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ABSTRACT

When learning task-oriented dialogue (ToD) agents, reinforcement learning (RL)
techniques can naturally be utilized to train dialogue strategies to achieve user-
specific goals. Prior works mainly focus on adopting advanced RL techniques to
train the ToD agents, while the design of the reward function is not well studied.
This paper aims at answering the question of how to efficiently learn and lever-
age a reward function for training end-to-end (E2E) ToD agents. Specifically,
we introduce two generalized objectives for reward-function learning, inspired by
the classical learning-to-rank literature. Further, we utilize the learned reward
function to guide the training of the E2E ToD agent. With the proposed tech-
niques, we achieve competitive results on the E2E response-generation task on
the Multiwoz 2.0 dataset. Source code and checkpoints are publicly released at
https://github.com/Shentao-YANG/Fantastic Reward ICLR2023.

1 INTRODUCTION

The bloom of pre-training language models (e.g., Devlin et al., 2018; Lewis et al., 2019; Radford
et al., 2019; Zhang et al., 2022c) have significantly pushed the boundaries of natural language pro-
cessing (NLP) on real-world tasks. Among all the promising potentials, one important application is
the task-oriented dialogue (ToD) systems, which interact with the users in multiple turns via natural
languages to accomplish tasks such as weather inquiry, ticket booking, or schedule planning (Chen
et al., 2017; Kwan et al., 2022).

Traditionally, the problem of ToD is decomposed into several sub-tasks (Smith & Hipp, 1994; Young
et al., 2013): natural language understanding (NLU) for understanding turn-level user intents or slot
values (Tur & De Mori, 2011; Casanueva et al., 2020), dialogue state tracking (DST) for track-
ing user belief state across multiple dialogue turns (Zhang et al., 2019; Zhu et al., 2020), dialogue
management (DM) for choosing system actions to take (Peng et al., 2017; Zhao et al., 2019), and
natural language generation (NLG) for mapping system actions to natural language responses (Wen
et al., 2015; Zhang et al., 2020). This pipeline approach, however, requires intensive structural de-
signs and comprehensive data annotation for model training (Kwan et al., 2022). Recently, there has
been a growing interest in building end-to-end (E2E) ToD agents, which directly generate responses
based on the natural language conversation mixing user utterances and past responses. Apart from
this structural simplicity, many of the E2E ToD models can utilize the pre-trained language models
and are simply trained by supervisedly fine-tuning the pre-trained models on the ToD datasets (e.g.,
Hosseini-Asl et al., 2020; Ham et al., 2020; Lin et al., 2020; Peng et al., 2021).

Due to the intrinsic similarity between dialogues and sequential decision-making, reinforcement
learning (RL) methods are naturally employed to train dialogue systems and have achieved some
success (e.g., Williams & Young, 2007; Georgila & Traum, 2011; Zhao et al., 2019). Since inter-
acting with users during the training process is mostly impractical, offline RL (Lange et al., 2012;
Levine et al., 2020), i.e., RL on static datasets, has recently been adopted to train E2E ToD mod-
els (e.g., Jaques et al., 2019; 2020; Ramachandran et al., 2021; Snell et al., 2022a;b; Jang et al.,
2022). Although this direction already presents promising empirical results, an open question exists
on how to properly design the reward function for the underlying (offline) RL. Existing works (e.g.,
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Wu et al., 2019c; Jang et al., 2022; Snell et al., 2022b) manually design a sparse reward function that
only indicates whether the agent achieves the goal or not. Unfortunately, due to the delayed feed-
back, learning from such a sparse reward signal is itself challenging for RL agents (Andrychowicz
et al., 2017; Liu et al., 2019; Durugkar et al., 2021). When applied to train the more complicated
ToD agents, the sparse reward signal could lead to poor empirical performance (Takanobu et al.,
2019; Wang et al., 2020a). To address this issue, we aim at answering the following question in
this paper:

How to efficiently learn a reward function and leverage it for training E2E dialogue agents?

We answer the first half of this question by introducing two reward-learning objectives,
RewardNet and RewardMLE, based on the classical learning-to-rank literature (Cao et al., 2007;
Xia et al., 2008). Our desiderata is a reward function that can “explain” some non-trivial preference-
based ordering among multiple alternative dialogue trajectories, thus potentially allowing the re-
sulting RL-trained ToD agents to have better-than-demo performance. We accomplish this goal by
learning a parameterized reward function on dialogue turns, from which the accumulated reward of
a dialogue trajectory can reflect the preference among multiple alternatives. We answer the second
half of the question by utilizing the learned reward function to guide the training of the E2E ToD sys-
tem, with special considerations on the training stability. With these answers to the above question,
we achieve competitive results on the E2E response-generation task on the widely-used dialogue
benchmark MultiWOZ 2.0 (Budzianowski et al., 2018). Several ablation studies and analyses are
conducted to provide further insights into the proposed techniques.

2 BACKGROUND

Task-oriented dialogue as reinforcement learning. We formulate the problem of the ToD system
as a partially observable Markov decision process (POMDP) (Kaelbling et al., 1998), specified by
M = ⟨S,A,O,P,R, γ⟩, where state s ∈ S consists of the previous dialogue history h and the
user intended goal g specified prior to the start of the dialogue; o ∈ O is the observation that can
be the user utterance; action a ∈ A can be the system response or dialogue act; P(s′ | s, a) is the
underlying transition probability; R(h, a, g) is the intermediate reward function for taking action a
under dialogue history h and goal g; and γ ∈ [0, 1] is the discount factor.

The dialogue history ht at timestep t consists of all the previous observations and actions, i.e.,
ht ≜ {o0, a0, . . . , ot−1, at−1, ot}. Since the ToD agent cannot directly observe the user goal g, it
makes a decision based on the entire dialogue history ht so far. Specifically, the policy π is defined
as a mapping from ht to a probability distribution over A, i.e., π ≜ π(at |ht). The training objective
is to find a policy π that maximizes the expected (discounted) cumulative reward

J(π) ≜ Eµg,π,P

[∑T
t=0 γ

tR(ht, at, g)
]
,

where µg is the distribution of goals and T is the number of turns in the dialogue trajectory.

Reward design and learning in ToD systems. Unlike the classical RL problems where the interme-
diate reward function is well designed and provided, in ToD systems we can only get the evaluation
results at the end of the dialogue (Budzianowski et al., 2018). Consequently, most of the existing
works adopt the manually designed intermediate reward function that only gives binary reward to
indicate whether the dialogue agent achieves the goal or not (e.g., Weisz et al., 2018; Wu et al.,
2019c; Jang et al., 2022):

R(ht, at, g) =

{
Rconst or 0, if goal g is achieved at timestep t ,

−Rconst, if goal g is not achieved at timestep t ,

where Rconst is a positive constant that can be 1. However, such a sparse reward signal can be one of
the reasons that the ToD agents from RL often have poor performance (Takanobu et al., 2019; Wang
et al., 2020a). A similar issue is also observed in goal-oriented RL (Andrychowicz et al., 2017).

