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ABSTRACT

One central challenge in Neural Combinatorial Optimization (NCO) is handling
hard constraints efficiently. Beyond the two classic paradigms, i.e., Local Con-
struction (LC), which sequentially builds feasible solutions but scales poorly, and
Global Prediction (GP), which produces one-shot heatmaps yet struggles with
constraint conflicts, the recently proposed Adaptive Expansion (AE) shares the
advantages of both by progressively growing partial solutions with instance-wise
global awareness. However, existing realizations bolt AE onto external GP predic-
tors, so their solution quality is bounded by the backbone and their inference cost
scales with repeated global calls. In this paper, we fundamentally rethink adaptive
expansion and make it native to a generative model, acting as its intrinsic decod-
ing principle rather than an external wrapper. We propose NEXCO, a CO-specific
masked diffusion framework that turns adaptive expansion into the model’s own it-
erative unmasking process. Specifically, it involves a solution-expansion training
procedure with a time-agnostic GNN denoiser, which learns diffusion trajecto-
ries between fully masked solutions and ground-truth solutions. With the trained
time-agnostic denoiser, we introduce a novel solution expansion scheme at the
solving stage, enabling adaptive control over the intermediate solution states. It
is achieved by constructing candidate sets according to confidence scores and ap-
plying feasibility projection to expand the solution while respecting constraints.
In this way, “adaptive” is not an afterthought but the decoding itself: intermediate
diffusion states are meaningful partial solutions and progress is instance-adaptive
rather than schedule-bound. Extensive experiments on representative CO prob-
lems show that NEXCO achieves approximately 50% improvement in solution
quality and up to 4× faster inference compared to prior state-of-the-art solvers.

1 INTRODUCTION

Combinatorial optimization (CO) is a sub-filed of mathematical optimization that involves finding
the optimal solution from the discrete feasible sets. Due to their inherent NP-hardness, solving large-
scale instances efficiently remains a longstanding challenge. Recent progress in Neural Combina-
torial Optimization (NCO) has reduced reliance on handcrafted heuristics by learning data-driven
solvers (Bengio et al., 2021; Qiu et al., 2022; Sun & Yang, 2023; Li et al., 2024; Ma et al., 2025).

Existing neural constructive solvers fall into two extreme paradigms: (1) Local Construction (LC)
methods sequentially generates solutions in an autoregressive manner, ensuring feasibility but suf-
fering from myopic decisions and poor scalability (Kool et al., 2019; Kwon et al., 2020; Berto et al.,
2023; Drakulic et al., 2023; Pan et al., 2025); (2) Global Prediction (GP) methods predict full proba-
bility heatmaps in one shot, capturing global structure efficiently but producing smooth distributions
that cause noisy decoding and constraint violations (Joshi et al., 2019; Fu et al., 2021; Qiu et al.,
2022; Min et al., 2023; Sun & Yang, 2023; Xia et al., 2024; Li et al., 2024; Xiao et al., 2024). To
bridge LC and GP, the Adaptive Expansion (AE) paradigm was introduced (Ma et al., 2025), which
adaptively determines the number of variables per step. While effective, current implementations
(e.g., COExpander) are merely wrappers around GP backbones such as Fast T2T, leaving two funda-
mental issues: (i) performance is bounded by the backbone predictor, and (ii) inference cost scales
as O(Ds ·CGP ), far higher than vanilla GP solvers. Table 1 provides a structured summary of these
trade-offs, contrasting LC, GP, and AE with our proposed method across multiple dimensions.
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Table 1: Comparison of NCO paradigms. Local Construction (LC) and Global Prediction (GP)
represent two extremes; COExpander realizes Adaptive Expansion (AE) as a costly wrapper around
GP, adjusting decision granularity externally; NEXCO makes AE native, embedding adaptive ex-
pansion directly into a CO-specific masked diffusion for efficient, feasible solution construction.
NFEs: number of function evaluations; Ts: diffusion inference steps; Ds: AE expansion steps.

LC GP AE NEXCO (Ours)
Decoding granularity One-by-one All-at-once Adaptive (wrapper) Adaptive (native)
Partial feasibility ✓ ✗ ✓ ✓
Global awareness ✗ ✓ ✓ ✓
Complexity (NFEs) O(n) O(Ts) O(Ds ∗ Ts) O(Ts)

This raises a natural question: can adaptive expansion be made native, i.e., encoded as the intrin-
sic decoding principle of a generative model, rather than an external wrapper? Here, native AE
would mean: (i) expansion progress and step size are instance-adaptive, driven by model confidence
and constraints, without relying on fixed timestep schedules or external GP predictors; (ii) interme-
diate states are valid, constraint-aware partial solutions, where variable commitments are enforced
through feasibility projection rather than deferred to post-hoc heuristic heatmap decoding. Diffusion
models appear promising: their iterative refinement resembles constructive expansion. However, ex-
isting diffusion-based solvers (e.g., DIFUSCO, T2T/Fast T2T (Sun & Yang, 2023; Li et al., 2023;
2024)) still operate in the GP paradigm: they generate global probability heatmaps and rely on
heuristic decoding, without effectively leveraging intermediate states as partial solutions. We argue
that two factors hinder this: (i) intermediate states lack semantic meaning as partial solutions, and
(ii) fixed timestep schedules rigidly control denoising progress, preventing instant-adaptive progress.

In parallel, the broader generative modeling community has advanced Masked Diffusion Models
(MDMs) as a powerful alternative to autoregressive decoding in large language models (Austin et al.,
2021; Sahoo et al., 2024; Ou et al., 2025; Zheng et al., 2025; Nie et al., 2025b), which progressively
unmask tokens instead of denoising noise. MDMs provide meaningful intermediate states, allow
schedule-free training, and support efficient parallel decoding. These properties closely match the
needs of NCO, making masked diffusion a natural foundation for native adaptive expansion.

Built on this insight, we propose NEXCO (Native Adaptive Expansion for Combinatorial
Optimization), a CO-specific masked diffusion framework that embeds adaptive expansion as the
intrinsic decoding principle. During training, a time-agnostic GNN denoiser learns to reconstruct
ground-truth solutions from corrupted partial states, enforcing optimization consistency across dif-
ferent noise levels. At inference, NEXCO adopts a Native Adaptive Expansion (NAE) strategy: the
denoiser produces confidence scores, candidate sets are formed accordingly, and feasibility projec-
tion ensures that selected variables satisfy problem constraints. Through iterative refinement, partial
solutions progressively evolve into complete feasible ones. In contrast to COExpander (Ma et al.,
2025), which implements AE as an external wrapper around global predictors, NEXCO integrates
it directly into the diffusion process, achieving the efficiency of GP, the feasibility of LC, and the
adaptivity of AE in a unified framework. The contribution of this paper are:

1) We revisit the Adaptive Expansion (AE) paradigm and point out that existing implementations
(e.g., COExpander (Ma et al., 2025)) are merely wrappers around GP predictors, leaving their per-
formance bounded by the backbone and their inference complexity scaling as O(Ds · CGP ).

2) We propose NEXCO, a masked diffusion framework that natively realizes the AE paradigm by
coupling a CO-specific corruption process with a time-agnostic denoiser and introducing the Native
Adaptive Expansion (NAE) inference strategy. In doing so, NEXCO embeds feasibility, global
awareness, and adaptivity directly into the generative process.

3) Extensive experiments on representative CO problems (MIS, TSP, CVRP) show that NEXCO
consistently surpasses prior state-of-the-art solvers in both solution quality and inference efficiency.

2 PRELIMINARIES AND RELATED WORK

2.1 COMBINATORIAL OPTIMIZATION ON GRAPHS

Following standard formulations in neural CO (Sun & Yang, 2023; Li et al., 2023; 2024; Ma et al.,
2025), we represent a problem instance as a graph G(V,E), where V and E denote node and edge
sets, respectively, and let n = |V | denote the number of nodes. Decision variables are binary vectors
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Figure 1: Overview of NEXCO. Given a graph instance G, a ground-truth solution x0 ∈ {0, 1}N
is corrupted by masking only selected variables (1s) to 0s while keeping unselected ones (0s), pro-
ducing a partial solution xt. A time-agnostic GNN denoiser fθ predicts confidence scores for all
variables without timestep conditioning. During inference, NEXCO performs Native Adaptive Ex-
pansion (NAE): starting from an fully masked solution x1 = [0], the model progressively unmasks
high-confidence variables while a problem-specific projector Γ(·) enforces feasibility. This process
yields valid intermediate partial solutions and converges to a complete feasible solution.

x ∈ {0, 1}N : for edge-selection problems, N = n2 and xi·n+j = 1 indicates whether edge (i, j) is
selected; for node-selection problems, N = n and xi = 1 indicates whether node i is selected. The
feasible region Ω encodes hard constraints, and the objective is

min
x∈{0,1}N

l(x;G) s.t. x ∈ Ω. (1)

We study three canonical NP-hard tasks: TSP: find a minimum-weight Hamiltonian cycle in a
complete graph; MIS: find a maximum-cardinality independent set; CVRP: minimize routing cost
subject to degree and vehicle-capacity constraints.

