domains, including
working with nodes, edges, and higher-order cells; TopoEmbedX embeds higher-order domains
into Euclidean spaces, while TopoModelX implements most TNNs surveyed in Papillon et al.
(2023).

Additionally, topological data analysis (TDA) libraries such as GUDHI (The GUDHI
Project, 2015), giotto-tda (Tauzin et al., 2021), and scikit-tda (Nathaniel Saul, 2019)
offer robust tools for topological computations, like persistent homology diagrams and
topological invariant metrics. These TDA packages can provide valuable building blocks to
extract topological information from data within TDL pipelines.

TopoBench Contextualization

TopoBench leverages and extends this existing software ecosystem to provide a unified
benchmarking infrastructure for TDL. The framework directly integrates established libraries
including NetworkX for graph computations and the TopoX suite—TopoNetX for higher-
order structure construction and TopoModelX for TNN implementations. TopoBench also
incorporates graph-based models from PyG and enables seamless integration of models from
original research repositories, providing unprecedented flexibility for TDL evaluation.

While these existing packages provide essential building blocks, TopoBench introduces
novel capabilities that address critical gaps in the TDL software ecosystem. Unlike OGB’s
focus on graph learning, TopoBench provides comprehensive data management for topological
domains, including automated dataset downloading, storage, and processing capabilities.
The framework introduces automated lifting transformations that extend beyond TopoNetX’s
manual construction capabilities, enabling seamless data connectivity transformations between
topological domains with integrated feature handling. Additionally, TopoBench offers unified
mini-batching across all topological structures through a shared dataloader and streamlined
configuration systems for experiment setup—capabilities absent from current TDL software.

These innovations collectively establish TopoBench as the first comprehensive benchmark-
ing framework for TDL. The framework’s unified data representation enables consistent
treatment of diverse topological structures, allowing researchers to evaluate models across
different domains using standardized procedures. This approach transforms the fragmented
TDL software landscape into a cohesive research environment, providing the reproducible
benchmarking infrastructure that the rapidly evolving field requires.

5

Telyatnikov et al.

Algorithm 1 Execution pipeline for model training in TopoBench
1: Input: General cfg configuration file
2: dataset ← Loader(cfg.dataset) # Dataset loading
3: splits ← PreProcessor(dataset, cfg.transforms) # Transforms and splits
4: dataloader ← Dataloader(dataset) # Batch generator
5: model ← Model(# Model initialization
6: nn.Encoder(cfg.model),
7: nn.Backbone(cfg.model),
8: nn.BackboneWrapper(cfg.model),
9: nn.Readout(cfg.model),

10: *[Evaluator(cfg.evaluator), Optimizer(cfg.optimizer), Loss(cfg.loss)]
)

11: trainer ← lightning.Trainer(cfg.trainer, cfg.callbacks, cfg.logger)

12: Model training:
13: trainer.fit(model, dataloader) # Model training

14: Model step for each batch:
15: batch ← self.encoder(batch) # Feature encoder
16: model_out ← self.forward(batch) # TNN
17: model_out ← self.readout(model_out, batch) # Readout
18: model_out ← self.loss(model_out, batch) # Loss computation
19: self.evaluator.update(model_out) # Evaluator update

4 The TopoBench Library: Module Outline, Datasets and Liftings

TopoBench implements a unified and flexible workflow that facilitates the addition of new
datasets, data manipulation and preprocessing methods (collectively referred to as transforms),
deep learning models, as well as custom metrics and losses. This design ensures applicability
across a wide range of tasks and enables a broad cross-domain comparison, currently lacking
in the TDL literature. Each module within TopoBench is assigned a distinct role while
maintaining a consistent input-output structure, which provides a modular interface across
all topological domains. Figure 1 outlines the TopoBench modules, grouped by functionality
into data, model, training, and communication components. Algorithm 1 illustrates the
TopoBench execution pipeline in pseudo-code.

4.1 TopoBench Modules

Data modules. These modules manage and process data within TopoBench, including
Loader, Transforms, PreProcessor, and Dataloader.

Loader. The Loader module provides an interface for downloading and storing data,
built upon the widely adopted InMemoryDataset from PyG, enhancing interoperability. The
project webpage offers detailed tutorials on the library, including a step-by-step guide to
integrating customized data with these interfaces.

6

TopoBench: A Framework for Benchmarking Topological Deep Learning

Transforms. Transforms modules are implemented as subclasses of BaseTransform
(provided by PyG) and include three categories: data manipulation, topology lifting, and
feature lifting. The data manipulation module enables general data transformations (e.g.,
adapting PyG (Fey and Lenssen, 2019) or TopoX (Hajij et al., 2024) transforms for use in
TopoBench). The topology lifting and feature lifting modules handle the conversion of data
from one topological domain to another (see Section 4.3). Each transform accepts a Data
object as input, performs the necessary computations, and outputs the modified Data object.
These composable operators can be easily customized for various tasks.

Pre-processor. The PreProcessor class applies a sequence of transforms to a dataset.
It accepts a dataset object and a list of transforms, iterating over the dataset to apply each
transform in turn. To avoid re-computing the same transforms repeatedly, the preprocessed
dataset is saved in a dedicated folder for each transform configuration. This setup ensures
that each dataset is processed only once per configuration, mitigating the potentially time-
consuming nature of preprocessing large datasets. PreProcessor also generates or loads
data splits according to a chosen strategy (e.g., random splits with predefined proportions,
k-fold cross-validation, or fixed splits).

Dataloader. The Dataloader module provides a consistent interface for batch training
across graphs, hypergraphs, simplicial complexes, cell complexes, and combinatorial complexes.
By supporting mini-batching for all these domains, it helps make training more tractable on
large datasets.

Model modules. The neural network modules form the core of the modeling pipeline.
The encoder component maps initial data features into a latent space and applies a learnable
transformation before passing the data to a TNN model –thus standardizing the input across
all models. The backbone TNN can be imported from existing PyTorch libraries (e.g., TopoX
or PyG), or built on a custom basis within TopoBench (see Table 10 in Appendix C). The
wrapper ensures the correct input is provided to the forward pass of the backbone TNN
model and collects the output in a dictionary. This design streamlines input and output
handling across different topological domains, making it easier to integrate new models into
TopoBench.

The readout module converts latent representations from the neural network into final
predictions. The Loss module defines a loss function (from the PyTorch library, or cus-
tomized), while the Optimizer module configures the optimizer and scheduler. This design
allows seamless use of any optimizer and scheduler from torch.optim, thereby supporting
flexible and robust training. Finally, the evaluator module, built upon torchmetrics, pro-
vides metrics for both classification and regression tasks –while also allowing for tailored ones
for specific datasets and tasks. Notably, the flexibility of these modules enable researchers to
implement topology-specific evaluation criteria as needed for their particular applications.

Training and communication modules. The Model class defines a training pipeline
for all domains (see lines 14–19 of Algorithm 1). Inheriting from LightningModule, it requires
Encoder, Wrapper, Backbone, Readout, Evaluator, Loss, and Optimizer objects as inputs.
The lightning.Trainer then automates training, evaluation, and testing. Additional
functionalities can be incorporated via callbacks, and users can monitor training with various
loggers (e.g., wandb, tensorboard). Both are standard tools in Lightning and are referred
to as communication modules in TopoBench.

7

Telyatnikov et al.

4.2 Datasets

TopoBench includes a wide selection of datasets to accommodate both standard graph-based
and higher-order domains. It is the first framework to enable the creation of reliable,
reproducible higher-order datasets through the use of various lifting mappings. A subset of
these datasets are also used in the experiments of Section 5 for demonstration purposes. See
Appendix C.3 for descriptive statistics of the datasets.

Graph-based datasets. A number of well-known datasets commonly used in graph-
based learning are supported. Citation networks such as Cora, Citeseer, and PubMed (Yang
et al., 2016) are included, along with heterophilous datasets (where nodes connected by
an edge predominantly belong to different categorical classes), such as Amazon Ratings,
Roman Empire, Minesweeper, Tolokers, and Questions. The TU datasets, including MUTAG,
PROTEINS, NCI1, NCI109, IMDB-BIN, IMDB-MUL, and REDDIT (Morris et al., 2020),
are also integrated, as are molecule datasets like ZINC (Gómez-Bombarelli et al., 2018)
and AQSOL (Dwivedi et al., 2023). Furthermore, TopoBench supports the US County
Demographics dataset (Jia and Benson, 2020), illustrating its adaptability to various graph
structures.

Datasets with higher-order interactions. Several datasets with higher-order in-
teractions are included in TopoBench, showcasing its capabilities to handle data supported
on hypergraphs, simplicial complexes, and other topological domains. The MANTRA
dataset (Ballester et al., 2024) is part of TopoBench, offering over 43,138 two-dimensional and
249,000 three-dimensional triangulations of surfaces and manifolds, which can be used, for
example, as features on a simplicial complex. In addition, the widely used AllSet hypergraph
datasets (Chien et al., 2021)—Cora-Cocitation, Citeseer-Cocitation, PubMed-Cocitation,
Cora-Coauthorship, and DBLP-Coauthorship—are integrated, following the same preprocess-
ing as HyperGCN (Yadati et al., 2019). These hypergraphs group documents co-authored
or co-cited together into single hyperedges. Collectively, these examples illustrate how
TopoBench supports data beyond traditional graph pairwise interactions.

Compatibility and custom datasets. To simplify dataset integration, TopoBench
provides convenient wrappers that build on PyG loaders (e.g., TUDatasets, Planetoid, ZINC).
In many cases, these wrappers enable straightforward use of any graph dataset already
supported by PyTorch Geometric, as well as newly introduced datasets such as MANTRA,
the hypergraph citation networks, and Human3.6m. Support for custom datasets is facilitated
by a simple interface with two key methods: download(), for fetching or extracting raw
files, and process(), for converting the data into the desired relational structure (graph,
hypergraph, simplicial or cell complex). Code examples and tutorials provided in TopoBench
illustrate the TopoBench interface for loading custom user-defined datasets2. This approach
guarantees users can easily extend TopoBench to any dataset of interest, thus maintaining
the library’s modular and extensible design.

4.3 Topological Liftings

In the context of TDL, as outlined in Section 2, liftings facilitate the mapping of data
from one topological representation to another. This mapping comprises two key aspects:

2. https://github.com/geometric-intelligence/TopoBench/blob/main/tutorials/tutorial_add_
custom_dataset.ipynb

8

https://github.com/geometric-intelligence/TopoBench/blob/main/tutorials/tutorial_add_custom_dataset.ipynb
https://github.com/geometric-intelligence/TopoBench/blob/main/tutorials/tutorial_add_custom_dataset.ipynb

TopoBench: A Framework for Benchmarking Topological Deep Learning

structural lifting and feature lifting (see Figure 3 for a visual example, and a formal definition
can be found in Appendix A.2). Informally, the structural lifting is responsible for the
transformation of the underlying relationships or elements of the data. For instance, it
might determine how nodes and edges in a graph are mapped into triangles and tetrahedra
in a simplicial complex. This structural transformation can be further categorized into
connectivity-based, where the mapping relies solely on the existing connections within the
data, and feature-based, where the data’s inherent properties or features guide or even fully
determine the new structure. Feature lifting, conversely, addresses the transfer of data
attributes or features during mapping, ensuring that the properties associated with the data
elements are consistently preserved in the new representation, thus maintaining information
integrity. Both structural and feature liftings are crucial for the effective application of TDL
to diverse and complex datasets.

Figure 3: An illustration of lifting a graph (center) to two different topological domains: a
simplicial complex (left) and a cell complex (right). The structural lifting maps the
nodes and edges of the graph to higher-order topological structures, such as faces,
while the feature lifting ensures the associated feature functions are consistently
transferred between domains.

Table 3 in Appendix B provides a comprehensive list of all the liftings currently im-
plemented in TopoBench. Currently, TopoBench supports 11 structural liftings targeting
simplicial complexes; 2 targeting cell complexes; 10 moving to hypergraphs; and 3 from a
domain to combinatorial complexes. Notably, TopoBench’s modular design simplifies the
integration of additional liftings, ensuring the framework’s adaptability to evolving research
needs.

5 Numerical Experiments

This section presents numerical experiments that illustrate the breadth of TopoBench’s
functionality by performing a cross-domain comparison. The overall setup is first described,
then results from benchmarking various graph, hypergraph, and TNNs are reported, and an
ablation study on signal propagation is presented to demonstrate how TopoBench supports
comparisons in TDL.

5.1 Setup

Learning tasks and datasets. Four types of tasks are considered: node classification
(seven datasets), node regression (seven datasets), graph classification (seven datasets),
and graph regression (one dataset). For node classification, the cocitation datasets (Cora,

9

Telyatnikov et al.

Citeseer, and PubMed) and heterophilic datasets (Amazon Ratings, Minesweeper, Roman
Empire, and Tolokers) are used (Platonov et al., 2023). For node regression, the election,
bachelor, birth, death, income, migration, and unemployment datasets from US election map
networks are adapted (Jia and Benson, 2020). In these datasets, each node represents a US
state, edges connect neighboring states, and each state is characterized by demographic and
election statistics. For each dataset, one statistic is designated as the target, while the others
serve as node features, with the dataset named for the chosen target statistic. For graph
classification, the TUDataset collection is used, specifically MUTAG, PROTEINS, NCI1,
NCI109, IMDB-BIN, IMDB-MUL, and REDDIT (Morris et al., 2020). For graph regression,
the ZINC dataset is employed (Irwin et al., 2012).

Higher-order datasets are constructed by lifting these graph datasets. For demonstration
purposes, one structural lifting is considered for each of the considered higher-order topological
spaces: cycle-based lifting for the cell domain (see Example 5), clique complex lifting for
the simplicial domain (see Example 6), and k-hop lifting for the hypergraph domain (see
Example 8). As for the feature lifting, the projected sum is always considered in all of these
scenarios. Descriptive statistics for these topological versions of the datasets are provided in
Table 4 in Appendix C.3.

Models. Twelve neural networks, supported across four domains (graphs, hypergraphs,
simplicial complexes, and cell complexes), are benchmarked. These include three GNNs
(GCN, GIN, and GAT), three hypergraph neural networks (EDGNN, AllSetTransformer,
and UniGNN2), three simplicial neural networks (SCN, SCCN, and SCCNN), and three cell
complex neural networks (CCXN, CWN, and CCCN). Details on these architectures and their
hyperparameters appear in Appendix C. In particular, the number of learnable parameters
for each best model configuration can be found in Table 8, while the corresponding runtimes
are provided in Table 9.

Training and evaluation. Five splits are generated for each dataset, with 50%/25%/25%
of the data going to the training, validation, and test sets, respectively; the exception is ZINC,
for which the predefined splits are used (Irwin et al., 2012). The optimal hyperparameter
configuration is chosen by selecting the best average performance over the five validation
sets (details in Appendix C.2). One performance metric is reported per dataset. Specifically,
predictive accuracy is used for Cora, Citeseer, PubMed, Amazon, Roman Empire, MUTAG,
PROTEINS, NCI1, NCI109, IMDB-BIN, IMDB-MUL, and REDDIT; AUC-ROC is used for
Minesweeper and Tolokers; mean squared error (MSE) is used for election, bachelor, birth,
death, income, migration, and unemployment; and mean absolute error (MAE) is used for
ZINC. For each dataset, the mean and standard deviation of the chosen metric are computed
across the five test sets and reported in Table 1 (where OOM stands for ‘out of memory’).

5.2 Main Results

As seen from Table 1, higher-order neural networks (based on hypergraphs, simplicial, and
cell complexes) achieve the best performance on fifteen of twenty-two datasets, whereas
GNNs achieve the best performance on six datasets, and tie on the Unemployment dataset.
GNNs perform best on node regression in the majority of cases (five out of seven). These
best results obtained by GNNs are closely matched by TNNs, since the latter achieve metrics
within one standard deviation from the former. In contrast, in nine out of sixteen datasets

10

TopoBench: A Framework for Benchmarking Topological Deep Learning

Table 1: Cross-domain comparison: results are shown as mean and standard deviation. The
best result is bold and shaded in grey, while those within one standard deviation
are in blue-shaded boxes.

