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ABSTRACT

Emerging edge intelligence applications require the server to continuously retrain
and update deep neural networks deployed on remote edge nodes to leverage
newly collected data samples. Unfortunately, it may be impossible in practice to
continuously send fully updated weights to these edge nodes due to the highly
constrained communication resource. In this paper, we propose the weight-wise
deep partial updating paradigm, which smartly selects only a subset of weights
to update at each server-to-edge communication round, while achieving a simi-
lar performance compared to full updating. Our method is established through
analytically upper-bounding the loss difference between partial updating and full
updating, and only updates the weights which make the largest contributions to the
upper bound. Extensive experimental results demonstrate the efficacy of our partial
updating methodology which achieves a high inference accuracy while updating a
rather small number of weights.

1 INTRODUCTION

To deploy deep neural networks (DNNs) on resource-constrained edge devices, extensive research
has been done to compress a well-trained model via pruning (Han et al., 2016; Renda et al., 2020)
and quantization (Courbariaux et al., 2015; Rastegari et al., 2016). During on-device inference,
compressed networks may achieve a good balance between model performance (e.g., prediction
accuracy) and resource demand (e.g., memory, computation, energy). However, due to the lack of
relevant training data or an unknown sensing environment, pre-trained DNN models may not yield
satisfactory performance. Retraining the model leveraging newly collected data (from edge devices or
from other sources) is needed for desirable performance. Example application scenarios of relevance
include vision robotic sensing in an unknown environment (e.g., Mars) (Meng et al., 2017), local
translators on mobile phones (Bhandare et al., 2019), and acoustic sensor networks deployed in
Alpine environments (Meyer et al., 2019).

It is mostly impossible to perform on-device retraining on edge devices due to their resource-
constrained nature. Instead, retraining often occurs on a remote server with sufficient resources. One
possible strategy to continuously improve the model performance on edge devices is a two-stage
iterative process: (i) at each round, edge devices collect new data samples and send them to the server,
and (ii) the server retrains the network using all collected data, and then sends the updates to each
edge device (Brown & Sreenan, 2006). An essential challenge herein is that the transmissions in
the second stage are highly constrained by the limited communication resource (e.g., bandwidth,
energy) in comparison to the first stage. State-of-the-art DNN models always require tens or even
hundreds of mega-Bytes (MB) to store parameters, whereas a single batch of data samples (a number
of samples that can lead to reasonable updates in batch training) needs a relatively smaller amount of
data. For example, for CIFAR10 dataset (Krizhevsky et al., 2009), the weights of a popular VGGNet
require 56.09MB storage, while one batch of 128 samples only uses around 0.40MB (Simonyan &
Zisserman, 2015; Rastegari et al., 2016). As an alternative, the server sends a full update once or
rarely. But in this case, every node will suffer from a low performance until such an update occurs.

Besides, edge devices could decide on and send only critical samples by using active learning schemes
(Ash et al., 2020). The server may also receive training data from other sources, e.g., through data
augmentation or new data collection campaigns. These considerations indicate that the updated
weights which are sent to edge devices by the server at the second stage become a major bottleneck.

To resolve the above challenges pertaining to updating the network, we propose to partially update the
network through changing only a small subset of the weights at each round. Doing so can significantly
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reduce the server-to-device communication overhead. Furthermore, fewer parameter updates also
lead to less memory access on edge devices, which in turn results in smaller energy consumption
related to (compressed) full updating (Horowitz, 2014). Our goal of performing partial updating is to
determine which subset of weights shall be updated at each round, such that a similar accuracy can
be achieved compared to fully updating all weights.
Our key concept for partial updating is based on the hypothesis, that a weight shall be updated only if
it has a large contribution to the loss reduction given the newly collected data samples. Specially,
we define a binary mask m to describe which weights are subject to update, i.e., mi = 1 implies
updating this weight andmi = 0 implies fixing the weight to its initial value. For any m, we establish
an analytical upper bound on the difference between the loss value under partial updating and that
under full updating. We determine an optimized mask m by combining two different view points:
(i) measuring the “global contribution” of each weight to the upper bound through computing the
Euclidean distance, and (ii) measuring each weight’s “local contribution” within each optimization
step using gradient-related information. The weights to be updated according to m will be further
sparsely fine-tuned while the remaining weights are rewound to their initial values.

