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Abstract001

In recent years, multi-agent frameworks pow-002
ered by large language models (LLMs) have003
advanced rapidly. Despite this progress, there004
is still a notable absence of benchmark datasets005
specifically tailored to evaluate their perfor-006
mance. To bridge this gap, we introduce Auto-007
SLURP, a benchmark dataset aimed at evalu-008
ating LLM-based multi-agent frameworks in009
the context of smart personal assistants. Auto-010
SLURP extends the original SLURP dataset—011
initially developed for natural language under-012
standing tasks—by relabeling the data and in-013
tegrating simulated servers and external ser-014
vices. This enhancement enables a compre-015
hensive end-to-end evaluation pipeline, cov-016
ering language understanding, task execution,017
and response generation. Our experiments018
demonstrate that Auto-SLURP presents a sig-019
nificant challenge for current state-of-the-art020
frameworks, highlighting that truly reliable and021
intelligent multi-agent personal assistants re-022
main a work in progress.023

1 Introduction024

Multi-agent frameworks built on large language025

models (LLMs) have seen rapid development in026

recent years (Li et al., 2023; Su et al., 2024; Hong027

et al., 2024; Wu et al., 2023; Liu et al., 2024b).028

These frameworks provide general-purpose infras-029

tructures that facilitate the construction of multi-030

agent systems through modular architectures, com-031

munication protocols, and coordination strategies.032

Despite the rapid progress, there remains a notice-033

able gap in standardized benchmarks tailored to034

evaluate the effectiveness of these frameworks.035

While a number of benchmarks have been036

proposed to assess the tool-use capabilities of037

LLMs (Qin et al., 2023; Chen et al., 2023c; Zhu038

et al., 2023; Zhuang et al., 2024; Ye et al., 2024),039

they primarily focus on individual LLMs and ad-040

dress only a narrow slice of functionality. As a re-041

sult, they do not adequately reflect the complexity,042

interactivity, and coordination challenges inherent 043

in real-world multi-agent scenarios. 044

To capture broader dimensions of agent behav- 045

ior, several social and interactive benchmarks have 046

recently been proposed. For example, Coopera- 047

tion (Abdelnabi et al., 2023), SOTOPIA (Zhou 048

et al., 2024), AgentSense (Mou et al., 2024), 049

and SocialBench (Chen et al., 2024) create so- 050

cial environments to evaluate agents’ interper- 051

sonal and collaborative abilities. In parallel, 052

AgentBench (Liu et al., 2023) targets reason- 053

ing and decision-making skills in domains such 054

as coding, web navigation, and e-commerce. 055

Other works, including MAgIC (Xu et al., 2023), 056

CUISINEWORLD (Gong et al., 2024), Bat- 057

tleAgentBench (Wang et al., 2024), CivRealm (Qi 058

et al., 2024), and LegalAgentBench (Li et al., 2024), 059

introduce game-based or domain-specific settings 060

to assess multi-agent interaction. 061

Meanwhile, benchmarks in embodied environ- 062

ments—such as AgentBoard (Ma et al., 2024), 063

ALFWorld (Shridhar et al.), the ThreeDWorld 064

Transport Challenge (Gan et al., 2021), and 065

WAH (Puig et al., 2020)—focus on grounding 066

agents in physical or simulated worlds. 067

However, these efforts are typically designed to 068

evaluate individual LLMs’ task execution and in- 069

teraction capabilities in multi-agent systems, rather 070

than to assess the performance or flexibility of 071

open-source multi-agent frameworks. Moreover, 072

the highly integrated nature of game-based and em- 073

bodied environments often makes them difficult to 074

adapt for evaluating general-purpose frameworks, 075

limiting their reusability and extensibility (Xu et al., 076

2020; Zhang et al., 2021). 077

Taken together, although significant progress has 078

been made in benchmarking agent capabilities, ex- 079

isting efforts do not sufficiently address the unique 080

needs of evaluating multi-agent frameworks. This 081

highlights a pressing need for a comprehensive and 082

flexible benchmark that can rigorously and fairly 083
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User could you please email john saying i’m on leave
re-labeled original

Intent email_sendemail email_sendemail
Slots to_person: john, content: i’m on leave person : john

Table 1: The example of the annotations in Auto-SLURP.

