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ABSTRACT

Partial label learning (PLL) is a challenging real-world problem in the field of
weakly supervised learning, in which each data instance contains a set of candidate
labels with multiple ambiguous labels and one gold label. Although recent progress
in PLL using deep representation learning has led to significant advances, the
methods continue to experience significant performance drop on data with high
label ambiguity and fine-grained categories. By casting PLL into a satisfiability
problem and incorporating a loss based on this reduction, we show that the accuracy
of those techniques can be further improved. We establish several key theoretical
properties of the proposed SATisfiability-based (SAT) loss and its learning error
bound. Our extensive empirical comparison reveals that the proposed loss improves
over existing PLL techniques by up to 25.12% on multi-class benchmarks and
12.50% on fine-grained categorized benchmarks.

1 INTRODUCTION
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Figure 1: An image of a raven may be difficult to distin-
guish within the set of candidate labels.

Traditional supervised learning models
rely on precise, unambiguous labels.
However, common labeling methods,
including crowd-sourced annotations,
where the expertise of annotators varies
significantly, and unsupervised learning
models, which often struggle with am-
biguous or challenging cases, can have
difficulty giving clear-cut and definitive
labels. These practical concerns make
partial label learning (PLL) (Cour et al.,
2011b; Tian et al., 2023) a necessity
rather than a choice, especially in situa-
tions where obtaining perfectly labeled data is impractical or impossible. Label disambiguation is the
core challenge of PLL where training models need to effectively handle and learn from data in which
each instance is associated with a set of candidate labels, only one of which is correct. As shown in
Figure 1, unless a bird expert, a human annotator would have a hard time distinguishing the ”Raven”
from ”Crow”, ”Blackbird” or ”Grackle”.

Recent deep neural network (DNN) approaches in PLL have made real practical progress. Two of the
most notable works, PICO (Wang et al., 2022b) (or PICO+ (Wang et al., 2022c)) and PaPi (Xia et al.,
2023b), use prototype-based representation learning to guide label disambiguation in the training
process. These studies have demonstrated remarkable performance on standard datasets such as
CIFAR-10 (Krizhevsky, 2009), MNIST(LeCun et al., 1998), SVHN(Netzer et al., 2011).

Relying on the assumption that points closer in the feature space are more likely to share the same
gold label, PICO and PICO+proceed by learning prototypes for each class in a contrastive manner.
They generate pseudo labels for each data instance based on their normalized similarity with prototype
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(a) PAPI on CIFAR-100
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(b) PAPI on CUB-200
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(d) PAPISAT on CIFAR-100
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(e) PAPISAT on CUB-200
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Figure 2: Comparison of prediction accuracy and confidence between PAPI and PICO+ with their
integration of SAT loss. (a) and (b) show the classification percentages by Both Correct, Classifier-
only, Prototypes-only, and Both Incorrect of PAPI on the test data from CIFAR-100 and CUB-200.
(d) and (e) show the percentage changes by SAT-enhancement, i.e. PAPISAT, on the same test data.
(c) and (f) shows the changes of test accuracy and average prediction confidence of PICO+ and
PAPI with their SAT-counterparts during the training process.

embeddings. Then, the cross entropy loss is adopted to guide label disambiguation using the pseudo
label guidance. However, interleaving the process of label disambiguation with prototype learning
may lead to undesired phenomena. In particular, erroneous label disambiguation may negatively
affect representation learning by trying to reduce the distance between embeddings of instances that
belong to different classes, which may consequently introduce further errors for following training.
Such an observation led to PAPI (Xia et al., 2023a).

Despite its improvements over PICO, PAPI is still prone to undesired interactions between the label
disambiguation and the representation learning processes, in scenarios in which the candidate sets
of labels are large or when data from extremely similar categories (Wah et al., 2011; Nilsback &
Zisserman, 2008). Figures 2(a) and 2(b) show for each training epoch in PAPI, the percentage of
test images that (i) were correctly classified by the classifier and incorrectly classified based on the
prototypes (blue area), (ii) were incorrectly classified by the classifier and correctly classified based
on the prototypes (yellow area), (iii) were correctly classified both under the classifier and based
on the prototypes (green area), and finally, (iv) were incorrectly classified under both cases (orange
area). In Figure 2(a) the PLL dataset is constructed out of CIFAR-100, while in Figure 2(b) the PLL
dataset is constructed out of CUB-200. In both cases, each training sample has roughly 30 candidate
labels. As illustrated by the yellow areas of Figure 2(a) and 2(b), the percentage of images correctly
classified based on the prototypes and incorrectly classified by the classifier is minimal relative to the
entire dataset. Furthermore, under CUB-200 , the percentage of images in the green area shows a
decreasing trend, see Figure 2(b). This suggests that the guidance from prototypes is not reliable, and
can even be counterproductive in realistic scenarios where data categories are very similar.