2.2 DIFFUSION SOLVERS FOR CO

Diffusion models define a forward corruption q(xt|xt−1) and a reverse denoising pθ(xt−1|xt). For
binary CO, a natural adaptation is uniform bit-flip diffusion (Sun & Yang, 2023; Li et al., 2024):

q(xt|xt−1) = (1− βt)xt−1 + βt(1− xt−1), (2)

where βt ∈ (0, 1) denotes the corruption rate at step t. The corresponding t-step marginal is

q(xt|x0) = (1− β̄t)x0 + β̄t(1− x0), (3)

where β̄t = 1 −
∏t

s=1(1 − βs) is the cumulative corruption rate up to step t. Denoisers are then
trained to recover the clean signal x0 or directly predict the optimal solution x∗ using variants of
likelihood or optimization-consistency losses (Sun & Yang, 2023; Li et al., 2024).

2.3 MASKED DIFFUSION

Recent progress has shown that Masked Diffusion Models (MDMs) often achieve better performance
than uniform bit-flip diffusion in sequence inference tasks (Austin et al., 2021; Ou et al., 2025; Nie
et al., 2025b). Instead of symmetrically flipping 0 and 1, MDMs corrupt data by replacing entries
with a dedicated [MASK] token, following a continuous trajectory parameterized by t ∈ [0, 1]:

q(xt|x0) = (1− t) · x0 + t · [MASK]. (4)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In the context of combinatorial optimization, solutions are represented as binary vectors x ∈
{0, 1}N , where each entry (1) corresponds to a selected edge or node. Thus, any state where only
a subset of 1s is visible can naturally be interpreted as a partial solution. MDMs exploit this per-
spective: observed entries remain fixed while masked entries are left to be predicted by the denoiser.
Moreover, since the corruption level is encoded in the fraction of masked variables rather than in
an explicit timestep, training can be made time-agnostic. These properties have proven especially
useful in large language models, enabling schedule-invariant training and efficient parallel decod-
ing (Zheng et al., 2025; Ou et al., 2025; Nie et al., 2025a; Wu et al., 2025; Sun et al., 2025).

3 METHOD

We introduce NEXCO, a masked diffusion framework tailored for combinatorial optimization. The
core idea is to reinterpret the diffusion trajectory in line with the AE paradigm, as a constructive
process over partial solutions with adaptive expansion, rather than as the generation of probability
heatmaps. First, we design a CO-specific corruption (§3.1) that masks out selected variables but
never introduces false positives, ensuring that intermediate states remain aligned with the feasible
manifold. Then, we propose a time-agnostic graph denoiser (§3.2) trained with a new optimization
consistency principle (§3.3), which enforces that all corrupted states of an instance consistently map
to the same optimum. Finally, we develop a native adaptive expansion decoding strategy (§3.4),
which progressively expands partial states into complete solutions under feasibility projection.

3.1 FORWARD PROCESS: CO-SPECIFIC CORRUPTION

Why uniform bit-flip fails to leverage intermediate states. Prior GP-style diffusion solvers for
CO (e.g., DIFUSCO (Sun & Yang, 2023), T2T (Li et al., 2023), Fast T2T (Li et al., 2024)) adopt
uniform bit-flip corruption with the marginal formulation in Eq. 3, where each variable is flipped
independently with probability β̄t. This design causes a fundamental structural misalignment: sym-
metric flipping ignores the combinatorial constraints encoded in the graph. As a result, the corrupted
state xt quickly drifts away from the feasible manifold. For example, in TSP it contains many edges
that violate degree constraints or form subtours (see Fig.1 in (Li et al., 2024)). Such noisy states
cannot be interpreted as valid partial solutions, but only as dense heatmaps detached from feasi-
bility. Consequently, the denoiser is trained on spurious patterns, and the intermediate trajectory
becomes unusable for constructive decoding, forcing prior solvers to discard it and rely solely on
heuristic decoding at the final step. This highlights the need for a CO-aware corruption mechanism
that preserves sparsity and respects structural constraints, so that intermediate states are meaningful
partial solutions and can be directly exploited for adaptive expansion.

Figure 2: Validation cost curves
on MIS. CO-specific diffusion follows
the correct trend of increasing set size,
while three-state mask diffusion col-
lapses to smaller sets. The latter suf-
fers from severe 0–1 imbalance and lo-
cal constraints, which bias the model
toward conservative 0 predictions.

Mask diffusion. A natural alternative to uniform flipping
is the masked diffusion model (MDM)(Austin et al., 2021;
Nie et al., 2025b), which introduces a third state [MASK]
and requires the denoiser to reconstruct both 0s and 1s.
While effective in language tasks, directly applying MDM
to CO is problematic. Take MIS as an example: the vali-
dation cost should increase during training, since the goal
is to enlarge the independent set. However, as shown in
Fig. 2, three-state MDM instead shows a decreasing vali-
dation cost. This mismatch stems from two factors. First,
CO solutions are highly imbalanced: most variables are 0,
so the training signal is dominated by negative examples,
biasing the denoiser toward predicting 0s and shrinking
the independent set. Second, unlike TSP where a global
Hamiltonian cycle provides strong priors, MIS depends
mainly on local adjacency constraints. Starting from a
fully masked state, the model tends to favor “safe” pre-
dictions (0s) over “risky” ones (1s that might violate inde-
pendence), further reinforcing conservative behavior.

CO-specific corruption. To address this issue, we unify the [MASK] and 0 states into a single
background state (numerically represented as 0), leaving only [BACKGROUND] ↔ 1 transitions.
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Intuitively, in CO most variables are fixed at 0 by problem-specific constraints such as degree limits
in TSP, capacity restrictions in CVRP, or adjacency rules in MIS. Thus, treating [MASK] as distinct
provides no additional signal but only exacerbates the imbalance by multiplying negative examples.
Under this unification, the forward process becomes a one-way corruption in which only active
entries (1s) may be dropped to [BACKGROUND]:

q(xt|x0) = (1− t) · x0 + t · 0, (5)

where 0 denotes the background state. This eliminates the imbalance-driven conservatism of MDM
and ensures that intermediate states correspond to valid partial solutions aligned with combinatorial
feasibility. As shown in Fig. 2, our CO-specific corruption follows the correct trend of increasing
validation cost, providing a clean foundation for the time-agnostic denoiser (§3.2) and the Native
Adaptive Expansion decoding scheme (§3.4).

3.2 TIME-AGNOSTIC DENOISER

From timestep to mask conditioning. In prior CO diffusion solvers (Sun & Yang, 2023; Li et al.,
2024), the denoiser fθ(xt, t, G) explicitly conditions on timestep t, since t encodes the corruption
intensity. This dependence rigidly ties the model to a predefined schedule, limiting generalization
across horizons. In our CO-specific corruption process, however, the corruption level is directly vis-
ible in the mask pattern itself : the fraction of surviving 1s naturally reflects the signal-to-noise ratio.
We therefore remove timestep embeddings and design a time-agnostic denoiser fθ(xt, G), which
depends only on the corrupted state and the graph instance. This eliminates schedule sensitivity and
shifts the focus to structural dependencies and the semantics of partial solutions.

Model architecture. We instantiate fθ as an anisotropic graph neural network (GNN) (Joshi et al.,
2021; Sun & Yang, 2023). Nodes and edges are annotated with task-specific features (e.g., coordi-
nates in TSP, adjacency in MIS, or capacities in CVRP), while xt is encoded as binary attributes.
Message passing aggregates both structural and partial-solution context, and attention-based pool-
ing captures long-range dependencies. The output is a probability vector p ∈ [0, 1]N , where p(i)

estimates the likelihood of variable i belonging to the optimal solution x∗. Compared with conven-
tional denoisers, the only change is the removal of timestep embeddings, highlighting that schedule
awareness is unnecessary under mask corruption. Further details are provided in Appendix C.