assess the effectiveness of LLM-based multi-agent084

infrastructures across a range of scenarios.085

One particularly compelling application is the086

smart personal assistant—an AI system capable087

of understanding natural language and perform-088

ing tasks on behalf of users. This vision has long089

captured the imagination of both researchers and090

the public (Edu et al., 2020; Hoy, 2018). Despite091

significant progress in AI and the emergence of092

powerful LLM-based multi-agent systems, this vi-093

sion remains underexplored in the context of multi-094

agent evaluation. Personal assistants are expected095

to handle a wide range of tasks, such as checking096

the weather, sending emails, managing calendars,097

and controlling IoT devices. Achieving this level098

of functionality demands not only natural language099

understanding (NLU), but also sophisticated ca-100

pabilities in decision-making, reasoning, tool use,101

coordination, and adaptability (Del Tredici et al.,102

2021; Shen et al., 2022).103

To help fill this gap, we introduce Auto-SLURP,104

a benchmark designed to evaluate the effectiveness105

of LLM-based multi-agent frameworks in building106

smart personal assistants. Auto-SLURP is built107

upon the SLURP dataset (Bastianelli et al., 2020;108

Liu et al., 2021), originally created for natural109

language understanding in smart home scenarios.110

We extend SLURP’s original intent-slot structure111

to support comprehensive end-to-end evaluation:112

from language understanding and intent interpreta-113

tion, to task execution and response generation. To114

better reflect the complexity of real-world interac-115

tions, we relabel the slots and restructure the data116

to align with complete user-interaction pipelines.117

Auto-SLURP simulates realistic assistant inter-118

actions by integrating external services and sim-119

ulated servers, enabling thorough evaluation of a120

framework’s ability to handle complex, multi-step121

operations. These operations include API access,122

state management across modules, and coordina-123

tion between agents with specialized responsibili-124

ties. This setup allows us to assess not just whether125

multi-agent frameworks can interpret user com-126

mands, but also whether they can effectively or-127

chestrate the backend processes needed to carry 128

them out. 129

The dataset spans a wide range of task do- 130

mains, such as calendar management, media play- 131

back, transportation scheduling, and information 132

retrieval. This diversity ensures that Auto-SLURP 133

serves as a robust and representative benchmark 134

for evaluating both the flexibility and reliability 135

of multi-agent frameworks in realistic scenarios. 136

Our experimental results demonstrate that Auto- 137

SLURP presents significant challenges even for 138

state-of-the-art multi-agent frameworks. These 139

findings underscore the complexity involved in 140

achieving seamless, intelligent assistant behavior 141

and reveal that we are still some distance away 142

from building fully dependable AI-based personal 143

assistants. 144

2 Dataset Construction 145

Creation of queries and annotations We make 146

modification to the SLURP dataset, which is col- 147

lected for the development of smart personal as- 148

sistants. Personal assistant systems are inherently 149

complex, as they must interpret and respond to a 150

wide variety of user commands. SLURP was ini- 151

tially released for natural language understanding 152

tasks (Weld et al., 2022; Yang et al., 2017; Shen 153

et al., 2017; Su et al., 2018; Huang et al., 2021), 154

with a focus on intention detection and slot filling. 155

In traditional methods, intent detection is treated 156

as a classification problem, while slot filling is han- 157

dled as a sequence-to-sequence task. For example, 158

given the user query "play kari jobe for me", the 159

intent is "play_music", and the slot is "artist_name: 160

kari jobe". In SLURP, the slots are limited to the 161

entities explicitly mentioned in the utterance, omit- 162

ting other crucial information required to success- 163

fully execute the command. This omission can lead 164

to incomplete or failed task execution. 165

To adapt SLURP for our specific use case, we 166

retain only the user queries and their corresponding 167

intents from SLURP, while re-labeling the slots. 168

Specifically, we enrich the slot information by 169

adding new slots and refining existing ones to cap- 170
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CamelAI LangGraph AutoGen AgentLite
GPT-4 0.21 0.32 0.44 0.46
DeepSeek-V3 0.39 0.32 0.36 0.47

Table 2: The results of the multi-agent frameworks.

