
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NATIVE ADAPTIVE SOLUTION EXPANSION FOR
DIFFUSION-BASED COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

One central challenge in Neural Combinatorial Optimization (NCO) is handling
hard constraints efficiently. Beyond the two classic paradigms, i.e., Local Con-
struction (LC), which sequentially builds feasible solutions but scales poorly, and
Global Prediction (GP), which produces one-shot heatmaps yet struggles with
constraint conflicts, the recently proposed Adaptive Expansion (AE) shares the
advantages of both by progressively growing partial solutions with instance-wise
global awareness. However, existing realizations bolt AE onto external GP predic-
tors, so their solution quality is bounded by the backbone and their inference cost
scales with repeated global calls. In this paper, we fundamentally rethink adaptive
expansion and make it native to a generative model, acting as its intrinsic decod-
ing principle rather than an external wrapper. We propose NEXCO, a CO-specific
masked diffusion framework that turns adaptive expansion into the model’s own it-
erative unmasking process. Specifically, it involves a solution-expansion training
procedure with a time-agnostic GNN denoiser, which learns diffusion trajecto-
ries between fully masked solutions and ground-truth solutions. With the trained
time-agnostic denoiser, we introduce a novel solution expansion scheme at the
solving stage, enabling adaptive control over the intermediate solution states. It
is achieved by constructing candidate sets according to confidence scores and ap-
plying feasibility projection to expand the solution while respecting constraints.
In this way, “adaptive” is not an afterthought but the decoding itself: intermediate
diffusion states are meaningful partial solutions and progress is instance-adaptive
rather than schedule-bound. Extensive experiments on representative CO prob-
lems show that NEXCO achieves approximately 50% improvement in solution
quality and up to 4× faster inference compared to prior state-of-the-art solvers.

1 INTRODUCTION

Combinatorial optimization (CO) is a sub-filed of mathematical optimization that involves finding
the optimal solution from the discrete feasible sets. Due to their inherent NP-hardness, solving large-
scale instances efficiently remains a longstanding challenge. Recent progress in Neural Combina-
torial Optimization (NCO) has reduced reliance on handcrafted heuristics by learning data-driven
solvers (Bengio et al., 2021; Qiu et al., 2022; Sun & Yang, 2023; Li et al., 2024; Ma et al., 2025).

Existing neural constructive solvers fall into two extreme paradigms: (1) Local Construction (LC)
methods sequentially generates solutions in an autoregressive manner, ensuring feasibility but suf-
fering from myopic decisions and poor scalability (Kool et al., 2019; Kwon et al., 2020; Berto et al.,
2023; Drakulic et al., 2023; Pan et al., 2025); (2) Global Prediction (GP) methods predict full proba-
bility heatmaps in one shot, capturing global structure efficiently but producing smooth distributions
that cause noisy decoding and constraint violations (Joshi et al., 2019; Fu et al., 2021; Qiu et al.,
2022; Min et al., 2023; Sun & Yang, 2023; Xia et al., 2024; Li et al., 2024; Xiao et al., 2024). To
bridge LC and GP, the Adaptive Expansion (AE) paradigm was introduced (Ma et al., 2025), which
adaptively determines the number of variables per step. While effective, current implementations
(e.g., COExpander) are merely wrappers around GP backbones such as Fast T2T, leaving two funda-
mental issues: (i) performance is bounded by the backbone predictor, and (ii) inference cost scales
as O(Ds ·CGP), far higher than vanilla GP solvers. Table 1 provides a structured summary of these
trade-offs, contrasting LC, GP, and AE with our proposed method across multiple dimensions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of NCO paradigms. Local Construction (LC) and Global Prediction (GP)
represent two extremes; COExpander realizes Adaptive Expansion (AE) as a costly wrapper around
GP, adjusting decision granularity externally; NEXCO makes AE native, embedding adaptive ex-
pansion directly into a CO-specific masked diffusion for efficient, feasible solution construction.
NFEs: number of function evaluations; Ts: diffusion inference steps; Ds: AE expansion steps.

LC GP AE NEXCO (Ours)
Decoding granularity One-by-one All-at-once Adaptive (wrapper) Adaptive (native)
Partial feasibility ✓ ✗ ✓ ✓
Global awareness ✗ ✓ ✓ ✓
Complexity (NFEs) O(n) O(Ts) O(Ds ∗ Ts) O(Ts)

This raises a natural question: can adaptive expansion be made native, i.e., encoded as the intrin-
sic decoding principle of a generative model, rather than an external wrapper? Here, native AE
would mean: (i) expansion progress and step size are instance-adaptive, driven by model confidence
and constraints, without relying on fixed timestep schedules or external GP predictors; (ii) interme-
diate states are valid, constraint-aware partial solutions, where variable commitments are enforced
through feasibility projection rather than deferred to post-hoc heuristic heatmap decoding. Diffusion
models appear promising: their iterative refinement resembles constructive expansion. However, ex-
isting diffusion-based solvers (e.g., DIFUSCO, T2T/Fast T2T (Sun & Yang, 2023; Li et al., 2023;
2024)) still operate in the GP paradigm: they generate global probability heatmaps and rely on
heuristic decoding, without effectively leveraging intermediate states as partial solutions. We argue
that two factors hinder this: (i) intermediate states lack semantic meaning as partial solutions, and
(ii) fixed timestep schedules rigidly control denoising progress, preventing instant-adaptive progress.

In parallel, the broader generative modeling community has advanced Masked Diffusion Models
(MDMs) as a powerful alternative to autoregressive decoding in large language models (Austin et al.,
2021; Sahoo et al., 2024; Ou et al., 2025; Zheng et al., 2025; Nie et al., 2025b), which progressively
unmask tokens instead of denoising noise. MDMs provide meaningful intermediate states, allow
schedule-free training, and support efficient parallel decoding. These properties closely match the
needs of NCO, making masked diffusion a natural foundation for native adaptive expansion.

Built on this insight, we propose NEXCO (Native Adaptive Expansion for Combinatorial
Optimization), a CO-specific masked diffusion framework that embeds adaptive expansion as the
intrinsic decoding principle. During training, a time-agnostic GNN denoiser learns to reconstruct
ground-truth solutions from corrupted partial states, enforcing optimization consistency across dif-
ferent noise levels. At inference, NEXCO adopts a Native Adaptive Expansion (NAE) strategy: the
denoiser produces confidence scores, candidate sets are formed accordingly, and feasibility projec-
tion ensures that selected variables satisfy problem constraints. Through iterative refinement, partial
solutions progressively evolve into complete feasible ones. In contrast to COExpander (Ma et al.,
2025), which implements AE as an external wrapper around global predictors, NEXCO integrates
it directly into the diffusion process, achieving the efficiency of GP, the feasibility of LC, and the
adaptivity of AE in a unified framework. The contribution of this paper are:

1) We revisit the Adaptive Expansion (AE) paradigm and point out that existing implementations
(e.g., COExpander (Ma et al., 2025)) are merely wrappers around GP predictors, leaving their per-
formance bounded by the backbone and their inference complexity scaling as O(Ds · CGP).

2) We propose NEXCO, a masked diffusion framework that natively realizes the AE paradigm by
coupling a CO-specific corruption process with a time-agnostic denoiser and introducing the Native
Adaptive Expansion (NAE) inference strategy. In doing so, NEXCO embeds feasibility, global
awareness, and adaptivity directly into the generative process.

3) Extensive experiments on representative CO problems (MIS, TSP, CVRP) show that NEXCO
consistently surpasses prior state-of-the-art solvers in both solution quality and inference efficiency.

2 PRELIMINARIES AND RELATED WORK

2.1 COMBINATORIAL OPTIMIZATION ON GRAPHS

Following standard formulations in neural CO (Sun & Yang, 2023; Li et al., 2023; 2024; Ma et al.,
2025), we represent a problem instance as a graph G(V,E), where V and E denote node and edge
sets, respectively, and let n = |V | denote the number of nodes. Decision variables are binary vectors

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Overview of NEXCO. Given a graph instance G, a ground-truth solution x0 ∈ {0, 1}N
is corrupted by masking only selected variables (1s) to 0s while keeping unselected ones (0s), pro-
ducing a partial solution xt. A time-agnostic GNN denoiser fθ predicts confidence scores for all
variables without timestep conditioning. During inference, NEXCO performs Native Adaptive Ex-
pansion (NAE): starting from an fully masked solution x1 = [0], the model progressively unmasks
high-confidence variables while a problem-specific projector Γ(·) enforces feasibility. This process
yields valid intermediate partial solutions and converges to a complete feasible solution.

x ∈ {0, 1}N : for edge-selection problems, N = n2 and xi·n+j = 1 indicates whether edge (i, j) is
selected; for node-selection problems, N = n and xi = 1 indicates whether node i is selected. The
feasible region Ω encodes hard constraints, and the objective is

min
x∈{0,1}N

l(x;G) s.t. x ∈ Ω. (1)

We study three canonical NP-hard tasks: TSP: find a minimum-weight Hamiltonian cycle in a
complete graph; MIS: find a maximum-cardinality independent set; CVRP: minimize routing cost
subject to degree and vehicle-capacity constraints.