Dataset GCN GIN GAT AST EDGNN UniGNN2 CWN CCCN SCCNN SCN

N
od

e-
le

ve
lt

as
ks

Cora 87.09 ± 0.20 87.21 ± 1.89 86.71 ± 0.95 88.92 ± 0.44 87.06 ± 1.09 86.97 ± 0.88 86.32 ± 1.38 87.44 ± 1.28 82.19 ± 1.07 82.27 ± 1.34
Citeseer 75.53 ± 1.27 73.73 ± 1.23 74.41 ± 1.75 73.85 ± 2.21 74.93 ± 1.39 74.72 ± 1.08 75.20 ± 1.82 75.63 ± 1.58 70.23 ± 2.69 71.24 ± 1.68
Pubmed 89.40 ± 0.30 89.29 ± 0.41 89.44 ± 0.24 89.62 ± 0.25 89.04 ± 0.51 89.34 ± 0.45 88.64 ± 0.36 88.52 ± 0.44 88.18 ± 0.32 88.72 ± 0.50
Amazon 49.56 ± 0.55 49.16 ± 1.02 50.17 ± 0.59 50.50 ± 0.27 48.18 ± 0.09 49.06 ± 0.08 51.90 ± 0.15 50.26 ± 0.17 OOM OOM
Empire 78.16 ± 0.32 79.56 ± 0.20 84.02 ± 0.51 79.50 ± 0.13 81.01 ± 0.24 77.06 ± 0.20 81.81 ± 0.62 82.14 ± 0.00 89.15 ± 0.32 88.79 ± 0.46
Minesweeper 87.52 ± 0.42 87.82 ± 0.34 89.64 ± 0.43 81.14 ± 0.05 84.52 ± 0.05 78.02 ± 0.00 88.62 ± 0.04 89.42 ± 0.00 89.0 ± 0.00 90.32 ± 0.11
Tolokers 83.02 ± 0.71 80.72 ± 1.19 84.43 ± 1.00 83.26 ± 0.10 77.53 ± 0.01 77.35 ± 0.03 OOM OOM OOM OOM
Election 0.31 ± 0.02 0.28 ± 0.02 0.29 ± 0.02 0.29 ± 0.01 0.34 ± 0.02 0.37 ± 0.02 0.34 ± 0.02 0.31 ± 0.02 0.51 ± 0.03 0.46 ± 0.04
Bachelor 0.29 ± 0.02 0.31 ± 0.03 0.28 ± 0.02 0.30 ± 0.03 0.29 ± 0.02 0.31 ± 0.02 0.33 ± 0.03 0.31 ± 0.02 0.34 ± 0.03 0.32 ± 0.02
Birth 0.72 ± 0.09 0.72 ± 0.09 0.71 ± 0.09 0.71 ± 0.08 0.70 ± 0.07 0.73 ± 0.10 0.72 ± 0.09 0.71 ± 0.09 0.79 ± 0.12 0.71 ± 0.08
Death 0.51 ± 0.04 0.52 ± 0.04 0.51 ± 0.04 0.49 ± 0.05 0.52 ± 0.05 0.51 ± 0.05 0.54 ± 0.06 0.54 ± 0.06 0.55 ± 0.05 0.52 ± 0.05
Income 0.22 ± 0.03 0.21 ± 0.02 0.20 ± 0.02 0.21 ± 0.02 0.23 ± 0.02 0.23 ± 0.02 0.25 ± 0.03 0.23 ± 0.02 0.28 ± 0.03 0.25 ± 0.02
Migration 0.80 ± 0.12 0.80 ± 0.10 0.77 ± 0.13 0.78 ± 0.12 0.80 ± 0.12 0.79 ± 0.12 0.84 ± 0.13 0.84 ± 0.12 0.90 ± 0.14 0.92 ± 0.20
Unempl 0.25 ± 0.03 0.22 ± 0.02 0.23 ± 0.03 0.22 ± 0.02 0.26 ± 0.03 0.28 ± 0.02 0.25 ± 0.03 0.24 ± 0.03 0.43 ± 0.04 0.38 ± 0.04

G
ra

ph
-le

ve
lt

as
ks

MUTAG 69.79 ± 6.80 79.57 ± 6.13 72.77 ± 2.77 71.06 ± 6.49 80.00 ± 4.90 80.43 ± 4.09 80.43 ± 1.78 77.02 ± 9.32 76.17 ± 6.63 73.62 ± 6.13
PROTEINS 75.70 ± 2.14 75.20 ± 3.30 76.34 ± 1.66 76.63 ± 1.74 73.91 ± 4.39 75.20 ± 2.96 76.13 ± 2.70 73.33 ± 2.30 74.19 ± 2.86 75.27 ± 2.14
NCI1 72.86 ± 0.69 74.26 ± 0.96 75.00 ± 0.99 75.18 ± 1.24 73.97 ± 0.82 73.02 ± 0.92 73.93 ± 1.87 76.67 ± 1.48 76.60 ± 1.75 74.49 ± 1.03
NCI109 72.20 ± 1.22 74.42 ± 0.70 73.80 ± 0.73 73.75 ± 1.09 74.93 ± 2.50 70.76 ± 1.11 73.80 ± 2.06 75.35 ± 1.50 77.12 ± 1.07 75.70 ± 1.04
IMDB-BIN 72.00 ± 2.48 70.96 ± 1.93 69.76 ± 2.65 70.32 ± 3.27 69.12 ± 2.92 71.04 ± 1.31 70.40 ± 2.02 69.12 ± 2.82 70.88 ± 2.25 70.80 ± 2.38
IMDB-MUL 49.97 ± 2.16 47.68 ± 4.21 50.13 ± 3.87 50.51 ± 2.92 49.17 ± 4.35 49.76 ± 3.55 49.71 ± 2.83 47.79 ± 3.45 48.75 ± 3.98 49.49 ± 5.08
REDDIT 76.24 ± 0.54 81.96 ± 1.36 75.68 ± 1.00 74.84 ± 2.68 83.24 ± 1.45 75.56 ± 3.19 85.52 ± 1.38 85.12 ± 1.29 77.24 ± 1.87 71.28 ± 2.06
ZINC 0.62 ± 0.01 0.57 ± 0.04 0.61 ± 0.01 0.59 ± 0.02 0.51 ± 0.01 0.60 ± 0.01 0.34 ± 0.01 0.34 ± 0.02 0.36 ± 0.02 0.53 ± 0.04

TNNs outperform GNNs, and attain performance metrics that are higher by more than one
standard deviation with respect to GNNs. In other words, in situations where higher-order
networks outperform GNNs, the performance gap is more pronounced. It is also noted that,
for demonstration purposes, only one fixed lifting is considered to transform graph data
to each of the considered topological domains (see Appendix C.4). These results suggest
that, even without lifting optimization, TNNs have an advantage over GNNs in terms of
performance, although it is worth emphasizing that overall they also tend to be less efficient
in terms of memory usage and computational time than graph-based counterparts (see
Appendix C.4 for a more detailed analysis). However, and more importantly for the context
of this paper, the benchmarks demonstrate the degree of comparisons that can be performed
with TopoBench across models and datasets.

Remark. Notably, OOM results are originated when lifting large, densely connected graphs
to higher-order domains, showcasing the scalability issues of the liftings leveraged in this
analysis (i.e., clique and cycle liftings to simplicial and cellular domains, respectively).

5.3 Ablation Study

This ablation study examines how different readout strategies influence performance in neural
networks built on higher-order domains, highlighting the importance of node-level signal
updates and pooling choices. First, graph and hypergraph (neural network) models differ
from simplicial and cell complex (neural network) models in terms of the domains and,
subsequently, representations they support. Graph and hypergraph models can output two
types of representations: node representations and edge or hyperedge representations. In
contrast, the output of simplicial and cell models depends on the different types of cells
present (0-cell up to n-cells) and on the model itself. For example, a simplicial or cell
complex model may process an n-cell input but may not produce an n-cell output. The
backbone_wrapper in TopoBench addresses these differences in the underlying domains of
the models.

11

Telyatnikov et al.

There is a second difference, which is inherent in the TNNs themselves. Consider a
downstream classification task. For graphs, the standard practice is to perform classification
over pooled node features. However, this aspect has not been extensively studied in the TDL
literature. For instance, a simplicial or cell model may update 1-cell representations (edges)
or 2-cell representations (cycles or triangles) while leaving 0-cell (node) representations
unchanged, making direct pooling over nodes potentially ineffective. One could consider more
elaborate update processes in which different n-cell representations are combined, but this
renders pooling more intricate for higher-order domains. These architectural considerations
are complex and remain open research questions in TDL.

Nevertheless, to fairly compare different neural network architectures, this second differ-
ence must be addressed. To that end, this ablation study considers two types of readouts to
enable a rigorous evaluation: direct readout (DR), where the downstream task is performed
directly over the 0-cell representation, and signal down-propagation (SDP), where informa-
tion from higher-order cell representations is iteratively fused down to 0-cell representations
using appropriate incidence matrices, followed by a linear projection over the concatenated
(n− 1)-cell signal and the fused (n− 1)-cell representation. For instance, if a simplicial or
cell complex model outputs 0-cell, 1-cell, and 2-cell representations, the signal propagates
from 2-cells to 1-cells and then from 1-cells to 0-cells during readout. The downstream task
is then performed over the updated 0-cell representations.3

Table 2 shows that the best-performing readout type depends on how a model propagates
signals internally. For example, the CWN model does not update 0-cell representations,
so the SDP strategy performs notably better. Conversely, CCCN, SCCNN, and SCN
propagate information to 0-cells, making SDP readout yield only small or negligible changes
in performance. Further details are available in Appendix C.4.

These results underscore the impact of structural properties in TNNs. The performance
variations observed in this ablation study emphasize the critical role of architectural and
lifting decisions for higher-order learning models. By enabling comparisons across a wide
range of models and datasets, TopoBench facilitates deeper insights and drives advancements
in TDL.

5.4 Higher-Order Datasets

Appendix D presents additional illustrative experiments conducted on 13 datasets included
in TopoBench, spanning a broad range of hypergraph datasets (for classification tasks) and
simplicial datasets (for both classification and regression tasks). The evaluation protocol
follows the setup described in Section 5.1, with the exception of structural and feature liftings,
as these datasets natively possess higher-order topologies and include features on higher-order
cells.

For the hypergraph datasets, no single model consistently outperforms others across all
benchmarks. Among the evaluated models, AllSetTransformer achieves the best performance
on 5 out of 10 datasets. For the simplicial MANTRA family of datasets, the results demon-
strate that topological tasks are more effectively modeled by TNNs, whereas standard GNN
baselines fail to capture the intricate topological structures, resulting in lower performance
on purely topological tasks.

3. See Appendix A.3 for an introduction to TNNs and Higher-Order Message Passing on topological domains.

12

TopoBench: A Framework for Benchmarking Topological Deep Learning

Table 2: This ablation study compares the performance of CWN, CCCN, SCCNN, and
SCN models on various datasets using two readout strategies, direct readout (DR)
and signal down-propagation (SDP). SDP generally enhances CWN performance,
whereas the effect of SDP on CCCN, SCCNN, and SCN varies based on their internal
signal propagation mechanisms. Means and standard deviations of performance
metrics are shown. The best results are shown in bold for each model and readout
type.

Dataset CWN CCCN SCCNN SCN
DR SDP DR SDP DR SDP DR SDP

N
od

e-
le

ve
lt

as
ks

Cora 74.95 ± 0.98 86.32 ± 1.38 87.44 ± 1.28 87.68 ± 1.17 82.19 ± 1.07 80.65 ± 2.39 82.27 ± 1.34 79.91 ± 1.18
Citeseer 70.49 ± 2.85 75.20 ± 1.82 75.63 ± 1.58 74.91 ± 1.25 70.23 ± 2.69 69.03 ± 2.01 71.24 ± 1.68 70.40 ± 1.53
Pubmed 86.94 ± 0.68 88.64 ± 0.36 88.52 ± 0.44 88.67 ± 0.39 88.18 ± 0.32 87.78 ± 0.58 88.72 ± 0.50 88.62 ± 0.44
Amazon 45.58 ± 0.25 51.90 ± 0.15 50.55 ± 0.15 50.26 ± 0.17 OOM OOM OOM OOM
Empire 66.13 ± 0.03 81.81 ± 0.62 82.14 ± 0.00 82.51 ± 0.00 89.15 ± 0.32 88.73 ± 0.12 85.89 ± 0.34 88.79 ± 0.46
Minesweeper 48.82 ± 0.00 88.62 ± 0.04 89.42 ± 0.00 89.85 ± 0.00 87.40 ± 0.00 89.00 ± 0.00 90.32 ± 0.11 90.27 ± 0.36
Election 0.60 ± 0.04 0.34 ± 0.02 0.31 ± 0.02 0.31 ± 0.01 0.51 ± 0.03 0.56 ± 0.04 0.46 ± 0.04 0.51 ± 0.03
Bachelor 0.33 ± 0.03 0.33 ± 0.03 0.32 ± 0.02 0.31 ± 0.02 0.34 ± 0.03 0.34 ± 0.03 0.32 ± 0.02 0.32 ± 0.03
Birth 0.81 ± 0.11 0.72 ± 0.09 0.71 ± 0.09 0.72 ± 0.05 0.79 ± 0.12 0.83 ± 0.12 0.71 ± 0.08 0.80 ± 0.11
Death 0.55 ± 0.05 0.54 ± 0.06 0.54 ± 0.06 0.54 ± 0.06 0.55 ± 0.05 0.58 ± 0.05 0.52 ± 0.05 0.56 ± 0.05
Income 0.36 ± 0.04 0.25 ± 0.03 0.23 ± 0.02 0.23 ± 0.02 0.28 ± 0.03 0.31 ± 0.03 0.25 ± 0.02 0.27 ± 0.02
Migration 0.90 ± 0.16 0.84 ± 0.13 0.84 ± 0.10 0.84 ± 0.12 0.90 ± 0.14 0.93 ± 0.17 0.92 ± 0.20 0.96 ± 0.23
Unempl 0.46 ± 0.04 0.25 ± 0.03 0.24 ± 0.03 0.25 ± 0.03 0.43 ± 0.04 0.45 ± 0.04 0.38 ± 0.04 0.41 ± 0.03

G
ra

ph
-le

ve
lt

as
ks

MUTAG 69.68 ± 8.58 80.43 ± 1.78 80.85 ± 5.42 77.02 ± 9.32 76.17 ± 6.63 70.64 ± 3.16 71.49 ± 2.43 73.62 ± 6.13
PROTEINS 76.13 ± 1.80 76.13 ± 2.70 73.55 ± 3.43 73.33 ± 2.30 74.19 ± 2.86 74.98 ± 1.92 75.27 ± 2.14 74.77 ± 1.69
NCI1 68.52 ± 0.51 73.93 ± 1.87 76.67 ± 1.48 77.65 ± 1.28 76.60 ± 1.75 75.60 ± 2.45 75.27 ± 1.57 74.49 ± 1.03
NCI109 68.19 ± 0.65 73.80 ± 2.06 75.35 ± 1.50 74.83 ± 1.18 77.12 ± 1.07 75.43 ± 1.94 74.58 ± 1.29 75.70 ± 1.04
IMDB-BIN 70.40 ± 2.02 69.28 ± 2.57 69.12 ± 2.82 69.44 ± 2.46 70.88 ± 2.25 69.28 ± 5.69 70.80 ± 2.38 68.64 ± 3.90
IMDB-MUL 49.71 ± 2.83 49.87 ± 2.33 49.01 ± 2.63 47.79 ± 3.45 48.75 ± 3.98 46.67 ± 3.13 48.16 ± 2.89 49.49 ± 5.08
REDDIT 76.20 ± 0.86 85.52 ± 1.38 85.12 ± 1.29 83.32 ± 0.73 75.56 ± 3.46 77.24 ± 1.87 71.28 ± 2.06 69.68 ± 4.00
ZINC 0.70 ± 0.00 0.34 ± 0.01 0.35 ± 0.02 0.34 ± 0.02 0.36 ± 0.01 0.36 ± 0.02 0.59 ± 0.01 0.53 ± 0.04

6 Concluding Remarks, Limitations, and Future Work

This paper has introduced TopoBench, an open-source benchmarking framework for TDL.
By organizing the TDL pipeline into a sequence of modular steps, TopoBench simplifies the
benchmarking process and accelerates research. A key feature of TopoBench is its ability
to map graph topology and features to higher-order topological domains such as simplicial
and cell complexes, enabling richer data representations and more detailed analyses. In
addition, TopoBench provides direct access to a wide variety of real and synthetic datasets,
covering both graph-based and higher-order domains. The effectiveness of TopoBench has
been demonstrated by benchmarking several TDL architectures across diverse learning tasks
and datasets, offering insights into the relative advantages of different models.

