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Abstract

Generative machine learning (ML) models such as variational autoencoders (VAEs)
learn continuous molecular latent spaces that can facilitate the exploration of
novel molecules and materials. However, such latent spaces are typically high-
dimensional, making targeted molecular optimization challenging. We therefore
propose deterministic global optimization of molecular property prediction mod-
els in the form of artificial neural networks (ANNs) trained on VAEs’ latent
spaces. By using ANNs with ReLU activations, we formulate molecular design
as a mixed-integer linear program (MILP) guaranteeing optimal molecular prop-
erties, as predicted by the ANN. Our results show superiority of the identified
molecules with global optimal predicted property values compared to those found
with frequently-used optimization strategies such as Bayesian optimization. Our
approach thus enables finding the most promising molecules/materials according
to the ANN predictions for subsequent investigation in simulations/experiments,
thereby increasing the sample efficiency of ML-guided molecular design.

1 Introduction

Machine learning (ML) has shown great potential to accelerate the design of molecules and materials
with desired properties in many applications such as drugs [1, 2, 3], fuels [4, 5], and catalysts [6, 7].
Various generative ML approaches have been utilized for molecular design including reinforce-
ment learning (RL), generative adversarial networks (GANs), variational autoencoders (VAEs), and
diffusion- and flow-based models, cf. overviews in [8, 9, 10]. As part of this design, predictive
ML approaches such as graph neural networks (GNNs) and transformers have been employed to
predict properties of molecules and materials [11, 12]. These approaches facilitate the exploration of
the vast molecular space for novel molecules and materials, which can then be further investigated
in so-called oracle calls, i.e., accurate computational simulations or laboratory experiments, both
resource-intensive and time-consuming.

A major goal of ML-guided molecular design is to identify the most promising molecules and
materials with a low number of oracle calls, i.e., a high sample efficiency. However, as of today,
many generative ML approaches used for molecular design exceed realistic practical limits for the
number of oracle calls [13, 14]. Gao et al. [13] have recently shown that even a limit of 10,000 oracle
calls is not sufficient for many proposed generative ML approaches to identify suitable molecules in
certain design tasks. In many real-world cases, especially for costly and labor-intensive experiments,
the limit of oracle calls may be orders of magnitude lower, hence increasing sample efficiency of
generative ML models is highly relevant and actively investigated, e.g., in [15, 16, 17].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Latent space DecoderEncoder

ReLU-ANN

Property space

C C
C

C

C
C

O

C C
C

C

C
C

O

(1)

C

C

C
CC

O

C

O

C

O C

C C

C C
C

O

C
C

O

C C
C C

C

(2)

Figure 1: Deterministic global optimization for molecular design: (1) Jointly-trained VAE for
molecular generation and ANN with ReLU activation for property prediction. (2) Optimization of
property ANN on VAE latent space and decoding of optimal latent vectors to molecules.

We hypothesize that deterministic global optimization (DGO) in combination with ML is highly
promising to increase the sample efficiency in molecular design: given an ML model, DGO can
guarantee finding molecules with optimal predicted properties, thereby focusing further investigations
on the most promising candidates. For instance, McDonald et al. [18] and Zhang et al. [19, 20] recently
proposed a molecular design problem formulation with trained GNNs embedded as constraints,
allowing to identify globally optimal molecules as a function of GNNs. However, this approach relies
on expert-designed constraints to ensure chemical validity of the designed molecules and incorporates
(nonlinear) graph convolutions in the optimization formulation, resulting in extensive formulation
efforts and computational costs. This limits its practical application to the design of small molecules
with a low number of heavy atoms or fragments, cf. [18, 19].

We propose to rather use VAEs for molecular generation in combination with DGO of artificial neural
networks (ANNs) for property prediction (1) trained on the VAE’s latent spaces and (2) embedded
into a molecular design formulation, see Figure 1, also cf. Wang et al. [21]. In this way, DGO
finds optimal predicted properties of the ANN, and the VAE can be used subsequently to decode
molecules from the corresponding latent vectors. Thus, in contrast to DGO with GNNs embedded,
we circumvent the need to define chemistry rules for designing molecules and to include graph
convolutions in the optimization formulation. In fact, by using ReLU activations within the ANN, we
can formulate molecular design as a MILP.