Related Work. Although partial updating has been adopted in some prior works, it is conducted in
a fairly coarse-grained manner, e.g., layer-wise or neuron-wise, and targets at completely different
objectives. Especially, under continual learning settings, (Yoon et al., 2018; Jung et al., 2020) propose
to freeze all weights related to the neurons which are more critical in performing prior tasks than new
ones, to preserve existing knowledge. Under adversarial attack settings, (Shokri & Shmatikov, 2015)
updates the weights in the first several layers only, which yield a dominating impact on the extracted
features, for better attack efficacy. Under architecture generalization settings, (Chatterji et al., 2020)
studies the generalization performance through the resulting loss degradation when rewinding the
weights of each individual layer to their initial values. Unfortunately, such techniques cannot be
applied in our problem setting which seeks a fine-grained, i.e., weight-wise, partial updating given
newly collected training samples in an iterative manner.
The communication cost could also be reduced through some other techniques, e.g., quantiz-
ing/encoding the updated weights and the transmission signal. But note that these techniques
are orthogonal to our approach and could be applied in addition. Also note that our defined partial
updating setting differs from the communication-efficient distributed (federated) training settings
(Lin et al., 2018; Kairouz et al., 2019), which study how to compress multiple gradients calculated on
different sets of non-i.i.d. local data, such that the aggregation of these (compressed) gradients could
result in a similar convergence performance as centralized training on all data.
Traditional pruning methods (Han et al., 2016; Frankle & Carbin, 2019; Renda et al., 2020) aim at
reducing the number of operations and storage consumption by setting some weights to zero. Sending
a pruned network (non-zero’s weights) may also reduce the communication cost, but to a much
lesser extent as shown in the experimental results, see Section 4.4. In addition, since our objective
namely reducing the server-to-edge communication cost when updating the deployed networks is
fundamentally different from pruning, we can leverage some learned knowledge by retaining previous
weights (i.e., partial updating) instead of zero-outing (i.e., pruning).

Contributions. Our contributions can be summarized as follows.

• We formalize the deep partial updating paradigm, i.e., how to iteratively perform weight-
wise partial updating of deep neural networks on remote edge devices if newly collected
training samples are available at the server. This substantially reduces the computation and
communication demand on the edge devices.
• We propose a new approach that determines the optimized subset of weights that shall be

selected for partial updating, through measuring each weight’s contribution to the analytical
upper bound on the loss reduction.
• Experimental results on three popular vision datasets show that under the similar accuracy

level, our approach can reduce the size of the transmitted data by 91.7% on average (up to
99.3%), namely can update the model averagely 12 times more frequent than full updating.

2 NOTATION AND SETTING

In this section, we define the notation used throughout this paper, and provide a formalized problem
setting, i.e., deep partial updating. We consider a set of remote edge devices that implement on-device
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inference. They are connected to a host server that is able to perform network training and retraining.
We consider the necessary amount of information that needs to be communicated to each edge device
to update its inference network.

Assume there are in total R rounds of network updates. The network deployed in the rth round is
represented with its weight vector wr. The training data used to update the network for the rth round
is represented as Dr = δDr ∪ Dr−1. In other words, newly collected data samples δDr are made
available to the server in round r − 1.

To reduce the amount of information that needs to be sent to edge devices, only partial weights of
wr−1 shall be updated when determining wr. The overall optimization problem for weight-wise
partial updating in round r − 1 can thus be formulated as

min
δwr

`
(
wr−1 + δwr;Dr

)
(1)

s.t. ‖δwr‖0 ≤ k · I (2)

where ` denotes the loss function, ‖.‖0 denotes the L0-norm, k denotes the defined updating ratio
which is closely related to the communication demand between server and edge devices, and δwr

denotes the increment of wr−1. Note that both wr−1 and δwr are drawn from RI , where I denotes
the total number of weights.