2.2 DIFFUSION SOLVERS FOR CO

Diffusion models define a forward corruption q(xt|xt−1) and a reverse denoising pθ(xt−1|xt). For
binary CO, a natural adaptation is uniform bit-flip diffusion (Sun & Yang, 2023; Li et al., 2024):

q(xt|xt−1) = (1− βt)xt−1 + βt(1− xt−1), (2)

where βt ∈ (0, 1) denotes the corruption rate at step t. The corresponding t-step marginal is

q(xt|x0) = (1− β̄t)x0 + β̄t(1− x0), (3)

where β̄t = 1 −
∏t

s=1(1 − βs) is the cumulative corruption rate up to step t. Denoisers are then
trained to recover the clean signal x0 or directly predict the optimal solution x∗ using variants of
likelihood or optimization-consistency losses (Sun & Yang, 2023; Li et al., 2024).

2.3 MASKED DIFFUSION

Recent progress has shown that Masked Diffusion Models (MDMs) often achieve better performance
than uniform bit-flip diffusion in sequence inference tasks (Austin et al., 2021; Ou et al., 2025; Nie
et al., 2025b). Instead of symmetrically flipping 0 and 1, MDMs corrupt data by replacing entries
with a dedicated [MASK] token, following a continuous trajectory parameterized by t ∈ [0, 1]:

q(xt|x0) = (1− t) · x0 + t · [MASK]. (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In the context of combinatorial optimization, solutions are represented as binary vectors x ∈
{0, 1}N , where each entry (1) corresponds to a selected edge or node. Thus, any state where only
a subset of 1s is visible can naturally be interpreted as a partial solution. MDMs exploit this per-
spective: observed entries remain fixed while masked entries are left to be predicted by the denoiser.
Moreover, since the corruption level is encoded in the fraction of masked variables rather than in
an explicit timestep, training can be made time-agnostic. These properties have proven especially
useful in large language models, enabling schedule-invariant training and efficient parallel decod-
ing (Zheng et al., 2025; Ou et al., 2025; Nie et al., 2025a; Wu et al., 2025; Sun et al., 2025).

3 METHOD

We introduce NEXCO, a masked diffusion framework tailored for combinatorial optimization. The
core idea is to reinterpret the diffusion trajectory in line with the AE paradigm, as a constructive
process over partial solutions with adaptive expansion, rather than as the generation of probability
heatmaps. First, we design a CO-specific corruption (§3.1) that masks out selected variables but
never introduces false positives, ensuring that intermediate states remain aligned with the feasible
manifold. Then, we propose a time-agnostic graph denoiser (§3.2) trained with a new optimization
consistency principle (§3.3), which enforces that all corrupted states of an instance consistently map
to the same optimum. Finally, we develop a native adaptive expansion decoding strategy (§3.4),
which progressively expands partial states into complete solutions under feasibility projection.

3.1 FORWARD PROCESS: CO-SPECIFIC CORRUPTION

Why uniform bit-flip fails to leverage intermediate states. Prior GP-style diffusion solvers for
CO (e.g., DIFUSCO (Sun & Yang, 2023), T2T (Li et al., 2023), Fast T2T (Li et al., 2024)) adopt
uniform bit-flip corruption with the marginal formulation in Eq. 3, where each variable is flipped
independently with probability β̄t. This design causes a fundamental structural misalignment: sym-
metric flipping ignores the combinatorial constraints encoded in the graph. As a result, the corrupted
state xt quickly drifts away from the feasible manifold. For example, in TSP it contains many edges
that violate degree constraints or form subtours (see Fig.1 in (Li et al., 2024)). Such noisy states
cannot be interpreted as valid partial solutions, but only as dense heatmaps detached from feasi-
bility. Consequently, the denoiser is trained on spurious patterns, and the intermediate trajectory
becomes unusable for constructive decoding, forcing prior solvers to discard it and rely solely on
heuristic decoding at the final step. This highlights the need for a CO-aware corruption mechanism
that preserves sparsity and respects structural constraints, so that intermediate states are meaningful
partial solutions and can be directly exploited for adaptive expansion.

Figure 2: Validation cost curves
on MIS. CO-specific diffusion follows
the correct trend of increasing set size,
while three-state mask diffusion col-
lapses to smaller sets. The latter suf-
fers from severe 0–1 imbalance and lo-
cal constraints, which bias the model
toward conservative 0 predictions.

Mask diffusion. A natural alternative to uniform flipping
is the masked diffusion model (MDM)(Austin et al., 2021;
Nie et al., 2025b), which introduces a third state [MASK]
and requires the denoiser to reconstruct both 0s and 1s.
While effective in language tasks, directly applying MDM
to CO is problematic. Take MIS as an example: the vali-
dation cost should increase during training, since the goal
is to enlarge the independent set. However, as shown in
Fig. 2, three-state MDM instead shows a decreasing vali-
dation cost. This mismatch stems from two factors. First,
CO solutions are highly imbalanced: most variables are 0,
so the training signal is dominated by negative examples,
biasing the denoiser toward predicting 0s and shrinking
the independent set. Second, unlike TSP where a global
Hamiltonian cycle provides strong priors, MIS depends
mainly on local adjacency constraints. Starting from a
fully masked state, the model tends to favor “safe” pre-
dictions (0s) over “risky” ones (1s that might violate inde-
pendence), further reinforcing conservative behavior.

CO-specific corruption. To address this issue, we unify the [MASK] and 0 states into a single
background state (numerically represented as 0), leaving only [BACKGROUND] ↔ 1 transitions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Intuitively, in CO most variables are fixed at 0 by problem-specific constraints such as degree limits
in TSP, capacity restrictions in CVRP, or adjacency rules in MIS. Thus, treating [MASK] as distinct
provides no additional signal but only exacerbates the imbalance by multiplying negative examples.
Under this unification, the forward process becomes a one-way corruption in which only active
entries (1s) may be dropped to [BACKGROUND]:

q(xt|x0) = (1− t) · x0 + t · 0, (5)

where 0 denotes the background state. This eliminates the imbalance-driven conservatism of MDM
and ensures that intermediate states correspond to valid partial solutions aligned with combinatorial
feasibility. As shown in Fig. 2, our CO-specific corruption follows the correct trend of increasing
validation cost, providing a clean foundation for the time-agnostic denoiser (§3.2) and the Native
Adaptive Expansion decoding scheme (§3.4).

3.2 TIME-AGNOSTIC DENOISER

From timestep to mask conditioning. In prior CO diffusion solvers (Sun & Yang, 2023; Li et al.,
2024), the denoiser fθ(xt, t, G) explicitly conditions on timestep t, since t encodes the corruption
intensity. This dependence rigidly ties the model to a predefined schedule, limiting generalization
across horizons. In our CO-specific corruption process, however, the corruption level is directly vis-
ible in the mask pattern itself : the fraction of surviving 1s naturally reflects the signal-to-noise ratio.
We therefore remove timestep embeddings and design a time-agnostic denoiser fθ(xt, G), which
depends only on the corrupted state and the graph instance. This eliminates schedule sensitivity and
shifts the focus to structural dependencies and the semantics of partial solutions.

Model architecture. We instantiate fθ as an anisotropic graph neural network (GNN) (Joshi et al.,
2021; Sun & Yang, 2023). Nodes and edges are annotated with task-specific features (e.g., coordi-
nates in TSP, adjacency in MIS, or capacities in CVRP), while xt is encoded as binary attributes.
Message passing aggregates both structural and partial-solution context, and attention-based pool-
ing captures long-range dependencies. The output is a probability vector p ∈ [0, 1]N , where p(i)

estimates the likelihood of variable i belonging to the optimal solution x∗. Compared with conven-
tional denoisers, the only change is the removal of timestep embeddings, highlighting that schedule
awareness is unnecessary under mask corruption. Further details are provided in Appendix C.

Analogy to large language diffusion models. Our time-agnostic design parallels the success of
masked diffusion in large language models (Austin et al., 2021; Ou et al., 2025; Nie et al., 2025b;
Wu et al., 2025). In those settings, random masking without explicit timestep conditioning enables
scalable pretraining and efficient parallel decoding. By extending this principle from token se-
quences to graph-structured CO problems, we show that time-agnostic denoising is equally effective
when intermediate states correspond to valid partial solutions.

3.3 TRAINING OBJECTIVE: TIME-AGNOSTIC OPTIMIZATION CONSISTENCY

Consistency principle. Consistency models (Song et al., 2023) learn direct mappings from noisy to
clean data, enforcing that predictions across different corruption levels remain stable. Fast T2T (Li
et al., 2024) adapted this idea to CO with optimization consistency, requiring all corrupted states of
an instance to map to its optimal solution x∗. This ties denoising directly to the optimization goal,
thereby improving one-step prediction quality.

Time-agnostic optimization consistency. Our CO-specific corruption is monotone: as t increases,
supports shrink, so for any 0 < t < t′ < 1 we have supp(xt′) ⊆ supp(xt). Each corrupted state
xt is thus a valid subset of x∗. This property allows us to drop timestep embeddings and directly
enforce consistency across corruption levels. Formally, the time-agnostic optimization consistency
loss is

LTOC(θ) = Et′>t

[
d(fθ(xt′ , G), x∗) + d(fθ(xt, G), x∗)

]
, (6)

where d(·, ·) is binary cross-entropy or a task-specific discrepancy. Training under LTOC amounts
to reconstructing x∗ from multiple partial solutions. Because the corruption never introduces false
positives, every xt stays close to the feasible manifold, providing supervision that is inherently
aligned with CO constraints. This contrasts with uniform diffusion, where intermediate states are
often unrealistic and force the model to correct artifacts.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Practical note. The reference solution x∗ can come from exact solvers on small/medium instances
or high-quality heuristics on larger ones. The TOC loss remains valid in both cases, as it only
requires a consistent reference per instance. We empirically confirm this in Table 3, where models
trained on suboptimal labels still deliver competitive solutions.