What is the root cause of this undesired behavior? Both PICO (and its successor PICO+) and
PAPI put emphasis on prototype learning, simply using the cross entropy of the pseudo labels as
a classification loss term. However, choosing the cross entropy loss on highly noisy pseudo labels
may have catastrophic consequences: it is already known that the cross entropy loss is not robust to
noise (Feng et al., 2021). To tackle noisy labels, an approach would be to employ loss functions that
are tolerant to noisy labels (Wang et al., 2022c). However, all these techniques work under certain
assumptions on how noise is modeled. These assumptions are violated in the standard PLL setting:
we only know that the gold label is in the set of candidate labels, with no other information.
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To overcome the limitations of PICO and PAPI, and motivated by the observations that the classifier
was always more correct than prototype-based classification at the beginning and sometimes this
advantage was even maintained until convergence, we remove PICO’s and PAPI’s cross entropy-based
classification loss term and incorporate techniques for training neural classifiers subject to logical
constraints (Wang et al., 2023). In particular, we show that the PLL constraints can be naturally
encoded into formulas in propositional logic. These formulas are subsequently used to compute losses
capturing the degree to which the classifiers’ scores abide by them, hereby transforming PLL into a
satisfiability problem. We define this logic-based formulated loss as SATisfiability-based (SAT) loss
and provide theoretical justification for its effectiveness on difficulty scenarios as high label ambiguity
and fine-grained candidate categories. Further, we empirically demonstrate that satisfiability-based
training can serve as a standalone loss function or enhance the state-of-the-art PLL methods beyond
PICO+ and PAPI via seamless integration. As shown in Figure 2(c) and (f), integrating SAT loss
effectively enhanced the classification (Test Accuracy) and label disambiguation performance (Mean
Max Confidence) of PICO+and PAPI . Based on the comparison between Figure 2(a)(b) and (d)(e),
it also improved the consistency between the classifier and the prototype predictions as a better
classifier generates high-quality representations. We summarize our main contributions as below:

Methodology. We are the first to thoroughly assess satisfiability-based learning in the context of
PLL and its merits when integrated with state-of-the-art PLL techniques focusing on learning better
representations (Wang et al., 2022b;c; Xia et al., 2023a; Wu et al., 2022a). The obtained empirical
results are state-of-the-art in PLL. The proofs of all formal statements, as well as more details on our
empirical analysis are in the appendix.

Theory. Beyond empirically assessing satisfiability-based PLL, we theoretically analyze the proper-
ties of the proposed method. We prove several natural properties of satisfiability-based PLL: that
the loss is non-increasing the larger candidate label sets become, see Corollary 5.2, and that it favors
low entropy classifiers, Proposition 5.3. In addition, we provide the Rademacher-style error bound,
showing the learnability and generalization ability of SAT loss, see Theorem 5.4.

Experiments. We validate the performance of logic-inspired PLL training empirically, via the
most thorough, to our knowledge, experimental evaluation. Our assessment shows that satisfiability-
based training leads to consistently higher classification accuracy over all settings compared with
previous state-of-the-art techniques. Its integration brings up to 25.12% increase on CIFAR-100 for
PICO+ and 12.50% improvement on CUB-200 for PAPI.

2 RELATED WORK

The literature on PLL is very rich. We quickly summarize the most well-known theoretical results.
The small ambiguity degree assumption (Cour et al., 2011a; Cabannes et al., 2020) has been central
to showing several formal properties including learnability (Liu & Dietterich, 2014) and classifier
consistency (Lv et al., 2020; Cabannes et al., 2020; Wang et al., 2022a). Regarding the latter, the
authors in (Lv et al., 2020) show classifier consistency via training under the minimal loss, while the
authors in (Cabannes et al., 2020) show classifier consistency via the infimum loss. Both the minimal
and the infimum losses can be seen as a special case of Semantic Loss (SL) (Xu et al., 2018b). In
addition, similarly to (Lv et al., 2020; Cabannes et al., 2020), we prove classifier consistency and
provide Rademacher-style error bounds, see Section 5.