To address the above issue, a few recent works focus on learning an intermediate reward func-
tion from demonstrations or mechanical dialogue assessments (e.g., Wang et al., 2020a; Ramachan-
dran et al., 2021), inspired by the reward-learning-from-preferences in RL (e.g., Christiano et al.,
2017; Brown et al., 2019; 2020). More precisely, suppose we are given two dialogue trajec-
tories τi and τj , taking the form τi ≜ {g(i), (o(i)0 , a

(i)
0 ), . . . , (o

(i)
T , a

(i)
T )}. We want to learn a
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parametrized reward function Rθ(ot, at, g) with parameter θ,1 such that
∑T

t=0 Rθ(o
(i)
t , a

(i)
t , g(i)) >∑T

t=0 Rθ(o
(j)
t , a

(j)
t , g(j)) when τi is preferred over τj (denoted as τi ≻ τj) and vice versa. Then

one can follow the Bradley-Terry model of pairwise preferences (Bradley & Terry, 1952) to train the
reward function by minimizing the loss

ℓ(θ) = −∑
τi≻τj

log

[
exp

(∑T
t=0 Rθ(o

(i)
t ,a

(i)
t ,g(i))

)
∑

k∈{i,j} exp
(∑T

t=0 Rθ(o
(k)
t ,a

(k)
t ,g(k))

)] . (1)

ℓ(θ) can be interpreted as a pairwise ranking loss, which is formalized as binary classification in the
problem of learning to rank (Herbrich et al., 1999; Freund et al., 2003; Burges et al., 2005).

3 MAIN METHOD

In this section, we first introduce two objectives for reward-function learning based on the classical
approaches in the learning-to-rank (LTR) literature (Liu, 2009). Then we use MinTL (Lin et al.,
2020) as an example to demonstrate how we can use the learned reward function as a plugin module
to improve existing methods of training the E2E ToD models.

3.1 TWO GENERALIZED OBJECTIVES FOR REWARD LEARNING

We introduce two objectives, RewardNet and RewardMLE, both of which can utilize multiple
dialogue trajectories on each update for optimizing the reward function. Our motivation is that,
compared with the pairwise approach described in Eq. (1), these two objectives consider more in-
formation at each training step, and thus can be more effective for reward learning and may lead to
a better solution under the stochastic training setting.

Setup. Assume that there are N ≥ 2 dialogue trajectories, denoted by DN ≜ (τ1, τ2, . . . , τN ), and
each trajectory τi has an automatic evaluation score S(τi).2 For simplicity, we assume that these
N dialogue trajectories are of equal length T and are already sorted by the automatic evaluation
scores, i.e., τ1 ≻ τ2 ≻ · · · ≻ τN , or equivalently, S(τ1) > S(τ2) > · · · > S(τN ). We denote the
accumulated reward of dialogue trajectory τi from Rθ as J(τi; θ) =

∑T
t=0 Rθ(o

(i)
t , a

(i)
t , g(i)). Our

goal is to learn a reward function Rθ(o, a, g) such that the accumulated rewards of those trajectories
can reflect the ranking order, i.e., J(τ1; θ) > · · · > J(τN ; θ).

RewardNet. The proposed RewardNet objective for reward function learning is adapted from
the ListNet loss (Cao et al., 2007) in the LTR literature. Specifically, given N trajectories and their
associated scores, we define the RewardNet loss as the cross entropy between {J(τi; θ)}Ni=1 and
{S(τi)}Ni=1:

ℓRewardNet(θ;DN ) ≜ −∑N
i=1 PS(τi) · log

(
PJ(τ ;θ)(τi)

)
, (2)

with

PS(τi) = S(τi)
/(∑N

k=1 S(τk)
)
, PJ(τ ;θ)(τi) = Φ(J(τi; θ))

/(∑N
k=1 Φ(J(τk; θ))

)
,

where Φ(·) is a monotonic positive function defined on R+, and PS(τi) is a normalized probability
vector defined by the true evaluation scores of those N trajectories. Note that when N = 2 and Φ is
the identity function, RewardNet can be viewed as a soft version of the pairwise preference loss
defined in Eq. (1), where the hard binary preference labels are replaced by {PS(τi)}Ni=1. This soft
pairwise loss is adopted for reward learning in the recent CASPI paper (Ramachandran et al., 2021).

RewardMLE. The RewardMLE objective is based on the ListMLE loss (Xia et al., 2008), where we
only utilize the ranking order in the batched dialogue trajectories DN , rather than the original metric
scores {S(τi)}Ni=1. Let y = rank(S) be the random variable that represents the ranking order of the
dialogue trajectories (y(τi) = i,∀ i, if the batched trajectories DN are sorted). The RewardMLE
objective is defined as the negative log-likelihood of the ranking order y under the Plackett-Luce
choice model (Plackett, 1975; Luce, 2012) induced by the accumulated reward of each trajectory
{J(τi; θ)}Ni=1. Specifically, the loss is defined as

ℓRewardMLE(θ;DN ) ≜ − logP
(
y | {J(τi; θ)}Ni=1

)
, (3)

1We use the belief state, action, and goal as the reward function inputs. The belief state is part of the
observation ot. We also drop the dependency on ht for Rθ to simplify the reward function learning.

2We use the Combined Score (Mehri et al., 2019) as S(τi). Detailed definition is delayed to Section 5.
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with
P
(
y | {J(τi; θ)}Ni=1

)
=

∏N
i=1

{
Φ(J(τi; θ))

/∑N
k=i Φ(J(τk; θ))

}
,

where trajectories in DN are assumed sorted as described in the problem setup, i.e., τ1 ≻ · · · ≻
τN . Since RewardMLE only requires the ranking information derived from the raw scores, it is
potentially a more robust choice when the preference scores could be inaccurate.

In Eqs. (2) and (3), the monotonic positive function Φ transforms the unnormalized inputs
{J(τi; θ)}Ni=1 to a N -dimensional probabilistic simplex. In this work, we consider Φ being ex-
ponential function exp(·) and power function (·)p, p ∈ N, which are respectively known as the
softmax transform and the escort transform (Mei et al., 2020).

3.2 POLICY GRADIENT UPDATE WITH LEARNED REWARD FUNCTION

With the learned reward function Rθ(o, a, g), the next step is to improve the parametrized dialogue
agents πϕ via policy gradient methods (Sutton & Barto, 2018), given a collected offline dataset
D̂ := {τk}Kk=1. A classical approach to train the policy πϕ is to estimate the policy gradient via the
REINFORCE method (Williams, 1992):

∇ϕJREINFORCE(πϕ) = E(g,ht)∼D̂,ãt∼πϕ(· |ht)
[∇ϕ log πϕ(ãt |ht) ·Gπϕ(ht, ãt, g)] , (4)

where Gπϕ(ht, ãt, g) is the (discounted) accumulated reward that the agent πϕ receives, starting
from the observation ot (part of ht) and action ãt, under the given goal g. When the discount
factor γ > 0, estimating Gπϕ(ht, ãt, g) requires Monte Carlo sampling (on-policy) or temporal
difference learning (off-policy), both of which require learning an additional value-function network.
Empirically we observe that learning an additional action-value function could introduce instability
and extra compute to the subsequent training of the E2E dialogue model. To simplify the training
pipeline, we simply set the discount factor γ = 0, and thus Gπϕ(ht, ãt, g) = Rθ(ot, ãt, g).

Though the policy gradient estimator defined in Eq. (4) is unbiased, it tends to have high variance,
especially when the action space is large. Unfortunately, in the E2E ToD system, the action space
is often defined to be the Cartesian product of the vocabulary, which itself has a dimension larger
than 30000. As a result, optimizing the agent πϕ by the REINFORCE estimator may suffer from
divergent training. We illustrate this phenomenon via a toy example in Section 5.2.