3.4 INFERENCE PROCESS: NATIVE ADAPTIVE EXPANSION (NAE)

Motivation. Existing diffusion-based CO solvers generate a sequence of Ts global probability
heatmaps p1, . . . ,pTs ∈ [0, 1]N , but these intermediate states are not semantically valid partial
solutions. As a result, prior methods typically exploit only the final step via heuristic decoding:

x̂ = Γ
(
Decode(pTs)

)
, (7)

where Decode is a heuristic (e.g., greedy search) and Γ enforces feasibility (Sun & Yang, 2023).
This under-utilization of the trajectory is a key limitation: despite producing many intermediate
states, only a final one-shot prediction is retained. COExpander (Ma et al., 2025) alleviates this
via adaptive expansion (AE), but AE is realized as an external wrapper around GP predictors. Its
complexity depends on both the number of expansion rounds Ds and the per-call cost CGP of the
backbone: CostAE = O(Ds · CGP). Thus, wrapping diffusion solvers (e.g., Fast T2T (Li et al.,
2024)) yields O(Ds · Ts) complexity, while wrapping GCN (Joshi et al., 2019) reduces it to O(Ds)
but still ties performance to external heatmap quality (Xia et al., 2024).

By contrast, our framework produces semantic partial solutions along the diffusion trajectory. This
enables Native Adaptive Expansion (NAE): a deterministic expansion procedure that reuses the de-
noiser once per stage and enforces feasibility at each step, achieving O(Ts) complexity while mak-
ing full constructive use of the entire trajectory.

Algorithm 1: Native Adaptive Expansion (NAE)
Input: Graph G, denoiser fθ, iterations Ts,

threshold α, expansion schedule {ρt}.
Initialize x1 ← 0;
for t = 1, . . . , Ts do

pt ← fθ(G,xt−1);
Ct ← {i | x(i)

t−1 = 0, p(i)
t ≥ α};

Project candidates: St ← Γ(Ct,pt, xt−1);
Retain ρk fraction of St ;
Update xt by activating retained entries;

return xTs

Procedure. NAE begins from x1 as fully
masked solution 0 and expands iteratively.
At step t, the denoiser outputs a confidence
vector pt = fθ(G,xt−1). Variables above
threshold α form a candidate set Ct, which
is projected onto a feasible subset St by
Γ(·). From this subset, a fraction ρt of en-
tries is selected, where ρt may be set as a
tunable hyperparameter or determined by
an evenly spaced schedule over steps. Re-
peating this process yields a trajectory of
feasible partial solutions until completion,
as summarized in Algorithm 1.

Feasibility projection. Although different CO tasks impose different feasibility rules, the projec-
tion operator Γ(·) follows a single task-agnostic template across all problems we study. At each ex-
pansion step, the model produces a confidence vector p, and Γ(·) constructs the next partial solution
using the same three-stage procedure. First, candidate variables are sorted in descending confidence.
Second, candidates are examined sequentially. Third, a candidate is activated only when doing so
satisfies a simple boolean feasibility predicate. This local predicate is lightweight to compute and
varies only in its constraint definition, not in the mechanism of feasibility projection. Consequently,
extending NAE to a new CO task requires only defining this predicate, while the entire three-stage
projection pipeline remains intact. Formally, the projection step solves:

St = arg max
x(i)⊆Ct, x∈Ω

∑
i

p
(i)
t x(i), (8)

which is implemented by inserting candidates in descending confidence order and accepting them
only when the feasibility predicate holds. In practice, this yields a simple and uniform instantiation
across tasks: TSP: edges are added while maintaining degree-2 and subtour-free constraints; MIS: a
vertex is selected only if all neighbors remain inactive; CVRP: routing edges are inserted provided
vehicle-capacity constraints are not violated. Candidates that fail the predicate are skipped, prevent-
ing conflicts and ensuring that St ⊆ Ct is always a feasible and high-confidence partial solution.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Results on synthetic TSP problem instances. BS: Beam Search.
Algorithm Type TSP-100 TSP-500 TSP-1000

Length↓ Drop↓ Time Length↓ Drop↓ Time Length↓ Drop↓ Time

Mathematical Solvers or Heuristics

Concorde (Applegate et al., 2006) Exact 7.76∗ – 0.23s 16.55∗ – 18.65s 23.12∗ – 84.38s
LKH3 (512) (Helsgaun, 2017) Heuristics 7.76 0.00% 0.12s 16.55 0.00% 1.17s 23.12 0.01% 2.91s

Learning-based Solvers with Greedy Decoding

AM +BS (Kool et al., 2019) LC 7.95 2.48% 0.61s 19.53 18.03% 1.31s 29.90 29.24% 5.91s
BQ-NCO +BS (Drakulic et al., 2023) LC 7.76 0.01% 0.19s 16.64 0.55% 7.03s 23.47 1.38% 17.81s
GCN +BS (Joshi et al., 2019) GP 8.41 8.38% 0.28s 30.37 83.55% 17.81s 51.26 121.73% 24.23s
DIMES (Qiu et al., 2022) GP 8.01 3.23% 0.06s 17.17 3.74% 0.45s 24.79 7.22% 1.12s
DIFUSCO (TS = 50) (Sun & Yang, 2023) GP 7.78 0.26% 0.59s 16.82 1.64% 1.43s 23.57 1.94% 5.04s
T2T (Ts = 50, Tg = 30) (Li et al., 2023) GP 7.76 0.07% 1.34s 16.68 0.82% 3.05s 23.44 1.40% 9.23s
Fast T2T (Ts = 5) (Li et al., 2024) GP 7.76 0.08% 0.06s 16.72 1.02% 0.27s 23.38 1.12% 0.99s
Fast T2T (Ts = 5, Tg = 5) (Li et al., 2024) GP 7.76 0.03% 0.31s 16.61 0.39% 1.41s 23.25 0.58% 5.81s
COExpander (Ds = 3, Ts = 5) (Ma et al., 2025) AE 7.76 0.04% 0.18s 16.63 0.52% 0.61s 23.34 0.95% 2.26s
NEXCO (Ds = 3) NAE 7.76 0.04% 0.05s 16.61 0.39% 0.23s 23.31 0.85% 0.91s
NEXCO (Ds = 5) NAE 7.76 0.03% 0.08s 16.59 0.28% 0.33s 23.26 0.63% 1.31s
NEXCO (Ds = 7) NAE 7.76 0.02% 0.11s 16.59 0.25% 0.43s 23.24 0.52% 1.68s

Learning-based Solvers with 4× Sampling Decoding

LEHD PRC 100 (Luo et al., 2023) LC 7.76 0.01% 0.64s 16.61 0.34% 3.75s 23.44 1.22% 20.16s
Fast T2T (Ts = 5, Tg = 5) (Li et al., 2024) GP 7.76 0.01% 0.99s 16.58 0.21% 5.16s 23.22 0.42% 17.42s
COExpander (Ds = 3, Ts = 5) (Ma et al., 2025) AE 7.76 0.01% 0.61s 16.59 0.24% 2.21s 23.27 0.64% 8.43s
NEXCO (Ds = 5) NAE 7.76 0.01% 0.25s 16.57 0.14% 1.16s 23.20 0.35% 4.85s

Convergence and complexity. We provide a formal convergence analysis of the NAE procedure.
Because the forward corruption in our CO-specific diffusion process is one-way absorbing (1→0),
every diffusion state remains a feasible partial solution. The reverse step expands this partial solution
via xt+1 = Γ(xt ∨ zt),where zt is the candidate activation mask predicted by the denoiser, and Γ
is a feasibility projector. We assume the following mild and standard conditions, satisfied by the
projectors Γ(·) used for TSP, MIS, and CVRP:

(A1) Monotone projection: Γ(x) ⪰ x for all feasible x.

(A2) Strict expandability: ∃ zt such that Γ(xt ∨ zt) ≻ xt whenever xt is incomplete.

(A3) Bounded solution size: Any complete feasible solution contains at most Nmax active variables.

Proposition 1 (Finite-time convergence of NAE) Under assumptions (A1)-(A3), NAE generates a
monotone sequence x0 ⪯ x1 ⪯ · · · and converges to a complete feasible solution in at most Nmax

iterations.

Remark. The upper bound Nmax is fully consistent with typical CO structures:

• TSP: Nmax = N edges in a Hamiltonian tour.

• MIS: Nmax ≤ n selected nodes.

• CVRP: Nmax equals the total number of edges across all valid routes.

This analysis formalizes the intuition that NAE is a monotone constructive decoder that reaches a
complete feasible solution in finite time. In terms of efficiency, NAE requires O(Ts) denoiser calls,
matching the order of diffusion while being asymptotically more efficient than COExpander, whose
wrapper design incurs O(Ds · Ts) complexity.

4 EXPERIMENTS

4.1 EXPERIMENTS ON TSP

Datasets. Each TSP instance consists of N two-dimensional coordinates and a reference optimal
solution. Following standard practice (Sun & Yang, 2023), we generate instances by uniformly
sampling N nodes from the unit square [0, 1]2. The training sets contain 1,280K, 128K, and 64K
instances for TSP-100, TSP-500, and TSP-1000, respectively. The corresponding test sets consist
of 1,280 instances for TSP-100 and 128 instances each for TSP-500 and TSP-1000. Reference
solutions are obtained using Concorde (Applegate et al., 2006). We further include large-scale TSP-
10K instances and real-world TSPLIB benchmarks, with results reported in Appendix B.2 and B.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Metrics. We evaluate solvers on three metrics: 1) Length: average tour length of the produced
solutions; 2) Drop: relative deviation from the reference solution; 3) Time: average time per instance.