In this case, only a fraction of k · I weights and the corresponding index information need to
be communicated to each edge device for updating the network in round r, namely the partial
updates δwr. It is worth noting that the index information is relatively small in size compared to
the partially updated weights (see Section 4). On each edge device, the weight vector is updated as
wr = wr−1 + δwr. To simplify the notation, we will only consider a single update, i.e., from weight
vector w (corresponding to wr−1) to weight vector w̃ (corresponding to wr) with

w̃ = w + δ̃w

3 PARTIAL UPDATING

Figure 1: The figure depicts the overall approach
that consists of two steps. The first step is depicted
with dotted arrows and starts from the deployed
network weights w. In Q steps, the network is op-
timized which results in weights wf . Based on the
collected information, a mask m is determined that
characterizes the set of weights that are rewound
to the ones of w. Therefore, the initial solution
for the second step has weights w + δwf �m.
This initial solution is further optimized to the new
weights w̃ by only changing weights that are al-
lowed according to the mask, i.e., δ̃w has only
nonzero elements where the mask is 1.

We develop a two-step approach for resolving
the partial updating optimization problem in
Eq.(1)-Eq.(2). The final implementation used
for the experimental results, see Section 4, con-
tains some minor adaptations that do not change
the main principles as explained next. In the first
step, we compute a subset of all weights with
only k · I weights. These weights will be al-
lowed to change their values. In the second step,
we optimize the weights in the chosen subset
(considering the constraint of Eq.(2)) to mini-
mize the loss function in Eq.(1). The overall
approach is depicted in Figure 1.

The approach for the first step not only deter-
mines the subset of weights but also computes
the initial values for the second (sparse) opti-
mization step. In particular, we first optimize
the loss function Eq.(1) from initial weights w
with a standard optimizer, e.g., SGD or its vari-
ants. As a result, we obtain the minimized loss
`
(
wf
)

with wf = w + δwf , where the super-
script f denotes “full updating”. To consider
the constraint Eq.(2), the information gathered
during this optimization is used to determine
the subset of weights that will be changed and
therefore, that need to be communicated to the edge devices.
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In the explanation of the method in Section 3.1, we use the mask m with m ∈ {0, 1}I to describe
which weights are subject to change and which ones are not. The weights with mi = 1 are trainable,
whereas the weights with mi = 0 will be rewound from the values in wf to their initial values in w,
i.e., unchanged. Obviously, we find ‖m‖0 =

∑
imi = k · I . In summary, the purpose of this first

step is to determine an optimized mask m.

In the second step we start a weight optimization from a network with k · I weights from the
optimized network wf and (1− k) · I weights from the previous, still deployed network w. In other
words, the initial weights for this optimization are w + δwf �m, where � denotes an element-wise
multiplication. We still use a standard optimizer. To determine the final solution w̃ = w + δ̃w, we
conduct a sparse fine-tuning, i.e., we keep all weights with mi = 0 constant during the optimization.
Therefore, δ̃w is zero wherever mi = 0, and only weights where mi = 1 are updated.

3.1 METRICS FOR REWINDING

We will now describe a new metric that allows us to determine the weights that should be kept constant,
i.e., those whose masks satisfy mi = 0. Like most learning methods, we focus on minimizing a loss
function, since the loss is a more general metric than, for example, accuracy and perplexity, which
are the metrics only used for classification and language modeling respectively. But we still report
the other metrics in the evaluation. The two-step approach relies on the following assumption: the
better the loss `(w + δwf �m) of the initial solution for the second step, the better the final loss
`(w̃). Therefore, the first step in the method should select a mask m such that the loss difference
`(w + δwf �m)− `(wf) is as small as possible.

We will determine an optimized mask m by combining two different view points. The “global
contribution” uses information contained in the difference δwf between the initial weights w and the
optimized weights wf by the first step, namely the norm of incremental weights. The “local contribu-
tion” takes into account some gradient-based information that is gathered during the optimization in
the first step, i.e., in the path from w to wf . Both kinds of information will be combined to determine
an optimized mask m.