ture all the information necessary for backend task171

execution. We also ensure that the slot structures172

are compatible with LLMs, which typically gener-173

ate outputs rather than classify them. Table 1 illus-174

trates an example of our modified samples, with175

our re-labeled version in the middle column, and176

the original SLURP sample in the right column.177

The dataset encompasses a wide range of tasks,178

from straightforward actions like setting calendars179

or playing music, to more complex operations such180

as information retrieval or handling transportation-181

related commands. We randomly select 1,000 sam-182

ples from the training set and 100 samples from183

the testing set. Based on our experimental results,184

this subset is considered sufficient for training and185

testing LLM-based multi-agent frameworks.186

Collection of the end servers To evaluate end-to-187

end system performance, we simulate the execution188

servers that process and carry out user commands.189

This simulation enable us to verify whether the190

commands are correctly interpreted and executed,191

ensuring that the overall system functions as ex-192

pected. In our training set, we identify 23 distinct193

domains. For each domain, we build a dedicated194

server to handle the relevant operations. Addition-195

ally, for certain domains which require external196

information, such as search, weather, and news, we197

integrate external services, i.e., third-party APIs.198

These API calls allow the system to fetch the re-199

quired information, ensuring that user requests are200

handled efficiently and with up-to-date content.201

3 Experiments202

3.1 Setup203

We compare several representative LLM-based204

multi-agent frameworks.205

CamelAI (Li et al., 2023) introduces a coopera-206

tive framework that allows agents to autonomously207

collaborate through role-playing.208

AutoGen (Wu et al., 2023) presents a customizable209

framework that can integrate LLMs, humans, and210

tools, enabling dynamic agent interactions.211

LangGraph (2023) is built upon the foundation of212

LangChain (2022) and provides an easy way to213

create cyclical graphs during runtimes. 214

AgentLite (Liu et al., 2024b) is a lightweight, mod- 215

ular codebase that can easily experiment with new 216

reasoning strategies. 217

For all multi-agent frameworks, we use GPT- 218

4 (Achiam et al., 2023) and DeepSeek-V3 (Liu 219

et al., 2024a) as the LLMs. We describe the details 220

of the experiments in Appendix A. 221

3.2 Defined workflows 222

We use each multi-agent framework to build a work- 223

flow that simulates a smart personal assistant. In 224

the workflow, a program manager agent serves as 225

the orchestrator; it processes the user’s input query 226

and delegates subtasks to specialized agents. We 227

introduce an intent agent to predict the intent and 228

slots. Additionally, we add a time agent and a 229

location agent to format the time and location pa- 230

rameters, if applicable. We adopt a URL agent 231

to select the appropriate URL from a list of can- 232

didates, and a request agent to execute the tool 233

function call for the request. The overall workflow 234

is illustrated in Figure 1 in Appendix B. Although 235

the orchestration methods, prompt policies, and 236

reasoning approaches vary across frameworks, we 237

ensure a fair and controlled comparison by main- 238

taining consistency in the assigned roles, accessible 239

tools, and prompts used to define agent functions 240

during construction. 241

3.3 Evaluation 242

We use the successful execution rate as the eval- 243

uation metric, which measures the percentage of 244

queries that are completed successfully from end 245

to end. This metric assesses the reliability, effi- 246

ciency, and ability of the framework to perform 247

the intended actions without failure. Additionally, 248

we provide an automated evaluation tool that mea- 249

sures performance across all frameworks consis- 250

tently and efficiently. 251

4 Experiment Results 252

4.1 Results analysis 253

Table 2 presents the results of the multi-agent 254

frameworks. Among them, AgentLite performs 255
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CamelAI LangGraph AutoGen AgentLite
GPT-4 DeepSeek GPT-4 DeepSeek GPT-4 DeepSeek GPT-4 DeepSeek

intent 54% 50.8% 34% 39.7% 68% 43.8% 69% 69.8%
time 18% 8.2% 12% 29.6% 9% 14.1% 19% 7.5%
location - - - 1.5% - - 7% -
URL 14% 4.9% 13% 7.4% 43% 14.1% 19% 45.3%
request - - - 1.5% - 1.6% - 5.7%
manager 9% 49.2% 53% 36.8% 13% 46.9% - 3.8%
function_call 18% 1.6% - - - - -

Table 3: Error analysis of the frameworks. Because one failure can be caused by multiple reasons, the percentages
do not sum up to 100%. DeepSeek refers to DeepSeek-V3.