Setting. For NEXCO, we vary the number of expansion rounds Ds ∈ {3, 5, 7} in the NAE procedure
to balance solution quality and runtime. The confidence threshold α is tuned as a hyperparameter.
For diffusion-based baselines, we adopt standard configurations (Li et al., 2023): Ts denotes the
number of inference steps, and Tg denotes the number of gradient refinement steps. Unless otherwise
stated, all methods employ greedy decoding with an optional 2-Opt heuristic in post-processing.

Main results. Table 2 reports the comparison across different scales. NEXCO consistently surpasses
state-of-the-art learning-based solvers in both solution quality and runtime. On TSP-100, Fast T2T
achieves a 0.03% gap in 0.31s, whereas NEXCO attains the same gap in only 0.08s, yielding a 3.9×
speedup. Similarly, on TSP-500, NEXCO reduces the gap to 0.25% within 0.43s, while Fast T2T
requires 1.41s to reach 0.39%, corresponding to both a 1.5× improvement in gap and a 3× speedup.
Taken together, these results demonstrate that embedding adaptive expansion natively into diffusion
not only accelerates inference by 2–4×, but also consistently reduces optimality gaps, highlighting
the effectiveness of NEXCO as a next-generation neural TSP solver.

Table 3: Ablation on reference quality.
Label / Model Length ↓ Drop ↓ Length ↓ Drop ↓
2-Opt Perturbation 16.82 1.65% 17.11 3.35%

NEXCO (Ds = 5) 16.60 0.31% 16.60 0.31%
NEXCO (Ds = 7) 16.59 0.25% 16.59 0.26%

Ablation on reference quality. We further ex-
amine the robustness of NEXCO when trained
with suboptimal supervision. To this end, we
construct perturbed labels by applying 2-Opt
local search to the ground-truth solutions. As
shown in Table 3, these perturbed references are
significantly worse than the exact optima, with gaps of 1.65% and 3.35% on TSP-500. Neverthe-
less, models trained on such labels still deliver highly competitive results, achieving final gaps of
only 0.25% − 0.31%. This demonstrates that NEXCO is not tied to exact optimal labels but can
effectively leverage high-quality heuristic solutions as consistent training signals, making it broadly
applicable in practical CO scenarios where exact optima are often unavailable.

Table 4: Cross-scale generalization results on
TSP. Each entry reports Length, Gap (%).

Testing
Training TSP-100 TSP-500 TSP-1000

DIFUSCO (Ts=50) 7.78, 0.23% 7.85, 1.16% 7.87, 1.42%
T2T (Ts=50, Tg=30) 7.77, 0.08% 7.95, 2.47% 7.91, 1.96%
Fast T2T (Ts=5, Tg=5) 7.77, 0.02% 7.79, 0.40% 7.80, 0.55%
NEXCO (Ds = 5) 7.76, 0.02% 7.77, 0.18% 7.81, 0.72%

DIFUSCO (Ts=50) 17.05, 3.04% 16.78, 1.40% 16.86, 1.85%
T2T (Ts=50, Tg=30) 16.92, 2.25% 16.68, 0.81% 16.72, 1.00%
Fast T2T (Ts=5, Tg=5) 16.92, 1.77% 16.61, 0.38% 16.63, 0.51%
NEXCO (Ds = 5) 17.04, 2.96% 16.59, 0.27% 16.60, 0.37%

DIFUSCO (Ts=50) 24.04, 3.98% 23.65, 2.30% 23.63, 2.21%
T2T (Ts=50, Tg=30) 23.85, 3.16% 23.47, 1.51% 23.41, 1.23%
Fast T2T (Ts=5, Tg=5) 23.77, 3.08% 23.31, 0.81% 23.25, 0.58%
NEXCO (Ds = 5) 24.01, 3.86% 23.25, 0.58% 23.25, 0.57%

Generalization study. Table 4 reports cross-
scale transfer results. Models trained on small
instances generalize poorly, with DIFUSCO,
T2T, and Fast T2T all incurring ∼ 3% gaps
on TSP-1000. Training on medium or large
instances improves robustness, and NEXCO
shows the strongest transferability. In partic-
ular, when trained on TSP-500, it generalizes
to TSP-1000 with only 0.58% gaps. Simi-
larly, the model trained on TSP-1000 achieves
a 0.37% gap on TSP-500, surpassing baselines
that are directly trained on TSP-500. These re-
sults highlight that native adaptive expansion
yields consistently superior cross-scale gener-
alization compared with existing diffusion-based solvers.

4.2 EXPERIMENTS ON MIS.

Datasets. Following (Sun & Yang, 2023; Qiu et al., 2022; Li et al., 2018; Ahn et al., 2020), we
consider two benchmark datasets: RB graphs and Erdős–Rényi (ER) graphs. For RB graphs, we
generate small- and large-scale instances by sampling the number of vertices from [200, 300] and
[800, 1200], respectively. For ER graphs, we construct random graphs with 700–800 nodes, where
each edge is added independently with probability 0.15. In total, we generate 90,000 small and
6,400 large RB instances for training, with 500 test instances. For ER graphs, 163,840 instances are
used for training and 500 test instances are adopted from (Qiu et al., 2022).

Metrics. 1) Size: the average solution size; 2) Drop: the relative deviation from the reference
solution obtained by KaMIS (Lamm et al., 2016); 3) Time: the average runtime per instance.

Main results. Table 5 shows that NEXCO consistently improves both efficiency and solution quality
over diffusion- and expansion-based baselines. On RB-[200–300], NEXCO lowers the drop from

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Results on synthetic MIS problem instances.
Algorithm Type RB-[200-300] RB-[800-1200] ER-[700-800]

Size↑ Drop↓ Time Size↑ Drop↓ Time Size↑ Drop↓ Time

KaMIS (Lamm et al., 2016) Heuristics 20.10 – 45.81s 43.00 – 56.97s 44.87 – 48.49s

DIMES (Qiu et al., 2022) GP – – – – – – 38.24 14.78% 2.8s
DIFUSCO (Ts = 100) (Sun & Yang, 2023) GP 18.52 7.81% 1.9s – – – 37.03 18.53 2.58s
T2T (Ts = 50, Tg = 30) (Li et al., 2023) GP 18.98 5.49% 2.52s – – – 39.81 11.28 3.33s
Fast T2T (Ts = 5, Tg = 5) (Li et al., 2024) GP 19.58 2.54% 0.39s 39.34 8.51% 2.76s 40.78 9.31% 1.22s
COExpander (Ds = 20, Ts = 1) (Ma et al., 2025) AE 19.60 2.39% 0.20s 41.09 4.36% 2.05s 42.44 5.62% 1.53s
NEXCO (Ds = 5) NAE 19.70 1.97% 0.11s 40.94 4.79% 0.75s 42.64 4.96% 0.44s
NEXCO (Ds = 7) NAE 19.76 1.66% 0.14s 41.25 4.07% 1.00s 42.98 4.20% 0.56s

Table 6: Results on synthetic CVRP problem instances.
Algorithm Type CVRP 50 CVRP 100 CVRP 200

Length↓ Drop↓ Time Length↓ Drop↓ Time Length↓ Drop↓ Time

HGS (Helsgaun, 2017) Heuristics 10.37 – 1.01s 15.56 – 20.03s 19.63 – 60.02s

Sym-NCO (Kim et al., 2022) LC 10.57 1.95% 0.09s 15.93 2.37% 0.19s 20.19 2.86% 0.36s
COExpander (Ds = 3, Ts = 1) (Ma et al., 2025) AE 10.77 3.85% 0.03s 16.22 4.19% 0.06s 20.52 4.58% 0.20s
NEXCO (Ds=3) NAE 10.48 1.12% 0.04s 15.83 1.73% 0.08s 20.18 2.76% 0.27s
NEXCO (Ds=5) NAE 10.46 0.85% 0.06s 15.78 1.40% 0.12s 20.11 2.45% 0.39s

Figure 3: Effect of expansion steps on performance. Green curves show our method with different
numbers of expansion steps. Increasing steps improves solution quality (smaller drop) while linearly
increasing inference time. Reference markers denote SOTA baselines (Fast T2T, COExpander, Sym-
NCO), against which our method achieves consistently better efficiency–quality trade-offs.

2.54% (Fast T2T) to 1.66% while being 2.8× faster. On ER, it achieves a 4.20% drop compared
with 9.31% for Fast T2T, with more than 2× speedup. Compared with COExpander, NEXCO
also attains smaller gaps in much less time: on RB-[800–1200], 4.07% in 1.00s vs. 4.36% in
2.05s. These results demonstrate that NAE not only improves scalability but also yields consistently
higher-quality solutions in MIS. Additional generalization results are provided in Appendix B.1.

4.3 EXPERIMENTS ON CVRP

Datasets. Each CVRP instance consists of a depot, N customer coordinates, and corresponding
demands. Coordinates are uniformly sampled from the unit square [0, 1]2, demands are drawn
as integers from [1, 10], and vehicle capacities are fixed to 40, 50, and 80 for CVRP-50, CVRP-
100, and CVRP-200, respectively. The training sets contain 1,280K, 640K, and 32K instances for
CVRP-50/100/200, while the test sets include 10K instances for CVRP-50/100 and 100 instances
for CVRP-200. Reference solutions are obtained using the HGS solver (Helsgaun, 2017).