The two view points are based on the concept of smooth differentiable functions, see for example
(Nesterov, 1998). A function f(x) with f : Rd → R is called L-smooth if it has a Lipschitz
continuous gradient g(x): ‖g(x)− g(y)‖2 ≤ L‖x− y‖2 for all x, y. Note that Lipschitz continuity
of a gradient is essential to ensuring convergence of many gradient-based algorithms. Under such a
condition, one can derive the following bounds, see also (Nesterov, 1998):

|f(y)− f(x)− g(x)T · (y − x)| ≤ L/2 · ‖y − x‖22 ∀x, y (3)

This basic relation is used to justify the global and the local contributions, i.e., the rewinding metrics.

Global Contribution. Following some state-of-the-art methods for pruning, one would argue that
a large absolute value in δwf = wf − w indicates that this weight has moved far from its initial
value in w. This motivates us to adopt the widely used unstructured magnitude pruning to solve
the problem of determining an optimized mask m. Magnitude pruning prunes the weights with the
lowest magnitudes in a network, which is the current best-performed pruning method aiming at the
trade-off between the model accuracy and the number of zero’s weights (Renda et al., 2020).

Using a − b ≤ |a − b|, Eq.(3) can be reformulated as f(y) − f(x) − g(x)T (y − x) ≤ |f(y) −
f(x) − g(x)T (y − x)| ≤ L/2 · ‖y − x‖22. Thus, we can bound the relevant difference in the loss
`(w + δwf �m)− `(wf) ≥ 0 as

`(w + δwf �m)− `(wf) ≤ g(wf)T ·
(
δwf � (m− 1)

)
+ L/2 · ‖δwf � (m− 1)‖22 (4)

where g(wf) denotes the gradient of the loss function at wf , and 1 is a vector whose elements are
all 1. As the loss is optimized at wf , i.e., g(wf) ≈ 0, we can assume that the gradient term is much
smaller than the norm of the weight differences in Eq.(4). Therefore, we obtain approximately

`(w + δwf �m)− `(wf) . L/2 · ‖δwf � (1−m)‖22 (5)

The right hand side is clearly minimized if mi = 1 for the largest absolute values of δwf . This
information is captured in the contribution vector

cglobal = δwf � δwf (6)
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as 1T ·
(
cglobal � (1−m)

)
= ‖δwf � (1−m)‖22.

In summary, the k · I weights with the largest values in cglobal are assigned to mask values mi = 1
and are further fine-tuned in the second step, whereas all others are rewound from wf , and keep their
initial values in w. The pseudocode of Alg. 1 in Appendix A.1 shows this first approach.

Local Contribution. As experiments show, one can do better when using in addition some gradient-
based information gathered during the first step, i.e., optimizing the initial weights w in Q traditional
optimization steps, w = w0 → · · · → wq−1 → wq → · · · → wQ = wf .

Using −a + b ≤ |a − b|, Eq.(3) can be reformulated as f(x) − f(y) + g(x)T (y − x) ≤ |f(y) −
f(x)− g(x)T (y − x)| ≤ L/2 · ‖y − x‖22. This leads us to bound each optimization step as

`(wq−1)− `(wq) ≤ −g(wq−1)T ·∆wq + L/2 · ‖∆wq‖22 (7)

where ∆wq = wq − wq−1. For a conventional gradient descent optimizer with a small learning
rate we can use the approximation |g(wq−1)T ·∆wq| � ‖∆wq‖22 and obtain `(wq−1)− `(wq) .
−g(wq−1)T ·∆wq . Summing up over all optimization iterations yields approximately

`(wf − δwf)− `(wf) . −
Q∑
q=1

g(wq−1)T ·∆wq (8)

Note that we have w = wf − δwf and δwf =
∑Q
q=1 ∆wq. Therefore, with m ∼ 0 we

can reformulate Eq.(8) as `
(
w + δwf �m

)
− `(wf) . U(m) with the upper bound U(m) =

−
∑Q
q=1 g(wq−1)T · (∆wq � (1 −m)) where we suppose that the gradients are approximately

constant for small m. Therefore, an approximate incremental contribution of each weight dimension
to the upper bound on the loss difference `

(
w + δwf �m

)
− `(wf) can be determined by the

negative gradient vector at m = 0, denoted as

clocal = −∂U(m)

∂m
= −

Q∑
q=1

g(wq−1)�∆wq (9)

This term is used to model the accumulated contribution of each weight to the overall loss reduction.