AutoGen original finetuned
acc 0.40 0.62

Table 4: The results for AutoGen with original and
finetuned intent agents.

the best. The failure of CamelAI with GPT-4 can256

be attributed to its difficulty in selecting the right257

tool to execute, largely due to bugs in its interface258

with GPT-4. Additionally, DeepSeek-V3 can not259

run in CamelAI until we resolve certain response260

parsing issues. LangGraph underperforms mainly261

because it only combines the system prompt and262

all the agents’ results into one list as input, without263

any adjustments. In contrast, AutoGen separates264

the prompts for the manager agent and the sub-265

task agents, enabling clearer task delegation and266

yielding better results. AgentLite further improves267

performance by adopting "think and react" methods268

in the process, which significantly enhances execu-269

tion success. Example prompts for LangGraph and270

AutoGen are provided in Appendix C.271

We also test other frameworks, such as Agent-272

Verse (Chen et al., 2023b) and AutoAgents (Chen273

et al., 2023a). However, these frameworks either274

lack a generalized orchestration policy to support275

this scenario or do not provide sufficient informa-276

tion for effective implementation. This highlights277

the inherent complexity of designing robust multi-278

agent frameworks.279

To gain deeper insight into failure points, we280

analyze the errors caused by individual agents and281

the function call part. As shown in Table 3, it is282

clear that the main source of failure stems from283

the intent agent. We show the failure attribution284

criteria in Appendix D.285

4.2 Ablation286

Our prior analysis shows that intent prediction is287

the leading cause of failures. To address this, we288

conduct an ablation study by further finetuning a 289

model for the intent agent to assess its impact on 290

overall framework performance. We choose the 291

open-source Llama 3 model (AI@Meta, 2024) for 292

finetuning. Specifically, we finetune the LLAMA-3 293

8B model on our training set and use the result- 294

ing model as the intent agent. All other agents 295

in the system continue to use GPT-4 as their un- 296

derlying LLM. We evaluate this setup in AutoGen 297

framework, and the results are presented in Table 4. 298

Compared to the framework that uses the origi- 299

nal LLAMA-3 8B model, the finetuned version 300

shows a performance improvement of 55%. This 301

result demonstrates that improving individual com- 302

ponents—especially the main failure source—can 303

significantly enhance the overall performance of 304

multi-agent frameworks. A more detailed break- 305

down of domain-specific accuracy for both versions 306

is provided in Appendix E. 307

Based on the analysis above, it is clear that we 308

are still a few steps away from achieving a fully re- 309

liable and smart personal assistant. Achieving this 310

goal will require continued progress in several key 311

areas of multi-agent framework design—namely, 312

the development of generalized orchestration poli- 313

cies, effective prompting methods, robust reasoning 314

approaches (such as think and react), and careful 315

selection of LLMs suited to the task. 316

5 Conclusion 317

We present Auto-SLURP, a dataset designed to 318

evaluate LLM-based multi-agent frameworks. We 319

assess the end-to-end execution tasks, not just the 320

nature language understanding tasks. By incorpo- 321

rating simulated servers and external services, we 322

evaluate the capacity of the frameworks to com- 323

plete the entire process. The dataset proves to be 324

sufficiently challenging to test the state-of-the-art 325

multi-agent frameworks. 326
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Limitations327

The dataset incorporates simulated servers and ex-328

ternal services, which may not fully mimic the329

behavior of real-world systems. This could result330

in discrepancies between the performance of frame-331

works in the benchmark and their performance in332

live applications.333

Additionally, the dataset’s evaluation is heavily334

reliant on the performance of LLMs. Variations in335

the quality and capabilities of LLMs across differ-336

ent versions could influence the outcomes.337
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A The Details of the Experiments565

We use DeepSeek-V3 instead of DeepSeek-R1 be-566

cause the reasoning process of DeepSeek-R1 in-567

troduces more noise in this scenario. The prompts568

for the agent roles are created and adjusted during569

the setup phrase. The temperature is set as 0 to570

ensure that the LLM’s responses are deterministic571

and fixed.572

B Overview of the Defined Multi-Agent573

Workflow574

The overall workflow defined in experiment is il-575

lustrated in Figure 1.576

C Prompt Examples and Cost Analysis577

C.1 Prompt examples from LangGraph and578

AutoGen579

Below is an example prompt from LangGraph,580

which includes the agents’ names, the function581

description of the orchestration agent, the current582

subtask, and the responses from previous agents.583

{’content’: ’You are a supervisor tasked with man-584

aging a conversation between the following work-585

ers to finish the first user’s cmd: [’intent’, ’time’,586

’location’, ’url’, ’request’, ’genresponse’]. Given587

the following user request, respond with the worker588

to act next. you are controlling smart home system,589

you have intent, time, location, and url agent and590

request to complete the user’s task. You should first591

use intent to complete the intent prediction. Then592

query Workflow

function call

function call

Program Manager
Agent

Intent Agent

time Time Agent

Location Agent

simulated servers

external services

URL Agent

Request Agent

Figure 1: The workflow defined for the Auto-SLURP
dataset.