Main results. As summarized in Table 6, NEXCO achieves consistent improvements across all
scales. Compared with LC methods such as Sym-NCO (Kim et al., 2022), which yield moderate
drops, and AE-based COExpander, which suffers from even larger deviations, NEXCO substantially
reduces the gap while also cutting runtime. For example, it improves from 3.86% → 0.85% on
CVRP-50, 4.16% → 1.40% on CVRP-100, and 4.84% → 2.45% on CVRP-200, corresponding to
1.6− 2× speedup. Notably, GP-based diffusion solvers have not been extended to CVRP due to its
intricate capacity constraints, further highlighting the strength of native adaptive expansion.

4.4 HYPERPARAMETER STUDY

We analyze two key hyperparameters in NEXCO: the number of expansion steps and the candidate
threshold α. As shown in Fig. 3, increasing the number of expansion steps consistently improves so-
lution quality while runtime grows nearly linearly, revealing a clear trade-off between efficiency and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 4: Effect of the candidate threshold α. Performance across TSP, MIS, and CVRP improves
at moderate thresholds, but deteriorates when α is set too high (restrictive) or too low (noisy).

performance. This allows practitioners to flexibly adjust inference cost, and NEXCO remains supe-
rior to strong baselines (Fast T2T, COExpander, SymNCO) even under reduced step budgets. Sim-
ilarly, Fig. 4 shows that moderate values of α yield the best results: overly high thresholds become
too restrictive, while overly low thresholds admit noisy candidates. Importantly, the optimal range
of α is largely shared across all sizes and distributions within each task (e.g., TSP-100/500/1000;
MIS-RB/ER; CVRP-50/100/200), demonstrating strong task-level robustness. This cross-setting
consistency means that NEXCO requires minimal per-instance tuning, as a single hyperparameter
choice generalizes reliably across scales within the same CO task.

5 CONCLUSION

In this work, we proposed NEXCO, a masked diffusion framework that realizes adaptive solution
expansion as a native generative principle for neural combinatorial optimization. Our framework is
built on three key components: a CO-specific forward corruption that preserves sparsity and yields
semantic partial solutions, a time-agnostic GNN denoiser trained under optimization consistency,
and a Native Adaptive Expansion (NAE) inference strategy that progressively selects confident
variables under feasibility constraints. This framework has demonstrated the effectiveness across
three representative CO problems. We believe this work opens up new opportunities for integrating
constructive expansion mechanisms into diffusion-based generative modeling, and provides a step
forward toward scalable and general-purpose neural solvers for combinatorial optimization.

ETHICS STATEMENT

This paper presents a new masked diffusion framework for neural combinatorial optimization. The
proposed method addresses fundamental challenges in existing neural solvers, including the ineffi-
ciency of local construction, the constraint conflicts of global prediction, and the reliance on external
predictors in adaptive expansion. Our contribution is methodological in nature, aiming to improve
both solution quality and inference efficiency across benchmark CO problems such as MIS, TSP,
and CVRP. We expect this work to benefit the broader research community by providing a more
principled foundation for scalable and effective neural solvers in discrete optimization.

We do not anticipate any negative societal impacts arising from this research. Our work does not
involve sensitive personal data, human subjects, or applications with immediate ethical risks. Fur-
thermore, we do not identify issues related to conflicts of interest, discrimination or fairness, privacy
or security, legal compliance, or research integrity. As a methodological contribution validated on
public benchmarks, this work is aligned with the ethical standards of the ML community.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the datasets, evaluation metrics, and hyperparameter choices in
Sec. 4. The model architecture, hardware configuration, and complete training details are provided
in Appendix C and Appendix D. All source code, preprocessed datasets, and pretrained checkpoints
will be publicly released upon publication to ensure full reproducibility.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent
sets. In International Conference on Machine Learning, pp. 134–144. PMLR, 2020.

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde tsp solver. https:
//www.math.uwaterloo.ca/tsp/concorde/index.html, 2006. Accessed: 2025-
04-21.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, et al. Rl4co: an extensive reinforcement learning
for combinatorial optimization benchmark. arXiv preprint arXiv:2306.17100, 2023.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. Advances in neural information processing systems, 32, 2019.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisim-
ulation quotienting for efficient neural combinatorial optimization. In Advances in Neural Infor-
mation Processing Systems, volume 36, pp. 77416–77429, 2023.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. In The Thirteenth International Conference on Learning Representations,
2025.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in neural information
processing systems, 34:12454–12465, 2021.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing prob-
lems using variational autoencoders. In International Conference on Learning Representations,
2021.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations, 2023.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning tsp
requires rethinking generalization. In 27th International Conference on Principles and Practice
of Constraint Programming (CP 2021), pp. 33–1. Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, 2021.

11

https://www.math.uwaterloo.ca/tsp/concorde/index.html
https://www.math.uwaterloo.ca/tsp/concorde/index.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems.
Advances in Neural Information Processing Systems, 34:10418–10430, 2021.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. In Advances in Neural Information Processing Systems, volume 35, pp.
1936–1949, 2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. In Advances in
Neural Information Processing Systems, volume 33, pp. 21188–21198, 2020.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F Werneck. Find-
ing near-optimal independent sets at scale. In 2016 Proceedings of the eighteenth workshop on
algorithm engineering and experiments (ALENEX), pp. 138–150. SIAM, 2016.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198–26211, 2021.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training
to gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, volume 36, pp. 50020–50040, 2023.

Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast t2t: Optimization
consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
In Advances in Neural Information Processing Systems, volume 37, pp. 30179–30206, 2024.

Yang Li, Lvda Chen, Haonan Wang, Runzhong Wang, and Junchi Yan. Generation as search operator
for test-time scaling of diffusion-based combinatorial optimization. In The Thirty-ninth Annual
Conference on Neural Information Processing Systems, 2025.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolu-
tional networks and guided tree search. In Advances in neural information processing systems,
volume 31, 2018.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the
ratios of the data distribution. In Proceedings of the 41st International Conference on Machine
Learning, pp. 32819–32848, 2024.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing
Systems, 36:8845–8864, 2023.

Fu Luo, Xi Lin, Yaoxin Wu, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang.
Boosting neural combinatorial optimization for large-scale vehicle routing problems. In The Thir-
teenth International Conference on Learning Representations, 2025.

Jiale Ma, Wenzheng Pan, Yang Li, and Junchi Yan. Coexpander: Adaptive solution expansion for
combinatorial optimization. In International Conference on Machine Learning. PMLR, 2025.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible re-
gions of routing problems with flexible neural k-opt. Advances in Neural Information Processing
Systems, 36:49555–49578, 2023.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling sales-
man problem. In Advances in Neural Information Processing Systems, volume 36, pp. 47264–
47278, 2023.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongx-
uan Li. Scaling up masked diffusion models on text. In International Conference on Learning
Representations, 2025a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025b.

Paulo Roberto Oliveira da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning
2-opt heuristics for the traveling salesman problem via deep reinforcement learning. In Asian
conference on machine learning, pp. 465–480. PMLR, 2020.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
Your absorbing discrete diffusion secretly models the conditional distributions of clean data. In
International Conference on Learning Representations, 2025.

Wenzheng Pan, Hao Xiong, Jiale Ma, Wentao Zhao, Yang Li, and Junchi Yan. Unico: On unified
combinatorial optimization via problem reduction to matrix-encoded general tsp. In International
Conference on Learning Representations, 2025.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinato-
rial optimization problems. In Advances in Neural Information Processing Systems, volume 35,
pp. 25531–25546, 2022.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for
unsupervised neural combinatorial optimization. In International Conference on Machine Learn-
ing, pp. 43346–43367, 2024.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and general-
ized masked diffusion for discrete data. Advances in neural information processing systems, 37:
103131–103167, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning, pp. 32211–32252. PMLR, 2023.

Jingyan Sui, Shizhe Ding, Ruizhi Liu, Liming Xu, and Dongbo Bu. Learning 3-opt heuristics for
traveling salesman problem via deep reinforcement learning. In Asian conference on machine
learning, pp. 1301–1316. PMLR, 2021.

Qiao Sun, Zhicheng Jiang, Hanhong Zhao, and Kaiming He. Is noise conditioning necessary for
denoising generative models? In International Conference on Machine Learning. PMLR, 2025.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. In Advances in neural information processing systems, volume 36, pp. 3706–3731, 2023.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A hybrid
genetic algorithm for multidepot and periodic vehicle routing problems. Operations Research, 60
(3):611–624, 2012.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE transactions on neural networks and learning systems,
33(9):5057–5069, 2021.

Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: rethinking
post-hoc search-based neural approaches for solving large-scale traveling salesman problems. In
Proceedings of the 41st International Conference on Machine Learning, 2024.

Yubin Xiao, Di Wang, Boyang Li, Mingzhao Wang, Xuan Wu, Changliang Zhou, and You Zhou.
Distilling autoregressive models to obtain high-performance non-autoregressive solvers for ve-
hicle routing problems with faster inference speed. In Proceedings of the AAAI conference on
artificial intelligence, volume 38, pp. 20274–20283, 2024.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
Proceedings of the AAAI conference on artificial intelligence, volume 38, pp. 20284–20292, 2024.

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
Beyond autoregression: Discrete diffusion for complex reasoning and planning. In The Thirteenth
International Conference on Learning Representations, 2025.