While TopoBench already addresses several challenges in TDL, it also has limitations
that point to promising directions for future enhancements. One area is the implementation
of learnable liftings, which are supported by TopoBench. This direction could enable task-
specific topological representations learned dynamically from data. A second limitation
lies in the broader scarcity of standardized, real-world higher-order datasets. Although
TopoBench incorporates numerous datasets for hypergraph, simplicial, and cell complexes,
this remains an active area of expansion. Providing more built-in higher-order datasets will
further streamline research in TDL.

Another potential direction is to perform an exhaustive exploration of optimal liftings per
combination of domains, datasets, and models. In fact, OOM values showcase the scalability

13

Telyatnikov et al.

limitations of the most common used strategies to lift graphs into simplicial and cellular
domains (i.e., clique and cycle liftings, respectively). Finally, extending the set of evaluation
metrics beyond classification or regression accuracy to include more TDL-specific measures
of expressivity, explainability, and fairness (Papamarkou et al., 2024) is another avenue of
growth –and these modules have been designed to be easily extendable.

Moving forward, the modular design of TopoBench invites contributions from the commu-
nity. Researchers and practitioners are encouraged to contribute to TopoBench by introducing
new learnable liftings, adding datasets, and developing specialized performance metrics. More-
over, to mitigate the aforementioned scalability issues, several strategies can be explored –e.g.
pruning the input graphs prior to lifting, employing scalable lifting mechanisms—such as
those explored in the ICML 2024 TDL Challenge (Bernárdez et al., 2024)—and applying
mini-batching techniques to higher-order structures in transductive settings (analogous to
those used in GNN modeling). These efforts will not only strengthen the benchmarking
ecosystem of TDL but also help drive innovation in topological deep learning more broadly –as
already shown in the recents works of TopoTune (Papillon et al., 2025) and HOPSE (Carrasco
et al., 2025), both of which leverage TopoBench framework to push the boundaries of TDL.

Code Availability and Reproducibility

The code for TopoBench is publicly available on GitHub under the MIT license: https:
//github.com/geometric-intelligence/TopoBench. The codebase employs continuous
integration, is fully documented, and provides comprehensive API documentation at https:
//geometric-intelligence.github.io/topobench/index.html.

All aspects of library installation and development are described in the README.md file.
To replicate the experiments reported in this paper, refer to the ‘Experiments Reproducibility’
section in README.md. Additional tutorials in the ‘Tutorials’ section illustrate how to integrate
new models, datasets, learnable liftings, and transforms within TopoBench.

Broader Impact Statement

TopoBench aims to standardize benchmarking in TDL, thus benefiting the community by
facilitating and accelerating research developments in TDL and its applications. We do not
expect TopoBench to have any direct negative societal impact from its usage. Moreover, the
code of conduct for TopoBench contributors, which is publicly available in the ‘README.md’
file of the GitHub repository of the library, sets concrete ethical standards, promotes
transparency, fairness, and inclusivity in research.

The TopoBench library will be constantly maintained to respect proprietary content. It
will implement strict revision processes to ensure that all code implementations, libraries,
and datasets have open-source licenses that guarantee their legitimate usage within the
framework.

Author Contributions

L. Telyatnikov and G. Bernárdez contributed equally to this work as the main authors and
lead developers. The conceptualization of the TopoBench project was a collaborative effort

14

https://github.com/geometric-intelligence/TopoBench
https://github.com/geometric-intelligence/TopoBench
https://geometric-intelligence.github.io/topobench/index.html
https://geometric-intelligence.github.io/topobench/index.html

TopoBench: A Framework for Benchmarking Topological Deep Learning

by L. Telyatnikov, G. Bernárdez, M. Montagna, N. Miolane, T. Papamarkou, M. Hajij, G.
Zamzmi, M. T. Schaub, and S. Scardapane. The core development and implementation of
the benchmark were carried out by L. Telyatnikov, G. Bernárdez, M. Montagna, M. Carrasco,
P. Vasylenko, M. Papillon, and N. Miolane. The experiments were led by L. Telyatnikov
with support from G. Bernárdez. The manuscript was written by T. Papamarkou, L.
Telyatnikov, and G. Bernárdez, with significant writing contributions to various sections
from S. Scardapane, M. Hajij, G. Zamzmi, and M. T. Schaub. All other authors contributed
to the TopoBench ecosystem through their winning submissions (i.e. lifting implementations)
to the ICML TDL Challenge 2024 (Bernárdez et al., 2024).

Acknowledgments and Disclosure of Funding

M. Papillon, G. Bernárdez and N. Miolane acknowledge support from the National Science
Foundation, Award DMS-2134241. M. Papillon and N. Miolane acknowledge funding from
the National Science Foundation, Award DMS-2240158 and from the Noyce Foundation.
M. Papillon acknowledges the support of the Natural Sciences and Engineering Research
Council of Canada. M. Hajij acknowledges support from the National Science Foundation,
award DMS-2134231. M. T. Schaub acknowledges funding by the European Union (ERC,
HIGH-HOPeS, 101039827). Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the European Research
Council Executive Agency. Neither the European Union nor the granting authority can be
held responsible for them.

References

Rubén Ballester, Ernst Röell, Daniel Bin Schmid, Mathieu Alain, Sergio Escalera, Carles
Casacuberta, and Bastian Rieck. Mantra: The manifold triangulations assemblage. arXiv
preprint arXiv:2410.02392, 2024.

Sergio Barbarossa and Stefania Sardellitti. Topological signal processing over simplicial
complexes. IEEE Transactions on Signal Processing, 68:2992–3007, 2020.

Claudio Battiloro, Indro Spinelli, Lev Telyatnikov, Michael M. Bronstein, Simone Scardapane,
and Paolo Di Lorenzo. From latent graph to latent topology inference: Differentiable cell
complex module. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=0JsRZEGZ7L.

Claudio Battiloro, Lucia Testa, Lorenzo Giusti, Stefania Sardellitti, Paolo Di Lorenzo, and
Sergio Barbarossa. Generalized simplicial attention neural networks. IEEE Transactions
on Signal and Information Processing over Networks, 10:833–850, 2024b. doi: 10.1109/
TSIPN.2024.3485473.

Claudio Battiloro, Ege Karaismailoglu, Mauricio Tec, George Dasoulas, Michelle Audirac,
and Francesca Dominici. E(n) equivariant topological neural networks. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=Ax3uliEBVR.

15

https://openreview.net/forum?id=0JsRZEGZ7L
https://openreview.net/forum?id=Ax3uliEBVR
https://openreview.net/forum?id=Ax3uliEBVR

Telyatnikov et al.

Federico Battiston, Enrico Amico, Alain Barrat, Ginestra Bianconi, Guilherme Ferraz de
Arruda, Benedetta Franceschiello, Iacopo Iacopini, Sonia Kéfi, Vito Latora, Yamir Moreno,
et al. The physics of higher-order interactions in complex systems. Nature Physics, 17(10):
1093–1098, 2021.

Guillermo Bernárdez, Lev Telyatnikov, Eduard Alarcón, Albert Cabellos-Aparicio, Pere
Barlet-Ros, and Pietro Liò. Topological network traffic compression. In Proceedings of the
2nd on Graph Neural Networking Workshop 2023, pages 7–12, 2023.

Guillermo Bernárdez, Lev Telyatnikov, Marco Montagna, Federica Baccini, Mathilde Papillon,
Miquel Ferriol-Galmés, Mustafa Hajij, Theodore Papamarkou, Maria Sofia Bucarelli, Olga
Zaghen, et al. Icml topological deep learning challenge 2024: Beyond the graph domain.
arXiv preprint arXiv:2409.05211, 2024.

Guillermo Bernárdez, Miquel Ferriol-Galmés, Carlos Güemes-Palau, Mathilde Papillon, Pere
Barlet-Ros, Albert Cabellos-Aparicio, and Nina Miolane. Ordered topological deep learning:
a network modeling case study, 2025. URL https://arxiv.org/abs/2503.16746.

Christian Bick, Elizabeth Gross, Heather A Harrington, and Michael T Schaub. What are
higher-order networks? SIAM Review, 65(3):686–731, 2023.

Cristian Bodnar. Topological deep learning: graphs, complexes, sheaves. PhD thesis, University
of Cambridge, 2023.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar,
and Michael Bronstein. Weisfeiler and Lehman go cellular: CW networks. Advances in
Neural Information Processing Systems, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio,
and Michael Bronstein. Weisfeiler and Lehman go topological: Message passing simplicial
networks. In International Conference on Machine Learning, 2021b.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021.

Eric Bunch, Qian You, Glenn Fung, and Vikas Singh. Simplicial 2-complex convolutional
neural nets. In NeurIPS Workshop on Topological Data Analysis and Beyond, 2020.

Martin Carrasco, Guillermo Bernardez, Marco Montagna, Nina Miolane, and Lev Telyat-
nikov. Hopse: Scalable higher-order positional and structural encoder for combinatorial
representations. arXiv preprint arXiv:2505.15405, 2025.

Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual similarity based
3d model retrieval. In Computer graphics forum, volume 22, pages 223–232. Wiley Online
Library, 2003.

Yuzhou Chen, Yulia R Gel, and H Vincent Poor. BScNets: block simplicial complex neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

16

https://arxiv.org/abs/2503.16746

TopoBench: A Framework for Benchmarking Topological Deep Learning

Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: a multiset
function framework for hypergraph neural networks. arXiv preprint arXiv:2106.13264,
2021.

Yihe Dong, Will Sawin, and Yoshua Bengio. HNHN: hypergraph networks with hyperedge
neurons. In ICML Graph Representation Learning and Beyond Workshop, 2020.

Dheeru Dua, Casey Graff, et al. Uci machine learning repository, 2017. URL http://archive.
ics. uci. edu/ml, 7(1), 2017.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning
Research, 24(43):1–48, 2023.

Stefania Ebli, Michaël Defferrard, and Gard Spreemann. Simplicial neural networks. In
NeurIPS Workshop on Topological Data Analysis and Beyond, 2020.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Lorenzo Giusti, Claudio Battiloro, Paolo Di Lorenzo, Stefania Sardellitti, and Sergio Bar-
barossa. Simplicial attention neural networks. arXiv preprint arXiv:2203.07485, 2022.

Lorenzo Giusti, Claudio Battiloro, Lucia Testa, Paolo Di Lorenzo, Stefania Sardellitti, and
Sergio Barbarossa. Cell attention networks. In International Joint Conference on Neural
Networks, 2023.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D
Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a
data-driven continuous representation of molecules. ACS central science, 4(2):268–276,
2018.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,
and function using NetworkX. Technical report, Los Alamos National Lab (LANL), Los
Alamos, NM, United States, 2008.

Mustafa Hajij, Kyle Istvan, and Ghada Zamzmi. Cell complex neural networks. In NeurIPS
Workshop on Topological Data Analysis and Beyond, 2020.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Aldo Guzman-Saenz, ToIga Birdal,
and Michael T Schaub. Combinatorial complexes: bridging the gap between cell complexes
and hypergraphs. In 2023 57th Asilomar Conference on Signals, Systems, and Computers,
pages 799–803. IEEE, 2023a.

17

Telyatnikov et al.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzmán-Sáenz,
Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal Dey, Soham Mukherjee, Shreyas
Samaga, Neal Livesay, Robin Walters, Paul Rosen, and Michael Schaub. Topological deep
learning: going beyond graph data. arXiv preprint arXiv:1906.09068, 2023b.

Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Rubén
Ballester, Claudio Battiloro, Guillermo Bernárdez, Tolga Birdal, Aiden Brent, Peter
Chin, Sergio Escalera, Simone Fiorellino, Odin Hoff Gardaa, Gurusankar Gopalakrishnan,
Devendra Govil, Josef Hoppe, Maneel Reddy Karri, Jude Khouja, Manuel Lecha, Neal
Livesay, Jan Meißner, Soham Mukherjee, Alexander Nikitin, Theodore Papamarkou, Jaro
Prílepok, Karthikeyan Natesan Ramamurthy, Paul Rosen, Aldo Guzmán-Sáenz, Alessandro
Salatiello, Shreyas N. Samaga, Simone Scardapane, Michael T. Schaub, Luca Scofano,
Indro Spinelli, Lev Telyatnikov, Quang Truong, Robin Walters, Maosheng Yang, Olga
Zaghen, Ghada Zamzmi, Ali Zia, and Nina Miolane. TopoX: a suite of Python packages
for machine learning on topological domains. Journal of Machine Learning Research, 25
(374):1–8, 2024.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: datasets for machine learning on
graphs. In Advances in Neural Information Processing Systems, pages 22118–22133, 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec.
OGB-LSC: a large-scale challenge for machine learning on graphs. arXiv preprint
arXiv:2103.09430, 2021.

Jing Huang and Jie Yang. UniGNN: a unified framework for graph and hypergraph neural
networks. In Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, 2021.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman.
ZINC: a free tool to discover chemistry for biology. Journal of Chemical Information and
Modeling, 52(7):1757–1768, 2012.

Kanchan Jha, Sriparna Saha, and Hiteshi Singh. Prediction of protein–protein interaction
using graph neural networks. Scientific Reports, 12(1):1–12, 2022.

Junteng Jia and Austion R Benson. Residual correlation in graph neural network regression.
In ACM International Conference on Knowledge Discovery and Data Mining, 2020.

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M Bronstein.
Differentiable graph module (dgm) for graph convolutional networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(2):1606–1617, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

David Knoke and Song Yang. Social network analysis. SAGE Publications, 2019.

18

TopoBench: A Framework for Benchmarking Topological Deep Learning

Nicholas W. Landry, Maxime Lucas, Iacopo Iacopini, Giovanni Petri, Alice Schwarze, Alice
Patania, and Leo Torres. XGI: a Python package for higher-order interaction networks.
Journal of Open Source Software, 8(85):5162, 2023.

Mona Lisa and Hew Bot. My Research Software, 12 2017. URL https://github.com/
github-linguist/linguist.

Xu T Liu, Jesun Firoz, Andrew Lumsdaine, Cliff Joslyn, Sinan Aksoy, Brenda Praggastis,
and Assefaw H Gebremedhin. Parallel algorithms for efficient computation of high-order
line graphs of hypergraphs. In International Conference on High Performance Computing,
Data, and Analytics, 2021.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and
Marion Neumann. TUDataset: a collection of benchmark datasets for learning with graphs.
In ICML Workshop on Graph Representation Learning and Beyond, 2020.

Chris Tralie Nathaniel Saul. Scikit-tda: Topological data analysis for python, 2019. URL
https://doi.org/10.5281/zenodo.2533369.

Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin
Curry, Yue Gao, Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, Vasileios
Maroulas, Nina Miolane, Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian
Rieck, Simone Scardapane, Michael T Schaub, Petar Veličković, Bei Wang, Yusu Wang,
Guowei Wei, and Ghada Zamzmi. Position: Topological deep learning is the new frontier
for relational learning. In Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pages 39529–39555,
2024.