Our main contribution is the use of mixed-integer linear programming to guarantee the discovery of
molecules with optimal properties according to ANN prediction models, thereby increasing sample
efficiency in ML-guided molecular design.

2 Methods

2.1 VAEs for molecular design

VAEs have been extensively developed and applied to molecular design in recent years, e.g., [22, 23,
24, 25]. Utilizing their encoder-decoder architecture, VAEs learn a latent representation of molecules
from which the molecules can be reconstructed. The encoder maps molecules from their input
representation, e.g., in the form of text or graphs, to a continuous vector representation, referred to
as latent space vectors z ∈ Rd of dimensionality d, which typically follow a multivariate Gaussian
distribution N (µ, Σ). The decoder then reconstructs the molecules from the latent space. By
sampling new points from the latent space and decoding them, molecular structures can be generated,
enabling exploration of the molecular space. Here, multiple challenges arise, such as the chemical
validity and out-of-distribution sampling of molecules, which has led to various adaptions of VAEs
for molecular design, e.g., [23, 26, 27, 28]

VAEs can also be utilized for molecular property prediction [8]. Specifically, the latent space can
serve as input domain to train molecular property prediction models, e.g., ANNs. Here, an ANN with
parameters Θ learns to predict a molecular property p from the VAE’s latent space: fΘ(z) = p̂. The
property prediction models can either be trained after or simultaneously to the VAE training; also
known as conditional VAEs. In molecular design, joint training has shown superior performance to
subsequent ANN training, leading to higher accuracy and a latent space ordered by property [22, 29].
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Optimization guides the sampling process of molecules from the VAEs’ latent spaces. Frequently,
derivative-free black-box global optimization approaches like Bayesian optimization, particle-swarm
algorithms, or genetic algorithms are employed to search for promising molecules in the latent space,
cf. [5, 8, 10, 30]. The properties of the identified molecules can then be evaluated with the oracle
and/or by using a property prediction model. Since the latent space typically is high-dimensional and
the mapping from latent space to property can be highly nonlinear, a high number of oracle/prediction
model calls are expected until near-optimal points are identified. Further, gradient-based optimization
approaches can be used to sample from the latent space [31]; however, they may get stuck in local
optima. Therefore, we focus on DGO based on property prediction models in the form of ANNs.
That is, DGO based on ANNs for property prediction that are trained on VAE latent spaces allows to
identify global optimal properties and corresponding latent vectors, as recently discussed by Wang et
al. [21].

2.2 Deterministic global optimization of ANNs

ANNs can be embedded into optimization problem formulations, which can be solved to global
optimality by using DGO [32]. This allows finding the inputs to the ANN that correspond to an
optimal predicted target value. In contrast to aforementioned derivative-free or gradient-descent
methods, DGO with an embedded ANN results in provable optimality, within a given tolerance. Due
to the nonlinear activation functions, problem formulations with embedded ANNs generally result in
nonlinear programs, and solving them to global optimality with dedicated techniques, cf. [32], can be
computationally expensive. By using piecewise linear ReLU activation functions, the optimization
problem can be formulated as MILP [33], which can facilitate solving.

2.3 Deterministic global optimization of ReLU-ANNs with VAEs for molecule generation

We propose to use DGO of property ReLU-ANNs in combination with VAEs for molecular design, cf.
Figure 1. That is, we jointly train a VAE on molecular generation and an ANN with ReLU activation
for molecular property prediction. After training, we embed the ReLU-ANN into a MILP to find
optimal predicted property values with respect to the latent space:maxz fΘ(z). Our formulation of
molecular design as a MILP, instead of a nonlinear program used by Wang et al. [21], therefore avoids
nonlinearities. Solving this MILP yields the best property value p̂∗ as well as a corresponding latent
point z∗. The decoder then reconstructs a molecule from this latent point. We thereby guarantee to
find the molecule with the best predicted property value within a given optimality tolerance.

3 Molecular design case studies

We consider two molecular design tasks. First, we aim at maximizing the molecular weight as an
illustrative example with a simple oracle. For model training and testing, we use the ZINC dataset of
250 k small organic molecules [34, 35]. Second, based on the Tartarus benchmark [14], we consider
minimizing the singlet-triplet gap, which can improve emitter efficiency [36]. Thus, we evaluate our
approach in a practical setting with quantum mechanics-based oracles. Here, we focus on the emitter
design task using a filtered portion of the GDB13 database, containing about 380 k organic molecules
with up to 13 heavy atoms [37]. For details on the oracle and dataset, we refer to [14].