Analogy to large language diffusion models. Our time-agnostic design parallels the success of
masked diffusion in large language models (Austin et al., 2021; Ou et al., 2025; Nie et al., 2025b;
Wu et al., 2025). In those settings, random masking without explicit timestep conditioning enables
scalable pretraining and efficient parallel decoding. By extending this principle from token se-
quences to graph-structured CO problems, we show that time-agnostic denoising is equally effective
when intermediate states correspond to valid partial solutions.

3.3 TRAINING OBJECTIVE: TIME-AGNOSTIC OPTIMIZATION CONSISTENCY

Consistency principle. Consistency models (Song et al., 2023) learn direct mappings from noisy to
clean data, enforcing that predictions across different corruption levels remain stable. Fast T2T (Li
et al., 2024) adapted this idea to CO with optimization consistency, requiring all corrupted states of
an instance to map to its optimal solution x∗. This ties denoising directly to the optimization goal,
thereby improving one-step prediction quality.

Time-agnostic optimization consistency. Our CO-specific corruption is monotone: as t increases,
supports shrink, so for any 0 < t < t′ < 1 we have supp(xt′) ⊆ supp(xt). Each corrupted state
xt is thus a valid subset of x∗. This property allows us to drop timestep embeddings and directly
enforce consistency across corruption levels. Formally, the time-agnostic optimization consistency
loss is

LTOC(θ) = Et′>t

[
d(fθ(xt′ , G), x∗) + d(fθ(xt, G), x∗)

]
, (6)

where d(·, ·) is binary cross-entropy or a task-specific discrepancy. Training under LTOC amounts
to reconstructing x∗ from multiple partial solutions. Because the corruption never introduces false
positives, every xt stays close to the feasible manifold, providing supervision that is inherently
aligned with CO constraints. This contrasts with uniform diffusion, where intermediate states are
often unrealistic and force the model to correct artifacts.
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Practical note. The reference solution x∗ can come from exact solvers on small/medium instances
or high-quality heuristics on larger ones. The TOC loss remains valid in both cases, as it only
requires a consistent reference per instance. We empirically confirm this in Table 3, where models
trained on suboptimal labels still deliver competitive solutions.

3.4 INFERENCE PROCESS: NATIVE ADAPTIVE EXPANSION (NAE)

Motivation. Existing diffusion-based CO solvers generate a sequence of Ts global probability
heatmaps p1, . . . ,pTs ∈ [0, 1]N , but these intermediate states are not semantically valid partial
solutions. As a result, prior methods typically exploit only the final step via heuristic decoding:

x̂ = Γ
(
Decode(pTs)

)
, (7)

where Decode is a heuristic (e.g., greedy search) and Γ enforces feasibility (Sun & Yang, 2023).
This under-utilization of the trajectory is a key limitation: despite producing many intermediate
states, only a final one-shot prediction is retained. COExpander (Ma et al., 2025) alleviates this
via adaptive expansion (AE), but AE is realized as an external wrapper around GP predictors. Its
complexity depends on both the number of expansion rounds Ds and the per-call cost CGP of the
backbone: CostAE = O(Ds · CGP). Thus, wrapping diffusion solvers (e.g., Fast T2T (Li et al.,
2024)) yields O(Ds · Ts) complexity, while wrapping GCN (Joshi et al., 2019) reduces it to O(Ds)
but still ties performance to external heatmap quality (Xia et al., 2024).

By contrast, our framework produces semantic partial solutions along the diffusion trajectory. This
enables Native Adaptive Expansion (NAE): a deterministic expansion procedure that reuses the de-
noiser once per stage and enforces feasibility at each step, achieving O(Ts) complexity while mak-
ing full constructive use of the entire trajectory.

Algorithm 1: Native Adaptive Expansion (NAE)
Input: Graph G, denoiser fθ, iterations Ts,

threshold α, expansion schedule {ρt}.
Initialize x1 ← 0;
for t = 1, . . . , Ts do

pt ← fθ(G,xt−1);
Ct ← {i | x(i)

t−1 = 0, p(i)
t ≥ α};

Project candidates: St ← Γ(Ct,pt, xt−1);
Retain ρk fraction of St ;
Update xt by activating retained entries;

return xTs

Procedure. NAE begins from x1 as fully
masked solution 0 and expands iteratively.
At step t, the denoiser outputs a confidence
vector pt = fθ(G,xt−1). Variables above
threshold α form a candidate set Ct, which
is projected onto a feasible subset St by
Γ(·). From this subset, a fraction ρt of en-
tries is selected, where ρt may be set as a
tunable hyperparameter or determined by
an evenly spaced schedule over steps. Re-
peating this process yields a trajectory of
feasible partial solutions until completion,
as summarized in Algorithm 1.

Feasibility projection. Although different CO tasks impose different feasibility rules, the projec-
tion operator Γ(·) follows a single task-agnostic template across all problems we study. At each ex-
pansion step, the model produces a confidence vector p, and Γ(·) constructs the next partial solution
using the same three-stage procedure. First, candidate variables are sorted in descending confidence.
Second, candidates are examined sequentially. Third, a candidate is activated only when doing so
satisfies a simple boolean feasibility predicate. This local predicate is lightweight to compute and
varies only in its constraint definition, not in the mechanism of feasibility projection. Consequently,
extending NAE to a new CO task requires only defining this predicate, while the entire three-stage
projection pipeline remains intact. Formally, the projection step solves:

St = arg max
x(i)⊆Ct, x∈Ω

∑
i

p
(i)
t x(i), (8)

which is implemented by inserting candidates in descending confidence order and accepting them
only when the feasibility predicate holds. In practice, this yields a simple and uniform instantiation
across tasks: TSP: edges are added while maintaining degree-2 and subtour-free constraints; MIS: a
vertex is selected only if all neighbors remain inactive; CVRP: routing edges are inserted provided
vehicle-capacity constraints are not violated. Candidates that fail the predicate are skipped, prevent-
ing conflicts and ensuring that St ⊆ Ct is always a feasible and high-confidence partial solution.
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Table 2: Results on synthetic TSP problem instances. BS: Beam Search.
Algorithm Type TSP-100 TSP-500 TSP-1000

Length↓ Drop↓ Time Length↓ Drop↓ Time Length↓ Drop↓ Time

Mathematical Solvers or Heuristics

Concorde (Applegate et al., 2006) Exact 7.76∗ – 0.23s 16.55∗ – 18.65s 23.12∗ – 84.38s
LKH3 (512) (Helsgaun, 2017) Heuristics 7.76 0.00% 0.12s 16.55 0.00% 1.17s 23.12 0.01% 2.91s

Learning-based Solvers with Greedy Decoding

AM +BS (Kool et al., 2019) LC 7.95 2.48% 0.61s 19.53 18.03% 1.31s 29.90 29.24% 5.91s
BQ-NCO +BS (Drakulic et al., 2023) LC 7.76 0.01% 0.19s 16.64 0.55% 7.03s 23.47 1.38% 17.81s
GCN +BS (Joshi et al., 2019) GP 8.41 8.38% 0.28s 30.37 83.55% 17.81s 51.26 121.73% 24.23s
DIMES (Qiu et al., 2022) GP 8.01 3.23% 0.06s 17.17 3.74% 0.45s 24.79 7.22% 1.12s
DIFUSCO (TS = 50) (Sun & Yang, 2023) GP 7.78 0.26% 0.59s 16.82 1.64% 1.43s 23.57 1.94% 5.04s
T2T (Ts = 50, Tg = 30) (Li et al., 2023) GP 7.76 0.07% 1.34s 16.68 0.82% 3.05s 23.44 1.40% 9.23s
Fast T2T (Ts = 5 ) (Li et al., 2024) GP 7.76 0.08% 0.06s 16.72 1.02% 0.27s 23.38 1.12% 0.99s
Fast T2T (Ts = 5, Tg = 5) (Li et al., 2024) GP 7.76 0.03% 0.31s 16.61 0.39% 1.41s 23.25 0.58% 5.81s
COExpander (Ds = 3, Ts = 5) (Ma et al., 2025) AE 7.76 0.04% 0.18s 16.63 0.52% 0.61s 23.34 0.95% 2.26s
NEXCO (Ds = 3) NAE 7.76 0.04% 0.05s 16.61 0.39% 0.23s 23.31 0.85% 0.91s
NEXCO (Ds = 5) NAE 7.76 0.03% 0.08s 16.59 0.28% 0.33s 23.26 0.63% 1.31s
NEXCO (Ds = 7) NAE 7.76 0.02% 0.11s 16.59 0.25% 0.43s 23.24 0.52% 1.68s