Mathilde Papillon, Sophia Sanborn, Mustafa Hajij, and Nina Miolane. Architectures of
topological deep learning: a survey on topological neural networks. arXiv preprint
arXiv:2304.10031, 2023.

Mathilde Papillon, Guillermo Bernárdez, Claudio Battiloro, and Nina Miolane. Topotune
: A framework for generalized combinatorial complex neural networks. In Forty-second
International Conference on Machine Learning, 2025. URL https://openreview.net/
pdf?id=S5njonQdBf.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: are we really
making progress? arXiv preprint arXiv:2302.11640, 2023.

Karthikeyan Natesan Ramamurthy, Aldo Guzmán-Sáenz, and Mustafa Hajij. Topo-MLP: a
simplicial network without message passing. In International Conference on Acoustics,
Speech and Signal Processing, 2023.

T. Mitchell Roddenberry, Nicholas Glaze, and Santiago Segarra. Principled simplicial neural
networks for trajectory prediction. In International Conference on Machine Learning,
2021.

19

https://github.com/github-linguist/linguist
https://github.com/github-linguist/linguist
https://doi.org/10.5281/zenodo.2533369
https://openreview.net/pdf?id=S5njonQdBf
https://openreview.net/pdf?id=S5njonQdBf

Telyatnikov et al.

Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate Club: an API oriented open-
source Python framework for unsupervised learning on graphs. In ACM International
Conference on Information and Knowledge Management, 2020.

Benjamin Sanchez-Lengeling, Emily Reif, Adam Pearce, and Alexander B. Wiltschko. A
gentle introduction to graph neural networks. Distill, 6(9):e33, 2021.

Michael T. Schaub, Yu Zhu, Jean-Baptiste Seby, T. Mitchell Roddenberry, and Santiago
Segarra. Signal processing on higher-order networks: livin’on the edge... and beyond.
Signal Processing, 187:108149, 2021.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view
convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE
international conference on computer vision, pages 945–953, 2015.

Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo Caorsi,
Anibal M Medina-Mardones, Alberto Dassatti, and Kathryn Hess. giotto-tda:: A topological
data analysis toolkit for machine learning and data exploration. Journal of Machine
Learning Research, 22(39):1–6, 2021.

Lev Telyatnikov and Simone Scardapane. Egg-gae: scalable graph neural networks for tabular
data imputation. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent, editors,
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics,
volume 206 of Proceedings of Machine Learning Research, pages 2661–2676. PMLR, 25–27
Apr 2023. URL https://proceedings.mlr.press/v206/telyatnikov23a.html.

Lev Telyatnikov, Maria Sofia Bucarelli, Guillermo Bernardez, Olga Zaghen, Simone Scarda-
pane, and Pietro Lio. Hypergraph neural networks through the lens of message passing:
A common perspective to homophily and architecture design. Transactions on Machine
Learning Research, 2025. ISSN 2835-8856. URL https://openreview.net/forum?id=
8rxtL0kZnX.

The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.
URL http://gudhi.gforge.inria.fr/doc/latest/.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning
Representations, 2018.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao
Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng
Zhang. Deep Graph Library: a graph-centric, highly-performant package for graph neural
networks. arXiv preprint arXiv:1909.01315, 2019.

Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant
hypergraph diffusion neural operators. arXiv preprint arXiv:2207.06680, 2022.

Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant
hypergraph diffusion neural operators. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=RiTjKoscnNd.

20

https://proceedings.mlr.press/v206/telyatnikov23a.html
https://openreview.net/forum?id=8rxtL0kZnX
https://openreview.net/forum?id=8rxtL0kZnX
http://gudhi.gforge.inria.fr/doc/latest/
https://openreview.net/forum?id=RiTjKoscnNd

TopoBench: A Framework for Benchmarking Topological Deep Learning

Amaury Wei and Olga Fink. Physics meets topology: Physics-informed topological neural
networks for learning rigid body dynamics. arXiv preprint arXiv:2411.11467, 2024.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1912–1920, 2015.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github,
2019. URL https://github.com/facebookresearch/hydra.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and
Partha Talukdar. Hypergcn: A new method for training graph convolutional networks on
hypergraphs. Advances in neural information processing systems, 32, 2019.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, and Tarek Abdelzaher. Hypergraph learning with
line expansion. arXiv preprint arXiv:2005.04843, 2020.

Maosheng Yang and Elvin Isufi. Convolutional learning on simplicial complexes. arXiv
preprint arXiv:2301.11163, 2023.

Ruochen Yang, Frederic Sala, and Paul Bogdan. Efficient representation learning for higher-
order data with simplicial complexes. In Learning on Graphs Conference, 2022.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40–48.
PMLR, 2016.

Jie Zhou, Guanghui Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and
Maosong Sun. Graph neural networks: A review of methods and applications. AI Open, 1:
57–81, 2020.

Appendix A. Mathematical Background

Relational data modeling is a fundamental aspect of modern machine learning and data
analysis, particularly in domains where complex relationships between entities play a crucial
role. This appendix provides a comprehensive overview of the key concepts and techniques
in relational data modeling, with a focus on topological approaches that capture intricate
structural information. It also provides the essential mathematical background required to
effectively use TopoBench.

We begin by exploring various topological domains, from the familiar terrain of graphs
to more sophisticated structures such as hypergraphs, simplicial complexes, cell complexes,
and combinatorial complexes (see Appendix A.1). These domains offer powerful frameworks
for representing and analyzing complex relational data4. Next, we introduce the lifting

4. TopoBench supports simplicial complexes, cell complexes, hypergraphs, and combinatorial complexes.
The TopoBench modularity allows for easy addition of other topological domains.

21

https://github.com/facebookresearch/hydra

Telyatnikov et al.

mechanism, which enables the mapping of one topological domain onto another, facilitating
flexible data representations (refer to Appendix A.2). Finally, we conclude by presenting a
mathematical introduction to Topological Neural Networks, which are used to model data
represented with the help of one of the topological domains (see Appendix A.3).

A.1 Topological Domains

This section introduces the topological domains implemented in TopoBench, which provide
powerful frameworks for modeling complex relationships and structures in data. We begin
with the fundamental concept of graphs, laying the groundwork for understanding more
intricate structures. From there, we explore higher-order domains — including hypergraphs,
simplicial complexes, cell complexes, and combinatorial complexes — each offering unique
capabilities for capturing different types of relationships and hierarchies within data.

Definition 1 Let G = (V,E) be a graph, with node set V and edge set E. A featured graph
is a tuple GF = (V,E, FV , FE), where FV : V → Rdv is a function that maps each node to a
feature vector in Rdv and FE : E → Rde is a function that maps each edge to a feature vector
in Rde.

A topological domain is a generalization of a graph that captures both pairwise and
higher-order relationships between entities (Bick et al., 2023; Battiston et al., 2021). When
working with topological domains, two key properties come into play: set-type relations and
hierarchical structures represented by rank functions (Hajij et al., 2023b; Papillon et al.,
2023).

Definition 2 (Set-type relation) A relation in a topological domain is called a set-type
relation if its existence is not implied by another relation in the domain.

Definition 3 (Rank function) A rank function on a higher-order domain X is an order-
preserving function rk : X → Z≥0 such that x ⊆ y implies rk(x) ≤ rk(y) for all x, y ∈ X .

Set-type relations emphasize the independence of connections within a domain, allowing
for flexible representation of complex interactions. In contrast, rank functions introduce a
hierarchical (also referred to as part-whole) organization that facilitates the representation
and analysis of nested relationships.

Hypergraphs Hypergraphs generalize traditional graphs by allowing edges, known as
hyperedges, to connect any number of nodes. This flexibility enables hypergraphs to capture
more complex relationships between entities than standard graphs, which only connect pairs
of nodes. Hypergraphs exhibit set-type relationships that lack an explicit notion of hierarchy.
Using these set-type relations makes them a powerful tool for representing relationships
across a diverse range of complex systems.

Definition 4 (Hypergraph) A hypergraph H on a nonempty set V is a pair (V, EH), where
EH is a non-empty subset of the powerset P(V) \ {∅}. Elements of EH are called hyperedges.

Example 1 (Collaborative Authorship Networks) In collaborative networks, authors
are represented as nodes, and co-authorship on a paper forms a hyperedge connecting all
authors involved.

22

TopoBench: A Framework for Benchmarking Topological Deep Learning

Simplicial complexes Simplicial complexes extend graphs by incorporating hierarchical
part-whole relationships through the multi-scale construction of cells. In this structure,
nodes correspond to rank 0-cells, which can be combined to form edges (rank 1-cells). Edges
can then be grouped to form faces (rank 2 cells), and faces can be combined to create
volumes (rank 3-cells), continuing in this manner. Consequently, the faces of a simplicial
complex are triangles, volumes are tetrahedrons, and higher-dimensional cells follow the
same pattern. A key feature of simplicial complexes is their strict hierarchical structure,
where each k-dimensional simplex is composed of (k− 1)-dimensional simplices, reinforcing a
strong sense of hierarchy across all levels.

Definition 5 (Simplicial Complex) A simplicial complex (SC) in a non-empty set S is a
pair SC = (S,X), where X ⊂ P(S) \ {∅} satisfies: if x ∈ SC and y ⊆ x, then y ∈ SC. The
elements of X are called simplices.

Example 2 (3D Surface Meshes) 3D models of objects, such as those used in computer
graphics or for representing anatomical structures, are often constructed using triangular
meshes. These meshes naturally form simplicial complexes, where the vertices of the triangles
are 0-simplices, the edges are 1-simplices, and the triangular faces themselves are 2-simplices.

Cell complexes Cell complexes provide a hierarchical interior-to-boundary structure,
offering clear topological and geometric interpretations, but they are not based on set-type
relations. Unlike simplicial complexes, cell complexes are not limited to simplexes; faces can
involve more than three nodes, allowing for a more flexible representation. This increased
flexibility grants cell complexes greater expressivity compared to simplicial complexes Bodnar
et al. (2021a); Bodnar (2023).

Definition 6 (Cell complex) A regular cell complex is a topological space S partitioned
into subspaces (cells) {xα}α∈PS

, where PS is an index set, satisfying:

1. S = ∪α∈PS
int(xα), where int(x) denotes the interior of cell x.

2. For each α ∈ PS, there exists a homeomorphism ψα (attaching map) from xα to Rnα

for some nα ∈ N. The integer nα is the dimension of cell xα.

3. For each cell xα, the boundary ∂xα is a union of finitely many cells of strictly lower
dimension.

Example 3 (Molecular structures.) Molecules admit natural representations as cell com-
plexes by considering atoms as nodes (i.e., cells of rank zero), bonds as edges (i.e., cells of
rank one), and rings as faces (i.e., cells of rank two).

Combinatorial complexes Combinatorial complexes combine hierarchical structure with
set-type relations, enabling a flexible yet comprehensive representation of higher-order
networks.

Definition 7 (Combinatorial complex) A combinatorial complex (CC) is a triple (V,X , rk)
consisting of a set V, a subset X ⊂ P(V) \ {∅}, and a function rk : X → Z≥0 satisfying:

23

Telyatnikov et al.

1. For all v ∈ V, {v} ∈ X and rk(v) = 0.

2. The function rk is order-preserving: if x, y ∈ X with x ⊆ y, then rk(x) ≤ rk(y).

Example 4 (Geospatial structures.) Geospatial data, comprised of grid points (0-cells),
road polylines (1-cells), and census tract polygons (2-cells), can be effectively represented
using combinatorial complexes. A visual example is provided in Figure 2 (Right) of Battiloro
et al. (2025).

Featured topological domains. A featured graph is a graph whose nodes or edges are
equipped with feature functions (Sanchez-Lengeling et al., 2021). TopoBench generalizes this
idea to featured topological domains, where each topological element (e.g., simplex or cell)
can carry feature vectors. Although the following definitions use cell complexes as a template,
the same ideas apply to other domains (simplicial complexes, hypergraphs, and so on).

Definition 8 (Featured topological domain) A featured topological domain is a pair
(X , F), where X is a topological domain and F = {Fi}i≥0 is a collection of feature functions.
Each function Fi maps the i-dimensional elements of X , denoted Xi, to a feature space Rki :

Fi : Xi → Rki .

A.2 Liftings

Lifting describes the process of mapping two topological domains through a well-defined
procedure (Hajij et al., 2023b; Papillon et al., 2023). This work extends this concept by
providing a unified mathematical framework that generalizes all lifting procedures from the
2nd Topological Deep Learning Challenge at ICML 2024 (Bernárdez et al., 2024).

Definition 9 (Lifting between featured topological domains) Let T1 = (X1, F1) and
T2 = (X2, F2) be two featured topological domains. A lifting from T1 to T2 is a pair (ψX , ψF),
where:

1. Structural lifting ψX : X1 × F1 → X2 is a map that determines how elements of X1

are mapped into X2.

2. Feature lifting ψF : X1 × F1 → F2 is a map that transforms feature functions while
maintaining consistency with ψX , meaning that for all x ∈ X1,

F2(ψX(x)) = ψF (F1(x)).

In practice, structural liftings can be taxonimized as connectivity- and/or feature-based.
Connectivity-based structural lifting ψX maps the elements of X1 to X2 relying solely on
the given topology X1. In contrast, feature-based structural lifting leverages the features
F1 either to conditionally guide the mapping of topology or to fully infer the topology X2

from F1. The feature lifting ψF further ensures that the associated features are consistently
transferred. Examples appear in Figure 3.

24

TopoBench: A Framework for Benchmarking Topological Deep Learning

A.2.1 Lifting Examples

In this section, we present four examples of lifting from the graph domain to higher-order
topological domains (see Examples 5, 6, 7, and 8), followed by two application examples
demonstrating how topological domains can be used to describe real-world data (see Examples
9 and 10).

Example 5 From graphs to cell complexes: cycle-based liftings. A graph is lifted
to a cell complex in two steps. First, a finite set of cycles (closed loops) within the graph is
identified. Second, each identified cycle is associated with a 2-cell whose boundary is exactly
that cycle. The nodes and edges of the cell complex are inherited from the original graph.

Example 6 From graphs to simplicial complexes: clique complexes. By lifting a
graph to a simplicial complex, both pairwise and higher-order interactions can be captured.
For a given graph, the corresponding clique complex is formed by treating every complete
subgraph (clique) as a simplex. Specifically, each node is a 0-simplex, each edge (clique of
size 2) is a 1-simplex, each triangle (clique of size 3) is a 2-simplex, and so forth. In general,
a clique of size k + 1 becomes a k-simplex.

Example 7 From graphs to simplicial complexes: neighbor complexes. Neighbor
complexes lift the neighborhoods of nodes to simplices as follows. For each node in the graph,
the node itself and all its neighbors are considered as a single set. This set is then treated
as a simplex, whose dimension depends on the node’s degree. For instance, if a node has d
neighbors, it forms a d-simplex.

Example 8 From graphs to hypergraphs: k-hop liftings. Let G = (V,E) be a graph
and H = (V, E) be a hypergraph. The k-neighborhood Nk(v) of a node v ∈ V in G consists
of all nodes reachable within k steps from v. To lift G to H, a hyperedge ev is assigned to
each node v ∈ V in H, where ev = Nk(v). Thus, the set of hyperedges in H is given by
E =

{
Nk(v)

∣∣ v ∈ V }
.

Example 9 Lifting a Social Network to a Higher-Order Topological Domain. Let
T1 be a social network represented as a graph, where nodes correspond to individuals and
edges indicate social interactions (e.g., friendships, collaborations, or message exchanges).
We lift this structure to a hypergraph or simplicial complex T2, where higher-order interactions
capture group dynamics beyond pairwise relationships.