To mitigate the high-variance issue of the REINFORCE estimator, we utilize the Gumbel-softmax
(GS) trick (Jang et al., 2016; Maddison et al., 2016; Fan et al., 2021) to reduce the variance. Specif-
ically,

JGS(πϕ) = Eat∼πϕ(· |ht)[Rθ(ot, at, g)] ≈ Eϵϵϵ∼Gumbel(0,1)[Rθ(ot, fϕ(ht, ϵϵϵ), g)] ,

with fϕ(ht, ϵϵϵ) =
[
f
(1)
ϕ (ht, ϵϵϵ), . . . , f

(|A|)
ϕ (ht, ϵϵϵ)

]
∈ R|A|, and f

(i)
ϕ (ht, ϵϵϵ) =

exp((li(ht;ϕ)+ϵi)/λ)∑|A|
j=1 exp((lj(ht;ϕ)+ϵj)/λ)

,

where {li(ht;ϕ)}|A|i=1 are the logits of the categorical distribution defined by the agent πϕ, and λ is
the temperature parameter that we set as 1. Besides, following the pessimistic principle in offline
RL (Buckman et al., 2020), we add a weighted regularization such that the actions generated by the
agent πϕ are close to the actions in the dataset D̂,

ℓW(πϕ) := −E(ht,at,g)∼D̂[log πϕ(at |ht) · Rθ(ot, at, g)] ,

which is similar to the weighted behavior cloning in offline RL (Wang et al., 2020b), except that we
directly use the intermediate rewards as the weights, rather than using the value function. Combining
the policy gradient and the weighted regularization, we have the following loss for the agent πϕ:

ℓGEN(ϕ) = −α · JGS(πϕ) + ℓW(πϕ) , (5)

where α is the coefficient balancing these two parts. Note that the original supervised-learning loss
of MinTL (Lin et al., 2020) can be decomposed into two parts, respectively for the dialogue state
tracking (DST) and the response generation. We retain the DST loss ℓDST(ϕ) in MinTL and replace
its response-generation loss with Eq. (5). Our final loss for ToD agent training is

ℓ(ϕ) = ℓGEN(ϕ) + ℓDST(ϕ) . (6)

We illustrate our method in Fig. 1 and provide an algorithm box in Appendix B.

4



Published as a conference paper at ICLR 2023

Figure 1: Overview of the proposed method. We denote “Accumulated Reward” for the learned accumulated
reward, J(·; θ) for the accumulated reward of each trajectory, S(·) for the combined score of each trajectory,
ℓW for the weighted regularization, ℓDST for the DST loss, and “DH” for the dialogue history. In the right
panel, (ht, at, g) ∼ D̂. We use BART for both the reward model and the ToD model.

Remark Eq. (6) for the learning of the dialogue agent πϕ is essentially a generalized objective
from several previous works. Specifically, if we set α = 0 and set the reward function to be constant
Rθ(ot, at, g) ≡ 1, Eq. (6) reduces to the objective in MinTL, without any guidance for response-
generation from the learned reward function Rθ. If we set α = 0, and use the RewardNet loss
with N = 2 and Φ = (·)1 (i.e., the identity function) to train the reward function, Eq. (6) reduces to
the objective in CASPI (Ramachandran et al., 2021). In Section 5, we demonstrate the advantages
of our techniques proposed in this section, including the RewardNet and RewardMLE losses for
reward learning, and the JGS(πϕ) for agent training.

4 RELATED WORK

Recent works on the E2E ToD systems (e.g., Wu et al., 2019b; Lin et al., 2020; Hosseini-Asl et al.,
2020; Ham et al., 2020; Peng et al., 2021; Yang et al., 2021) have significantly improved the overall
system’s performance and simplified the algorithmic designs in earlier works, which require solving
several pipeline based sub-tasks (e.g., Young et al., 2013; Gao et al., 2018; Zhang et al., 2020). The
reward function trained by our methods can be leveraged as guidance to train existing E2E mod-
els, without changing the underlying structures. We demonstrate the effectiveness of our proposed
reward learning methods under the structure of MinTL (Lin et al., 2020) and GALAXY (He et al.
(2022); in Appendix E) where we only add an additional reward-function-guided objective for the
response-generation model, while keeping other components of the respective structure unchanged.

One line of related research is applying RL to train ToD agents. It is often unsuccessful to directly
apply RL algorithms such as the DDPG (Lillicrap et al., 2015) or PPO (Schulman et al., 2017) since
the agent training could potentially diverge (Zhao et al., 2019; Jang et al., 2022; Kwan et al., 2022).
Recently, a number of works consider offline RL (Levine et al., 2020) as a promising solution to
stabilize the agent training on a static dataset (e.g., Jaques et al., 2020; Ramachandran et al., 2021;
Jang et al., 2022; Verma et al., 2022; Snell et al., 2022a;b). Following the offline RL principle,
we use a reward-weighted regularization to stabilize the dialogue-agent training. Together with
the incorporation of the Gumbel-softmax trick to estimate the policy gradient, our work retains
algorithmic simplicity while improving the training stability and overall performance.

Finally, our paper closely relates to works on reward learning for the ToD systems (e.g., Takanobu
et al., 2019; Ramachandran et al., 2021). This research thread differs from works that directly use
a manually designed reward function, which only gives sparse signals to indicate whether the agent
achieves the goal or not (e.g., Weisz et al., 2018; Wu et al., 2019c; Jang et al., 2022; Snell et al.,
2022b). One line of this research direction is utilizing inverse reinforcement learning (IRL) (Russell,
1998) to learn a dense reward function, by assuming the collected data be expert demonstrations
(Takanobu et al., 2019). However, modern IRL techniques such as GAIL-style algorithms (Ho &
Ermon, 2016; Fu et al., 2017) often require iterating between reward learning and policy training
(Finn et al., 2016), which is computationally expensive and less scalable to dialogue-generation
models. Besides, the IRL methods aim at justifying the data, while the reward-learning framework
in our work seeks to explain the preference among multiple trajectories, potentially leading to better-
than-demo agents (Brown et al., 2019; 2020). Our paper is more closely related to the research on
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Table 1: Results of the E2E response generation task on the MultiWOZ 2.0 dataset. The best result on each
metric is bold. The results of UBAR are from the reproduction by Jang et al. (2022). The results of CASPI are
from our reproduction. All our provided results are the average over five random seeds. Other results are from
the original paper. “GS” denotes the Gumbel-softmax trick. (·)1 denotes the power function with power 1.

Algorithms Inform Success BLEU Combined Score

SFN + RL (Mehri et al., 2019) 73.80 53.60 16.90 83.10
DAMD (Zhang et al., 2020) 76.40 64.35 17.96 88.34
SimpleTOD (Hosseini-Asl et al., 2020) 84.40 70.10 15.01 92.26
MinTL (Lin et al., 2020) 84.88 74.91 17.89 97.78
SOLOIST (Peng et al., 2021) 85.50 72.90 16.54 95.74
UBAR (Yang et al., 2021) 87.47 74.43 17.61 98.56
GPT-Critic (Jang et al., 2022) 90.07 76.63 17.83 101.13
CASPI3 (Ramachandran et al., 2021) 91.37 82.80 17.70 104.78

RewardNet, N = 3, Φ = (·)1 92.77 84.28 17.74 106.27
RewardMLE, N = 5, Φ = exp(·) 91.49 83.38 18.97 106.40
RewardNet + GS, N = 3, Φ = (·)1 92.63 84.32 18.35 106.83
RewardMLE + GS, N = 5, Φ = exp(·) 93.09 83.90 18.04 106.54

reward learning from preferences, which has recently been adopted in NLP tasks, including training
language models (Fan et al., 2020; Ouyang et al., 2022) and fine-tuning (Ziegler et al., 2019; Zhang
et al., 2021b; 2022b), question-answering with verification (Nakano et al., 2021; Zhang et al., 2021a;
Menick et al., 2022; Zhang et al., 2022a), and ToD systems (Ramachandran et al., 2021). These
works use the pairwise preference-learning objective in Christiano et al. (2017), which can be viewed
as a special case of the RewardNet loss discussed in Section 3.1. Our work mainly focuses on the
ToD task, where we study reward-function learning and reward utilization for training E2E dialogue
agents. Appendix C continues the discussion on related reward-learning methods.