Models: We consider two alternative VAEs for molecule generation, namely the string-based
SMILES-VAE [22, 38] and the graph-based Junction Tree VAE [23]. The VAEs are trained jointly
with ReLU-ANNs for predicting molecular properties. For the training, validation, and testing of the
VAEs and ANNs, we split the respective datasets randomly into 90%/5%/5%.

Optimization strategies: We benchmark our DGO approach against the following strategies for
sampling molecules from VAEs’ latent spaces: Random search, BO based on [39], and GAs using the
package by [40]. For DGO with embedded ReLU-ANNs, we use the tool from [41] with Gurobi [42].

Optimization setup: We set the bounds of the search space to the two-sigma (Σ) region of the
latent space, i.e., the VAE should be able to capture about 95% of the training distribution. We run
random search, BO, and GA until 1000 molecules are identified and repeat each run with 5 different
seeds. We run DGO with an optimality tolerance of 10−6, using the PoolSearchMode functionality of
Gurobi (cf. [42]) to systematically search for the n best solutions. We choose n = 1000 to ensure
comparability with the other optimization strategies. In practical applications, we would likely use a
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Figure 2: Molecular design results for different sampling/optimization strategies using SMILES-VAE.

much looser tolerance and only one or a few solutions, i.e., a smaller value for n. An overview of
additional hyperparameters and settings is provided in the Appendix.

4 Results

The results of the two molecular design case studies using the SMILES-VAE with the different
optimization strategies are shown in Figure 2; the results for the Junction Tree VAE are in the
Appendix. We report the distribution of property values predicted by the ANN for the identified
molecules. The ANNs exhibit a coefficient of determination (R2) on the test set of 0.99 and 0.42 for
the molecular weight and singlet-triplet gap, respectively. The significantly lower accuracy highlights
the difficulty in predicting the singlet-triplet gap. Future work should address improving the accuracy,
e.g., by adapting the VAE architecture and training to learn a molecular representation that facilitates
the prediction step, which is out of the scope of our work since we focus on optimization. Further,
we report the rescored property values that are obtained by applying the oracles to the identified
molecules. For the singlet-triplet, we rescore only the best 100 molecules due to the high oracle cost.

Frequently employed optimization strategies can fail to find optimal molecules. Considering the
property values predicted by the ANN, BO and GAs find better molecules than random search in
both case studies, as expected. The global optima found by DGO exceed the best points identified by
BO and GAs. In case of limited oracle calls, DGO is in fact the only method that guarantees finding
the most promising molecules according to the property ANN. This guarantee typically entails higher
computational cost than the other strategies; yet, we found DGO solution times of less than 24 hours.
Future work could investigate the balance between proving optimality, run time, and solution quality.

DGO exploits weak spots of inaccurate property ANNs. For the singlet-triplet gap minimization,
the DGO reveals that the lowest value of the ANN prediction is -0.216 eV. Although negative singlet-
triplet gaps have recently been reported, e.g., in [43], such low values are highly unlikely. Hence, we
rather attribute this prediction to the inaccuracy of the ANN – which is confirmed in the subsequent
oracle evaluation. By the formulation of the molecular optimization problem, DGO exploits such
weak spots, i.e., regions with high predictive inaccuracies and/or uncertainties, which can correspond
to molecules with physically unreasonable or overly optimistic predictions. This can be accounted
for by adapting the problem formulation and refining the ANN, e.g, by considering uncertainty
quantification of molecular property predictions [44, 45, 46].

DGO can increase sample efficiency in molecular design. When applying the oracle functions
to rescore the best molecules based on the ANN, we find that, for the molecular weight, DGO
outperforms the other methods. DGO yields significantly higher values for both the molecule with
the highest molecular weight and the mean molecular weight of the identified molecules beyond the
training data, therefore increasing sample efficiency.
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Inaccurate property ANNs limit improvements on sample efficiency. For the singlet-triplet gap,
we find that the distributions of the rescored property values do not match those of the property ANN.
In fact, one molecule identified in random search has the lowest singlet-triplet gap of 0.0009 eV
according to the oracle, followed by 0.001 eV of a molecule found with BO, cf. Appendix. Inter-
estingly both molecules are superior to the best candidates found in the Tartarus benchmark with
0.008 eV [14]. Yet, the results reveal that optimization based on less accurate ANNs limits targeted
ML-guided molecular design. Future work could constrict the latent space to areas of high certainty,
cf. [47].