• The structural lifting ψX maps tightly connected communities or recurring social in-
teractions in T1 to higher-order simplices in T2. For instance, a group of researchers
collaborating on multiple papers could be lifted from a clique in T1 to a 3-simplex in T2,
representing a collective research effort.

• The feature lifting ψF aggregates individual attributes (e.g., influence score, topic
preferences, engagement level) into group-level properties (e.g., collective expertise,
community sentiment, or information diffusion capacity).

Example 10 Lifting Molecular Simplicial Complexes to Cell Complexes. Consider
T1 as a simplicial complex derived from a molecular structure, where nodes represent atoms,

25

Telyatnikov et al.

edges represent bonds, and 2-simplices represent stable chemical rings. Suppose we lift this
structure to a cell complex T2 that includes larger functional groups such as benzene rings or
protein substructures.

• The structural lifting ψX embeds lower-dimensional simplices into a coarser repre-
sentation of molecular geometry, grouping functionally related simplices into higher-
dimensional cells.

• The feature lifting ψF ensures that atomic properties (e.g., electronegativity, charge
distribution) are mapped to molecular functional groups, enabling efficient coarse-grained
learning in topological graph neural networks.

Lifting maps can be either fixed (Bodnar et al., 2021a; Hajij et al., 2023b) or learn-
able (Battiloro et al., 2024a; Bernárdez et al., 2023; Telyatnikov and Scardapane, 2023;
Ramamurthy et al., 2023; Kazi et al., 2022), and they may compute or learn both the features
on higher-order cells and the structure of the domain itself.

A.3 Topological Neural Networks

A.3.1 General definition

Topological neural networks (TNNs) are neural architectures that process data defined on
topological domains. The higher-order message passing paradigm of Hajij et al. (2023b)
provides a unifying framework for TNNs, and all networks used in TopoBench can be viewed
as special cases of this approach.

Definition 10 (k-cochain spaces) Let Ck(X ,Rd) be the R-vector space of functions Hk

where Hk : X k → Rd for a rank k ∈ Z≥0. This space is called the k-cochain space, and
elements Hk in Ck(X ,Rd) are the k-cochains (or k-signals).

A k-cochain is thus a feature vector associated with each k-cell. For a graph, 0-cochains
correspond to node features, and 1-cochains correspond to edge features.

Definition 11 (TNN) Let X be a topological domain. Suppose Ci1 × · · · × Cim and Cj1 ×
· · · × Cjn are Cartesian products of cochain spaces on X . A topological neural network
(TNN) is a function

TNN : Ci1 × · · · × Cim −→ Cj1 × · · · × Cjn .

A TNN takes as input a collection of cochains (Hi1 , . . . ,Him) and produces a collection
(Kj1 , . . . ,Kjn). To enable data exchange within a topological domain, one relies on cochain
maps (e.g., incidence or adjacency matrices) and neighborhood functions, described next.

Cochain maps are fundamental operators for data manipulation in topological domains.
For r < k, incidence matrices Br,k and adjacency matrices Ar,k define mappings:

Br,k : Ck(X)→ Cr(X), Ar,k : Cr(X)→ Cr(X).

They collectively redistribute signals across different dimensional cells.

26

TopoBench: A Framework for Benchmarking Topological Deep Learning

Definition 12 (Neighborhood function) Let S be a nonempty set. A neighborhood
function on S is a function N : S → P(P(S)) that assigns to each point x in S a nonempty
collection N (x) of subsets of S. The elements of N (x) are called neighborhoods of x with
respect to N .

Here, P denotes the power set operator, where P(S) is the set of all subsets of S. Thus,
P(P(S)) represents the set of all collections of subsets of S. This formulation enables the
assignment of multiple, potentially overlapping neighborhoods to each point, providing the
necessary flexibility to describe diverse neighborhood structures across various topological
domains.

The flexibility of neighborhood functions is crucial for representing complex relationships
in higher-order topological structures, where elements may exhibit multifaceted connections or
interactions. By generalizing the concept of node neighborhoods from graphs to higher-order
structures, these functions define how information propagates between different elements in
the topological domain. This generalization forms the foundation for extending traditional
graph-based algorithms to more complex topological spaces, enabling the modeling of
sophisticated relational data.

A.4 Traditional Message Passing on Graphs

GNNs have emerged as a powerful class of models for processing graph-structured data.
While numerous variations of GNN architectures exist Veličković et al. (2018), at their core
lies an iterative message passing algorithm that propagates information between the nodes
of the graph. This process can be understood in terms of the basic concepts we introduced
earlier.

Formally, a graph is defined as a tuple of nodes and edges, G = (V, E). In the context
of k-cochain spaces introduced in Section A.3.1, we can view node features as 0-cochains
and edge features as 1-cochains. We denote by htk ∈ Rd the hidden state of a node k at MP
iteration t, which can be seen as an element of a 0-cochain space.

The neighborhood function for a graph, as per Definition 12, is typically defined as
N(k) = {v ∈ V | (k, v) ∈ E}, representing the one-hop neighborhood of each node.

The MP process consists of three main steps:

1. Message Generation: Each node k receives messages from all the nodes in its
neighborhood N(k). Messages are generated by applying a message function m(·) to
the hidden states of node pairs in the graph.

2. Message Aggregation: The generated messages are combined using a permutation
invariant aggregation function ⊕, as shown in Equation 1. This aggregation can be
seen as an application of the neighborhood function concept.

3. Node Update: An update function u(·) is used to compute a new hidden state for
every node, as shown in Equation 2.

These steps are formalized in the following equations:

M t+1
k =

⊕
i∈N(k)

m(htk, h
t
i), (1)

27

Telyatnikov et al.

ht+1
k = u(htk,M

t+1
k), (2)

where m(·) and u(·) are differentiable functions and consequently may be implemented
as neural networks.

This process can be seen as a specific instance of the more general higher-order message
passing framework that is introduced in the next section, applied to the case of graphs where
we only have 0-cells (nodes) and 1-cells (edges).

A.5 Higher-Order Message Passing

Higher-Order Message Passing (HOMP) generalizes information propagation techniques to
complex topological domains such as hypergraphs, simplicial complexes, and cell complexes.
This section introduces a formal framework for HOMP, building on the foundational concepts
of k-cochain spaces and neighborhood functions defined earlier. By leveraging the rich
relationships captured in these advanced topological representations, this unified approach
enables modeling and analyzing intricate multi-way interactions across various topological
structures, including both traditional graphs and more complex higher-order domains.

Extending Message Passing to Higher-Order Domains The extension of graph
message passing to higher-order domains involves generalizing the concepts of message
passing to more complex topological structures. This generalization allows us to capture and
process richer relational information that goes beyond pairwise interactions.

In higher-order domains, the notion of a "neighborhood" becomes more complex. Instead
of just considering adjacent nodes, we now need to consider relationships between higher-
dimensional cells (e.g., edges, faces, volumes). The neighborhood functions we defined earlier
play a crucial role in formalizing these complex relationships.

Higher-Order Message Passing Framework With k-cochain spaces providing a way to
represent data and neighborhood functions defining relationships, we can now formally define
the HOMP procedure. Let X be a topological domain, and let N = {N1, . . . ,Nn} be a set of
neighborhood functions defined on X . Consider a cell x and another cell y ∈ Nk(x) for some
Nk ∈ N . A message mx,y between cells x and y is a computation depending on these two
cells or on the data they support. Let N (x) denote the multi-set {{N1(x), . . . ,Nn(x)}}, and
let h(l)x represent the data supported on the cell x at layer l. HOMP is defined as follows:

mx,y = αNk
(h(l)x , h

(l)
y), (3)

mk
x =

⊕
y∈Nk(x)

mx,y, 1 ≤ k ≤ n, (4)

mx =
⊗

Nk∈N (x)

mk
x, (5)

h(l+1)
x = β(h(l)x ,mx). (6)

where
⊕

is a permutation-invariant aggregation function, which is referred to as intra-
neighborhood aggregation of x, and

⊗
, is an aggregation function called the inter-neighborhood

aggregation of x. The functions αNk
and β are differentiable functions.

To summarize the HOMP process:

28

TopoBench: A Framework for Benchmarking Topological Deep Learning

• Message Generation: mx,y is the message computed from x to y using the function
αNk

.

• Message Aggregation (intra): mk
x aggregates all messages from the neighbors y in

the neighborhood Nk(x) using the intra-neighborhood function
⊕

.

• Message Aggregation (inter): mx further aggregates these results across all neigh-
borhoods Nk ∈ N (x) using the inter-neighborhood function

⊗
.

• Cell Update: h(l+1)
x updates the data on cell x by combining its current data h(l)x

with the aggregated message mx using the function β.

This framework allows for rich information exchange across different dimensions and
types of relationships in the topological domain, enabling the modeling of complex, multi-way
interactions in various real-world systems.

Appendix B. Implemented Liftings

This appendix provides a detailed overview of the structural liftings currently implemented
within TopoBench. Table 3 presents each implemented lifting as a row, specifying the source
and destination topological domains involved. Additionally, each row indicates whether the
lifting is feature-based or connectivity-based. For an intuitive understanding of these lifting
types, please refer to the informal definitions in Section 4.3. For a rigorous mathematical
treatment of lifting definitions and their taxonomy, please consult Appendix A.2.

Table 3: List of implemented liftings, each one linked with its description. The do-
mains are: PC for point clouds, G for graphs, HG for hypergraphs, SC for simplicial
complexes, CC for cellular complexes, and CCC for combinatorial complexes.

Lifting name Source Dest. Feat.-
based

Conn.-
based

Clique G SC ✓
Neighborhood G SC ✓
Vietoris-Rips G SC ✓
Graph induced G SC ✓
Line G SC ✓
Eccentricity G SC ✓
DnD G SC ✓
Random latent clique G SC ✓
Neighborhood complex G SC ✓
Alpha complex PC SC ✓
Random flag complex PC SC ✓
Cycle G CC ✓
Discrete configuration G CC ✓
K-hop G HG ✓
Expander hypergraph G HG ✓

29

https://github.com/geometric-intelligence/TopoBench/wiki/Clique-Lifting-(Graph-to-Simplicial)
https://github.com/geometric-intelligence/TopoBench/wiki/Neighbourhood-Complex-Lifting-(Graph-to-Simplicial)
https://github.com/geometric-intelligence/TopoBench/wiki/Feature%E2%80%90Based-Rips-Complex-(Graph-to-Simplicial)
https://github.com/geometric-intelligence/TopoBench/wiki/Graph-Induced-Lifting-(Graph-to-Simplicial)
https://github.com/geometric-intelligence/TopoBench/wiki/Line-Lifting-(Graph-to-Simplicial)
https://github.com/geometric-intelligence/TopoBench/wiki/Eccentricity-Lifting-(Graph-to-Simplicial)
https://github.com/geometric-intelligence/TopoBench/wiki/DnD-Lifting-(Graph-to-Simplicial)
https://github.com/geometric-intelligence/TopoBench/wiki/Random-Latent-Clique-Lifting-(Graph-to-Simplicial)
https://github.com/geometric-intelligence/TopoBench/wiki/Neighbourhood-Complex-Lifting-(Graph-to-Simplicial)
https://github.com/geometric-intelligence/TopoBench/wiki/Delaunay-Lifting-(Pointcloud-to-Simplicial)
https://github.com/geometric-intelligence/TopoBench/wiki/Random-Flag-Complex-(Pointcloud-to-Simplicial)
https://github.com/geometric-intelligence/TopoBench/wiki/Cycle-Lifting-(Graph-to-Cell)
https://github.com/geometric-intelligence/TopoBench/wiki/Discrete-Configuration-Complex-(Graph-to-Cell)
https://github.com/geometric-intelligence/TopoBench/wiki/KHop-Lifting-(Graph-to-Hypergraph)
https://github.com/geometric-intelligence/TopoBench/wiki/Expander-Hypergraph-Lifting-(Graph-to-Hypergraph)

Telyatnikov et al.

Lifting name Source Dest. Feat.-
based

Conn.-
based

KNN G HG ✓
Kernel G HG ✓ ✓
Mapper G HG ✓
Modularity maximization G HG ✓ ✓
Forman-Ricci curvature G HG ✓
Voronoi PC HG ✓
PointNet++ PC HG ✓
Mixture of Gaussians + MST PC HG ✓
Simplicial paths G CCC ✓
Coface SC CCC ✓
Universal strict HG CCC ✓

Lastly, we refer to the TopoBench Wiki to get a full list of compatible structural liftings
from the ICML 2024 TDL Challenge (Bernárdez et al., 2024).

Appendix C. Further Experimental Details

This appendix provides details on the hyperparameter search methodology, optimization
strategy, computational resources used for the experiments, and additional results and
analyses.

C.1 Experiment Configuration and Model Execution

To automate the configuration of TopoBench modules, the hydra package (Yadan, 2019) is
employed. In particular, hierarchical configuration groups and registers facilitate easy use of
the library: there is no need to meticulously select each module for any given domain. Simply
choosing a dataset and a model automatically configures a full default pipeline, eliminating
the need for manual intervention. Model execution and training are further automated by
the lightning library (Lisa and Bot, 2017), which orchestrates training, validation, and
testing while also handling logging and callbacks.

C.2 Hyperparameter Search

Five splits are generated for each dataset to ensure a fair evaluation across domains, allocating
50% of data for training, 25% for validation, and 25% for testing. An exception is made for
the ZINC dataset, which uses predefined splits (Irwin et al., 2012).

Each model (in each domain) has numerous specific hyperparameters that can be tuned
to enhance performance. TNNs, in particular, come with additional parameters that could
further boost results. To avoid the combinatorial explosion of all possible hyperparameter sets,
the search space is restricted to hyperparameters common across every model. A grid-search
strategy is used to identify the optimal parameters for each model-dataset combination.
Specifically, the encoder hidden dimension is varied over {32, 64, 128}, the encoder dropout
over {0.25, 0.5}, the number of backbone layers over {1, 2, 3, 4}, the learning rate over {0.01,

30

https://github.com/geometric-intelligence/TopoBench/wiki/KNN-Lifting-(Graph-to-Hypergraph)
https://github.com/geometric-intelligence/TopoBench/wiki/Kernel-Lifting-(Graph-to-Hypergraph)
https://github.com/geometric-intelligence/TopoBench/wiki/Mapper-Lifting-(Graph-to-Hypergraph)
https://github.com/geometric-intelligence/TopoBench/wiki/Modularity-Maximization-Lifting-(Graph-to-Hypergraph)
https://github.com/geometric-intelligence/TopoBench/wiki/Forman%E2%80%90Ricci-Curvature-Coarse-Geometry-Lifting-(Graph-to-Hypergraph)
https://github.com/geometric-intelligence/TopoBench/wiki/Voronoi-Lifting-(Pointcloud-to-Hypergraph)
https://github.com/geometric-intelligence/TopoBench/wiki/PointNet--Lifting-(Pointcloud-to-Hypergraph)
https://github.com/geometric-intelligence/TopoBench/wiki/Mixture-of-Gaussians---MST-lifting-(Pointcloud-to-Hypergraph)
https://github.com/geometric-intelligence/TopoBench/wiki/Simplicial-Paths-Lifting-(Graph-to-Combinatorial)
https://github.com/geometric-intelligence/TopoBench/wiki/Coface-Lifting-(Simplicial-to-Combinatorial)
https://github.com/geometric-intelligence/TopoBench/wiki/Universal-Strict-Lifting-(Hypergraph-to-Combinatorial)
https://github.com/geometric-intelligence/TopoBench/wiki/Structural-Liftings

TopoBench: A Framework for Benchmarking Topological Deep Learning

0.001}, and the batch size over {128, 256}. For models in the cellular and simplicial domains,
the readout type is also varied between direct readout (DR) and signal down-propagation
(SDP). If a model exceeds available GPU memory, the batch size, encoder hidden dimension,
and number of backbone layers are reduced until training becomes feasible.