5 EXPERIMENTS

Dataset. We evaluate the proposed methods on the MultiWOZ 2.0 dataset (Budzianowski et al.,
2018), which is a representative ToD benchmark. MultiWOZ 2.0 is a large-scale multi-domain
dialogue corpus with seven domains: attraction, hospital, police, hotel, restaurant, taxi, and train.
Each dialogue therein covers between one to three domains. This dataset has 8438 dialogues in the
training set and 1000 dialogues in the validation and test set respectively.

Evaluation Metrics. Our proposed method is evaluated on the E2E dialogue-modeling task of the
MultiWOZ 2.0 dataset. Following the standard setup (e.g., Budzianowski et al., 2018; Mehri et al.,
2019), we use four automatic evaluations metrics: 1) Inform rate: the fraction of the dialogues
where the system has provided an appropriate entity; 2) Success rate: the fraction of the dialogues
where the system answered all the requested information; 3) BLEU score (Papineni et al., 2002):
measures the fluency of the generated responses; 4) Combined Score (Mehri et al., 2019): an overall
quality measure defined as Combined Score =: (Inform + Success) × 0.5 + BLEU. Details on
prepossessing and implementation are in Appendix B and G.

5.1 MAIN RESULTS

Main evaluation. Table 1 compares the performance of our methods with several classical and
recent approaches in the E2E response-generation task. As shown in Table 1, our proposed methods
not only improve the dialogue-task completion, measured by the Inform rate and the Success rate;
but also generate fluent responses, reflected by the competitive BLEU scores. Recall that CASPI is a
special case of the RewardNet loss (Eq. (2)) when we use escort transform (Φ = (·)1, the identity
function) with pairwise preference (N = 2). When we use three dialogue trajectories (N = 3)
to construct the RewardNet loss and retain the same escort transform, the overall performance
generally improves over CASPI. As discussed in Section 3.1, our RewardNet loss generalizes the
pairwise-preference learning by taking more information on each update of the reward model and
thus could learn a better reward function. Appendix D further compares our methods with CASPI.

The performance is further gently improved by changing the RewardNet loss (Eq. (2)) to the
RewardMLE loss (Eq. (3)), with the softmax transform (Φ = exp(·)) and N = 5 dialogue trajecto-
ries. This again demonstrates the benefit of our proposal of using multiple trajectories to learn the
reward model. Section 5.2 conducts ablation studies on the number of trajectories and choice of Φ.

3The CASPI paper reports the median score over random seeds, instead of the more commonly used mean
score. We run the official CASPI codebase (https://github.com/salesforce/CASPI) and report the mean scores.
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Table 2: Results on the simulated low-resource settings, where 5%, 10%, and 20% of the training data is used
to train the models. The best result on each metric under each setting is bold. “Comb.” is the Combined Score.
All our provided results are the average over five random seeds. Baseline results are from Lin et al. (2020).

Model 5% 10% 20%
Inform Success BLEU Comb. Inform Success BLEU Comb. Inform Success BLEU Comb.

DAMD 56.60 24.50 10.60 51.15 62.00 39.40 14.50 65.20 68.30 42.90 11.80 67.40
MinTL 75.48 60.96 13.98 82.20 78.08 66.87 15.46 87.94 82.48 68.57 13.00 88.53

RewardNet :3 81.22 67.37 12.82 87.11 92.39 78.98 13.36 99.05 89.83 79.30 15.18 99.75
RewardMLE :5 82.90 69.61 14.26 90.51 89.67 77.48 14.80 98.38 90.15 78.70 15.81 100.24
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Figure 2: Line plots comparing the Combined Score when the RewardNet and RewardMLE losses are
constructed under a different number of sampled trajectories or different probabilistic transforms. The y-axis
represents the Combined Score. p = 1, 2, 3, 4 is the escort transform with power 1, 2, 3, 4. “smax” is the
softmax transform. Results are the average over five random seeds.

So far, we follow the prior work to not utilize policy gradient to train the response-generation model,
i.e., α = 0 in Eq. (5). Extra performance gain can be obtained by adding the policy-gradient updates
via the Gumbel-softmax trick (GS) discussed in Section 3.2. Indeed, GS improves both the plain
RewardNet and RewardMLEmodels. This shows the efficacy of directly optimizing the response-
generation model w.r.t. the learned reward function. Further discussion is provided in Section 5.2.

Appendix E provides the experimental results when applying our method onto the recent GALAXY
backbone (He et al., 2022). Appendix F discusses the results on the MultiWOZ 2.1 dataset.

Low-resource experiment. We evaluate our method on the low-data regime by following the
testing strategy in Lin et al. (2020). Specifically, we use 5%, 10%, and 20% of the training data to
train our basic RewardNet and RewardMLE models in Table 1, without the GS component. We
compare them with the baseline scores in Lin et al. (2020). Table 2 reports the results. It is clear
that our models outperform the baselines, MinTL and DAMD, showing the efficacy of our method.
Compared with Table 1, our models trained with 20% of the data perform competitively with the
baseline methods trained on the full training set.

5.2 ABLATION STUDY

The ablation study considers the following four research questions to better understand our methods.

(a): What if we learn the reward function via a different number of trajectories? In Fig. 2a and 2b,
we vary the number of trajectories used for the reward-learning losses in Table 1. To avoid unwanted
interference, we use the basic version of models without the GS component. The case of using two
trajectories reduces to the pairwise-preference loss discussed in Section 2.

As shown in Fig. 2a and 2b, our generalized approach of using multiple trajectories to learn the
reward function provides the flexibility to outperform the classical pairwise-preference learning.
This is more apparent in the RewardMLE models, which are less sensitive to small errors in the
ground-truth scores. In general, the optimal trajectory number may depend on the scoring quality.

(b): Do different probabilistic transforms in reward learning objectives affect the performance?
We modify the basic version of the RewardNet and RewardMLE models in Table 1 by using the
softmax transform and by using different powers in the escort transform in the reward learning losses
Eqs. (2) and (3). For the escort transform, we consider Φ = (·)p, p ∈ {1, 2, 3, 4}.

Figs. 2c and 2d plot the resulting Combined Scores. We see that the RewardMLE model is less
sensitive to the choice of probabilistic transform — all the considered variants have a Combined
Score of at least 104. In fact, changing its softmax transform used in Table 1 to the escort transform
with power two improves the performance to 106.77. Thus, the choice of probabilistic transform
provides an additional angle to improve the learned reward function and the entire ToD model.
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Figure 3: Line plots showing the four automatic evaluation metrics of the RewardNet + GS model in Table 1
under different α values in the generation-model loss Eq. (5). Results are the average over five seeds.