Learning-based Solvers with 4× Sampling Decoding

LEHD PRC 100 (Luo et al., 2023) LC 7.76 0.01% 0.64s 16.61 0.34% 3.75s 23.44 1.22% 20.16s
Fast T2T (Ts = 5, Tg = 5) (Li et al., 2024) GP 7.76 0.01% 0.99s 16.58 0.21% 5.16s 23.22 0.42% 17.42s
COExpander (Ds = 3, Ts = 5) (Ma et al., 2025) AE 7.76 0.01% 0.61s 16.59 0.24% 2.21s 23.27 0.64% 8.43s
NEXCO (Ds = 5) NAE 7.76 0.01% 0.25s 16.57 0.14% 1.16s 23.20 0.35% 4.85s

Convergence and complexity. We provide a formal convergence analysis of the NAE procedure.
Because the forward corruption in our CO-specific diffusion process is one-way absorbing (1→0),
every diffusion state remains a feasible partial solution. The reverse step expands this partial solution
via xt+1 = Γ(xt ∨ zt),where zt is the candidate activation mask predicted by the denoiser, and Γ
is a feasibility projector. We assume the following mild and standard conditions, satisfied by the
projectors Γ(·) used for TSP, MIS, and CVRP:

(A1) Monotone projection: Γ(x) ⪰ x for all feasible x.

(A2) Strict expandability: ∃ zt such that Γ(xt ∨ zt) ≻ xt whenever xt is incomplete.

(A3) Bounded solution size: Any complete feasible solution contains at most Nmax active variables.

Proposition 1 (Finite-time convergence of NAE) Under assumptions (A1)-(A3), NAE generates a
monotone sequence x0 ⪯ x1 ⪯ · · · and converges to a complete feasible solution in at most Nmax

iterations.

Remark. The upper bound Nmax is fully consistent with typical CO structures:

• TSP: Nmax = N edges in a Hamiltonian tour.

• MIS: Nmax ≤ n selected nodes.

• CVRP: Nmax equals the total number of edges across all valid routes.

This analysis formalizes the intuition that NAE is a monotone constructive decoder that reaches a
complete feasible solution in finite time. In terms of efficiency, NAE requires O(Ts) denoiser calls,
matching the order of diffusion while being asymptotically more efficient than COExpander, whose
wrapper design incurs O(Ds · Ts) complexity.

4 EXPERIMENTS

4.1 EXPERIMENTS ON TSP

Datasets. Each TSP instance consists of N two-dimensional coordinates and a reference optimal
solution. Following standard practice (Sun & Yang, 2023), we generate instances by uniformly
sampling N nodes from the unit square [0, 1]2. The training sets contain 1,280K, 128K, and 64K
instances for TSP-100, TSP-500, and TSP-1000, respectively. The corresponding test sets consist
of 1,280 instances for TSP-100 and 128 instances each for TSP-500 and TSP-1000. Reference
solutions are obtained using Concorde (Applegate et al., 2006). We further include large-scale TSP-
10K instances and real-world TSPLIB benchmarks, with results reported in Appendix B.2 and B.3.
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Metrics. We evaluate solvers on three metrics: 1) Length: average tour length of the produced
solutions; 2) Drop: relative deviation from the reference solution; 3) Time: average time per instance.

Setting. For NEXCO, we vary the number of expansion rounds Ds ∈ {3, 5, 7} in the NAE procedure
to balance solution quality and runtime. The confidence threshold α is tuned as a hyperparameter.
For diffusion-based baselines, we adopt standard configurations (Li et al., 2023): Ts denotes the
number of inference steps, and Tg denotes the number of gradient refinement steps. Unless otherwise
stated, all methods employ greedy decoding with an optional 2-Opt heuristic in post-processing.

Main results. Table 2 reports the comparison across different scales. NEXCO consistently surpasses
state-of-the-art learning-based solvers in both solution quality and runtime. On TSP-100, Fast T2T
achieves a 0.03% gap in 0.31s, whereas NEXCO attains the same gap in only 0.08s, yielding a 3.9×
speedup. Similarly, on TSP-500, NEXCO reduces the gap to 0.25% within 0.43s, while Fast T2T
requires 1.41s to reach 0.39%, corresponding to both a 1.5× improvement in gap and a 3× speedup.
Taken together, these results demonstrate that embedding adaptive expansion natively into diffusion
not only accelerates inference by 2–4×, but also consistently reduces optimality gaps, highlighting
the effectiveness of NEXCO as a next-generation neural TSP solver.

Table 3: Ablation on reference quality.
Label / Model Length ↓ Drop ↓ Length ↓ Drop ↓
2-Opt Perturbation 16.82 1.65% 17.11 3.35%

NEXCO (Ds = 5) 16.60 0.31% 16.60 0.31%
NEXCO (Ds = 7) 16.59 0.25% 16.59 0.26%

Ablation on reference quality. We further ex-
amine the robustness of NEXCO when trained
with suboptimal supervision. To this end, we
construct perturbed labels by applying 2-Opt
local search to the ground-truth solutions. As
shown in Table 3, these perturbed references are
significantly worse than the exact optima, with gaps of 1.65% and 3.35% on TSP-500. Neverthe-
less, models trained on such labels still deliver highly competitive results, achieving final gaps of
only 0.25% − 0.31%. This demonstrates that NEXCO is not tied to exact optimal labels but can
effectively leverage high-quality heuristic solutions as consistent training signals, making it broadly
applicable in practical CO scenarios where exact optima are often unavailable.

Table 4: Cross-scale generalization results on
TSP. Each entry reports Length, Gap (%).

Testing
Training TSP-100 TSP-500 TSP-1000

DIFUSCO (Ts=50) 7.78, 0.23% 7.85, 1.16% 7.87, 1.42%
T2T (Ts=50, Tg=30) 7.77, 0.08% 7.95, 2.47% 7.91, 1.96%
Fast T2T (Ts=5, Tg=5) 7.77, 0.02% 7.79, 0.40% 7.80, 0.55%
NEXCO (Ds = 5) 7.76, 0.02% 7.77, 0.18% 7.81, 0.72%

DIFUSCO (Ts=50) 17.05, 3.04% 16.78, 1.40% 16.86, 1.85%
T2T (Ts=50, Tg=30) 16.92, 2.25% 16.68, 0.81% 16.72, 1.00%
Fast T2T (Ts=5, Tg=5) 16.92, 1.77% 16.61, 0.38% 16.63, 0.51%
NEXCO (Ds = 5) 17.04, 2.96% 16.59, 0.27% 16.60, 0.37%

DIFUSCO (Ts=50) 24.04, 3.98% 23.65, 2.30% 23.63, 2.21%
T2T (Ts=50, Tg=30) 23.85, 3.16% 23.47, 1.51% 23.41, 1.23%
Fast T2T (Ts=5, Tg=5) 23.77, 3.08% 23.31, 0.81% 23.25, 0.58%
NEXCO (Ds = 5) 24.01, 3.86% 23.25, 0.58% 23.25, 0.57%

Generalization study. Table 4 reports cross-
scale transfer results. Models trained on small
instances generalize poorly, with DIFUSCO,
T2T, and Fast T2T all incurring ∼ 3% gaps
on TSP-1000. Training on medium or large
instances improves robustness, and NEXCO
shows the strongest transferability. In partic-
ular, when trained on TSP-500, it generalizes
to TSP-1000 with only 0.58% gaps. Simi-
larly, the model trained on TSP-1000 achieves
a 0.37% gap on TSP-500, surpassing baselines
that are directly trained on TSP-500. These re-
sults highlight that native adaptive expansion
yields consistently superior cross-scale gener-
alization compared with existing diffusion-based solvers.

4.2 EXPERIMENTS ON MIS.

Datasets. Following (Sun & Yang, 2023; Qiu et al., 2022; Li et al., 2018; Ahn et al., 2020), we
consider two benchmark datasets: RB graphs and Erdős–Rényi (ER) graphs. For RB graphs, we
generate small- and large-scale instances by sampling the number of vertices from [200, 300] and
[800, 1200], respectively. For ER graphs, we construct random graphs with 700–800 nodes, where
each edge is added independently with probability 0.15. In total, we generate 90,000 small and
6,400 large RB instances for training, with 500 test instances. For ER graphs, 163,840 instances are
used for training and 500 test instances are adopted from (Qiu et al., 2022).

Metrics. 1) Size: the average solution size; 2) Drop: the relative deviation from the reference
solution obtained by KaMIS (Lamm et al., 2016); 3) Time: the average runtime per instance.