For node-level tasks, validation is conducted after each training epoch, continuing until
either the maximum number of epochs is reached or the optimization metric fails to improve for
50 consecutive validation epochs; a minimum of 50 epochs is always enforced. For graph-level
tasks, validation is performed every 5 epochs, halting early if validation performance fails to
improve for 10 consecutive checks. The optimization uses torch.optim.Adam combined with
torch.optim.lr_scheduler.StepLR, where the step size is 50 and γ = 0.5. Over 100,000
runs have been executed to obtain the final results. In general, the best hyperparameter set
is selected based on the highest average performance across the five validation splits. For
ZINC, five different initialization seeds are used to obtain an average performance.

All experiments are conducted on a Linux machine equipped with 256 CPU cores, 1TB
of system memory, and 8 NVIDIA A30 GPUs, each with 24GB of GPU memory.

C.3 Descriptive Summaries of Datasets

Table 4 provides descriptive statistics for each dataset used in the numerical experiments
(see Section 5 for details) after lifting to three topological domains: simplicial complexes,
cellular complexes, and hypergraphs. The columns labeled 0-cell, 1-cell, 2-cell, and 3-cell
show the count of each n-cell in the resulting dataset. Specifically, a clique complex lifting
is applied to obtain a simplicial domain with a maximum dimension of three, cycle-based
lifting is used to obtain a cellular domain with a maximum dimension of two, and k-hop
lifting (with k = 1) is used to lift each graph into a hypergraph.

Table 5 reports additional descriptive statistics for the graph datasets used in the
experiments. Specifically, the table includes the dimensionality of the number of classes
(set to 1 for regression tasks and to the actual class count for classification tasks), and the
number of graphs in each dataset and the initial 0-cell (node) features. Note that, for the
illustrative experiments in Section 5, a projected sum feature lifting is applied. Consequently,
higher-order cells (e.g., 1-cells, 2-cells, etc.) inherit the same initial feature dimensionality as
the 0-cells.

C.4 Additional Results and Analysis

Table 6 additionally presents results for the CCXN and SCCN networks, which on average
perform slightly worse than other models. As shown in Table C.4, the CCXN network
performs better when using SDP readout, though not as dramatically as CWN under the
same strategy. The SCCN model benefits more from SDP readout than other simplicial-
domain models (SCN and SCCNN), showing improvements in 9 out of 21 cases, whereas
SCCNN and SCN show improvements in 3 and 5 cases, respectively. Overall, cellular models
demonstrate improved performance on 15, 19, and 8 datasets for CCXN, CWN, and CCCN,
respectively, when using SDP. In contrast, simplicial models achieve 9, 3, and 5 improvements
for SCCN, SCCNN, and SCN, respectively, with the same readout.

Note that for demonstration purposes, only one fixed lifting is applied to transform graphs
into each of the considered topological domains, leaving a domain-specific optimal lifting

31

Telyatnikov et al.

Table 4: Descriptive summaries of the datasets used in the experiments.
Dataset Domain 0-cell 1-cell 2-cell 3-cell Num. Hyperedges

Cora
Cellular 2708 5278 2648 0 0
Simplicial 2708 5278 1630 220 0
Hypergraph 2708 0 0 0 2708

Citeseer
Cellular 3327 4552 1663 0 0
Simplicial 3327 4552 1167 255 0
Hypergraph 3327 0 0 0 3327

PubMed
Cellular 19717 44324 23605 0 0
Simplicial 19717 44324 12520 3275 0
Hypergraph 19717 0 0 0 19717

MUTAG
Cellular 3371 3721 538 0 0
Simplicial 3371 3721 0 0 0
Hypergraph 3371 0 0 0 3371

NCI1
Cellular 122747 132753 14885 0 0
Simplicial 122747 132753 186 0 0
Hypergraph 122747 0 0 0 122747

NCI109
Cellular 122494 132604 15042 0 0
Simplicial 122494 132604 183 0 0
Hypergraph 122494 0 0 0 122494

PROTEINS
Cellular 43471 81044 38773 0 0
Simplicial 43471 81044 30501 3502 0
Hypergraph 43471 0 0 0 43471

REDDIT-BINARY
Cellular 859254 995508 141218 0 0
Simplicial 859254 995508 49670 1303 0
Hypergraph 859254 0 0 0 859254

IMDB-BINARY
Cellular 19773 96531 77758 0 0
Simplicial 19773 96531 391991 1694513 0
Hypergraph 19773 0 0 0 19773

IMDB-MULTI
Cellular 19502 98903 80901 0 0
Simplicial 19502 98903 458850 2343676 0
Hypergraph 19502 0 0 0 19502

ZINC
Cellular 277864 298985 33121 0 0
Simplicial 277864 298985 769 0 0
Hypergraph 277864 0 0 0 277864

Amazon Ratings
Cellular 24492 93050 68553 0 0
Simplicial 24492 93050 110765 64195 0
Hypergraph 24492 0 0 0 24492

Minesweeper
Cellular 10000 39402 28955 0 0
Simplicial 10000 39402 39204 9801 0
Hypergraph 10000 0 0 0 10000

Roman Empire
Cellular 22662 32927 10266 0 0
Simplicial 22662 32927 7168 0 0
Hypergraph 22662 0 0 0 22662

Tolokers
Cellular OOM OOM OOM OOM OOM
Simplicial OOM OOM OOM OOM OOM
Hypergraph 11758 0 0 0 11758

US-county-demos
Cellular 3224 9483 6266 0 0
Simplicial 3224 9483 6490 225 0
Hypergraph 3224 0 0 0 3224

32

TopoBench: A Framework for Benchmarking Topological Deep Learning

Table 5: Additional descriptive statistics of the graph datasets used in the experiments.
Dataset 0-cell dim Num. classes Num. graphs

G
ra

ph
Cora 1433 7 1
Citeseer 3703 6 1
PubMed 19717 500 3
MUTAG 7 2 188
NCI1 37 2 4110
NCI109 38 2 4127
PROTEINS 3 2 1113
REDDIT-BINARY 10 2 2000
IMDB-BINARY 136 2 1000
IMDB-MULTI 89 3 1500
ZINC 21 1 12000
Amazon Ratings 300 5 1
Minesweeper 7 2 1
Roman Empire 300 18 1
Tolokers 10 2 1
US-county-demos 6 1 1

strategy beyond the scope of this paper.5 Specifically, a clique complex is used for simplicial
lifting, cycle-based lifting is used for cellular domains, and k-hop lifting (with k = 1) is
used for hypergraphs. Feature projection is also applied, where the (n− 1)-cell features are
multiplied by the corresponding incidence matrices to generate n-cell features.

Finally, Tables 8 and 9 present the number of learnable parameters for each best-
performing model configuration and their corresponding runtimes. Overall, these results
indicate that TNNs tend to be less efficient in terms of memory usage and computational
time compared to their graph-based counterparts. However, there are exceptions: EDGNN
and UniGNN2 achieve parameter counts comparable to graph baselines, and among the
TNNs, AST and EDGNN stand out as the most efficient on average.

Appendix D. Higher-Order Datasets

D.1 Descriptive Summaries of Higher-Order Datasets

Tables 11 and 12 provide descriptive summaries of the higher-order datasets included in
TopoBench, which spans 13 datasets drawn from a broad range of hypergraph and simplicial
benchmark sources.

Hypergraph datasets: For the co-authorship networks (Cora-CA and DBLP-CA) and
co-citation networks (Cora, Citeseer, and Pubmed), we use the versions provided by Yadati
et al. (2019). For 3D object classification, we include the Princeton ModelNet40 (Wu
et al., 2015) and National Taiwan University (Chen et al., 2003) datasets, with hypergraphs
constructed following the protocols in Feng et al. (2019) and Yang et al. (2020), using both
MVCNN (Su et al., 2015) and GVCNN (Feng et al., 2019) features. Additionally, we evaluate

5. Learnable liftings may further optimize the predictive capacity of higher-order networks.

33

Telyatnikov et al.

Table 6: Cross-domain comparison: results are shown as mean and standard deviation. The
best result is bold and shaded in grey, while those within one standard deviation
are in blue-shaded boxes.

N
od

e-
le

ve
lt

as
ks

Dataset GCN GIN GAT AST EDGNN UniGNN2 CCXN CWN CCCN SCCN SCCNN SCN

Cora 87.09 ± 0.2 87.21 ± 1.89 86.71 ± 0.95 88.92 ± 0.44 87.06 ± 1.09 86.97 ± 0.88 86.79 ± 1.81 86.32 ± 1.38 87.44 ± 1.28 80.86 ± 2.16 82.19 ± 1.07 82.27 ± 1.34
Citeseer 75.53 ± 1.27 73.73 ± 1.23 74.41 ± 1.75 73.85 ± 2.21 74.93 ± 1.39 74.72 ± 1.08 74.67 ± 2.24 75.2 ± 1.82 75.63 ± 1.58 69.6 ± 1.83 70.23 ± 2.69 71.24 ± 1.68
Pubmed 89.4 ± 0.3 89.29 ± 0.41 89.44 ± 0.24 89.62 ± 0.25 89.04 ± 0.51 89.34 ± 0.45 88.91 ± 0.47 88.64 ± 0.36 88.52 ± 0.44 88.37 ± 0.48 88.18 ± 0.32 88.72 ± 0.5
Amazon 49.56 ± 0.55 49.16 ± 1.02 50.17 ± 0.59 50.5 ± 0.27 48.18 ± 0.09 49.06 ± 0.08 48.93 ± 0.14 51.9 ± 0.15 50.26 ± 0.17 OOM OOM OOM
Empire 78.16 ± 0.32 79.56 ± 0.2 84.02 ± 0.51 79.5 ± 0.13 81.01 ± 0.24 77.06 ± 0.2 81.44 ± 0.31 81.81 ± 0.62 82.14 ± 0.0 88.27 ± 0.14 89.15 ± 0.32 88.79 ± 0.46
Minesweeper 87.52 ± 0.42 87.82 ± 0.34 89.64 ± 0.43 81.14 ± 0.05 84.52 ± 0.05 78.02 ± 0.0 88.88 ± 0.36 88.62 ± 0.04 89.42 ± 0.0 89.07 ± 0.25 89.0 ± 0.0 90.32 ± 0.11
Tolokers 83.02 ± 0.71 80.72 ± 1.19 84.43 ± 1.0 83.26 ± 0.1 77.53 ± 0.01 77.35 ± 0.03 OOM OOM OOM OOM OOM OOM
Election 0.31 ± 0.02 0.28 ± 0.02 0.29 ± 0.02 0.29 ± 0.01 0.34 ± 0.02 0.37 ± 0.02 0.35 ± 0.02 0.34 ± 0.02 0.31 ± 0.02 0.53 ± 0.03 0.51 ± 0.03 0.46 ± 0.04
Bachelor 0.29 ± 0.02 0.31 ± 0.03 0.28 ± 0.02 0.3 ± 0.03 0.29 ± 0.02 0.31 ± 0.02 0.32 ± 0.03 0.33 ± 0.03 0.31 ± 0.02 0.36 ± 0.02 0.34 ± 0.03 0.32 ± 0.02
Birth 0.72 ± 0.09 0.72 ± 0.09 0.71 ± 0.09 0.71 ± 0.08 0.7 ± 0.07 0.73 ± 0.1 0.74 ± 0.11 0.72 ± 0.09 0.71 ± 0.09 0.82 ± 0.09 0.79 ± 0.12 0.71 ± 0.08
Death 0.51 ± 0.04 0.52 ± 0.04 0.51 ± 0.04 0.49 ± 0.05 0.52 ± 0.05 0.51 ± 0.05 0.54 ± 0.06 0.54 ± 0.06 0.54 ± 0.06 0.58 ± 0.06 0.55 ± 0.05 0.52 ± 0.05
Income 0.22 ± 0.03 0.21 ± 0.02 0.2 ± 0.02 0.21 ± 0.02 0.23 ± 0.02 0.23 ± 0.02 0.25 ± 0.03 0.25 ± 0.03 0.23 ± 0.02 0.29 ± 0.03 0.28 ± 0.03 0.25 ± 0.02
Migration 0.8 ± 0.12 0.8 ± 0.1 0.77 ± 0.13 0.78 ± 0.12 0.8 ± 0.12 0.79 ± 0.12 0.85 ± 0.18 0.84 ± 0.13 0.84 ± 0.12 0.91 ± 0.18 0.9 ± 0.14 0.92 ± 0.2
Unempl 0.25 ± 0.03 0.22 ± 0.02 0.23 ± 0.03 0.22 ± 0.02 0.26 ± 0.03 0.28 ± 0.02 0.27 ± 0.03 0.25 ± 0.03 0.24 ± 0.03 0.43 ± 0.04 0.43 ± 0.04 0.38 ± 0.04

G
ra

ph
-le

ve
lt

as
ks

MUTAG 69.79 ± 6.8 79.57 ± 6.13 72.77 ± 2.77 71.06 ± 6.49 80.0 ± 4.9 80.43 ± 4.09 74.89 ± 5.51 80.43 ± 1.78 77.02 ± 9.32 70.64 ± 5.9 76.17 ± 6.63 73.62 ± 6.13
PROTEINS 75.7 ± 2.14 75.2 ± 3.3 76.34 ± 1.66 76.63 ± 1.74 73.91 ± 4.39 75.2 ± 2.96 75.63 ± 2.57 76.13 ± 2.7 73.33 ± 2.3 75.05 ± 2.76 74.19 ± 2.86 75.27 ± 2.14
NCI1 72.86 ± 0.69 74.26 ± 0.96 75.0 ± 0.99 75.18 ± 1.24 73.97 ± 0.82 73.02 ± 0.92 74.86 ± 0.82 73.93 ± 1.87 76.67 ± 1.48 76.17 ± 1.39 76.6 ± 1.75 74.49 ± 1.03
NCI109 72.2 ± 1.22 74.42 ± 0.7 73.8 ± 0.73 73.75 ± 1.09 74.93 ± 2.5 70.76 ± 1.11 75.66 ± 1.3 73.8 ± 2.06 75.35 ± 1.5 75.49 ± 1.39 77.12 ± 1.07 75.7 ± 1.04
IMDB-BIN 72.0 ± 2.48 70.96 ± 1.93 69.76 ± 2.65 70.32 ± 3.27 69.12 ± 2.92 71.04 ± 1.31 70.08 ± 1.21 70.4 ± 2.02 69.12 ± 2.82 70.88 ± 3.98 70.88 ± 2.25 70.8 ± 2.38
IMDB-MUL 49.97 ± 2.16 47.68 ± 4.21 50.13 ± 3.87 50.51 ± 2.92 49.17 ± 4.35 49.76 ± 3.55 47.63 ± 3.45 49.71 ± 2.83 47.79 ± 3.45 49.71 ± 3.7 48.75 ± 3.98 49.49 ± 5.08
REDDIT 76.24 ± 0.54 81.96 ± 1.36 75.68 ± 1.0 74.84 ± 2.68 83.24 ± 1.45 75.56 ± 3.19 82.84 ± 2.54 85.52 ± 1.38 85.12 ± 1.29 74.44 ± 1.74 77.24 ± 1.87 71.28 ± 2.06
ZINC 0.62 ± 0.01 0.57 ± 0.04 0.61 ± 0.01 0.59 ± 0.02 0.51 ± 0.01 0.6 ± 0.01 0.4 ± 0.04 0.34 ± 0.01 0.34 ± 0.02 0.46 ± 0.08 0.36 ± 0.02 0.53 ± 0.04

Table 7: Ablation study comparing the performance of CCXN, CWN, CCCN, SCCN, SC-
CNN, and SCN models on various datasets using two readout strategies, direct
readout (DR) and signal down-propagation (SDP). SDP generally enhances CWN
performance, whereas the effect of SDP on CCCN, SCCNN, and SCN varies based
on their internal signal propagation mechanisms. Means and standard deviations of
performance metris are shown. The best results are shown in bold for each model
and readout type.