Combining Global and Local Contribution. So far, we independently calculate the global and
local contributions cglobal and clocal, respectively. To avoid the impact due to the scale, we first
normalize each contribution by its significance in its own set (either global contribution set or local
contribution set). We conduct experiments on how to combine both normalized contributions, e.g.,
taking the minimum. Interestingly, the most straightforward combination (i.e., the sum of both
normalized metrics) yields a better and more stable performance. Intuitively, local contribution can
better identify critical weights w.r.t. the loss during training, while global contribution may be more
robust for a highly non-convex loss landscape. Both metrics may be necessary when selecting weights
to rewind. Therefore, the total contribution is computed as

c =
1

1T · cglobal
cglobal +

1

1T · clocal
clocal (10)

and mi = 1 for the k · I largest values of c and mi = 0 otherwise. The pseudocode of the
corresponding algorithm is shown in Alg. 2 in Appendix A.2.

3.2 (RE-)INITIALIZATION OF WEIGHTS

In this section, we discuss the initialization of our method. D1 denotes the initial dataset used to train
the network w1 from a randomly initialized network w0. D1 corresponds to the available dataset
before deployment, or collected in the 0th round if there are no data available before deployment.
{δDr}Rr=2 denotes newly collected samples in each subsequent round.

Experimental results show (see Appendix D.1) that starting from a randomly initialized network can
yield a higher accuracy after several rounds, compared to always training from the last round with
weights wr−1. As a possible explanation, the optimizer could end in a hard to escape region of the
search space if always trained from the last round for a long sequence of rounds. Thus, we propose to
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re-initialize the weights after a certain number of rounds. In such a case, Alg. 2 does not start from
the previous weights wr−1 but from randomly initialized weights. The re-initialized random network
can be efficiently sent to the edge devices via a single random seed. The device can determine the
weights by means of a random generator. This is a communication-efficient way of a random shift
from a hard to escape region of the search space in comparison to other alternatives, such as learning
to increase the loss or using the (averaged) weights in the previous rounds, as these fully changed
weights need to be sent to each node. Each time the network is randomly re-initialized, the new
partially updated network may suffer from an accuracy drop. However, we can simply avoid such an
accuracy drop by not updating the network if the validation accuracy does not increase compared to
the last round, see more details in Appendix D.2. Note that the learned knowledge thrown away by
the re-initialization can be re-learned afterwards, since any newly collected samples are continuously
stored and accumulated in the server. This also makes our setting different from continual learning,
which aims at avoiding catastrophic forgetting without accessing (at least not all) old data.

To determine after how many rounds the network needs to be re-initialized, we conduct extensive
experiments on different partial updating settings, see more discussions and results in Appendix D.2.
In conclusion, the network is randomly re-initialized as long as the number of total newly collected
data samples exceeds the number of samples when the network was re-initialized last time. For
example, assume that at round r the model is randomly (re-)initialized and partially updated from this
random network on dataset Dr. Then, the model will be re-initialized at round r + n, if |Dr+n| >
2 · |Dr|. In the following, we use Deep Partial Updating (DPU) to present rewinding according to the
combined contribution to the loss reduction (i.e., Alg. 2) with the above re-initialization scheme.