(c): Is our method sensitive to the coefficient α in the generation-model loss Eq. (5)? To inves-
tigate the robustness of our method under different weights for the policy-gradient optimization
of the response-generation model. We select our best policy-gradient-based model in Table 1, the
RewardNet + GS model, and vary the α coefficient in the generation-model loss Eq. (5). Fig. 3
plots the resulting four automatic evaluation metrics.

We see that our model is relatively robust to the choice of α. The five variants in Fig. 3 all have
Combined Scores of at least 105, higher than the best baseline result of 104.78 in Table 1. In fact, by
changing the α coefficient to 0.5 from 0.1 used in Table 1, we achieve a even better Combined Score
of ≈ 107.2. Further, the capability of task completion and the fluency of the generated responses
are both relatively insensitive to the choice of α.

(d): How does the addition of the policy-gradient method Gumbel-softmax help the performance?
Fig. 4 compares the performance of our models in Table 1, with error bars showing the standard
deviation of the Combined Score over five seeds. It is clear that the addition of the Gumbel-softmax
method can not only improve the score but also reduce the performance variation, which is apparent
when comparing the RewardMLE model with the RewardMLE + GS model.

As discussed in Section 3.2, the Gumbel-softmax (GS) trick can be more advantageous than the
classical REINFORCE method (Williams, 1992) for the policy-gradient update. As a demonstration,
we conduct a toy experiment following Yin et al. (2019) and plot the results in Fig. 5. The task here
is to learn the parameterψ of a D-dimensional categorical distribution to maximize a simple reward
function. Specifically, denote the sigmoid function as σ(·), the goal is

maxψ∈RD Ex∼Cate(σ(ψ)) [f(x)] , f(x) ≜ 0.5 + x/(D ·R), ∀x ∈ {1, . . . , D} ,
where Cate(σ(ψ)) denotes the categorical distribution with probability vector σ(ψ), and D = R =
30. The best σ(ψ) is (0, . . . , 0, 1), leading to the optimal expected reward of ≈ 0.533. We initialize
ψ = 0 and use one sample for the stochastic gradient-ascent update, with a learning rate of 1.0.

The first row of Fig. 5 traces the objective function during the training process when using the
true gradient, REINFORCE, and the GS for policy-gradient updates. We see that the REINFORCE
method converges to a local maximum, while the GS method reaches the global optimum, as using
the true gradient for updates. The second row shows the gradients for θ1 and θD, where we see that
gradient estimates from the REINFORCE method are both unstable and vanishing, compared to the
GS method. The learned probabilities {σ(ψ)1, . . . , σ(ψ)D} is traced in the third row, where the
red line is for σ(ψ)D that should ideally be 1, and the shadowed lines are for the other components
that ought to be 0. The learning process of the GS method closely resembles that of using the true
gradient, while REINFORCE oscillates around a local optimum. The last row of Fig. 5 plots the
estimate of gradient variance via 500 samples, averaged over each component of the ψ vector. The
gradient variance of the REINFORCE method is on the order of 10−2 at the beginning and converges
to roughly 10−4, while the GS is 10−6 throughout the training process. This toy experiment shows
that a low-variance method, such as the GS, can be critical to the success of policy-gradient training.

5.3 FURTHER ANALYSIS

Human evaluation. For a more comprehensive evaluation of our method, we conduct a human
evaluation on the quality of the generated responses, where our model and the top two baselines
in Table 1, GPT-Critic and CASPI, are compared. We follow the evaluation protocol in prior work
(e.g., Zhang et al., 2020; Ramachandran et al., 2021; Jang et al., 2022) to evaluate on two metrics:
1) Appropriateness: measures the appropriateness of the generated response under the context
of the dialogue turn; 2) Fluency: evaluates the comprehensibility and coherency of the generated
response. We randomly picked 50 turns in the test set and showed to 10 evaluators the responses
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Figure 6: Bar plots for the results of human evaluation
on appropriateness and fluency, showing the mean and
one standard deviation of each method. The scores are
on a 5 scale and higher scores indicate better results.
“GPT-C” denotes GPT-Critic. Details for the setup of
human evaluation are discussed in Section 5.3.
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Figure 7: Bar plots for the quality of the generated dia-
logue states, showing the mean and standard deviation
of two metrics. “GPT-C” denotes GPT-Critic, “R-Net”
denotes RewardNet , “R-MLE” is RewardMLE .
The results of UBAR and GPT-Critic are from Jang
et al. (2022). Our results are over five random seeds.

generated from each method, together with the dialogue history up to that turn. The method names
were anonymized. The evaluators were asked to read the dialogue history and score the response on
a 5-Point Likert Scale {1, 2, 3, 4, 5}, where score 5 is the highest and 1 the lowest.

Fig. 6 summarizes the evaluation results. We see that our model outperforms the baselines in both the
appropriateness and fluency scores. The human-evaluation results coincide with our comparatively
good dialogue-task completion and BLEU score in Table 1.

Examples of the generated dialogues. Tables 3 and 4 in Appendix A conduct two case studies
comparing the generated responses from our method with those from the baselines GPT-Critic and
CASPI. We additionally annotate the generated responses to discuss the quality of those generations.
These examples show that the responses from our model compare favorably with the baselines in
both task completion and comprehensibility, aligning with the automatic and human evaluations.

Quality of the DST. To further understand the performance gain of our models, we compare our
basic RewardNet and RewardMLEmodels in Table 1 with the baselines UBAR and GPT-Critic on
the quality of the generated dialogue states. Fig. 7 plots the results of the dialogue state prediction,
measured by the two metrics Joint (Goal) Accuracy and Slot Accuracy (Wu et al., 2019a). We see
that our two models have more accurate DST than the two baselines, which can be related to their
better performance in Table 1. Interestingly, the DST of the RewardMLE model is also better than
that of the RewardNet model. This may suggest that a better reward model not only benefits the
learning of response generation, but also the DST. These two losses are jointly minimized in training
the ToD model, and thus a good response-generation loss from a better reward model may help the
optimization of the DST loss.

6 CONCLUSION

In this paper, we aim to answer the question of how to efficiently learn and utilize a reward function
for training the E2E ToD agents. We answer this question by introducing two generalized reward-
learning objectives, and utilize a stable policy-gradient method to guide the training of the E2E ToD
agents. Future work includes extending our reward-learning objectives to other applications, such
as the question-answering with verification.
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Appendix

A EXAMPLES OF THE GENERATED DIALOGUES

Tables 3 and 4 show two case study comparing the generated responses from our method and from
the baselines GPT-Critic and CASPI. Our method outperforms the baselines in terms of both task
completion and the quality of the generated expressions.

Table 3: Generated and original dialogue for ID PMUL4610. “User” denotes User Utterance. “System” denotes
true System Response. Red annotations explain unsatisfactory responses and green for satisfactory ones.

PMUL4610

Turn Num. Method Original / Generated Dialogue

1

User i am looking for a museum in the east to visit.

GPT-Critic there are [value choice] [value type] in the [value area]. [value name] is [value price].
[value name] is [value price]. // Do not make recommendation.

CASPI there are [value choice] [value type] in the [value area]. i would recommend
[value name]. // Do not explain recommendation.

Ours there are [value choice] [value type] in the [value area]. i recommend [value name]
because it is [value price] to get in . // Make recommendation and explain.

System we have [value choice] [value type] in the [value area] area , i just went to the [value name]
and they have new exhibits . would you like more information on them ?