Dataset CCXN CWN CCCN SCCN SCCNN SCN
DR SDP DR SDP DR SDP DR SDP DR SDP DR SDP

N
od

e-
le

ve
lt

as
ks

Cora 86.32 ± 1.22 86.79 ± 1.81 74.95 ± 0.98 86.32 ± 1.38 87.44 ± 1.28 87.68 ± 1.17 80.86 ± 2.16 80.06 ± 1.66 82.19 ± 1.07 80.65 ± 2.39 82.27 ± 1.34 79.91 ± 1.18
Citeseer 72.87 ± 1.13 74.67 ± 2.24 70.49 ± 2.85 75.2 ± 1.82 75.63 ± 1.58 74.91 ± 1.25 69.6 ± 1.83 68.86 ± 2.40 70.23 ± 2.69 69.03 ± 2.01 71.24 ± 1.68 70.4 ± 1.53
Pubmed 88.91 ± 0.47 88.38 ± 0.38 86.94 ± 0.68 88.64 ± 0.36 88.52 ± 0.44 88.67 ± 0.39 88.04 ± 0.51 88.37 ± 0.48 88.18 ± 0.32 87.78 ± 0.58 88.72 ± 0.5 88.62 ± 0.44
Amazon 48.93 ± 0.14 48.34 ± 0.12 45.58 ± 0.25 51.9 ± 0.15 50.55 ± 0.15 50.26 ± 0.17 OOM OOM OOM OOM OOM OOM
Empire 80.46 ± 0.23 81.44 ± 0.31 66.13 ± 0.03 81.81 ± 0.62 82.14 ± 0.00 82.51 ± 0.0 88.2 ± 0.22 88.27 ± 0.14 89.15 ± 0.32 88.73 ± 0.12 85.89 ± 0.34 88.79 ± 0.46
Minesweeper 88.88 ± 0.36 89.76 ± 0.32 48.82 ± 0.0 88.62 ± 0.04 89.42 ± 0.00 89.85 ± 0.00 88.85 ± 0.00 89.07 ± 0.25 87.4 ± 0.0 89.0 ± 0.00 90.32 ± 0.11 90.27 ± 0.36
Election 0.39 ± 0.05 0.35 ± 0.02 0.6 ± 0.04 0.34 ± 0.02 0.31 ± 0.02 0.31 ± 0.01 0.53 ± 0.03 0.57 ± 0.02 0.51 ± 0.03 0.56 ± 0.04 0.46 ± 0.04 0.51 ± 0.03
Bachelor 0.33 ± 0.03 0.32 ± 0.03 0.33 ± 0.03 0.33 ± 0.03 0.32 ± 0.02 0.31 ± 0.02 0.36 ± 0.02 0.34 ± 0.02 0.34 ± 0.03 0.34 ± 0.03 0.32 ± 0.02 0.32 ± 0.03
Birth 0.80 ± 0.12 0.74 ± 0.11 0.81 ± 0.11 0.72 ± 0.09 0.71 ± 0.09 0.72 ± 0.05 0.82 ± 0.09 0.83 ± 0.10 0.79 ± 0.12 0.83 ± 0.12 0.71 ± 0.08 0.8 ± 0.11
Death 0.57 ± 0.06 0.54 ± 0.06 0.55 ± 0.05 0.54 ± 0.06 0.54 ± 0.06 0.54 ± 0.06 0.58 ± 0.06 0.56 ± 0.04 0.55 ± 0.05 0.58 ± 0.05 0.52 ± 0.05 0.56 ± 0.05
Income 0.25 ± 0.03 0.25 ± 0.03 0.36 ± 0.04 0.25 ± 0.03 0.23 ± 0.02 0.23 ± 0.02 0.29 ± 0.03 0.29 ± 0.03 0.28 ± 0.03 0.31 ± 0.03 0.25 ± 0.02 0.27 ± 0.02
Migration 0.80 ± 0.11 0.85 ± 0.18 0.9 ± 0.16 0.84 ± 0.13 0.84 ± 0.10 0.84 ± 0.12 0.91 ± 0.18 0.93 ± 0.17 0.90 ± 0.14 0.93 ± 0.17 0.92 ± 0.20 0.96 ± 0.23
Unempl 0.28 ± 0.05 0.27 ± 0.03 0.46 ± 0.04 0.25 ± 0.03 0.24 ± 0.03 0.25 ± 0.03 0.43 ± 0.04 0.47 ± 0.04 0.43 ± 0.04 0.45 ± 0.04 0.38 ± 0.04 0.41 ± 0.03

G
ra

ph
-le

ve
lt

as
ks

MUTAG 69.79 ± 4.61 74.89 ± 5.51 69.68 ± 8.58 80.43 ± 1.78 80.85 ± 5.42 77.02 ± 9.32 70.64 ± 5.90 73.62 ± 4.41 76.17 ± 6.63 70.64 ± 3.16 71.49 ± 2.43 73.62 ± 6.13
PROTEINS 75.63 ± 2.57 74.91 ± 1.85 76.13 ± 1.80 76.13 ± 2.70 73.55 ± 3.43 73.33 ± 2.30 75.05 ± 2.76 74.34 ± 3.17 74.19 ± 2.86 74.98 ± 1.92 75.27 ± 2.14 74.77 ± 1.69
NCI1 72.43 ± 1.72 74.86 ± 0.82 68.52 ± 0.51 73.93 ± 1.87 76.67 ± 1.48 77.65 ± 1.28 76.42 ± 0.88 76.17 ± 1.39 76.6 ± 1.75 75.6 ± 2.45 75.27 ± 1.57 74.49 ± 1.03
NCI109 73.22 ± 0.48 75.66 ± 1.30 68.19 ± 0.65 73.8 ± 2.06 75.35 ± 1.50 74.83 ± 1.18 75.49 ± 1.39 75.31 ± 1.36 77.12 ± 1.07 75.43 ± 1.94 74.58 ± 1.29 75.7 ± 1.04
IMDB-BIN 70.08 ± 1.21 68.96 ± 2.03 70.4 ± 2.02 69.28 ± 2.57 69.12 ± 2.82 69.44 ± 2.46 70.88 ± 3.98 69.76 ± 3.16 70.88 ± 2.25 69.28 ± 5.69 70.8 ± 2.38 68.64 ± 3.90
IMDB-MUL 47.63 ± 3.45 48.75 ± 3.56 49.71 ± 2.83 49.87 ± 2.33 49.01 ± 2.63 47.79 ± 3.45 49.71 ± 3.70 47.31 ± 3.12 48.75 ± 3.98 46.67 ± 3.13 48.16 ± 2.89 49.49 ± 5.08
REDDIT 74.40 ± 1.50 82.84 ± 2.54 76.20 ± 0.86 85.52 ± 1.38 85.12 ± 1.29 83.32 ± 0.73 74.16 ± 1.54 74.44 ± 1.74 75.56 ± 3.46 77.24 ± 1.87 71.28 ± 2.06 69.68 ± 4.0
ZINC 0.63 ± 0.02 0.40 ± 0.04 0.70 ± 0.0 0.34 ± 0.01 0.35 ± 0.02 0.34 ± 0.02 0.55 ± 0.01 0.46 ± 0.08 0.36 ± 0.01 0.36 ± 0.02 0.59 ± 0.01 0.53 ± 0.04

34

TopoBench: A Framework for Benchmarking Topological Deep Learning

Table 8: Model sizes corresponding to the best set of hyperparameters
Model GCN GAT GIN AST EDGNN UniGNN2 CWN CCCN CCXN SCN SCCN SCCNN

Cora 234.63K 113.61K 105.03K 60.26K 113.29K 109.06K 343.11K 451.85K 735.37K 144.62K 155.88K 164.17K
Citeseer 525.06K 558.60K 122.05K 132.87K 258.50K 541.32K 1754.50K 1032.84K 758.41K 737.29K 782.34K 893.13K
Pubmed 114.69K 148.23K 53.38K 280.83K 147.59K 114.56K 163.72K 85.76K 277.51K 134.40K 457.99K 605.06K
MUTAG 67.97K 22.02K 38.40K 80.77K 5.73K 84.10K 334.72K 284.29K 73.86K 20.03K 398.85K 27.11K
PROTEINS 13.19K 10.11K 13.19K 14.34K 5.60K 21.31K 101.12K 34.56K 86.53K 10.24K 397.31K 26.72K
NCI1 6.72K 11.20K 154.37K 57.47K 88.19K 104.32K 124.10K 63.87K 15.87K 94.98K 131.84K 188.99K
NCI109 23.75K 11.23K 154.50K 221.57K 88.32K 4.61K 412.29K 17.67K 71.36K 26.08K 135.75K 49.54K
IMDB-BIN 21.70K 21.83K 9.89K 114.24K 9.86K 100.61K 68.80K 218.24K 19.04K 202.63K 563.07K 285.83K
IMDB-MUL 62.08K 6.37K 18.76K 111.30K 27.01K 8.32K 19.68K 45.64K 56.26K 27.94K 545.16K 121.22K
REDDIT 13.63K 30.66K 10.08K 106.18K 5.83K 68.10K 26.66K 47.94K 57.54K 7.84K 69.31K 286.59K
Amazon 122.37K 156.16K 89.35K 155.91K 122.24K 89.22K 578.95K 310.15K 200.96K OOM OOM OOM
Minesweeper 9.28K 5.89K 51.46K 118.02K 21.70K 51.33K 22.24K 35.07K 8.83K 51.97K 25.15K 33.44K
Empire 37.39K 41.81K 33.23K 257.17K 41.49K 90.90K 142.74K 86.10K 43.83K 415.89K 612.50K 240.53K
Tolokers 84.87K 151.94K 3.75K 217.99K 21.89K 13.57K 12.07K OOM OOM OOM OOM OOM
Election 84.22K 151.30K 150.27K 217.34K 21.57K 4.58K 118.08K 234.37K 253.18K 16.64K 11.52K 415.10K
Bachelor 17.47K 151.30K 7.81K 316.93K 84.10K 3.55K 43.78K 34.88K 12.86K 27.14K 43.52K 415.10K
Birth 4.64K 30.34K 5.70K 30.21K 84.10K 13.25K 26.24K 22.40K 253.18K 103.42K 11.52K 26.98K
Death 21.63K 10.18K 7.81K 316.93K 84.10K 51.07K 26.24K 15.58K 12.86K 27.14K 11.52K 415.10K
Income 17.47K 151.30K 9.92K 217.34K 21.57K 4.58K 85.18K 12.42K 12.86K 27.14K 268.03K 105.15K
Migration 67.71K 10.18K 38.27K 80.64K 21.57K 51.07K 26.24K 15.58K 65.15K 16.64K 11.52K 415.10K
Unempl 84.22K 151.30K 117.25K 105.86K 21.57K 5.60K 101.63K 234.37K 286.46K 27.14K 11.52K 105.15K
ZINC 22.59K 22.85K 10.40K 106.82K 22.53K 102.14K 88.06K 287.74K 16.48K 24.42K 617.86K 1453.82K

Average size 75K ± 111K 89K ± 119K 54K ± 53K 150K ± 88K 59K ± 60K 74K ± 109K 210K ± 367K 170K ± 229K 158K ± 212K 107K ± 172K 263K ± 251K 313K ± 340K

Table 9: Model runtime in seconds corresponding to the best set of hyperparameters
Model GCN GAT GIN AST EDGNN UniGNN2 CWN CCCN CCXN SCN SCCN SCCNN

Cora 19.71 ± 3.18 33.51 ± 6.33 24.24 ± 7.48 40.23 ± 11.82 28.17 ± 3.97 35.28 ± 5.14 48.49 ± 27.58 39.36 ± 6.72 35.74 ± 2.93 51.53 ± 14.0 84.04 ± 13.39 65.62 ± 23.49
Citeseer 22.58 ± 2.48 21.18 ± 2.24 24.65 ± 2.58 58.78 ± 2.26 39.59 ± 1.93 41.58 ± 3.55 48.89 ± 4.02 48.39 ± 4.57 53.88 ± 2.81 58.85 ± 18.23 65.53 ± 13.34 80.6 ± 36.33
Pubmed 40.89 ± 8.39 50.2 ± 13.27 59.91 ± 10.56 84.67 ± 13.03 87.25 ± 13.88 160.37 ± 31.88 147.59 ± 28.96 172.63 ± 33.06 212.66 ± 52.26 151.0 ± 22.55 134.82 ± 34.81 171.92 ± 48.25
MUTAG 3.83 ± 0.89 4.16 ± 1.05 4.6 ± 0.56 9.9 ± 3.24 5.81 ± 1.13 5.5 ± 0.78 10.92 ± 0.96 12.04 ± 2.21 10.76 ± 1.89 8.47 ± 2.43 10.71 ± 2.92 14.06 ± 2.51
PROTEINS 8.18 ± 2.47 8.18 ± 2.3 8.88 ± 2.34 15.81 ± 2.89 15.15 ± 3.3 27.8 ± 7.77 53.6 ± 17.7 41.63 ± 7.23 51.98 ± 8.5 42.78 ± 13.41 70.06 ± 15.91 54.13 ± 11.27
NCI1 53.23 ± 19.67 57.32 ± 17.49 61.2 ± 23.97 138.13 ± 46.01 110.86 ± 27.75 169.17 ± 11.25 302.34 ± 63.44 372.36 ± 109.47 244.72 ± 46.09 276.32 ± 63.21 332.76 ± 51.89 307.2 ± 83.01
NCI109 37.4 ± 8.63 56.44 ± 9.05 50.32 ± 7.98 138.66 ± 26.38 126.61 ± 45.53 61.25 ± 16.58 294.79 ± 46.27 272.3 ± 20.89 225.72 ± 86.57 226.23 ± 66.29 321.76 ± 55.92 353.69 ± 105.89
IMDB-BIN 8.18 ± 3.33 7.48 ± 2.21 7.72 ± 1.72 21.34 ± 2.96 13.06 ± 4.76 20.75 ± 6.02 61.16 ± 9.33 51.88 ± 12.3 51.2 ± 18.14 374.83 ± 132.68 432.23 ± 57.29 515.13 ± 112.53
IMDB-MUL 10.27 ± 3.58 9.79 ± 1.85 10.42 ± 3.93 20.89 ± 5.05 13.89 ± 3.33 16.74 ± 4.15 39.99 ± 5.18 73.6 ± 20.07 72.3 ± 13.76 776.65 ± 147.42 716.44 ± 232.31 895.77 ± 399.41
REDDIT 16.17 ± 1.75 26.87 ± 5.02 28.75 ± 7.64 72.33 ± 18.33 73.92 ± 26.58 307.4 ± 159.71 1230.53 ± 270.03 1653.47 ± 641.13 1435.07 ± 427.2 985.1 ± 68.42 1622.17 ± 667.71 3670.64 ± 423.25
Amazon 22.12 ± 4.99 25.09 ± 4.41 15.25 ± 2.73 61.77 ± 8.17 52.31 ± 4.88 264.24 ± 29.28 239.31 ± 45.79 149.34 ± 58.59 201.99 ± 38.94 OOM OOM OOM
Minesweeper 7.33 ± 1.66 10.64 ± 1.1 8.32 ± 2.51 15.79 ± 2.67 20.4 ± 4.38 58.72 ± 14.39 52.12 ± 13.87 98.2 ± 15.21 50.27 ± 14.89 82.5 ± 19.14 28.76 ± 3.74 54.1 ± 20.66
Empire 23.38 ± 2.21 27.1 ± 1.89 22.36 ± 4.9 82.61 ± 15.26 63.77 ± 13.16 122.23 ± 35.71 67.26 ± 10.32 84.54 ± 6.34 63.27 ± 15.66 69.98 ± 14.33 94.94 ± 27.26 96.45 ± 40.6
Tolokers 163.93 ± 31.44 119.87 ± 42.98 77.75 ± 26.74 117.83 ± 23.21 210.78 ± 30.25 412.53 ± 94.18 OOM OOM OOM OOM OOM OOM
Election 2.27 ± 0.29 2.66 ± 0.43 2.1 ± 0.33 3.33 ± 0.34 2.21 ± 0.34 2.97 ± 0.32 4.01 ± 0.39 4.15 ± 0.28 3.98 ± 0.42 5.18 ± 0.48 4.23 ± 0.73 9.35 ± 4.52
Bachelor 2.28 ± 0.11 2.69 ± 0.39 1.79 ± 0.28 3.09 ± 0.31 2.24 ± 0.38 2.3 ± 0.25 2.99 ± 0.34 3.01 ± 0.32 3.45 ± 0.29 5.11 ± 0.67 5.98 ± 1.8 7.84 ± 2.14
Birth 2.04 ± 0.27 2.29 ± 0.33 1.93 ± 0.32 2.18 ± 0.32 2.2 ± 0.39 2.33 ± 0.29 4.11 ± 0.48 3.03 ± 0.3 4.04 ± 0.45 4.99 ± 0.4 10.3 ± 5.81 29.24 ± 16.97
Death 2.21 ± 0.3 2.1 ± 0.32 1.77 ± 0.32 3.13 ± 0.24 2.35 ± 0.22 2.66 ± 0.46 4.54 ± 0.55 4.08 ± 0.51 3.49 ± 0.32 4.62 ± 0.55 10.31 ± 5.89 8.2 ± 1.82
Income 2.21 ± 0.18 2.66 ± 0.41 2.03 ± 0.35 3.33 ± 0.35 2.6 ± 0.33 2.94 ± 0.37 3.36 ± 0.28 3.71 ± 0.28 3.42 ± 0.31 5.08 ± 0.63 10.51 ± 8.3 5.57 ± 0.7
Migration 1.86 ± 0.3 2.17 ± 0.3 1.87 ± 0.31 3.49 ± 0.24 2.19 ± 0.3 2.69 ± 0.43 4.6 ± 0.35 4.61 ± 0.36 4.48 ± 0.79 5.22 ± 0.47 4.15 ± 0.76 7.79 ± 2.02
Unempl 2.26 ± 0.35 2.68 ± 0.3 2.02 ± 0.31 4.73 ± 0.31 2.17 ± 0.28 4.06 ± 0.08 3.97 ± 0.3 4.19 ± 0.29 5.1 ± 0.8 5.37 ± 0.44 4.17 ± 0.73 5.6 ± 0.67
ZINC 146.89 ± 27.63 171.15 ± 64.67 168.43 ± 107.1 397.77 ± 153.75 357.68 ± 46.95 520.58 ± 235.2 1390.21 ± 96.86 1621.11 ± 141.72 1226.67 ± 317.55 1209.83 ± 571.93 1226.19 ± 1686.57 2060.2 ± 408.2