if the result has time or location params, please 593

try to ask time or location to solve the time and 594

location. At last you should choose the url us- 595

ing url agent, and then use request to send and 596

receive request to the url such as weather server 597

and then use genresponse to generate response, 598

then finalize the task. Even if the request’s re- 599

sponse is need further information or is a question, 600

do not further answer the question, just finish the 601

task. The response need to be the worker to act 602

next, for example: {"next": "FINISH"}. When 603

finished, respond with FINISH. the data in json.’, 604

’role’: ’system’}, {’content’: ’will i need sunscreen 605

this afternoon’, ’role’: ’user’}, {’content’: ’do- 606

main:weather, intent:weather_query, slots:time:this 607

afternoon’, ’name’: ’intent’, ’role’: ’user’} 608

The following is an example prompt from Au- 609

toGen, which includes a description of the overall 610

task, detailed function descriptions of all agents, re- 611

sponses from previous agents, and the current sub- 612

task. (Some content has been omitted for brevity.) 613

{’content’: "You are in a role play game. The fol- 614

lowing roles are available: user_proxy: A com- 615

puter terminal that performs no other action than 616
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running Python scripts (provided to it quoted in617

python code blocks), or sh shell scripts (provided618

to it quoted in sh code blocks). Product_manager:619

you are controlling smart home system, you have620

intent assistant, time_assistant, location_assistant,621

url_assistant and request_assistant to complete the622

user’s task. You should first use intent to complete623

the intent prediction. Then if the result has time624

or location params, please try to ask time_assistant625

or location_assistant to solve the time and loca-626

tion. Then you choose the url using url_assistant.627

At last you should use request_assistant to send628

and receive request through functions from other629

servers such as weather server and response to630

user. You should generates reponse for the user,631

and tell manager to finalize the task. intent: Read632

the examples and results, and predict intent for the633

sentence. For ’set the alarm to two pm’, first pre-634

dict the domain, as domain:alarm, then the intent635

and slots, as the format: intent:alarm_set,time:two636

pm. the intents are calendar: calendar_set, cal-637

endar_remove, calendar_query ... Time_assistant:638

Read the time params, and convert to formated639

time. If has date, call the user_proxy_auto get_time640

function to get today’s date, then calculate and641

format the date mentioned in the params. The642

time is 10:00. If has time, the time format should643

be 10:00. If no time specify, can return default644

time. If no date and time params, just skip. Lo-645

cation: Read the location params, and convert to646

formated location. The current location is new york.647

url_assistant: Read the params, and choose the url648

from the servers’ url list: qa server is ... then all649

the url format should be ... Request: for url and650

query params, use the request functions you have651

been provided with. Read the following conversa-652

tion. Then select the next role from [’user_proxy’,653

’Product_manager’, ’intent’, ’Time_assistant’, ’Lo-654

cation’, ’url_assistant’, ’Request’] to play. Only655

return the role.", ’role’: ’system’}, {’content’:656

’{"query": "will i need sunscreen this afternoon"}’,657

’role’: ’user’, ’name’: ’user_proxy’}, {’content’:658

’domain:weather,intent:weather_query,time:this af-659

ternoon’, ’role’: ’user’, ’name’: ’intent’}, {’con-660

tent’: "Read the above conversation. Then se-661

lect the next role from [’user_proxy’, ’Prod-662

uct_manager’, ’intent’, ’Time_assistant’, ’Loca-663

tion’, ’url_assistant’, ’Request’] to play. Only re-664

turn the role.", ’name’: ’checking_agent’, ’role’:665

’system’}666

C.2 Cost analysis of multi-agent frameworks 667

Furthermore, we analyze the cost of GPT-4 for each 668

framework, the results are shown in Table 5. The 669

costs are at the same level for CamelAI, AutoGen, 670

and AgentLite, but LangGraph has a significantly 671