2

User Utterance sounds wonderful! can you give me their postcode?

GPT-Critic their postcode is [value postcode]. is there anything else i can help you with?

CASPI sure thing ! the postcode is [value postcode] // Do not elicit conversation..

Ours sure , the postcode is [value postcode]. is there anything else i can help you with ?

System Response their postcode is [value postcode]. can i help you with anything else today ?

3

User Utterance i am also looking for a restaurant in the east part of town in the moderate price range.

GPT-Critic there are [value choice] restaurant -s in that area. [value name] and [value name].
// Do not elicit conversation

CASPI [value name] is a [value price] restaurant in the [value area]. // Do not elicit conversation.

Ours
there are [value choice] restaurant -s that fit your criteria .
[value name] serves [value food] food and is located in the [value area] part of town .
would you like their address ?

System Response there are [value choice] [value food] restaurant -s and [value choice] [value food].
which would you prefer ?

4

User Utterance give me the address of the 1 you recommend

GPT-Critic [value name] is located at [value address]. is there anything else i can help you with?
// Do not make recommendation.

CASPI [value name] is a favorite of mine . they are located at [value address]
// Do not elicit conversation. .

Ours [value name] is a great [value food] restaurant in the [value area]. // More plural expression.
the address is [value address]. // Do not elicit conversation.

System Response i recommend [value name], they are t [value address], postal is [value postcode],
can i assist with anything else ?

5

User Utterance not at this time, thank you.

GPT-Critic thank you for using our system. goodbye

CASPI you are welcome . have a great day !

Ours you are welcome . have a great day !

System Response thank you for calling. please let us know if we can assist you in the future. goodbye.
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Table 4: Generated and original dialogue for ID SNG1012. “User” denotes User Utterance. “System” denotes
true System Response. Red annotations explain unsatisfactory responses and green for satisfactory ones.

SNG1012

Turn Num. Method Original / Generated Dialogue

1

User i need to find a guest house with a 3 star rating

GPT-Critic i have [value choice] options for you.
do you have a price range or area of town you would like to stay in?

CASPI i have [value choice] [value type] that meet your criteria .
do you have a preference of area or price range ?

Ours i have [value choice] [value type] with [value stars] stars .
would you prefer a [value price] or [value price] price range? // Do not ask location.

System we have [value choice] such [value type]. do you have a preferred location?

2

User no, i don’t. i want 1 that include -s free wifi.

GPT-Critic [value name] is a [value price] [value stars] star [value type] in the [value area]
with free wifi and parking. would you like me to book it for you?

CASPI i have [value choice] [value type] that meet your criteria . [value name] and [value name].
both are [value price] and offer free wifi and parking . do you have a preference ?

Ours i have [value choice] [value type] that have free wifi .
i would recommend the [value name]. would you like me to book a room ?

System [value name], [value name], and [value name] are all available if you would like 1 of those?

3

User please book the hamilton lodge, for 6 people.

GPT-Critic booking was successful. reference number is : [value reference]. is there anything else
i can help you with? // Finish booking before acquire sufficient information.

CASPI i can book the [value name] for you . how many nights will you be staying ?

Ours i would be happy to book the [value name] for you . what day would you like to arrive ?

System i would be happy to. how many nights would you like to stay?
and i ’ll need to know the day you would like to start your stay.

4

User i ’ll be staying 2 nights starting on wednesday. oh, and there are 6 of us.

GPT-Critic
i have booked you a room at [value name] for [value people] people for [value stay]
nights starting [value day]. your reference number is [value reference].
is there anything else i can help you with? // Dialogue diverges from ground truth.

CASPI i am sorry , but there are no rooms available for those dates .
would you like to try a different day or a shorter stay ?

Ours i am sorry , but i was unable to book that [value type]. would you like to try another 1 ?

System i am sorry, my reservation attempt was unsuccessful. will another day or length of stay work?

5

User can you try the same parameters at another hotel?

GPT-Critic
i have booked you at [value name] for [value stay] nights starting [value day]
for [value people] people. your reference number is [value reference].
is there anything else i can help you with? // Repeating diverged dialogue.

CASPI i am sorry , i am not able to book at another [value type] // Fail to continue conversation..

Ours i have [value name] in the [value area]. it is a [value price] [value stars] star [value type].
would you like me to book that for you ?

System of course, could you tell me the area you would like to stay in so i can narrow it for you?

6

User the are does not matter, just 3 stars and wifi at a guest house please.

GPT-Critic would you like me to book it for you? // Fail to complete booking.

CASPI i was able to book you at [value name]. reference number [value reference].

Ours i was able to book you at [value name]. your reference number is [value reference].
is there anything else i can help you with ? // More plural expression and elicit conversation.

System i have got you a reservation for [value people] at hobson’s house for [value stay] nights.
your reference number is [value reference].

7

User thank you so much! that should be all i need.

GPT-Critic you are welcome. have a great day.

CASPI you are welcome. have a great day!

Ours you are welcome. have a great day!

System you are welcome. enjoy your day.
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B ALGORITHMIC DETAILS

Prepossessing. The raw corpus is prepossessed by common practice in the ToD literature. Specifi-
cally, we represent the database (DB) query results as one-hot vectors following Budzianowski et al.
(2018), use domain-adaptive delexicalization proposed by Wen et al. (2016), and generate delexi-
calized responses with placeholders for specific DST/DB information as in Zhang et al. (2020).

Implementation of the response model. Our model in Section 5 is based on the MinTL ToD
model (Lin et al., 2020), which uses the pre-trained BART-large model (Lewis et al., 2019). MinTL
directly works on the system response and does not explicitly output the dialogue act. Our proposed
method in Section 3 is applied to the response training, and we retain the DST-training loss in
MinTL. Our model is trained by fine-tuning BART on the training set and early-stopping by the
validation set.

Implementation of the reward model. Our reward model is implemented by the encoder part
of the BART-base model, followed by a simple two-layer MLP. The output of the reward model is
scaled to [0, 1] via the sigmoid function. The input to the reward model is the concatenation of the
belief state, system response, and dialogue goal, at each turn of the sampled dialogue rollout. The
model outputs the reward of each turn in the dialogue rollout, which is summed and fed into the
losses proposed in Section 3.1. We use the HuggingFace library (Wolf et al., 2019) to implement
our reward model.

Algorithm 1 illustrates the pipeline of our methods.

Algorithm 1 Pipeline of the proposed reward learning and utilization methods for training E2E ToD agents.

Input: Reward function Rθ(o, a, g), ToD agent πϕ, dataset D̂ :=
{(

g(k), (o
(k)
t , a

(k)
t )Tt=0

)}K

k=1
,

number of iterations M1 and M2, probabilistic transform function Φ, hyperparameters N , α.

for iteration ∈ {1, . . . ,M1} do
Sample N dialogue trajectories from the dataset D̂.
Optimize Rθ via RewardNet (Eq. (2)) or RewardMLE (Eq. (3)).

end for
Fix the reward function Rθ.
for iteration ∈ {1, . . . ,M2} do

Sample a batch of transition tuples
(
g(k), (o

(k)
t , a

(k)
t )

)
from the dataset D̂.

Optimize the ToD agent πϕ via Eq. (6).
end for

Output: Trained ToD agent πϕ.
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C COMPARISON WITH SOME OTHER REWARD-LEARNING METHODS IN
RL-BASED DIALOGUE AGENTS

As an additional discussion on related work, in this section we briefly compare our work with three
other reward-learning methods in RL-based dialogue agents, i.e., Saito (2018), Hu et al. (2018), and
Li et al. (2020).