Average runtime 27.23 ± 43.95 29.37 ± 42.38 26.65 ± 38.89 59.08 ± 88.18 56.14 ± 85.81 102.00 ± 147.61 191.18 ± 384.52 224.64 ± 479.47 188.77 ± 389.49 217.48 ± 355.56 259.50 ± 444.10 420.65 ± 903.88

Table 10: TNNs utilized in the experiments and their references
Acronym Neural network name Reference

Graph neural networks

GAT Graph attention network Veličković et al. (2018)
GIN Graph isomorphism network Xu et al. (2019)
GCN Semi-Supervised Classification with Graph Convolutional Networks Kipf and Welling (2016)

Simplicial complexes

SAN Simplicial Attention Neural Networks Giusti et al. (2022)
SCCN Efficient Representation Learning for Higher-Order Data with Simplicial Complexes Yang et al. (2022)
SCCNN Convolutional Learning on Simplicial Complexes Yang and Isufi (2023)
SCN Simplicial Complex Neural Networks Ebli et al. (2020)

Cellular complexes

CAN Cell Attention Network Giusti et al. (2023)
CCCN Generalized simplicial attention neural networks 6 Battiloro et al. (2024b)
CXN Cell Complex Neural Networks Hajij et al. (2020)
CWN Weisfeiler and Lehman Go Cellular: CW Networks Bodnar et al. (2021a)

Hypergraphs

AllSetTransformer You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks Chien et al. (2021)
EDGNN Equivariant Hypergraph Diffusion Neural Operators Wang et al. (2022)
UniGNN UniGNN: a Unified Framework for Graph and Hypergraph Neural Networks Huang and Yang (2021)

35

Telyatnikov et al.

performance on three datasets with categorical attributes—20Newsgroups, Mushroom, and
ZOO—sourced from the UCI Categorical Machine Learning Repository (Dua et al., 2017).
For these, we construct hypergraphs as in Yadati et al. (2019), where a hyperedge is formed
by grouping data points sharing the same categorical feature value.

Table 11 summarizes the statistics of the hypergraph datasets along with their associated
homophily metrics: clique-expansion homophily (Wang et al., 2023) and ∆-homophily (Tely-
atnikov et al., 2025). These measures capture the degree to which hyperedges align with label
information, serving as indicators of how well the hypergraph structure supports downstream
classification.

Simplicial datasets: In contrast, the MANTRA family (Ballester et al., 2024) comprises
purely topological datasets of 2-manifold triangulations. From the suite of tasks it offers, we
focus on three representative classification problems: (1) NAME: predicting the homeomor-
phism class of a triangulated surface, (2) ORIENT: determining its orientability, and (3) β1,
β2: predicting the values of the first and second Betti numbers. The task of predicting Betti
numbers is performed as a regression, while the outputs are rounded, and then classification
metrics are employed to assess performance. Table 12 reports the corresponding dataset
statistics for this family.

Table 11: Statistics of hypergraph higher-order datasets
Dataset 0-cell dim Num. 0-cell Num. 1-cell Num. classes CE Homophily 1

|V|
∑

v∈V h
0
v

1
|V|

∑
v∈V h

1
v

Cora 1433 2708 1579 7 89.74 84.10 78.08
Citeseer 3703 3312 1079 6 89.32 78.25 74.18
Pubmed 500 19717 7963 3 95.24 82.05 75.73
CORA-CA 1433 2708 1072 7 80.26 80.81 76.51
DBLP-CA 1425 41302 22363 6 86.88 88.86 86.01
ZOO 16 101 43 7 82.88 91.13 85.79
20Newsgroups 100 16262 100 4 75.25 81.26 74.78
Mushroom 22 8124 298 2 85.33 88.05 84.41
NTU2012 100 16242 2012 67 46.07 53.24 41.95
ModelNet40 100 12311 12311 40 24.07 42.16 29.42

Table 12: Statistics of MANTRA family simplicial datasets
Dataset 0/1/2-cell dim Avg. num. 0-cell Avg. num. 1-cell Avg. num. 2-cell Num. classes Num. objects

NAME 1/1/1 9.98 34.43 22.95 8 43138
ORIENT 1/1/1 9.98 34.43 22.95 2 43138
β1,β2 1/1/1 9.98 34.43 22.95 1 43138

D.2 Hypergraph Higher-Order Datasets Results

Table 13 demonstrates varying model effectiveness across real-world classification hypergraph
datasets. While no single model consistently outperforms others across all datasets, AllSet-
Transformer achieves the best performance in 5 out of 10 cases. UniGNN2 achieves top
performance on several datasets, including Cora and ModelNet40, while EDGNN leads on
CORA-CA and Citeseer. It is important to note that the results shown in Table 13 and
Table 1 for Cora, Citeseer, and Pubmed refer to the same base datasets but differ in the
nature of their topology. Specifically, the higher-order structures in Table 1 are derived

36

TopoBench: A Framework for Benchmarking Topological Deep Learning

via lifting mechanisms applied to graph data (graph representation of the Cora, Citeseer,
and Pubmed), whereas the results in Table 13 are obtained from real hypergraph datasets,
where hyperedges are constructed based on available metadata, please refer to Appendix D.2
of Telyatnikov et al. (2025).

Table 13: Test accuracy (mean ± std) for each hypergraph dataset (rows) and model
(columns). The best result is bold and shaded in gray, while those within one
standard deviation are in blue-shaded boxes.

EDGNN AllSetTransformer UniGNN2

Cora 78.14 ± 0.72 78.91 ± 1.06 79.56 ± 1.54
Citeseer 72.58 ± 1.51 71.57 ± 1.71 72.39 ± 2.38
Pubmed 87.04 ± 0.34 87.22 ± 0.28 86.93 ± 0.53
CORA-CA 82.36 ± 0.72 82.19 ± 2.61 81.71 ± 1.42
DBLP-CA 90.83 ± 0.25 91.98 ± 0.18 90.72 ± 0.23
Zoo 86.92 ± 6.99 90.77 ± 8.85 90.77 ± 9.65
20newsW100 79.96 ± 0.77 81.04 ± 0.72 80.21 ± 0.75
Mushroom 99.78 ± 0.07 99.93 ± 0.03 99.61 ± 0.21
NTU2012 87.55 ± 1.52 89.07 ± 0.90 88.47 ± 1.92
ModelNet40 98.27 ± 0.21 98.18 ± 0.12 98.41 ± 0.11

D.3 Simplicial Higher-Order Datasets

Table 14 reports results introduced by Carrasco et al. (2025), a study conducted within the
TopoBench framework, on real-world simplicial higher-order datasets. SCCNN achieves the
highest overall performance, reaching 95.08% accuracy on the NAME classification task,
while also maintaining strong performance across other metrics. Simplicial complex-based
networks (SCN, SCCNN, SaNN, GCCN) consistently outperform standard graph methods
(GCN, GAT, GIN), with SCCNN exhibiting particularly stable results, indicated by a low
standard deviation of 0.56. These findings highlight the advantage of topological networks
in modeling higher-order tasks, where conventional pairwise graph structures fall short in
capturing complex relational patterns.

Table 14: Higher-order datasets. Results are shown as mean ± standard deviation. The best
result is bold and shaded in grey, while those within one standard deviation are in
blue-shaded boxes.

Model NAME (↑) ORIENT (↑) β1 (↑) β2(↑)

G
ra

p
h GCN 42.14 ± 2.72 47.94 ± 0.00 46.86 ± 4.50 0.00 ± 0.00

GAT 18.09 ± 0.65 47.94 ± 0.00 7.45 ± 0.05 0.00 ± 0.00
GIN 76.14 ± 0.14 56.28 ± 0.45 88.13 ± 0.00 0.93 ± 1.21

S
im

p
li
ci

al

SCN 79.48 ± 1.36 69.55 ± 0.97 76.45 ± 3.06 5.45 ± 2.31
SCCNN 95.08 ± 0.56 86.29 ± 1.23 90.20 ± 0.20 65.82 ± 2.70
SaNN 81.76 ± 1.37 61.65 ± 0.55 88.46 ± 0.09 39.22 ± 2.80
GCCN 86.76 ± 1.27 76.60 ± 1.67 84.20 ± 4.80 41.82 ± 20.19
HOPSE-M 91.50 ± 1.45 80.68 ± 1.72 90.26 ± 0.55 71.69 ± 1.50
HOPSE-G 81.75 ± 1.26 62.17 ± 0.98 88.28 ± 0.08 35.37 ± 2.25

37

Telyatnikov et al.

Appendix E. Additional Dataset Details

To promote transparency, reproducibility, and ease of use, all dataset loading and preprocess-
ing functionalities are encapsulated within the TopoBench library’s loader module (loader
module). Most graph datasets are processed using the official torch_geometric loaders,
which parse raw formats (e.g., .csv, .npz, or edge lists). The US-county-demos dataset is
further adapted from the following repository (link). Higher-order hypergraph datasets are
sourced from the repository of Chien et al. (2021) (link), while the MANTRA family datasets
are adapted from (link) and integrated into TopoBench with consistent formatting adapted
from torch_geometric, which stores the preprocessed datasets in the standardized PyTorch
.pt files. This unified pipeline automates the full dataset preparation process and removes
the need to access external repositories manually.

TopoBench includes all dataset licenses—where applicable—in the file located at the
root of the repository and named third_party_licenses.txt. Additionally, a dedicated
Datasets section in the README.md file provides references to the original source papers for
each dataset included in the benchmark.

E.1 Graph datasets

Shared preprocessing: As emphasised in Appendix C.4–for demonstration purposes, only
one fixed lifting is applied to transform graphs into each of the considered topological domains,
leaving a domain-specific optimal lifting strategy beyond the scope of this paper. Specifically,
a clique complex is used for simplicial lifting, cycle-based lifting is used for cellular domains,
and k-hop lifting (with k = 1) is used for hypergraphs. Feature projection is also applied,
where the (n − 1)-cell features are multiplied by the corresponding incidence matrices to
generate n-cell features.

Cora, Citeseer, and Pubmed are adapted from the open-source Planetoid dataset collection
available in the torch_geometric repository (link to dataset). Preprocessing: no additional
preprocessing is applied beyond the shared one.

MUTAG, PROTEINS, REDDIT-BINARY, IMDB-BINARY, IMDB-MULTI, NCI1, and
NCI109 are sourced from the open-source TUDataset collection (link to dataset). Prepro-
cessing: no additional preprocessing is applied beyond the shared one.

ZINC is adapted from the open-source dataset available at (link to dataset). Prepro-
cessing: node features are first transformed into one-hot encodings, after which the shared
preprocessing is applied.

Amazon Ratings, Minesweeper, Roman Empire, and Tolokers are obtained using the
HeterophilousGraphDataset loader from torch_geometric (link to dataset). Preprocessing:
no additional preprocessing is applied beyond the shared one.

The US-county-demos dataset is taken from the official Cornell website (link to dataset).
Preprocessing: the version used is already preprocessed as in Jia and Benson (2020), and no
further preprocessing is applied beyond the shared one.

E.2 Higher-Order datasets

Higher-order hypergraph datasets are acquired from the repository of Chien et al. (2021)
(link to dataset) and adapted to the benchmark pipeline to conform to the integrated

38

https://github.com/geometric-intelligence/TopoBench/tree/main/topobench/data/loaders
https://github.com/geometric-intelligence/TopoBench/tree/main/topobench/data/loaders
https://github.com/000Justin000/gnn-residual-correlation
https://github.com/jianhao2016/AllSet
https://github.com/aidos-lab/MANTRA
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html#torch_geometric.datasets.Planetoid
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.TUDataset.html#torch_geometric.datasets.TUDataset
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.ZINC.html#torch_geometric.datasets.ZINC
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.HeterophilousGraphDataset.html#torch_geometric.datasets.HeterophilousGraphDataset
https://www.cs.cornell.edu/~arb/data/US-county-demos/
https://github.com/jianhao2016/AllSet

TopoBench: A Framework for Benchmarking Topological Deep Learning

torch_geometric format used in TopoBench. Additional information regarding the hyper-
graph datasets is provided and discussed in Appendix D.1.

The code for the MANTRA family datasets is adapted from the (https://github.com/aidos-
lab/MANTRA) and integrated into TopoBench following the torch_geometric formatting.

39

https://github.com/jianhao2016/AllSet
https://github.com/jianhao2016/AllSet

	Introduction
	Background
	Existing Software
	The TopoBench Library: Module Outline, Datasets and Liftings
	TopoBench Modules
	Datasets
	Topological Liftings

	Numerical Experiments
	Setup
	Main Results
	Ablation Study
	Higher-Order Datasets

	Concluding Remarks, Limitations, and Future Work
	Mathematical Background
	Topological Domains
	Liftings
	Lifting Examples

	Topological Neural Networks
	General definition

	Traditional Message Passing on Graphs
	Higher-Order Message Passing

	Implemented Liftings
	Further Experimental Details
	Experiment Configuration and Model Execution
	Hyperparameter Search
	Descriptive Summaries of Datasets
	Additional Results and Analysis

	Higher-Order Datasets
	Descriptive Summaries of Higher-Order Datasets
	Hypergraph Higher-Order Datasets Results
	Simplicial Higher-Order Datasets

	Additional Dataset Details
	Graph datasets
	Higher-Order datasets