Hang Zhao, Kexiong Yu, Yuhang Huang, Renjiao Yi, Chenyang Zhu, and Kai Xu. Disco: Ef-
ficient diffusion solver for large-scale combinatorial optimization problems. arXiv preprint
arXiv:2406.19705, 2024.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
sampling. In International Conference on Learning Representations, 2025.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. Udc: A uni-
fied neural divide-and-conquer framework for large-scale combinatorial optimization problems.
Advances in Neural Information Processing Systems, 37:6081–6125, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A ADDITIONAL RELATED WORKS

A.1 LEARNING-BASED COMBINATORIAL OPTIMIZATION

Learning-based combinatorial optimization approaches can be broadly grouped into three cate-
gories: constructive methods, improvement-based methods, and divide-and-conquer frameworks.

Constructive methods can be further divided into Local Construction (LC) and Global Prediction
(GP) paradigms. LC approaches (Kool et al., 2019; Kwon et al., 2020; Kim et al., 2022; Berto et al.,
2023; Drakulic et al., 2023; Pan et al., 2025) build solutions sequentially, selecting one variable at a
time and ensuring feasibility at each step, but often suffer from myopic decisions and slow decoding.
RL4CO community develops a comprehensive repository for this category of methods (Berto et al.,
2023). GP approaches (Joshi et al., 2019; Fu et al., 2021; Qiu et al., 2022; Schuetz et al., 2022;
Min et al., 2023; Sun & Yang, 2023; Xia et al., 2024; Li et al., 2024; Xiao et al., 2024), by contrast,
predict global probability heatmaps in a single forward pass. This makes them efficient and globally
aware, but the raw predictions often violate constraints and thus require post-processing to enforce
feasibility. Within this paradigm, generative modeling methods (Hottung et al., 2021; Sun & Yang,
2023; Li et al., 2023; 2024; Zhao et al., 2024; Sanokowski et al., 2024) aim to learn a distribution over
high-quality solutions for each instance. Feasible solutions can then be obtained by sampling from
this distribution, which has been shown to yield competitive or even superior solver performance. To
bridge these trade-offs, COExpander (Ma et al., 2025) recently introduced the Adaptive Expansion
(AE) paradigm, which interpolates between LC’s fine-grained feasibility and GP’s global awareness.
However, AE in COExpander is implemented only as a wrapper around GP predictors, leaving its
effectiveness bounded by the quality and efficiency of the underlying backbone. This limitation
motivates our work, which aims to instantiate AE as a native generative principle within a diffusion
framework.

Improvement-based solvers (Chen & Tian, 2019; Oliveira da Costa et al., 2020; Wu et al., 2021;
Sui et al., 2021; Li et al., 2021; Hou et al., 2023; Ma et al., 2023) focus on refining an initial solution,
typically generated by a simple heuristic (e.g., greedy construction), through iterative optimization
guided by neural networks or local search operators. While these methods can improve solution
quality and naturally enforce feasibility at each step, they suffer from two key drawbacks: their de-
pendence on heuristic initializers limits generality across problem settings, and the need for multiple
refinement rounds incurs substantial computational overhead.

Divide-and-conquer (D&C) framerworks (Fu et al., 2021; Kim et al., 2021; Luo et al., 2023;
2025; Zheng et al., 2024; Ye et al., 2024) address scalability by decomposing large CO instances
into smaller subproblems, solving them with either classical heuristics or neural solvers, and then
aggregating the partial solutions into a global one. Scalability has long been a central challenge
in neural CO: for GP-based methods, obtaining supervision signals is prohibitively expensive; for
RL-based sequential models, issues like sparse rewards and unstable training further hinder their
applicability to large-scale settings. DC provides a practical alternative to mitigate these limitations,
and is largely orthogonal to constructive methods: it can be applied on top of LC, GP, or AE models,
enabling them to operate effectively on larger-scale instances through problem decomposition.

A.2 MASK DIFFUSION MODEL

Diffusion models were first developed for continuous domains with Gaussian transitions (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021), and later extended to discrete spaces
by reformulating the forward process as a discrete-state Markov chain (Hoogeboom et al., 2021;
Austin et al., 2021; Lou et al., 2024). Among these extensions, the masked diffusion model (MDM)
has proven particularly effective: instead of arbitrary bit flips, variables are corrupted into an ab-
sorbing mask state, yielding semantically meaningful intermediate states. This simple yet powerful
design enables principled training (Sahoo et al., 2024; Shi et al., 2024), scales efficiently to large
models (Gong et al., 2025; Nie et al., 2025b; Wu et al., 2025; Sun et al., 2025; Ou et al., 2025), and
consistently outperforms autoregressive models in reasoning and planning tasks (Ye et al., 2025; Nie
et al., 2025a; Zheng et al., 2025). With these advantages, masked diffusion has become the de facto
framework for discrete generative modeling, offering interpretable partial states, schedule-invariant

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

training, and efficient decoding that resonate strongly with the requirements of neural combinatorial
optimization.

B ADDITIONAL EXPERIMENTS

B.1 CROSS-DISTRIBUTION AND CROSS-SCALE GENERALIZATION ON MIS

Table 7: Cross-distribution and cross-scale generalization results on MIS. Each entry reports the
average solution size.

Algorithm Cross-Distribution Cross-Scale
p = 0.2 p = 0.3 p = 0.4 [350–400] [1400–1600]

KaMIS 35.30 24.37 18.18 37.96 50.95

DIFUSCO 26.25 15.84 11.75 27.31 34.39
Fast T2T 29.52 17.77 13.27 32.56 36.95
NEXCO 31.24 18.14 14.17 34.65 38.39

Table 7 compares the performance of different solvers under distribution shifts and varying graph
sizes. On random ER graphs with increasing edge probabilities (p = 0.2, 0.3, 0.4), learning-based
solvers exhibit a clear gap compared to the heuristic KaMIS, but NEXCO consistently achieves
larger solution sizes than both DIFUSCO and Fast T2T, e.g., 31.24 vs. 29.52 and 26.25 at p =
0.2. A similar trend holds in cross-scale settings: when transferring from RB-[350–400] and RB-
[1400–1600], NEXCO again outperforms other learning-based solvers, achieving 34.65 and 38.39
respectively, compared to 32.56 and 36.95 from Fast T2T. These results highlight that native adaptive
expansion maintains superior generalization under both distributional and scale shifts.

B.2 SCALABILITY ON TSP-10K

To further evaluate scalability, we conducted experiments on the large-scale TSP-10K dataset. We
compare NEXCO with strong baselines, including the classical heuristic LKH, the divide-and-
conquer approach GLOP (Ye et al., 2024), and diffusion-based solvers DIFUSCO (Sun & Yang,
2023), DISCO (Zhao et al., 2024), and Fast T2T (Li et al., 2024). For diffusion-based methods, we
follow standard practice (Sun & Yang, 2023; Li et al., 2024) and apply K-Nearest Neighbor (KNN)
sparsification with a sparse factor of 100 to restrict the search space by sampling 100 neighbors for
each node. As shown in Table 8, NEXCO achieves the best balance between quality and efficiency:
it reduces the optimality gap to 1.53% in 52s, improving over diffusion baselines (e.g., 1.63% in
70s by Fast T2T) while being substantially faster than LKH. These results highlight the scalability
advantage of native adaptive expansion in large-scale settings.

To extend to larger regimes, NEXCO is naturally compatible with standard scaling strategies used
in large-graph CO systems, such as divide-and-conquer frameworks (e.g., region partitioning sim-
ilar to GLOP (Ye et al., 2024)), or replacing the backbone GNN with lightweight sparse-attention
Transformers (Luo et al., 2025). These directions do not alter the proposed generative principle
and can be incorporated in future work to achieve industrial-scale deployments. In addition, the
partial-solution semantics of NEXCO provide a natural mechanism for overcoming the scarcity and
high cost of supervision in large-scale CO tasks. Because the model operates on feasible partial
states rather than requiring complete high-quality solutions at every step, it can be trained using
incomplete, heuristic, or low-cost labels and gradually refine its own predictions through iterative
self-training. This significantly reduces reliance on exact solvers, whose computational cost grows
prohibitively with instance size. The ability to learn from weak or partial supervision aligns with re-
cent scalable training pipelines (Luo et al., 2025; Li et al., 2025) that couple lightweight backbones
with progressive bootstrapping. Incorporating such strategies offers a promising path for applying
NEXCO in settings where high-quality ground-truth labels are expensive or unavailable, thereby
further extending its applicability to truly large and industrial-scale CO environments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Results on TSP-10K. NEXCO achieves the best trade-off between solution quality and
runtime.

Method Type Length ↓ Drop ↓ Time
LKH Heuristics 71.77 – 332s
GLOP (more revisions) DC 75.29 4.90% 15s
DIFUSCO (Ts = 100) GP 73.91 2.98% 124s
DISCO GP 73.84 2.88% 92s
Fast T2T (Ts = 5) GP 72.94 1.63% 70s
NEXCO (Ds = 5) NAE 72.87 1.53% 52s

Table 9: Solution quality (%) for methods trained on TSP-100 problems and evaluated on TSPLIB
instances with 50–200 nodes. * denotes results quoted from previous works (Li et al., 2024).