These three papers all focus on the dialogue-management module of the pipeline design, wherein
the action spaces of the agents are some abstract dialogue acts rather than the human-language-like
system response as in our paper. The possible system responses are fixed in these three papers.
For example, Hu et al. (2018) train the agent to select from “the set of the indices to all available
questions in the Q20 game;” and Li et al. (2020) have an action space of size 300. As discussed
in Section 1, such a pipeline approach requires intensive structural designs, such as determining the
possible questions in the Q20 games; and may not enjoy the language plurality and conversation
elicitation that our E2E model could offer, e.g., as shown in Table 4. Due to the complexity and the
much higher dimension of our action space as the system responses, the methods proposed in these
three papers are not directly applicable to our setting, which will be discussed in detail below.

The method proposed in Saito (2018) require specially-designed curriculum data and hand-crafted
decomposition of the entire task into sub-tasks, which are not readily available and are non-trival
for large-scale multi-domain dialogue corpus such as our tested MultiWOZ 2.0 dataset. The use of
progressive neural networks to provide reward information in Saito (2018) require additional com-
putation and memory complexity and thus may not scale to transformers. Meanwhile, our method
scales well to transformers, as shown in our experiments (Section 5). Further, the method in Saito
(2018) may only be feasible on the task of constrained information-retrieval, but not on some more
general tasks such as the booking requirement in the tested MultiWOZ 2.0 dataset. Our experimental
results show that our method is capable of such tasks.

Similar to our work, Hu et al. (2018) propose a neural network to approximate the reward function
to deliver immediate rewards at each timestep. Apart from the aforementioned simple action space,
Hu et al. (2018) use the long-term return Gt as a surrogate indicator of rt+1 to train the reward
function (Eq. (6) of Hu et al. (2018)), which is lack of justification. By contrast, as discussed in
Section 2 and Section 3, our method is based on the classical approaches in the learning-to-rank
(LTR) literature and extends the classical reward-learning-from-preferences into utilizing multiple
dialogue trajectories simultaneously to optimize the reward function.

As discussed before, Li et al. (2020) consider a relatively small action space of size 300 and learns
the reward model via the GAN structure, which may not stably scale up to high-dimensional action
space such as the system response in our E2E ToD system. The learned reward function in Li
et al. (2020) only measure the probability that the input is from the real-data distribution, i.e., only
considers a pair of dialogue state st and the corresponding system action at. This reward function
does not consider the success of the entire dialogue, which is intuitively less favorable to the E2E
ToD systems. By contrast, our method trains a reward function that aligns with some evaluations on
the entire dialogue trajectories, which is more directly related to the usage of the ToD systems.

We further note that apart from the reward-learning method, our paper also discusses using the
Gumbel-softmax trick as a more stable method to train the E2E ToD systems, and conducts a toy
experiment in Section 5.2 to illustrate the advantage of the Gumbel-softmax trick over the classical
REINFORCE method. This is not covered in the three prior works Saito (2018), Hu et al. (2018),
and Li et al. (2020).

Finally, these three prior works use online RL methods such as DQN, REINFORCE, and PPO, which
require environmental interactions and are thus less practical, as discussed in Section 1. In contrast,
our method allows training E2E response-generation models from static datasets by utilizing offline
RL techniques (e.g., Levine et al., 2020; Fujimoto & Gu, 2021; Yang et al., 2022a;b;c).
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D DETAILED COMPARISON WITH CASPI

Table 5 further compares CASPI and our two methods: RewardNet +GS, N = 3,Φ = (·)1 and
RewardMLE +GS, N = 5,Φ = exp(·), showing a detailed breakdown of the scores onto each of
the five tested random seeds.

The performances of both our methods and CASPI are relatively stable across random seeds. In
particular, both of our methods have higher Combined Score than CASPI on each of the five tested
random seeds. This stable improvement of our methods over CASPI aligns with our intuition dis-
cussed in Section 3 and our main experimental results in Section 5.1.

We note that both the Average score and the Median score across the tested random seeds are valid
metrics for performance comparison. Nevertheless, there is some ambiguity in calculating the “Me-
dian” of the Combined Score, namely, should it be the median of the Combined Scores on each
random seed, or should it be calculated as Median(Combined Score) ≜ (Median(Inform) +
Median(Success)) × 0.5 + Median(BLEU)? The first way aligns better with the definition of
“Median” while the second way aligns better with the definition of Combined Score. Such an am-
biguity is cleared out when using the Average as the evaluation metric. Besides, the metric Average
score is widely used in prior work (e.g., Zhang et al., 2020; Lin et al., 2020; Jang et al., 2022). With
these considerations, we choose to report the Average over five random seeds in our experimental
section (Section 5).

Table 5: Per random-seed results of the E2E response generation task on the MultiWOZ 2.0 dataset, comparing
CASPI and our two models: RewardNet +GS, N = 3,Φ = (·)1 and RewardMLE +GS, N = 5,Φ = exp(·).
Here, (·)1 denotes the power function with power 1. “Comb.” is the Combined Score. The row “Median” shows
the median score of the corresponding column over the five random seeds.

Seed CASPI RewardNet +GS, N = 3,Φ = (·)1 RewardMLE +GS, N = 5,Φ = exp(·)
Inform Success BLEU Comb. Inform Success BLEU Comb. Inform Success BLEU Comb.

111 88.19 80.88 18.88 103.42 90.49 82.68 18.42 105.01 93.99 84.18 16.82 105.91
333 91.69 83.58 18.17 105.81 94.39 85.09 18.69 108.43 95.10 85.09 17.51 107.61
555 91.99 81.78 17.21 104.10 91.29 82.18 18.54 105.28 91.99 83.68 18.67 106.51
777 93.39 83.48 17.13 105.57 91.89 84.18 18.36 106.40 92.79 83.18 17.73 105.72
999 91.59 84.28 17.09 105.03 95.10 87.49 17.74 109.04 91.59 83.38 19.48 106.97

Average 91.37 82.80 17.70 104.78 92.63 84.32 18.35 106.83 93.09 83.90 18.04 106.54
Median 91.69 83.48 17.21 105.03 91.89 84.18 18.42 106.40 92.79 83.68 17.73 106.51

E EXPERIMENTS WITH THE GALAXY

To further demonstrate the efficacy and applicability of our approach, we apply our reward learn-
ing and utilization methods to the recently proposed GALAXY backbone (He et al., 2022), which
achieves competitive performance on the E2E response-generation task on the MultiWOZ 2.0
dataset. We note that the GALAXY paper does not disclose how many and which random seeds
were used to obtain its main results; and the official codebase fixes the random seed as 10. This
makes us unsure if its reported results are only from this single seed of 10. To mitigate the random-
ness in the optimization process, we re-run the vanilla GALAXY on the five random seeds used to
generate our main results and compare it on these seeds with the variants equipped with our methods
RewardNet +GS, N = 3,Φ = (·)1 and RewardMLE +GS, N = 5,Φ = exp(·). Table 6 shows a
detailed breakdown of the scores on each of the five random seeds. Note that since we use different
random seeds than the original GALAXY paper, we are unable to get its reported scores.