Main results. Table 5 shows that NEXCO consistently improves both efficiency and solution quality
over diffusion- and expansion-based baselines. On RB-[200–300], NEXCO lowers the drop from
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Table 5: Results on synthetic MIS problem instances.
Algorithm Type RB-[200-300] RB-[800-1200] ER-[700-800]

Size↑ Drop↓ Time Size↑ Drop↓ Time Size↑ Drop↓ Time

KaMIS (Lamm et al., 2016) Heuristics 20.10 – 45.81s 43.00 – 56.97s 44.87 – 48.49s

DIMES (Qiu et al., 2022) GP – – – – – – 38.24 14.78% 2.8s
DIFUSCO (Ts = 100) (Sun & Yang, 2023) GP 18.52 7.81% 1.9s – – – 37.03 18.53 2.58s
T2T (Ts = 50, Tg = 30) (Li et al., 2023) GP 18.98 5.49% 2.52s – – – 39.81 11.28 3.33s
Fast T2T (Ts = 5, Tg = 5) (Li et al., 2024) GP 19.58 2.54% 0.39s 39.34 8.51% 2.76s 40.78 9.31% 1.22s
COExpander (Ds = 20, Ts = 1) (Ma et al., 2025) AE 19.60 2.39% 0.20s 41.09 4.36% 2.05s 42.44 5.62% 1.53s
NEXCO (Ds = 5) NAE 19.70 1.97% 0.11s 40.94 4.79% 0.75s 42.64 4.96% 0.44s
NEXCO (Ds = 7) NAE 19.76 1.66% 0.14s 41.25 4.07% 1.00s 42.98 4.20% 0.56s

Table 6: Results on synthetic CVRP problem instances.
Algorithm Type CVRP 50 CVRP 100 CVRP 200

Length↓ Drop↓ Time Length↓ Drop↓ Time Length↓ Drop↓ Time

HGS (Helsgaun, 2017) Heuristics 10.37 – 1.01s 15.56 – 20.03s 19.63 – 60.02s

Sym-NCO (Kim et al., 2022) LC 10.57 1.95% 0.09s 15.93 2.37% 0.19s 20.19 2.86% 0.36s
COExpander (Ds = 3, Ts = 1) (Ma et al., 2025) AE 10.77 3.85% 0.03s 16.22 4.19% 0.06s 20.52 4.58% 0.20s
NEXCO (Ds=3) NAE 10.48 1.12% 0.04s 15.83 1.73% 0.08s 20.18 2.76% 0.27s
NEXCO (Ds=5) NAE 10.46 0.85% 0.06s 15.78 1.40% 0.12s 20.11 2.45% 0.39s

Figure 3: Effect of expansion steps on performance. Green curves show our method with different
numbers of expansion steps. Increasing steps improves solution quality (smaller drop) while linearly
increasing inference time. Reference markers denote SOTA baselines (Fast T2T, COExpander, Sym-
NCO), against which our method achieves consistently better efficiency–quality trade-offs.

2.54% (Fast T2T) to 1.66% while being 2.8× faster. On ER, it achieves a 4.20% drop compared
with 9.31% for Fast T2T, with more than 2× speedup. Compared with COExpander, NEXCO
also attains smaller gaps in much less time: on RB-[800–1200], 4.07% in 1.00s vs. 4.36% in
2.05s. These results demonstrate that NAE not only improves scalability but also yields consistently
higher-quality solutions in MIS. Additional generalization results are provided in Appendix B.1.

4.3 EXPERIMENTS ON CVRP

Datasets. Each CVRP instance consists of a depot, N customer coordinates, and corresponding
demands. Coordinates are uniformly sampled from the unit square [0, 1]2, demands are drawn
as integers from [1, 10], and vehicle capacities are fixed to 40, 50, and 80 for CVRP-50, CVRP-
100, and CVRP-200, respectively. The training sets contain 1,280K, 640K, and 32K instances for
CVRP-50/100/200, while the test sets include 10K instances for CVRP-50/100 and 100 instances
for CVRP-200. Reference solutions are obtained using the HGS solver (Helsgaun, 2017).

Main results. As summarized in Table 6, NEXCO achieves consistent improvements across all
scales. Compared with LC methods such as Sym-NCO (Kim et al., 2022), which yield moderate
drops, and AE-based COExpander, which suffers from even larger deviations, NEXCO substantially
reduces the gap while also cutting runtime. For example, it improves from 3.86% → 0.85% on
CVRP-50, 4.16% → 1.40% on CVRP-100, and 4.84% → 2.45% on CVRP-200, corresponding to
1.6− 2× speedup. Notably, GP-based diffusion solvers have not been extended to CVRP due to its
intricate capacity constraints, further highlighting the strength of native adaptive expansion.

4.4 HYPERPARAMETER STUDY

We analyze two key hyperparameters in NEXCO: the number of expansion steps and the candidate
threshold α. As shown in Fig. 3, increasing the number of expansion steps consistently improves so-
lution quality while runtime grows nearly linearly, revealing a clear trade-off between efficiency and
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Figure 4: Effect of the candidate threshold α. Performance across TSP, MIS, and CVRP improves
at moderate thresholds, but deteriorates when α is set too high (restrictive) or too low (noisy).

performance. This allows practitioners to flexibly adjust inference cost, and NEXCO remains supe-
rior to strong baselines (Fast T2T, COExpander, SymNCO) even under reduced step budgets. Sim-
ilarly, Fig. 4 shows that moderate values of α yield the best results: overly high thresholds become
too restrictive, while overly low thresholds admit noisy candidates. Importantly, the optimal range
of α is largely shared across all sizes and distributions within each task (e.g., TSP-100/500/1000;
MIS-RB/ER; CVRP-50/100/200), demonstrating strong task-level robustness. This cross-setting
consistency means that NEXCO requires minimal per-instance tuning, as a single hyperparameter
choice generalizes reliably across scales within the same CO task.

5 CONCLUSION

In this work, we proposed NEXCO, a masked diffusion framework that realizes adaptive solution
expansion as a native generative principle for neural combinatorial optimization. Our framework is
built on three key components: a CO-specific forward corruption that preserves sparsity and yields
semantic partial solutions, a time-agnostic GNN denoiser trained under optimization consistency,
and a Native Adaptive Expansion (NAE) inference strategy that progressively selects confident
variables under feasibility constraints. This framework has demonstrated the effectiveness across
three representative CO problems. We believe this work opens up new opportunities for integrating
constructive expansion mechanisms into diffusion-based generative modeling, and provides a step
forward toward scalable and general-purpose neural solvers for combinatorial optimization.

ETHICS STATEMENT

This paper presents a new masked diffusion framework for neural combinatorial optimization. The
proposed method addresses fundamental challenges in existing neural solvers, including the ineffi-
ciency of local construction, the constraint conflicts of global prediction, and the reliance on external
predictors in adaptive expansion. Our contribution is methodological in nature, aiming to improve
both solution quality and inference efficiency across benchmark CO problems such as MIS, TSP,
and CVRP. We expect this work to benefit the broader research community by providing a more
principled foundation for scalable and effective neural solvers in discrete optimization.

We do not anticipate any negative societal impacts arising from this research. Our work does not
involve sensitive personal data, human subjects, or applications with immediate ethical risks. Fur-
thermore, we do not identify issues related to conflicts of interest, discrimination or fairness, privacy
or security, legal compliance, or research integrity. As a methodological contribution validated on
public benchmarks, this work is aligned with the ethical standards of the ML community.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the datasets, evaluation metrics, and hyperparameter choices in
Sec. 4. The model architecture, hardware configuration, and complete training details are provided
in Appendix C and Appendix D. All source code, preprocessed datasets, and pretrained checkpoints
will be publicly released upon publication to ensure full reproducibility.
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APPENDIX

A ADDITIONAL RELATED WORKS

A.1 LEARNING-BASED COMBINATORIAL OPTIMIZATION

Learning-based combinatorial optimization approaches can be broadly grouped into three cate-
gories: constructive methods, improvement-based methods, and divide-and-conquer frameworks.