Instances AM* GCN* Learn2OPT* GNNGLS* DIFUSCO* T2T* Fast T2T* NEXCO
eil51 16.767 40.025 1.725 1.529 2.82 0.14 0.00 0.00
berlin52 4.169 33.225 0.449 0.142 0.00 0.00 0.00 0.00
st70 1.737 24.785 0.040 0.764 0.00 0.00 0.00 0.00
eil76 1.992 27.411 0.096 0.163 0.34 0.00 0.00 0.00
pr76 0.816 27.793 1.228 0.039 1.12 0.40 0.00 0.00
rat99 2.645 17.633 0.123 0.550 0.09 0.09 0.00 0.00
kroA100 4.017 28.828 18.313 0.728 0.10 0.00 0.00 0.00
kroB100 5.142 34.686 1.119 0.147 2.29 0.74 0.65 0.00
kroC100 0.972 35.506 0.349 1.571 0.00 0.00 0.00 0.00
kroD100 2.717 38.018 0.866 0.572 0.07 0.00 0.00 0.00
kroE100 1.470 26.589 1.832 1.216 3.83 0.27 0.00 0.00
rd100 3.407 30.432 1.725 0.003 0.08 0.00 0.00 0.00
eil101 2.994 26.701 0.387 1.529 0.03 0.00 0.00 0.00
lin105 1.739 34.902 1.867 0.606 0.00 0.00 0.00 0.54
pr107 3.933 30.564 0.898 0.439 0.91 0.61 0.62 0.08
pr124 3.677 70.146 10.322 0.755 1.02 0.60 0.08 0.58
bier127 5.908 45.561 3.044 1.948 0.94 0.54 1.50 0.66
ch130 3.182 39.090 0.709 3.519 0.29 0.06 0.00 0.00
pr136 5.064 58.673 0.000 3.387 0.19 0.10 0.01 0.00
pr144 7.641 55.837 1.526 3.581 0.80 0.50 0.39 0.00
ch150 4.584 49.743 0.312 2.113 0.57 0.49 0.00 0.00
kroA150 3.784 45.411 0.724 2.984 0.34 0.14 0.00 0.00
kroB150 2.437 36.745 0.886 3.258 0.30 0.00 0.07 0.02
pr152 7.494 33.925 0.029 3.119 1.69 0.83 1.19 0.68
u159 7.551 38.338 0.054 1.020 0.82 0.00 0.00 0.00
rat195 6.839 24.968 0.743 1.666 1.48 1.27 0.79 0.11
d198 373.020 62.351 0.522 4.772 3.32 1.97 0.86 0.00
kroA200 7.106 40.885 1.441 2.029 2.28 0.57 0.49 0.00
kroB200 8.541 43.643 2.064 2.589 2.35 0.92 2.50 0.00

Mean 16.767 40.025 1.725 1.529 0.97 0.35 0.28 0.09

B.3 EVALUATION ON REAL-WORLD INSTANCES

We evaluate our model on real-world TSPLIB instances with 50–200 nodes (Reinelt, 1991). The
model is trained on TSP-100 dataset, and compared against state-of-the-art baselines including DI-
FUSCO (Sun & Yang, 2023), T2T (Li et al., 2023), and Fast T2T (Li et al., 2024). The hyperpa-
rameter configurations for the diffusion-based baselines are as follows: DIFUSCO with Ts = 50;
T2T with Ts = 50 and Tg = 30; Fast T2T (with guided sampling) with Ts = 10 and Tg = 10, and
NEXCO with Ds = 20 All diffusion-based methods are evaluated under the same settings, using
greedy decoding followed by 2-Opt local search as post-processing. For consistency, the coordinates
of each TSPLIB instance are normalized to the range [0, 1].

B.4 ABLATION STUDY ON THE CORRUPTION SCHEME

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We compare our mask-based forward corruption with a uniform corruption scheme that treats all
variables as equally likely to be flipped, similar to the uniform perturbation used in Fast-T2T (Ta-
ble 10). Across TSP-500 and TSP-1000, and under the same number of expansion steps, the mask-
based model consistently achieves lower optimality gaps. The difference arises from the structural
behavior of the two corruption processes. Uniform corruption injects noise indiscriminately and
often produces partial states with weak or noisy supervision signals for the denoiser. In contrast,
the proposed mask corruption applies one-way absorbing 1 → 0 updates that preserve the feasible
structure of partial solutions while selectively revealing informative variables. This yields clearer
denoising targets and a more stable reverse trajectory, which in turn explains the consistent improve-
ments observed in our ablations.

Table 10: Performance comparison across different corruption scheme.

Exp. Step Scheme TSP-500 TSP-1000
Obj. Gap↓ Time Obj. Gap↓ Time

3 Uniform 16.66 0.65% 0.27s 23.34 0.94% 1.00s
Mask 16.61 0.39% 0.23s 23.31 0.85% 0.91s

5 Uniform 16.65 0.59% 0.39s 23.32 0.86% 1.44s
Mask 16.59 0.28% 0.33s 23.26 0.63% 1.31s

7 Uniform 16.63 0.53% 0.49s 23.30 0.78% 1.85s
Mask 16.59 0.25% 0.43s 23.24 0.52% 1.68s

B.5 ABLATION STUDY ON THE ADAPTIVE EXPANSION

Table 11 reports the comparison between NAE and a non-adaptive “global t-schedule” baseline. The
global baseline does not perform any form of adaptive expansion. It runs the diffusion model for a
fixed number of denoising steps, produces a dense full prediction at the final step, and then applies
a single greedy decoding to obtain a complete solution. No intermediate partial-state construction
is carried out, and the amount of expansion is fixed rather than guided by model confidence. In
contrast, NAE operates directly on feasible partial states and expands them progressively. At each
step, it activates candidates according to their confidence scores and applies feasibility projection
to maintain monotone growth of the partial solution. This native adaptivity enables the model to
commit early to high-confidence regions while deferring uncertain components to later steps, thereby
structuring the decoding trajectory in a principled way. As shown in the ablation, this constructive
and confidence-aware expansion yields significantly smaller optimality gaps than the global non-
adaptive schedule under the same number of denoiser calls. The improvement therefore stems not
from additional computation, but from the design of an adaptive partial-state expansion mechanism.

Table 11: Comparison between Global and NAE under different expansion steps.

Exp. Step Method TSP-500 TSP-1000
Obj. Gap↓ Time (s) Obj. Gap↓ Time (s)

3 Global 16.67 0.73% 0.22s 23.39 1.16% 0.81s
NAE 16.61 0.39% 0.23s 23.31 0.85% 0.91s

5 Global 16.67 0.71% 0.29s 23.34 0.96% 1.04
NAE 16.59 0.28% 0.33s 23.26 0.63% 1.31s

7 Global 16.65 0.63% 0.36s 23.33 0.92% 1.29s
NAE 16.59 0.25% 0.43s 23.24 0.52% 1.68s

B.6 ABLATION STUDY ON THE FEASIBILITY PROJECTION

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12 compares our feasibility projection mechanism with a greedy decoding baseline. In the
greedy baseline, a complete solution is constructed at every diffusion step by selecting variables
according to their predicted probabilities. After obtaining this full solution, a fixed proportion of
variables is remasked, and the resulting state is used as input to the next diffusion step. This produces
a wrapper-like refinement cycle that repeatedly rebuilds full solutions throughout the trajectory.

In contrast, our projection operator Γ maintains a single monotone partial-solution trajectory. At
each step, Γ accepts a candidate activation only when feasibility is preserved, and it does not gener-
ate full solutions prematurely. This prevents the repeated reconstruction inherent to greedy decoding
and avoids the error accumulation introduced by successive remasking cycles. Empirically, both ap-
proaches can eventually achieve similar optimality gaps when sufficient steps are allowed. However,
greedy decoding consistently incurs higher runtime and exhibits less stable behavior due to its re-
construct–remask procedure. These results demonstrate that the feasibility projection used by NAE
offers a more efficient and principled alternative to wrapper-style greedy refinement strategies.

Table 12: Comparison between Greedy decoding and Projection under different expansion steps.

Exp. Step Method TSP-500 TSP-1000
Obj. Gap↓ Time (s) Obj. Gap↓ Time (s)

3 Greedy decoding 16.61 0.39% 0.39s 23.33 0.94% 1.29s
Projection 16.61 0.39% 0.23s 23.31 0.85% 0.91s

5 Greedy decoding 16.60 0.31% 0.54s 23.26 0.63% 1.95s
Projection 16.59 0.28% 0.33s 23.26 0.63% 1.31s

7 Greedy decoding 16.59 0.26% 0.71s 23.25 0.57% 2.59s
Projection 16.59 0.25% 0.43s 23.24 0.52% 1.68s

B.7 RUNTIME BREAKDOWN OF NAE INFERENCE

In this section, we provide detailed runtime profiling of NAE across all tasks and instance sizes.
Table 13 reports total inference time per instance, together with the proportion attributed to denoiser
evaluations and to the projection operator Γ(·).