lower cost. We believe this is because LangGraph 672

only uses the system prompt and all agents’ results 673

as input. Therefore, the cost of GPT-4 for each 674

query, ranging from 0.5 to 0.8, is reasonable for an 675

advanced multi-agent framework in this scenario. 676

D Failure Attribution Criteria in 677

Evaluation 678

During evaluation, the workflow proceeds even if a 679

failure occurs, and task completion is assessed only 680

after the entire process is complete. To identify 681

the source of failure, we trace the error back to the 682

responsible agent based on the following criteria: 683

• Intent Agent: If the intent agent makes an 684

incorrect prediction that ultimately leads to a 685

workflow failure, the error is attributed to the 686

intent agent. 687

• Time Agent: If the time agent provides an in- 688

correct time or content that negatively affects 689

the final outcome, the error is assigned to the 690

time agent. 691

• Location Agent: If the location agent supplies 692

an incorrect location resulting in an incorrect 693

outcome, the error is attributed to the location 694

agent. 695

• URL Agent: If the URL agent selects the 696

wrong URL or incorrect parameters, the er- 697

ror is considered to originate from the URL 698

agent. Additionally, if the URL agent receives 699

an incorrect intent but is capable of correcting 700

it and fails to do so, the error is also attributed 701

to the URL agent. 702

• Request Agent: If the request agent success- 703

fully retrieves the correct data from the servers 704

but generates an incorrect response, the error 705

is classified as a request agent error. 706

• Manager Agent: If the manager agent incor- 707

rectly selects the next agent in the workflow, 708

causing a failure, the error is attributed to the 709

manager agent. 710

• Function Call: If the system executes an incor- 711

rect function call that results in a failure, the 712

error is categorized as a function call failure. 713
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USD/query CamelAI LangGraph AutoGen AgentLite
cost 0.52 0.14 0.80 0.55

Table 5: The costs of the frameworks.

Domain Original Finetuned
Audiobook 0.0% 66.7%
Calendar 11.8% 76.5%
Currency 0.0% 66.7%
Datetime 14.3% 71.4%
Email 0.0% 71.4%
IoT 33.3% 75.0%
Lists 40.0% 100.0%
Music 0.0% 70.0%
News 0.0% 100.0%
Podcasts 0.0% 50.0%
QA 0.0% 80.0%
Radio 0.0% 66.7%
Recommendation 0.0% 60.0%
Transport 33.3% 66.7%
Weather 0.0% 100.0%

Table 6: Accuracy across each domain for both the
original and finetuned models.

E Evaluation of Intent Prediction714

Accuracy Across Domains715

In the ablation study, we analyze the intent predic-716

tion accuracy across different domains, excluding717

those with fewer than three samples. The results are718

reported in Table 6, showing the accuracy for each719

domain using both the original and the finetuned720

models.721

To further investigate the performance gap be-722

tween intent prediction accuracy and overall work-723

flow accuracy, we take a closer look at the outputs724

of the intent agent. We observe that some errors725

from the original model stem from formatting is-726

sues—such as incorrect slot names or returning727

plain-text descriptions instead of structured out-728

puts. Notably, these issues can often be mitigated729

by downstream agents in the workflow, such as the730

URL agent, which may still successfully process731

the intent. Therefore, for reference, we additionally732

report a relaxed intent accuracy in Table 7, where733

slot name errors are ignored.734

As shown in the two tables, finetuning improves735

accuracy across all domains. However, the Pod-736

casts domain remains particularly challenging for737

the intent agent, with a final accuracy of only738

50.0%.739

Domain Original Finetuned
Audiobook 0.0% 66.7%
Calendar 29.4% 82.4%
Currency 0.0% 66.7%
Datetime 42.9% 85.7%
Email 57.1% 71.4%
IoT 58.3% 75.0%
Lists 40.0% 100.0%
Music 10.0% 70.0%
News 33.3% 100.0%
Podcasts 0.0% 50.0%
QA 0.0% 80.0%
Radio 0.0% 66.7%
Recommendation 20.0% 60.0%
Transport 66.7% 66.7%
Weather 14.3% 100.0%

Table 7: Accuracy across each domain—excluding slot
name errors—for both the original and finetuned mod-
els.
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