Constructive methods can be further divided into Local Construction (LC) and Global Prediction
(GP) paradigms. LC approaches (Kool et al., 2019; Kwon et al., 2020; Kim et al., 2022; Berto et al.,
2023; Drakulic et al., 2023; Pan et al., 2025) build solutions sequentially, selecting one variable at a
time and ensuring feasibility at each step, but often suffer from myopic decisions and slow decoding.
RL4CO community develops a comprehensive repository for this category of methods (Berto et al.,
2023). GP approaches (Joshi et al., 2019; Fu et al., 2021; Qiu et al., 2022; Schuetz et al., 2022;
Min et al., 2023; Sun & Yang, 2023; Xia et al., 2024; Li et al., 2024; Xiao et al., 2024), by contrast,
predict global probability heatmaps in a single forward pass. This makes them efficient and globally
aware, but the raw predictions often violate constraints and thus require post-processing to enforce
feasibility. Within this paradigm, generative modeling methods (Hottung et al., 2021; Sun & Yang,
2023; Li et al., 2023; 2024; Zhao et al., 2024; Sanokowski et al., 2024) aim to learn a distribution over
high-quality solutions for each instance. Feasible solutions can then be obtained by sampling from
this distribution, which has been shown to yield competitive or even superior solver performance. To
bridge these trade-offs, COExpander (Ma et al., 2025) recently introduced the Adaptive Expansion
(AE) paradigm, which interpolates between LC’s fine-grained feasibility and GP’s global awareness.
However, AE in COExpander is implemented only as a wrapper around GP predictors, leaving its
effectiveness bounded by the quality and efficiency of the underlying backbone. This limitation
motivates our work, which aims to instantiate AE as a native generative principle within a diffusion
framework.

Improvement-based solvers (Chen & Tian, 2019; Oliveira da Costa et al., 2020; Wu et al., 2021;
Sui et al., 2021; Li et al., 2021; Hou et al., 2023; Ma et al., 2023) focus on refining an initial solution,
typically generated by a simple heuristic (e.g., greedy construction), through iterative optimization
guided by neural networks or local search operators. While these methods can improve solution
quality and naturally enforce feasibility at each step, they suffer from two key drawbacks: their de-
pendence on heuristic initializers limits generality across problem settings, and the need for multiple
refinement rounds incurs substantial computational overhead.

Divide-and-conquer (D&C) framerworks (Fu et al., 2021; Kim et al., 2021; Luo et al., 2023;
2025; Zheng et al., 2024; Ye et al., 2024) address scalability by decomposing large CO instances
into smaller subproblems, solving them with either classical heuristics or neural solvers, and then
aggregating the partial solutions into a global one. Scalability has long been a central challenge
in neural CO: for GP-based methods, obtaining supervision signals is prohibitively expensive; for
RL-based sequential models, issues like sparse rewards and unstable training further hinder their
applicability to large-scale settings. DC provides a practical alternative to mitigate these limitations,
and is largely orthogonal to constructive methods: it can be applied on top of LC, GP, or AE models,
enabling them to operate effectively on larger-scale instances through problem decomposition.

A.2 MASK DIFFUSION MODEL

Diffusion models were first developed for continuous domains with Gaussian transitions (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021), and later extended to discrete spaces
by reformulating the forward process as a discrete-state Markov chain (Hoogeboom et al., 2021;
Austin et al., 2021; Lou et al., 2024). Among these extensions, the masked diffusion model (MDM)
has proven particularly effective: instead of arbitrary bit flips, variables are corrupted into an ab-
sorbing mask state, yielding semantically meaningful intermediate states. This simple yet powerful
design enables principled training (Sahoo et al., 2024; Shi et al., 2024), scales efficiently to large
models (Gong et al., 2025; Nie et al., 2025b; Wu et al., 2025; Sun et al., 2025; Ou et al., 2025), and
consistently outperforms autoregressive models in reasoning and planning tasks (Ye et al., 2025; Nie
et al., 2025a; Zheng et al., 2025). With these advantages, masked diffusion has become the de facto
framework for discrete generative modeling, offering interpretable partial states, schedule-invariant
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training, and efficient decoding that resonate strongly with the requirements of neural combinatorial
optimization.

B ADDITIONAL EXPERIMENTS

B.1 CROSS-DISTRIBUTION AND CROSS-SCALE GENERALIZATION ON MIS

Table 7: Cross-distribution and cross-scale generalization results on MIS. Each entry reports the
average solution size.

Algorithm Cross-Distribution Cross-Scale
p = 0.2 p = 0.3 p = 0.4 [350–400] [1400–1600]

KaMIS 35.30 24.37 18.18 37.96 50.95

DIFUSCO 26.25 15.84 11.75 27.31 34.39
Fast T2T 29.52 17.77 13.27 32.56 36.95
NEXCO 31.24 18.14 14.17 34.65 38.39

Table 7 compares the performance of different solvers under distribution shifts and varying graph
sizes. On random ER graphs with increasing edge probabilities (p = 0.2, 0.3, 0.4), learning-based
solvers exhibit a clear gap compared to the heuristic KaMIS, but NEXCO consistently achieves
larger solution sizes than both DIFUSCO and Fast T2T, e.g., 31.24 vs. 29.52 and 26.25 at p =
0.2. A similar trend holds in cross-scale settings: when transferring from RB-[350–400] and RB-
[1400–1600], NEXCO again outperforms other learning-based solvers, achieving 34.65 and 38.39
respectively, compared to 32.56 and 36.95 from Fast T2T. These results highlight that native adaptive
expansion maintains superior generalization under both distributional and scale shifts.

B.2 SCALABILITY ON TSP-10K

To further evaluate scalability, we conducted experiments on the large-scale TSP-10K dataset. We
compare NEXCO with strong baselines, including the classical heuristic LKH, the divide-and-
conquer approach GLOP (Ye et al., 2024), and diffusion-based solvers DIFUSCO (Sun & Yang,
2023), DISCO (Zhao et al., 2024), and Fast T2T (Li et al., 2024). For diffusion-based methods, we
follow standard practice (Sun & Yang, 2023; Li et al., 2024) and apply K-Nearest Neighbor (KNN)
sparsification with a sparse factor of 100 to restrict the search space by sampling 100 neighbors for
each node. As shown in Table 8, NEXCO achieves the best balance between quality and efficiency:
it reduces the optimality gap to 1.53% in 52s, improving over diffusion baselines (e.g., 1.63% in
70s by Fast T2T) while being substantially faster than LKH. These results highlight the scalability
advantage of native adaptive expansion in large-scale settings.

To extend to larger regimes, NEXCO is naturally compatible with standard scaling strategies used
in large-graph CO systems, such as divide-and-conquer frameworks (e.g., region partitioning sim-
ilar to GLOP (Ye et al., 2024)), or replacing the backbone GNN with lightweight sparse-attention
Transformers (Luo et al., 2025). These directions do not alter the proposed generative principle
and can be incorporated in future work to achieve industrial-scale deployments. In addition, the
partial-solution semantics of NEXCO provide a natural mechanism for overcoming the scarcity and
high cost of supervision in large-scale CO tasks. Because the model operates on feasible partial
states rather than requiring complete high-quality solutions at every step, it can be trained using
incomplete, heuristic, or low-cost labels and gradually refine its own predictions through iterative
self-training. This significantly reduces reliance on exact solvers, whose computational cost grows
prohibitively with instance size. The ability to learn from weak or partial supervision aligns with re-
cent scalable training pipelines (Luo et al., 2025; Li et al., 2025) that couple lightweight backbones
with progressive bootstrapping. Incorporating such strategies offers a promising path for applying
NEXCO in settings where high-quality ground-truth labels are expensive or unavailable, thereby
further extending its applicability to truly large and industrial-scale CO environments.
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Table 8: Results on TSP-10K. NEXCO achieves the best trade-off between solution quality and
runtime.

Method Type Length ↓ Drop ↓ Time
LKH Heuristics 71.77 – 332s
GLOP (more revisions) DC 75.29 4.90% 15s
DIFUSCO (Ts = 100) GP 73.91 2.98% 124s
DISCO GP 73.84 2.88% 92s
Fast T2T (Ts = 5) GP 72.94 1.63% 70s
NEXCO (Ds = 5) NAE 72.87 1.53% 52s

Table 9: Solution quality (%) for methods trained on TSP-100 problems and evaluated on TSPLIB
instances with 50–200 nodes. * denotes results quoted from previous works (Li et al., 2024).