4 EVALUATION

We implement DPU with Pytorch (Paszke et al., 2017), and evaluate its performance on multiple
vision datasets, including MNIST (LeCun & Cortes, 2010), CIFAR10 (Krizhevsky et al., 2009),
ILSVRC12 (ImageNet) (Russakovsky et al., 2015) using multilayer perceptron (MLP), VGGNet
(Courbariaux et al., 2015; Rastegari et al., 2016), ResNet34 (He et al., 2016), respectively. We
randomly select 30% of each original test dataset (original validation dataset for ILSVRC12) as the
validation dataset, and the remainder as the test dataset. Let |.| denote the number of samples in the
dataset. Let {|D1|, |δDr|} represent the available data samples along rounds, where |δDr| is supposed
to be constant along rounds. Both D1 and δDr are randomly drawn from the original training dataset
(only for evaluation purposes). For all pre-processing and random initialization, we apply the tools
provided in Pytorch. We use the average cross-entropy as the loss function without a regularization
term for better studying the effect on the training error caused by newly added data samples. We use
Adam variant of SGD as the optimizer, except that Nesterov SGD is used for ResNet34 following
the suggestions in (Renda et al., 2020). The test accuracy is reported, when the validation dataset
achieves the highest Top-1 accuracy. When the validation accuracy does not increase compared to the
last round, the model will not be updated to reduce communication overhead. This strategy is applied
in all methods for a fair comparison. More implementation details are provided in Appendix C. We
will open-source the code upon acceptance.

One-shot Rewinding vs Iterative Rewinding. Based on previous experiments on pruning (Renda
et al., 2020), iterative pruning with retraining may yield a higher accuracy compared to one-shot
pruning, yet requiring several times more optimization iterations and also extra handcrafted hyperpa-
rameters (e.g., pruning ratio schedule). This paper focuses on comparing the performance of DPU
with other baselines including full updating given the same number of optimization iterations per
round. Thus, we conduct one-shot rewinding at each round, i.e., the rewinding is executed only once
to achieve the desired sparsity (as shown in Alg. 2).

Indexing. DPU generates a sparse tensor. In addition to the updated weights, the indices of these
weights also need to be sent to each edge device. A simple implementation is to send the mask m.
m is a binary vector with I elements, which are assigned with 1 if the corresponding weights are
updated. Let Sw denote the bitwidth of each single weight, and Sx denote the bitwidth of each index.
Directly sending m yields an overall communication cost of I · k · Sw + I · Sx with Sx = 1.

To save the communication cost on indexing, we further encode m. Suppose that m is a random
binary vector with a probability of k to contain 1. The optimal encoding scheme according to
Shannon yields Sx(k) = k · log(1/k) + (1− k) · log(1/(1− k)). Coding schemes such as Huffman
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block coding can come close to this bound. Partial updating results in a smaller communication data
size than full updating, if Sw · I > Sw · k · I + Sx(k) · I . Under the worst case for indexing cost,
i.e., Sx(k = 0.5) = 1, as long as k < (32 − 1)/32 = 0.97, partial updating can yield a smaller
communication data size with Sw = 32-bit weights. In the following experiments, we will use
Sw · k · I + Sx(k) · I to report the size of data transmitted from server to each node at each round,
contributed by the partially updated weights plus the encoded indices of these weights.

4.1 ABLATION STUDY OF REWINDING METRICS

Settings. We first conduct a set of ablation experiments regarding different metrics of rewinding
discussed in Section 3.1. We compare the influence of the local and global contributions as well
as their combination, in terms of the incremental training loss caused by rewinding. The original
VGGNet and ResNet34 are fully trained on a randomly selected dataset of 103 and 4× 105 samples,
respectively. We execute full updating, i.e., the first step of our approach, after adding 103 and
2× 105 new randomly selected samples, respectively. Afterwards, we conduct one-shot rewinding
with all three metrics, i.e., global contribution, local contribution, and combined contribution. Each
experiment is conducted for a single round. We report the results over five runs.

Results. The training loss (mean ± standard deviation) after full updating (i.e., `(wf)) and after
rewinding (i.e., `(w + δwf �m)) with three metrics is reported in Table 1. Note that these loss
values are only intermediate results during partial updating. As seen in the table, the combined
contribution always yields a lower or similar training loss after rewinding compared to the other two
metrics. The smaller deviation also indicates that adopting the combined contribution yields more
robust results. This validates the effectiveness of our proposed metric, i.e., the combined contribution
to the analytical upper bound on loss reduction.

Table 1: Comparing the training loss after rewinding according to different metrics.