Risk-consistent PLL techniques have been also proposed (Feng et al., 2020; Wen et al., 2021),
where a PLL technique is risk-consistent (Xia et al., 2019) if by increasing the size of PLL samples
from P (X,S), the empirical risk based on those samples converges to the expected risk based on
fully-supervised supervised samples from P (X,Y ). Classifier- and risk-consistent techniques were
proposed in (Feng et al., 2020), named CC and RC, respectively, based on the assumption that the
PLL training samples abide by a specific data generation process. This research was later extended
by (Wu & Sugiyama, 2021). The authors in (Wen et al., 2021) introduced a family of loss functions
named leveraged weighted loss (LWC) and proved risk and Bayes consistency under a data generation
process that extends the one from (Feng et al., 2020). Differently from (Feng et al., 2020; Wen et al.,
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2021), our work makes no assumption on the data generation, while the empirical results demonstrate
superior classification accuracy against CC, RC, and LWC, see Section 6.

Advancements in deep learning have further expanded the PLL exploration (Xu et al., 2021; Wang
et al., 2022b;c; Wu et al., 2022a; Xia et al., 2023a). The authors in (Xu et al., 2021) introduced
VALEN, a technique based on variational inference, for PLL settings in which the candidate labels
in s are dependent on the features of x. The key idea is to associate each x with a latent label
distribution over the labels in s, representing the probability to which each l ∈ s describes the features
of x. Recently, (Wang et al., 2022b;c) adopted contrastive representation learning (Chen et al.,
2020) for PLL, significantly improving the state-of-the-art results on several image classification
benchmarks. Despite its remarkable performance, the authors in (Xia et al., 2023a) observed that
PICO’s contrastive learning component and its label disambiguation process that is based on the
class embedding prototypes may negatively affect the training process. Motivated by these finds,
the authors proposed PAPI (Xia et al., 2023a). PAPI gets rid of contrastive learning and relies on
aligning the distribution over the pseudo-labels of x with a distribution over the distances of x’s
feature embedding to the representative feature embeddings of each class. In addition, PAPI relies on
the classifier’s predictions for label disambiguation and not to the class prototypes. Another recently
proposed PLL technique that relies deep learning is DPLL (Wu et al., 2022a). Both PICO and
PAPI rely on the cross-entropy loss for label disambiguation. Our work instead shows that via
replacing this loss term with ℓSAT , we can have major improvements in the accuracy of the learned
classifiers, see Section 6.

For completeness, we conclude with work on other learning settings. One of the closest fields is
neuro-symbolic learning, whose key focus is the integration of deep learning with logical reasoning.
Works as Tsamoura et al. (2021); Buffelli & Tsamoura (2022) explore frameworks that combine
neural network outputs with symbolic reasoning processes, enhancing the system’s ability to perform
tasks requiring complex reasoning or knowledge representation. Despite its promise, neuro-symbolic
learning faces challenges, particularly in seamlessly integrating neural and symbolic components
and scaling these systems for complex, real-world applications. There are many existing works
(Xu et al., 2018a; Manhaeve et al., 2018; Wang et al., 2019; Huang et al., 2021) explored utilizing
logic constraints to train neural networks. A few of the close works deployed logic constraints into
multi-instance partial label learning learning (Zombori et al., 2023), which are different from what we
emphasized. In this work, we aim to demonstrate that training neural network with logic constraints
can enhance their robustness in handling label ambiguity under standard partial label learning.

Complementary to ours is the work in (Ferber et al., 2019; Vlastelica et al., 2019; Paulus et al., 2021)
that integrates combinatorial solvers into deep models. The integration of combinatorial optimization
methods, as explored in these works, provides a direct link to PLL under logic constraints. Specifi-
cally, decision-focused learning methods like MIPaaL (Ferber et al., 2019) and CombOptNet (Paulus
et al., 2021) align well with PLL, where selecting the correct label from a set of candidate labels
can be framed as an optimization problem. The incorporation of integer programming and combi-
natorial solvers as layers in deep networks, as demonstrated in these papers, suggests that similar
approaches could be applied to PLL, especially under the scenario where candidate label sets need to
be disambiguated efficiently.

3 PRELIMINARIES

In this section, we introduce the notation and the formulation of supervised and partial label learning.