5 Conclusion

We introduced a new optimization strategy for ML-guided molecular design: DGO of ANNs trained
on VAE latent spaces for molecular property prediction. Our approach guarantees finding the best
molecules with respect to the predicted properties by the ANNs, surpassing established methods such
as BO and GAs. We find that candidates identified with DGO can also transfer to the most promising
molecules according to the oracle function, e.g., simulations or experiments, thereby increasing
sample efficiency in molecular design. The transferability depends on the predictive accuracy of the
ANN, as in some cases DGO uncovers the ANN’s weak spots. Overall, DGO of ANNs in combination
with VAEs is highly promising for molecular design and can also be transferred to other applications.
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A VAE and optimization hyperparameter

Parameter Value
q_cell gru
q_bidir False
q_d_h 1024
q_n_layers 3
q_dropout 0.1
d_cell gru
d_n_layers 3
d_dropout 0.1
d_z 32
d_d_h 512
freeze_embeddings False
emb_size 128
n_batch 512
clip_grad 50
kl_start 0
kl_w_start 0
kl_w_end 0.001
lr_start 1e-4
lr_n_period 30
lr_n_restarts 1
lr_n_mult 1
lr_end 1e-4
n_last 1000
ANN_dropout 0.1
ANN_n_layers 3
ANN_hidden_dim 64

Table 1: Model hyperparameters for SMILES-VAE training

Parameter Value
model_type GP
kernel Matern52
acquisition_type expected improvement
acquisition_optimizer_type lbfgs
normalize_Y True
evaluator_type Thompson sampling
batch_size 10
Table 2: Hyperparameters for Bayesian optimization

Parameter Value
population_size 50
mutation_probability 0.1
elit_ratio 0.01
crossover_probability 0.5
parents_portion 0.3
crossover_type uniform
max_iteration_without_improv None

Table 3: Genetic Algorithm Hyperparameters
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B Top molecules identified for singlet-triplet gap

Random search identifies C(O)=CC2=CS1C=CS2N=COC1=O with a singlet-triplet gap of 0.0009 eV
calculated by the oracle. Further, BO finds O=C1OC2=CN=C(C1=CO)C=C2 with a calculated
singlet-triplet gap of 0.001 eV.

C Additional results for JT-VAE

8000

4000

0

Random

GA

BO

DGO
(ours)

Train data

ZINC Tartarus emitter design

ANN
rescored
w/ oracle

ANN
rescored
w/ oracle

singlet-triplet gap [eV] ↓ 

F
re

qu
en

cy

F
re

qu
en

cy

max:
μ:
σ:

474.9
287.3
44.1

molecular weight [u] ↑

max:
μ:
σ:

500.0
332.1
62.0

568.1
417.2
58.9

max:
μ:
σ:

587.9
432.3
22.6

max:
μ:
σ:

max:
μ:
σ:

606.0
602.93
1.0

max:
μ:
σ:

451.6
275.3
50.0

max:
μ:
σ:

499.7
342.5
49.7

max:
μ:
σ:

519.7
353.7
41.4

max:
μ:
σ:

471.6
436.3
20.65

min:
μ:
σ:

0.0867
0.959
0.27

min:
μ:
σ:

-0.3818
0.5839
0.254

min:
μ:
σ:

-0.0049
1.008
0.30

min:
μ:
σ:

-0.8869
0.03
0.28

min:
μ:
σ:

0.0202
1.004
0.40

min:
μ:
σ:

0.0486
0.871
0.41

min:
μ:
σ:

0.0515
0.866
0.43

min:
μ:
σ:

0.0341
0.904
0.43

min:
μ:
σ:

0.0275
0.661
0.41

200

100

0

200

100

0

150

75

0

50

0

100

0.0 1.0 2.0 0.0 1.0 2.0 3.0 4.0-1.0

2
0

4
6

15
10
5
0

5
0

10
15

10

20

0

0 100 200 300 400 500 600 0 100 200 300 400

800

400

0

200

100

0

100

50

0

1000

500

0

4000

8000

0

200

100

0

200

100

0

200

100

0

6
4
2
0

Figure 3: Molecular design results for different sampling/optimization strategies using Junction Tree
VAE.
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