Benchmark k
Training loss

Full updating Global Local Combined
0.01

0.086± 0.001

3.042± 0.068 2.588± 0.084 2.658± 0.086
VGGNet 0.05 2.509± 0.056 1.799± 0.104 1.671± 0.062

(CIFAR10) 0.1 2.031± 0.046 1.337± 0.076 0.994± 0.034
0.2 1.196± 0.049 0.739± 0.031 0.417± 0.009

0.01

1.016± 0.000

3.340± 0.109 4.222± 0.156 3.179± 0.052
ResNet34 0.05 2.005± 0.064 2.346± 0.036 1.844± 0.022

(ILSVRC12) 0.1 1.632± 0.044 2.662± 0.048 1.609± 0.025
0.2 1.331± 0.016 3.626± 0.062 1.327± 0.008

4.2 EVALUATION ON DIFFERENT BENCHMARKS

Settings. To the best of our knowledge, this is the first work on studying weight-wise partial updating
a network using newly collected data in iterative rounds. Therefore, we developed three baselines for
comparison, including (i) full updating (FU), where at each round the network is fully updated with
a random initialization (i.e., training from scratch, which yields a better performance as discussed
in Section 3.2); (ii) random partial updating (RPU), where the network is trained from wr−1, while
we randomly fix each layer’s weights with a ratio of (1− k) and sparsely fine-tune the rest; and (iii)
global contribution partial updating (GCPU), where the network is trained with Alg. 1 without re-
initialization described in Section 3.2. Note that (iii) is extended from a state-of-the-art unstructured
pruning method (Renda et al., 2020). The experiments are conducted with different types of networks
on different benchmarks as mentioned earlier.

Results. We report the test accuracy of the network wr along rounds in Figure 2. All methods start
from the same w0, an entirely randomly initialized network. As seen in this figure, DPU clearly yields
the highest accuracy in comparison to the other partial updating schemes on different benchmarks.
For example, DPU can yield a final Top-1 accuracy of 92.85% on VGGNet, even exceeds the accuracy
(92.73%) of full updating, while GCPU and RPU only acquire 91.11% and 82.21% respectively. In
addition, we compare three partial updating schemes in terms of the accuracy difference related to
full updating averaged over all rounds, and the ratio of the communication cost over all rounds related
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to full updating in Table 2. As seen in the table, DPU reaches a similar or even higher accuracy as full
updating, while incurring significantly fewer transmitted data sent from the server to each edge node.
Specially, DPU saves around 99.3%, 98.2% and 77.7% of transmitted data on MLP, VGGNet, and
ResNet34, respectively (91.7% in average). The communication cost ratios shown in Table 2 differ a
little even for the same updating ratio k. This is because if the validation accuracy does not increase
compared to the last round, the model will not be updated to reduce the communication overhead
(also see the first paragraph of Section 4). We also report the number of updated rounds in Table 2.

We further investigate the benefit due to DPU in terms of the total communication cost reduction, as
DPU has no impact on the edge-to-server communication involving newly collected data samples.
This experimental setup assumes that all data samples in δDr are collected by N edge nodes during
all rounds and sent to the server on a per-round basis. For clarity, let Sd denote the data size of
each training sample. During round r, we define per-node communication cost under DPU as
Sd · |δDr|/N + (Sw · k · I + Sx(k) · I). Due to space constraints, the detailed results are shown
in Appendix D.3.1. We observe that DPU can still achieve a significant reduction on the total
communication cost, e.g., reducing up to 88.2% on updating MLP and VGGNet even for the worst
case (i.e., a single node). Moreover, DPU tends to be more beneficial when the size of data transmitted
by each node to the server becomes smaller. This is intuitive because in this case the server-to-edge
communication cost (thus the reduction due to DPU) dominants in the entire communication cost.
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Figure 2: DPU is compared with other baselines on different benchmarks in terms of the test accuracy.

Table 2: The average accuracy difference over all rounds, the ratio of communication cost over all
rounds related to full updating, and the number of rounds that are required to send partial updating.