Table 13: Runtime breakdown of NAE inference across all tasks.
Task Total Time (s) Denoiser Γ(·) Projection

TSP100 0.018 0.016 (88.89%) 0.002 (11.11%)
TSP500 0.097 0.081 (83.51%) 0.016 (16.49%)
TSP1000 0.218 0.162 (74.31%) 0.056 (25.69%)
MIS–RBsmall 0.033 0.026 (78.79%) 0.007 (21.21%)
MIS–RBlarge 0.190 0.173 (91.05%) 0.017 (8.95%)
MIS–ER 0.200 0.184 (92.00%) 0.016 (8.00%)
CVRP50 0.022 0.017 (77.27%) 0.005 (22.73%)
CVRP100 0.030 0.021 (70.00%) 0.009 (30.00%)
CVRP200 0.078 0.052 (66.67%) 0.026 (33.33%)

Across all settings, denoiser calls constitute the primary computational bottleneck, consistently ac-
counting for the majority of inference time. The relative cost of the projection operator Γ(·) increases
with instance size due to the larger number of candidate variables that must be feasibility-checked.
However, its absolute cost remains small (on the order of milliseconds), and the overall inference
complexity of NAE continues to be dominated by denoiser evaluations. These results demonstrate
that the projection mechanism introduces only a lightweight overhead that scales predictably with
problem size, confirming that NAE’s efficiency is primarily driven by its denoiser architecture rather
than by feasibility projection.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C MODEL ARCHITECTURE DETAILS

C.1 INPUT EMBEDDING LAYER

Given node vector x ∈ RN×2, weighted edge vector e ∈ RE , denoising timestep t ∈ {τ1, . . . , τM},
where N denotes the number of nodes in the graph, and E denotes the number of edges, we compute
the sinusoidal features of each input element respectively:

x̃i = concat(x̃i,0, x̃i,1), (9)

x̃i,j = concat
(
sin

xi,j

T 0/d
, cos

xi,j

T 0/d
, sin

xi,j

T 2/d
, cos

xi,j

T 2/d
, . . . , sin

xi,j

T d/d
, cos

xi,j

T d/d

)
, (10)

ẽi = concat
(
sin

ei
T 0/d

, cos
ei

T 0/d
, sin

ei
T 2/d

, cos
ei

T 2/d
, . . . , sin

ei
T d/d

, cos
ei

T d/d

)
, (11)

where d is the embedding dimension, T is a large number (usually selected as 10000), and concat(·)
denotes concatenation. In CVRP, each node is described not only by its coordinates but also by
customer demand ci and a depot indicator δi ∈ {0, 1}. We embed these heterogeneous features
separately and merge them into the node representation:

c̃i = concat
(
sin

ci
T 0/d

, cos
ci

T 0/d
, . . . , sin

ci
T d/d

, cos
ci

T d/d

)
, (12)

δ̃i = Embeddepot(δi), (13)

x̃i = x̃i + d̃i + δ̃i. (14)

Next, we compute the input features of the graph convolution layer:

x0
i = W 0

1 x̃i, (15)

e0i = W 0
2 ẽi. (16)

Specifically, for TSP and CVRP, the embedding input edge vector e is a weighted adjacency matrix,
which represents the distance between different nodes, and e0 is computed as above. For MIS, we
initialize e0 to a zero matrix 0E×d.

C.2 GRAPH CONVOLUTION LAYER

Following (Joshi et al., 2019), the cross-layer convolution operation is formulated as:

xl+1
i = xl

i + ReLU(BN(W l
1x

l
i +

∑
j∼i

ηlij ⊙W l
2x

l
j)), (17)

el+1
ij = elij + ReLU(BN(W l

3e
l
ij +W l

4x
l
i +W l

5x
l
j)), (18)

ηlij =
σ(elij)∑

j′∼i σ(e
l
ij′) + ϵ

, (19)

where xl
i and elij denote the node feature vector and edge feature vector at layer l, W1, · · · ,W5 ∈

Rh×h denote the model weights, and ηlij denotes the dense attention map. The convolution operation
integrates the edge feature to accommodate the significance of edges in routing problems.

For TSP and CVRP, we aggregate the edge convolutional feature and reformulate the update for
edge features as follows:

el+1
ij = elij + ReLU(BN(W l

3e
l
ij +W l

4x
l
i +W l

5x
l
j)) +W l

6(ReLU(t0)). (20)

For MIS, we aggregate the node convolutional feature and reformulate the update for node features
as follows:

xl+1
i = xl

i + ReLU(BN(W l
1x

l
i +

∑
j∼i

ηlij ⊙W l
2x

l
j)) +W l

6(ReLU(t0)). (21)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.3 OUTPUT LAYER

The prediction of the edge heatmap in TSP and CVRP, and node heatmap in MIS is as follows:

ei,j = Softmax(norm(ReLU(Wee
L
i,j))), (22)

xi = Softmax(norm(ReLU(Wnx
L
i))), (23)

where L is the number of GCN layers and norm is layer normalization.

C.4 MODEL PARAMETERS

For all tasks, we adopt a 12-layer GCN as described above. For TSP, following the setting of (Sun
& Yang, 2023), we apply a K-Nearest Neighbor (KNN) strategy to sparsify the graph in order to
reduce training memory and shrink the search space. Specifically, for TSP-500 and TSP-1000, the
sparsity factors are set to 50 and 100, respectively.

D EXPERIMENTAL SETUP

D.1 HARDWARE

All models are trained and tested using NVIDIA A40 (48G) GPUs and Intel(R) Xeon(R) Gold 5220
CPU @ 2.20GHz. All test evaluations are performed in a single-threaded setting, where the average
runtime per instance is reported to ensure fair comparison across different models.

D.2 TRAINING SETUP

We have organized the training settings and model parameters of NEXCO in Table 14. For all
problems, we adopt a curriculum learning strategy, where models are progressively fine-tuned from
smaller datasets to large ones.

Table 14: Details about the training hyperparameters of NEXCO.
Problem Data Data Size Batch Size Epoch Learning Rate Hidden Dimension
TSP Uniform-100 1,502k 16 100 2e-4 256
TSP Uniform-500 128k 6 50 2e-4 256
TSP Uniform-1000 64k 4 50 2e-4 256

MIS RB-200-300 90k 4 50 2e-4 256
MIS RB-800-1200 6.4k 1 10 5e-5 256
MIS ER-700-800 163k 4 50 2e-4 128

CVRP Uniform-50 1,280k 32 50 2e-4 256
CVRP Uniform-100 640k 12 50 2e-4 256
CVRP Uniform-200 32k 2 50 2e-4 256

E LICENSES

The licenses for the codes used in this work are listed in Table 15.

F LLM USAGE

In this work, LLMs were used solely to aid in the polishing and refinement of the manuscript text,
including grammar correction, clarity improvement, and style consistency. All technical content,
experimental results, and conclusions are the sole responsibility of the authors.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 15: Licenses for codes used in this work
Resource Type Link License
LKH3 (Helsgaun, 2017) Code http://webhotel4.ruc.dk/˜keld/research/LKH-3/ Available for academic research
HGS (Vidal et al., 2012)s Code https://github.com/chkwon/PyHygese MIT License
Concorde (Applegate et al., 2006) Code https://github.com/jvkersch/pyconcorde BSD 3-Clause License
KaMIS (Lamm et al., 2016) Code https://github.com/KarlsruheMIS/KaMIS MIT License
AM (Kool et al., 2019) Code https://github.com/wouterkool/attention-learn-to-route MIT License
BQ-NCO (Drakulic et al., 2023) Code https://github.com/naver/bq-nco CC BY-NC-SA 4.0
GCN (Joshi et al., 2019) Code https://github.com/chaitjo/graph-convnet-tsp MIT License
DIMES (Qiu et al., 2022) Code https://github.com/DIMESTeam/DIMES MIT License
DIFUSCO (Sun & Yang, 2023) Code https://github.com/Edward-Sun/DIFUSCO MIT License
T2T (Li et al., 2023) Code https://github.com/Thinklab-SJTU/T2TCO MIT License
Fast T2T (Li et al., 2024) Code https://github.com/Thinklab-SJTU/Fast-T2T MIT License
COExpander (Ma et al., 2025) Code https://github.com/Thinklab-SJTU/COExpander Not specified
LEHD (Luo et al., 2023) Code https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/LEHD MIT License
Sym-NCO (Kim et al., 2022) Code https://github.com/alstn12088/Sym-NCO Not specified

22

http://webhotel4.ruc.dk/~keld/research/LKH-3/
https://github.com/chkwon/PyHygese
https://github.com/jvkersch/pyconcorde
https://github.com/KarlsruheMIS/KaMIS
https://github.com/wouterkool/attention-learn-to-route
https://github.com/naver/bq-nco
https://github.com/chaitjo/graph-convnet-tsp
https://github.com/DIMESTeam/DIMES
https://github.com/Edward-Sun/DIFUSCO
https://github.com/Thinklab-SJTU/T2TCO
https://github.com/Thinklab-SJTU/Fast-T2T
https://github.com/Thinklab-SJTU/COExpander
https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/LEHD
https://github.com/alstn12088/Sym-NCO

	Introduction
	Preliminaries and Related Work
	Combinatorial optimization on graphs
	Diffusion solvers for CO
	Masked diffusion

	Method
	Forward process: CO-specific corruption
	Time-agnostic denoiser
	Training objective: time-agnostic optimization consistency
	Inference process: Native Adaptive Expansion (NAE)

	Experiments
	Experiments on TSP
	Experiments on MIS.
	Experiments on CVRP
	Hyperparameter study

	Conclusion
	Additional Related Works
	Learning-based combinatorial optimization
	Mask diffusion model

	Additional Experiments
	Cross-distribution and cross-scale generalization on MIS
	Scalability on TSP-10K
	Evaluation on real-world instances
	Ablation Study on the corruption scheme
	Ablation study on the adaptive expansion
	Ablation study on the feasibility projection
	Runtime breakdown of NAE inference

	Model Architecture Details
	Input Embedding Layer
	Graph Convolution Layer
	Output Layer
	Model Parameters

	Experimental Setup
	Hardware
	Training setup

	Licenses
	LLM Usage