Instances AM* GCN* Learn2OPT* GNNGLS* DIFUSCO* T2T* Fast T2T* NEXCO
eil51 16.767 40.025 1.725 1.529 2.82 0.14 0.00 0.00
berlin52 4.169 33.225 0.449 0.142 0.00 0.00 0.00 0.00
st70 1.737 24.785 0.040 0.764 0.00 0.00 0.00 0.00
eil76 1.992 27.411 0.096 0.163 0.34 0.00 0.00 0.00
pr76 0.816 27.793 1.228 0.039 1.12 0.40 0.00 0.00
rat99 2.645 17.633 0.123 0.550 0.09 0.09 0.00 0.00
kroA100 4.017 28.828 18.313 0.728 0.10 0.00 0.00 0.00
kroB100 5.142 34.686 1.119 0.147 2.29 0.74 0.65 0.00
kroC100 0.972 35.506 0.349 1.571 0.00 0.00 0.00 0.00
kroD100 2.717 38.018 0.866 0.572 0.07 0.00 0.00 0.00
kroE100 1.470 26.589 1.832 1.216 3.83 0.27 0.00 0.00
rd100 3.407 30.432 1.725 0.003 0.08 0.00 0.00 0.00
eil101 2.994 26.701 0.387 1.529 0.03 0.00 0.00 0.00
lin105 1.739 34.902 1.867 0.606 0.00 0.00 0.00 0.54
pr107 3.933 30.564 0.898 0.439 0.91 0.61 0.62 0.08
pr124 3.677 70.146 10.322 0.755 1.02 0.60 0.08 0.58
bier127 5.908 45.561 3.044 1.948 0.94 0.54 1.50 0.66
ch130 3.182 39.090 0.709 3.519 0.29 0.06 0.00 0.00
pr136 5.064 58.673 0.000 3.387 0.19 0.10 0.01 0.00
pr144 7.641 55.837 1.526 3.581 0.80 0.50 0.39 0.00
ch150 4.584 49.743 0.312 2.113 0.57 0.49 0.00 0.00
kroA150 3.784 45.411 0.724 2.984 0.34 0.14 0.00 0.00
kroB150 2.437 36.745 0.886 3.258 0.30 0.00 0.07 0.02
pr152 7.494 33.925 0.029 3.119 1.69 0.83 1.19 0.68
u159 7.551 38.338 0.054 1.020 0.82 0.00 0.00 0.00
rat195 6.839 24.968 0.743 1.666 1.48 1.27 0.79 0.11
d198 373.020 62.351 0.522 4.772 3.32 1.97 0.86 0.00
kroA200 7.106 40.885 1.441 2.029 2.28 0.57 0.49 0.00
kroB200 8.541 43.643 2.064 2.589 2.35 0.92 2.50 0.00

Mean 16.767 40.025 1.725 1.529 0.97 0.35 0.28 0.09

B.3 EVALUATION ON REAL-WORLD INSTANCES

We evaluate our model on real-world TSPLIB instances with 50–200 nodes (Reinelt, 1991). The
model is trained on TSP-100 dataset, and compared against state-of-the-art baselines including DI-
FUSCO (Sun & Yang, 2023), T2T (Li et al., 2023), and Fast T2T (Li et al., 2024). The hyperpa-
rameter configurations for the diffusion-based baselines are as follows: DIFUSCO with Ts = 50;
T2T with Ts = 50 and Tg = 30; Fast T2T (with guided sampling) with Ts = 10 and Tg = 10, and
NEXCO with Ds = 20 All diffusion-based methods are evaluated under the same settings, using
greedy decoding followed by 2-Opt local search as post-processing. For consistency, the coordinates
of each TSPLIB instance are normalized to the range [0, 1].

B.4 ABLATION STUDY ON THE CORRUPTION SCHEME
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We compare our mask-based forward corruption with a uniform corruption scheme that treats all
variables as equally likely to be flipped, similar to the uniform perturbation used in Fast-T2T (Ta-
ble 10). Across TSP-500 and TSP-1000, and under the same number of expansion steps, the mask-
based model consistently achieves lower optimality gaps. The difference arises from the structural
behavior of the two corruption processes. Uniform corruption injects noise indiscriminately and
often produces partial states with weak or noisy supervision signals for the denoiser. In contrast,
the proposed mask corruption applies one-way absorbing 1 → 0 updates that preserve the feasible
structure of partial solutions while selectively revealing informative variables. This yields clearer
denoising targets and a more stable reverse trajectory, which in turn explains the consistent improve-
ments observed in our ablations.

Table 10: Performance comparison across different corruption scheme.

Exp. Step Scheme TSP-500 TSP-1000
Obj. Gap↓ Time Obj. Gap↓ Time

3 Uniform 16.66 0.65% 0.27s 23.34 0.94% 1.00s
Mask 16.61 0.39% 0.23s 23.31 0.85% 0.91s

5 Uniform 16.65 0.59% 0.39s 23.32 0.86% 1.44s
Mask 16.59 0.28% 0.33s 23.26 0.63% 1.31s

7 Uniform 16.63 0.53% 0.49s 23.30 0.78% 1.85s
Mask 16.59 0.25% 0.43s 23.24 0.52% 1.68s

B.5 ABLATION STUDY ON THE ADAPTIVE EXPANSION

Table 11 reports the comparison between NAE and a non-adaptive “global t-schedule” baseline. The
global baseline does not perform any form of adaptive expansion. It runs the diffusion model for a
fixed number of denoising steps, produces a dense full prediction at the final step, and then applies
a single greedy decoding to obtain a complete solution. No intermediate partial-state construction
is carried out, and the amount of expansion is fixed rather than guided by model confidence. In
contrast, NAE operates directly on feasible partial states and expands them progressively. At each
step, it activates candidates according to their confidence scores and applies feasibility projection
to maintain monotone growth of the partial solution. This native adaptivity enables the model to
commit early to high-confidence regions while deferring uncertain components to later steps, thereby
structuring the decoding trajectory in a principled way. As shown in the ablation, this constructive
and confidence-aware expansion yields significantly smaller optimality gaps than the global non-
adaptive schedule under the same number of denoiser calls. The improvement therefore stems not
from additional computation, but from the design of an adaptive partial-state expansion mechanism.

Table 11: Comparison between Global and NAE under different expansion steps.

Exp. Step Method TSP-500 TSP-1000
Obj. Gap↓ Time (s) Obj. Gap↓ Time (s)

3 Global 16.67 0.73% 0.22s 23.39 1.16% 0.81s
NAE 16.61 0.39% 0.23s 23.31 0.85% 0.91s

5 Global 16.67 0.71% 0.29s 23.34 0.96% 1.04
NAE 16.59 0.28% 0.33s 23.26 0.63% 1.31s

7 Global 16.65 0.63% 0.36s 23.33 0.92% 1.29s
NAE 16.59 0.25% 0.43s 23.24 0.52% 1.68s

B.6 ABLATION STUDY ON THE FEASIBILITY PROJECTION

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12 compares our feasibility projection mechanism with a greedy decoding baseline. In the
greedy baseline, a complete solution is constructed at every diffusion step by selecting variables
according to their predicted probabilities. After obtaining this full solution, a fixed proportion of
variables is remasked, and the resulting state is used as input to the next diffusion step. This produces
a wrapper-like refinement cycle that repeatedly rebuilds full solutions throughout the trajectory.

In contrast, our projection operator Γ maintains a single monotone partial-solution trajectory. At
each step, Γ accepts a candidate activation only when feasibility is preserved, and it does not gener-
ate full solutions prematurely. This prevents the repeated reconstruction inherent to greedy decoding
and avoids the error accumulation introduced by successive remasking cycles. Empirically, both ap-
proaches can eventually achieve similar optimality gaps when sufficient steps are allowed. However,
greedy decoding consistently incurs higher runtime and exhibits less stable behavior due to its re-
construct–remask procedure. These results demonstrate that the feasibility projection used by NAE
offers a more efficient and principled alternative to wrapper-style greedy refinement strategies.

Table 12: Comparison between Greedy decoding and Projection under different expansion steps.

Exp. Step Method TSP-500 TSP-1000
Obj. Gap↓ Time (s) Obj. Gap↓ Time (s)

3 Greedy decoding 16.61 0.39% 0.39s 23.33 0.94% 1.29s
Projection 16.61 0.39% 0.23s 23.31 0.85% 0.91s

5 Greedy decoding 16.60 0.31% 0.54s 23.26 0.63% 1.95s
Projection 16.59 0.28% 0.33s 23.26 0.63% 1.31s

7 Greedy decoding 16.59 0.26% 0.71s 23.25 0.57% 2.59s
Projection 16.59 0.25% 0.43s 23.24 0.52% 1.68s

B.7 RUNTIME BREAKDOWN OF NAE INFERENCE

In this section, we provide detailed runtime profiling of NAE across all tasks and instance sizes.
Table 13 reports total inference time per instance, together with the proportion attributed to denoiser
evaluations and to the projection operator Γ(·).