We see from Table 6 that adding our reward learning and utilization methods improves the perfor-
mance of the vanilla GALAXY, in almost all evaluation metrics, in both the Average and the Median
scores. In particular, adding our RewardMLE +GS method improves the average Combined Score
of the vanilla GALAXY by 3.27, and adding our RewardNet +GS improves the vanilla GALAXY
by 2.11. These relatively significant improvements may further demonstrate the effectiveness and
general applicability of our proposed methods.
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Table 6: Per random-seed results of the E2E response-generation task on the MultiWOZ 2.0 dataset, comparing
the vanilla GALAXY and the variants with our proposed methods: RewardNet +GS, N = 3,Φ = (·)1 and
RewardMLE +GS, N = 5,Φ = exp(·). Here, (·)1 denotes the power function with power 1. “Comb.” is the
Combined Score. The row “Median” shows the median score of the corresponding column over the five tested
random seeds.

Seed GALAXY RewardNet +GS, N = 3,Φ = (·)1 RewardMLE +GS, N = 5,Φ = exp(·)
Inform Success BLEU Comb. Inform Success BLEU Comb. Inform Success BLEU Comb.

111 93.60 85.40 19.97 109.47 91.30 83.00 19.03 106.18 92.50 84.10 18.89 107.19
333 86.50 77.90 17.87 100.07 90.00 82.00 17.95 103.95 90.90 82.70 18.27 105.07
555 89.20 81.60 19.96 105.36 92.00 83.40 19.44 107.14 93.90 85.50 19.47 109.17
777 90.40 81.90 18.81 104.96 93.70 85.10 18.90 108.30 95.80 86.10 19.36 110.31
999 88.30 79.40 18.59 102.44 92.60 83.60 19.19 107.29 91.90 82.50 19.70 106.90

Average 89.60 81.24 19.04 104.46 91.92 83.42 18.90 106.57 93.00 84.18 19.14 107.73
Median 89.20 81.60 18.81 104.96 92.00 83.40 19.03 107.14 92.50 84.10 19.36 107.19

F EXPERIMENTS ON THE MULTIWOZ 2.1 DATASET

To test the efficacy of our proposed methods on additional datasets, we run our two methods
RewardNet + GS, N = 3, Φ = (·)1 and RewardMLE + GS, N = 5, Φ = exp(·) on the Mul-
tiWOZ 2.1 dataset. Table 7 compares our two methods with the baselines SimpleTOD and UBAR
in the main evaluation (Table 1), which also report results on the MultiWOZ 2.1 dataset. Addition-
ally, we also present our rerun of CASPI on this dataset. As in Table 1, the Combined Scores of
our methods are generally better than the baselines. In fact, our methods achieve both good task
completion (Inform and Success rates) and fluent generated responses (BLEU score).

Table 8 shows a detailed breakdown of the scores of CASPI and our two methods on each of the
five tested random seeds. We see that the scores of our methods are generally robust across ran-
dom seeds. In fact, on four out of those five seeds, at least one of our methods performs better
than CASPI. Further, our methods have higher Average and Median scores than CASPI on each of
the four evaluation metrics. This set of experiments may further demonstrate the efficacy of our
proposed methods.

Table 7: Results of the E2E response-generation task on the MultiWOZ 2.1 dataset. The best result on each
metric is bold. The results of SimpleTOD and UBAR are from the original paper. The results of CASPI are
from our reproduction. All our provided results are the average over five random seeds. “GS” denotes the
Gumbel-softmax trick. (·)1 denotes the power function with power 1.

Algorithms Inform Success BLEU Combined Score

SimpleTOD (Hosseini-Asl et al., 2020) 85.00 70.50 15.23 92.98
UBAR (Yang et al., 2021) 95.70 81.80 16.50 105.25
CASPI (Ramachandran et al., 2021) 91.43 83.50 17.93 105.40

RewardNet + GS, N = 3, Φ = (·)1 92.79 84.48 17.99 106.62
RewardMLE + GS, N = 5, Φ = exp(·) 92.87 83.90 18.73 107.11

Table 8: Per random-seed results of the E2E response-generation task on the MultiWOZ 2.1 dataset, com-
paring the CASPI and the variants with our proposed methods: RewardNet +GS, N = 3,Φ = (·)1 and
RewardMLE +GS, N = 5,Φ = exp(·). Here, (·)1 denotes the power function with power 1. “Comb.” is the
Combined Score. The row “Median” shows the median score of the corresponding column over the five tested
random seeds.

Seed CASPI RewardNet +GS, N = 3,Φ = (·)1 RewardMLE +GS, N = 5,Φ = exp(·)
Inform Success BLEU Comb. Inform Success BLEU Comb. Inform Success BLEU Comb.

111 89.39 82.08 18.14 103.88 96.6 87.19 17.23 109.13 93.39 84.58 19.39 108.38
333 90.99 82.08 18.25 104.79 91.69 83.78 18.43 106.17 92.19 81.78 17.36 104.35
555 91.59 82.68 17.9 105.04 91.79 85.29 17.63 106.17 93.19 85.49 19.08 108.42
777 91.89 84.28 17.78 105.87 91.49 82.68 18.23 105.32 93.29 83.88 19.15 107.74
999 93.29 86.39 17.6 107.44 92.39 83.48 18.41 106.35 92.29 83.78 18.65 106.69

Average 91.43 83.50 17.93 105.40 92.79 84.48 17.99 106.62 92.87 83.90 18.73 107.11
Median 91.59 82.68 17.90 105.04 91.79 83.78 18.23 106.17 93.19 83.88 19.08 107.74
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G IMPLEMENTATION DETAILS

Our implementation is based on the official codebase of MinTL and CASPI. Apart from the hyper-
parameters discussed in Section 5.2, most other hyperparameters and the training procedure of our
models follow MinTL and CASPI. In addition to the discussion of our method in Section 3, we list
the important hyperparameters for training our reward model in Table 9 and the important hyperpa-
rameters for training our response-generation model in Table 10. Both BART models use the default
token length of 142.

We note that unlike CASPI which uses the dialogue acts as the actions, the action space of our reward
model is the system response, which is a combinatorial space of the vocabulary. We use this action
space because we want to pass gradients from the reward model to the E2E response-generation
model during the training process, where the output of the E2E model is the human-language-like
system response.

For the reward-function learning, we do not change the length of the trajectories in the dataset.
The reward model is updated by the preference scores/orderings among multiple trajectories of the
same length. Our intuition is that trajectories of the same length may roughly correspond to tasks
of similar complexity, making the preference among them more comparable and meaningful. This
approach is also taken by the prior work CASPI.

Our tested MultiWOZ2.0 dataset is publicly available at https://github.com/budzianowski/multiwoz,
and the MultiWOZ2.1 dataset is available at https://github.com/thu-coai/ConvLab-
2/tree/master/data/multiwoz.

Table 9: Hyperparameters for training our reward
model.

Hyperparameter Value

Action space System response
Gradient clipping norm 1.0
Learning rate 3e-5
Gradient accumulation steps 16
Batch size 4
Context window 2
Learning-rate decay 0.8
Learning-rate scheduler ReduceLROnPlateau
Scheduler patience 3
Early-stop count 7
Backbone BART-base

Table 10: Hyperparameters for training our response
generation model.

Hyperparameter Value

Action space System response
Gradient clipping norm 1.0
Learning rate 3e-5
Gradient accumulation steps 8
Batch size 8
Context window 2
Learning-rate decay 0.8
Learning-rate scheduler LambdaLR
Early-stop count 7
Seed {111, 333, 555, 777, 999}
Backbone BART-large-cnn
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