Supervised Learning. Let X denote the input space and Y = [C] denote a finite label space,
where [C] = {1, . . . , C}. For an annotated dataset DN = {(xi, yi)

N
i=1} sampled from an unknown

distribution P (X,Y ) ∈ X×Y, each data instance xi ∈ X has a label yi ∈ Y. A distribution P (X,Y )
is deterministic if P (Y = y|X = x) = 0 unless y is the gold label y∗ of x. We define the problem
of learning as the process of finding the scoring function f from the hypothesis space F that can
minimize the classification risk over the given training samples DN . We define the classification risk
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subject to a given loss function ℓ as:

R(f ; ℓ) := E(x,y)∼P (X,Y ) [ℓ(f(x), y)] (1)

The lower R(f ; ℓ) becomes, the better f fits the data. For optimal classifier f∗(·), we have R(f∗; ℓ) =

0. We use R̂(f ; ℓ;DN ) to denote the empirical risk, i.e. the average risk over DN .

Partial label learning. Differently from supervised learning where each input is paired with a gold
label y∗i , in partial label learning (PLL), each data instance xi is associated with a candidate label set
si, which contains one gold label and a set of candidate labels, i.e. si = {y∗i } ∪ zi, where zi is the
additional label set. In particular, partial labeled data is drawn from a partial distribution P (X,S)
over X× S, where S ⊂ 2Y is the set of all subsets of 2Y excluding Y and the empty set, that is
compatible with P (X,Y ) (Cabannes et al., 2020), i.e., there exists a probability measure P (X,Y, S)
over X× Y× S, such that P (X,Y ) is the marginal of P (X,Y, S) over X× Y, P (X,S) is the
marginal of P (X,Y, S) over X× S, and P (S = s|Y = y) = 0 if y ̸∈ s. In analogy to supervised
learning, the objective is to find a classifier f that minimizes a partial risk subject to a partial loss
function ℓ : Rc × S → R

+: R(f ; ℓ) := E(x,s)∼P (X,S)[ℓ(f(x), s)]

Classifiers. We consider scoring functions of the form f : X → ∆C , where ∆C is the space of
probability distributions on Y (e.g., f outputs the softmax probabilities of a neural network). We use
f j(x) to denote the j-th output of f(x). A scoring function f induces a classifier whose prediction
on x is defined by [f ](x) := argmaxj∈[C] f

j(x). We use F and [F] to denote the space of scoring
functions and the space of classifiers induced by F, respectively. We use the Rademacher complexity
to characterize the complexity of hypothesis space F (Shalev-Shwartz & Ben-David, 2014), which is
formally defined in Section A.1.

Loss function. We present several commonly used loss functions to facilitate the discussion in the
following sections. zero-one loss defined as ℓ01(f(x), y) := 1{f(x) = y} is commonly used in
supervised multi-class learning task. We also consider the partial zero-one loss (Cour et al., 2011b),
ℓ01P (f(x), s) := 1{[f ](x) ∈ s} for partial label setting. Cross entropy loss is frequently used for
label disambiguation, which defined as ℓce(f(x), ey) := −∑j∈[c] e

y[j]f j(x), where ey[j] denotes
the j-th entry of the one-hot vector ey. Different partial loss functions have been proposed in the
literature, including the infimum loss (Cabannes et al., 2020) and a modified negative log likelihood
loss (NLL) (Wu et al., 2022a) given by ℓnll(f(x), s) := −∑j∈Y\s log(1− f j(x)). We refer to the
risk of f subject to the above losses as the zero-one, partial zero-one, cross-entropy and NLL risk and
denote them by R01(f), R01

P (f), RCE(f), and Rnll(f) respectively.

4 METHODOLOGY

4.1 PLL AS A SATISFIABILITY PROBLEM

We overcome the limitations of training using pseudo labels and the cross entropy loss by reducing
PLL to a satisfiability problem. This essentially requires encoding the set of candidate partial labels s
of each training sample (x, s) from P (X,S) as a Boolean formula φs that is true if and only if the
Boolean variable associated with some label in s is true. This Boolean formula is the conjunction
between two formulas:

φs :=
∨
j∈s

Xj ∧
∧

j,j′∈s:j ̸=j′

¬(Xj ∧Xj′) (2)