Method Average accuracy difference Ratio of communication cost (Updating rounds)

MLP VGGNet ResNet34 MLP VGGNet ResNet34
DPU −0.17% +0.33% −0.12% 0.0071 (22) 0.0183 (35) 0.2226 (5)

GCPU −0.72% −1.51% −1.01% 0.0058 (18) 0.0198 (38) 0.2226 (5)
RPU −4.04% −11.35% −4.64% 0.0096 (30) 0.0167 (32) 0.2226 (5)

4.3 IMPACT DUE TO VARYING NUMBER OF DATA SAMPLES AND UPDATING RATIOS

Settings. In this set of experiments, we demonstrate that DPU outperforms other baselines under
varying number of training samples and updating ratios. We also conduct an ablation study concerning
the re-initialization of weights discussed in Section 3.2. We implement DPU with and without re-
initialization, GCPU with and without re-initialization and RPU (see Section 4.2) on VGGNet using
CIFAR10 dataset. We compare these methods with different amounts of samples {|D1|, |δDr|} and
different updating ratios k. Each experiment runs three times using random data samples.

Results. We compare the difference between the accuracy under each partial updating method and
that under full updating. The mean accuracy difference (over three runs) is plotted in Figure 3. A
comprehensive set of results including the standard deviations of the accuracy difference is provided
in Appendix D.4. Note that the green curves in Figure 3 represent pruning methods that will be
discussed in the next section. As seen in Figure 3, DPU (with re-initialization) always achieves the
highest accuracy. The dashed curves and the solid curves with the same color can be viewed as the
ablation study of our re-initialization scheme. Particularly given a large number of rounds, it is critical
to re-initialize the start point wr−1 after performing several rounds (as discussed in Section 3.2).

In the first few rounds, partial updating methods (including random partial updating) almost always
yield a higher test accuracy than full updating, i.e., the curves are above zero. This is due to the fact
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Figure 3: Comparison w.r.t. the mean accuracy difference (full updating as the reference) under
different {|D1|, |δDr|} (representing the available data samples along rounds, see in Section 4) and
updating ratio (k = 0.1, 0.01) settings.

that the amount of available samples is relatively small in the first few rounds and partial updating
may avoid some co-adaptation of weights which happens in full updating. This results in a higher
validation/test accuracy. Note that the three partial updating methods perform almost randomly in
the first round compared to each other, because the limited sample size (i.e., |D1|) is not sufficient
to distinguish between critical weights. This fact also motivates us to (partial) updating the first
deployed model when new data are available.

4.4 COMPARING PARTIAL UPDATING WITH PRUNING

Settings. We compare the partial updating methods mentioned in Section 4.3 with a state-of-the-art
pruning method proposed in (Renda et al., 2020), where the network is first trained from a random
initialization at each round, then conducts one-shot magnitude pruning (set weights as zero), and
finally, is sparsely fine-tuned with learning rate rewinding. The ratio of non-zero’s weights in the
pruning method is set to the same as the updating ratio k to ensure the same communication cost.

Results. We compare the difference between the accuracy under each method and that under full
updating. The mean accuracy difference (over three runs) is plotted in Figure 3. As seen, DPU
outperforms the pruning method in terms of accuracy by a large margin, especially under a small
updating ratio. Note that we preferred a smaller updating ratio in our context because it explores the
limits of the approach and it indicates that we can improve the deployed network more frequently
with the same accumulated server-to-edge communication cost.

Note that one of our chosen baselines, global contribution partial updating (GCPU, Alg. 1), could be
viewed as a counterpart of the pruning method, i.e., pruning the incremental weights with the largest
magnitudes. By comparing GCPU (with or without re-initialization) with “pruning”, we conclude
that retaining previous weights yields better performance than zero-outing the weights (pruning).

5 CONCLUSION

In this paper, we present the weight-wise deep partial updating paradigm, motivated by the fact that
continuous full weight updating may be impossible in many edge intelligence scenarios. We present
DPU, which is established through analytically upper-bounding the loss difference between partial
updating and full updating, and only updating the weights which make the largest contributions to the
upper bound. Extensive experimental results demonstrate the efficacy of DPU which achieves a high
inference accuracy while updating a rather small number of weights.
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