Table 13: Runtime breakdown of NAE inference across all tasks.
Task Total Time (s) Denoiser Γ(·) Projection

TSP100 0.018 0.016 (88.89%) 0.002 (11.11%)
TSP500 0.097 0.081 (83.51%) 0.016 (16.49%)
TSP1000 0.218 0.162 (74.31%) 0.056 (25.69%)
MIS–RBsmall 0.033 0.026 (78.79%) 0.007 (21.21%)
MIS–RBlarge 0.190 0.173 (91.05%) 0.017 (8.95%)
MIS–ER 0.200 0.184 (92.00%) 0.016 (8.00%)
CVRP50 0.022 0.017 (77.27%) 0.005 (22.73%)
CVRP100 0.030 0.021 (70.00%) 0.009 (30.00%)
CVRP200 0.078 0.052 (66.67%) 0.026 (33.33%)

Across all settings, denoiser calls constitute the primary computational bottleneck, consistently ac-
counting for the majority of inference time. The relative cost of the projection operator Γ(·) increases
with instance size due to the larger number of candidate variables that must be feasibility-checked.
However, its absolute cost remains small (on the order of milliseconds), and the overall inference
complexity of NAE continues to be dominated by denoiser evaluations. These results demonstrate
that the projection mechanism introduces only a lightweight overhead that scales predictably with
problem size, confirming that NAE’s efficiency is primarily driven by its denoiser architecture rather
than by feasibility projection.
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C MODEL ARCHITECTURE DETAILS

C.1 INPUT EMBEDDING LAYER

Given node vector x ∈ RN×2, weighted edge vector e ∈ RE , denoising timestep t ∈ {τ1, . . . , τM},
where N denotes the number of nodes in the graph, and E denotes the number of edges, we compute
the sinusoidal features of each input element respectively:

x̃i = concat(x̃i,0, x̃i,1), (9)

x̃i,j = concat
(
sin

xi,j

T 0/d
, cos

xi,j

T 0/d
, sin

xi,j

T 2/d
, cos

xi,j

T 2/d
, . . . , sin

xi,j

T d/d
, cos

xi,j

T d/d

)
, (10)

ẽi = concat
(
sin

ei
T 0/d

, cos
ei

T 0/d
, sin

ei
T 2/d

, cos
ei

T 2/d
, . . . , sin

ei
T d/d

, cos
ei

T d/d

)
, (11)

where d is the embedding dimension, T is a large number (usually selected as 10000), and concat(·)
denotes concatenation. In CVRP, each node is described not only by its coordinates but also by
customer demand ci and a depot indicator δi ∈ {0, 1}. We embed these heterogeneous features
separately and merge them into the node representation:

c̃i = concat
(
sin

ci
T 0/d

, cos
ci

T 0/d
, . . . , sin

ci
T d/d

, cos
ci

T d/d

)
, (12)

δ̃i = Embeddepot(δi), (13)

x̃i = x̃i + d̃i + δ̃i. (14)

Next, we compute the input features of the graph convolution layer:

x0
i = W 0

1 x̃i, (15)

e0i = W 0
2 ẽi. (16)

Specifically, for TSP and CVRP, the embedding input edge vector e is a weighted adjacency matrix,
which represents the distance between different nodes, and e0 is computed as above. For MIS, we
initialize e0 to a zero matrix 0E×d.

C.2 GRAPH CONVOLUTION LAYER

Following (Joshi et al., 2019), the cross-layer convolution operation is formulated as:

xl+1
i = xl

i + ReLU(BN(W l
1x

l
i +

∑
j∼i

ηlij ⊙W l
2x

l
j)), (17)

el+1
ij = elij + ReLU(BN(W l

3e
l
ij +W l

4x
l
i +W l

5x
l
j)), (18)

ηlij =
σ(elij)∑

j′∼i σ(e
l
ij′) + ϵ

, (19)

where xl
i and elij denote the node feature vector and edge feature vector at layer l, W1, · · · ,W5 ∈

Rh×h denote the model weights, and ηlij denotes the dense attention map. The convolution operation
integrates the edge feature to accommodate the significance of edges in routing problems.

For TSP and CVRP, we aggregate the edge convolutional feature and reformulate the update for
edge features as follows:

el+1
ij = elij + ReLU(BN(W l

3e
l
ij +W l

4x
l
i +W l

5x
l
j)) +W l

6(ReLU(t0)). (20)

For MIS, we aggregate the node convolutional feature and reformulate the update for node features
as follows:

xl+1
i = xl

i + ReLU(BN(W l
1x

l
i +

∑
j∼i

ηlij ⊙W l
2x

l
j)) +W l

6(ReLU(t0)). (21)
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C.3 OUTPUT LAYER

The prediction of the edge heatmap in TSP and CVRP, and node heatmap in MIS is as follows:

ei,j = Softmax(norm(ReLU(Wee
L
i,j))), (22)

xi = Softmax(norm(ReLU(Wnx
L
i ))), (23)

where L is the number of GCN layers and norm is layer normalization.

C.4 MODEL PARAMETERS

For all tasks, we adopt a 12-layer GCN as described above. For TSP, following the setting of (Sun
& Yang, 2023), we apply a K-Nearest Neighbor (KNN) strategy to sparsify the graph in order to
reduce training memory and shrink the search space. Specifically, for TSP-500 and TSP-1000, the
sparsity factors are set to 50 and 100, respectively.

D EXPERIMENTAL SETUP

D.1 HARDWARE

All models are trained and tested using NVIDIA A40 (48G) GPUs and Intel(R) Xeon(R) Gold 5220
CPU @ 2.20GHz. All test evaluations are performed in a single-threaded setting, where the average
runtime per instance is reported to ensure fair comparison across different models.

D.2 TRAINING SETUP

We have organized the training settings and model parameters of NEXCO in Table 14. For all
problems, we adopt a curriculum learning strategy, where models are progressively fine-tuned from
smaller datasets to large ones.

Table 14: Details about the training hyperparameters of NEXCO.
Problem Data Data Size Batch Size Epoch Learning Rate Hidden Dimension
TSP Uniform-100 1,502k 16 100 2e-4 256
TSP Uniform-500 128k 6 50 2e-4 256
TSP Uniform-1000 64k 4 50 2e-4 256

MIS RB-200-300 90k 4 50 2e-4 256
MIS RB-800-1200 6.4k 1 10 5e-5 256
MIS ER-700-800 163k 4 50 2e-4 128

CVRP Uniform-50 1,280k 32 50 2e-4 256
CVRP Uniform-100 640k 12 50 2e-4 256
CVRP Uniform-200 32k 2 50 2e-4 256

E LICENSES

The licenses for the codes used in this work are listed in Table 15.

F LLM USAGE

In this work, LLMs were used solely to aid in the polishing and refinement of the manuscript text,
including grammar correction, clarity improvement, and style consistency. All technical content,
experimental results, and conclusions are the sole responsibility of the authors.
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Table 15: Licenses for codes used in this work
Resource Type Link License
LKH3 (Helsgaun, 2017) Code http://webhotel4.ruc.dk/˜keld/research/LKH-3/ Available for academic research
HGS (Vidal et al., 2012)s Code https://github.com/chkwon/PyHygese MIT License
Concorde (Applegate et al., 2006) Code https://github.com/jvkersch/pyconcorde BSD 3-Clause License
KaMIS (Lamm et al., 2016) Code https://github.com/KarlsruheMIS/KaMIS MIT License
AM (Kool et al., 2019) Code https://github.com/wouterkool/attention-learn-to-route MIT License
BQ-NCO (Drakulic et al., 2023) Code https://github.com/naver/bq-nco CC BY-NC-SA 4.0
GCN (Joshi et al., 2019) Code https://github.com/chaitjo/graph-convnet-tsp MIT License
DIMES (Qiu et al., 2022) Code https://github.com/DIMESTeam/DIMES MIT License
DIFUSCO (Sun & Yang, 2023) Code https://github.com/Edward-Sun/DIFUSCO MIT License
T2T (Li et al., 2023) Code https://github.com/Thinklab-SJTU/T2TCO MIT License
Fast T2T (Li et al., 2024) Code https://github.com/Thinklab-SJTU/Fast-T2T MIT License
COExpander (Ma et al., 2025) Code https://github.com/Thinklab-SJTU/COExpander Not specified
LEHD (Luo et al., 2023) Code https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/LEHD MIT License
Sym-NCO (Kim et al., 2022) Code https://github.com/alstn12088/Sym-NCO Not specified
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