We use a slight abuse of notation to denote Xj as the Boolean variable that is uniquely associated to
label j ∈ s; ∨ (OR) and ∧ (AND) are the logical connectives. The probability that Xj becomes true
subject to classifier f and sample x is f j(x). We provide an example below that illustrates how we
can formulate the logical sentence constraints derived from partial labels.
Example 4.1. Given a dataset Ds with label space Y = {bird, airplane, tiger, dog, lion}, we have a
data instance x and its candidate label set s = {tiger, dog, lion}, meaning that the first three labels
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Classifier SAT Loss

S = {Grackle, Blackbird, Raven, Crow}

… …

Prediction Probability

Low Entropy 
Preference

Boolean Satisfiability Formula

Probability After Training

Figure 3: Learning with SAT loss

(”tiger”, ”dog”, ”lion”) are candidate labels. To encode this as a Boolean formula, we will use the
Boolean variables Xlabel representing the labels. The formula φs is constructed in two parts:

The disjunction over the candidate labels in s, i.e., at least one of the candidate labels must be true:∨
j∈s

Xj = Xtiger ∨Xdog ∨Xlion

This ensures that one of the labels ”tiger”, ”dog”, or ”lion” must be true. The conjunction over all
pairs of candidate labels to ensure that no two labels from s are true simultaneously:∧

j,j′∈s:j ̸=j′

¬(Xj ∧Xj′) = ¬(Xtiger ∧Xdog) ∧ ¬(Xtiger ∧Xlion) ∧ ¬(Xdog ∧Xlion)

This ensures that only one of the labels ”tiger”, ”dog”, or ”lion” can be true. Combining these two
parts, the final Boolean formula φs is:

φs := (Xtiger ∨Xdog ∨Xlion) ∧ ¬(Xtiger ∧Xdog) ∧ ¬(Xtiger ∧Xlion) ∧ ¬(Xdog ∧Xlion)

How do we compute a loss out of this formula? Assuming that each Xj , for j ∈ s, becomes true with
probability f j(x), a natural loss should penalize formulas with low probability of being satisfied and
reward formulas otherwise. By omitting the right part of the conjunction, i.e., if we consider only
the subformula

∨
j∈s Xj from equation 2 (disjunction), and using previous results from probabilistic

databases (Suciu et al., 2011), this probability becomes 1− ∏j∈s(1− f j(x)), which is simply one
minus the probability all Xj being simultaneously false. To satisfy the properties mentioned at the
very beginning of this paragraph, the resulting SATisfiability-based (SAT) loss takes the form:

ℓSAT (f(x), s) := − log(1− ∏
j∈s

(1− f j(x))) (3)

Remark 4.2. The definition of ℓSAT does not take into account the right-hand side (conjunction) of
(2), that is the mutual exclusiveness constraints. Disregarding those constraints is harmless in our
case, as the softmax scores of f jointly with the optimization objective (that is risk minimization, see
Section 5) implicitly enforce mutual exclusiveness.

Remark 4.3. We refer to the quantity 1− ∏j∈s(1− f j(x)) as the probability of formula
∨

j∈s Xj ,
aligning with (Suciu et al., 2011; Chavira & Darwiche, 2008). However, the probability of that
formula coincides with its product t-norm from the fuzzy logic literature (Diligenti et al., 2017), by
rewriting it via De Morgan law to ¬(

∧
j∈s ¬Xj) (see Section 3 from (Diligenti et al., 2017)).

5 THEORETICAL ANALYSIS

In this section, we provide a theoretical justification to show why the proposed SAT loss can benefit
label disambiguation under challenging scenarios such as high label ambiguity and fine-grained
categories. The primary challenge brought by high label ambiguity is that each data instance will have
a larger set of candidate labels. On the other hand, compared to standard datasets like CIFAR-10,
fine-grained categorization data involves data that comes from the same super-category, such as
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different species of birds. While this is more reflective of real-world scenarios, it also leads to the
model assigning similar prediction probabilities to multiple candidate classes, making it difficult to
distinguish between them.

To quantify the label ambiguity level in a given dataset DN , we adopt the concept of small ambiguity
degree, which was widely used in PLL literature (Liu & Dietterich, 2014; Lv et al., 2020; Cabannes
et al., 2020; Wang et al., 2022a).
Definition 5.1 (Small Ambiguity Degree). The small ambiguity degree γ is a measure of the hardness
of the learning under partial label supervision. Given distribution P (X,Y, S), where X,Y, S is the
variables of input, label and candidate label set, we have the definition:

γ := sup
(x,y∗)∈X×Y,P (x,y∗)>0,j∈s\y∗

P (j ∈ s|X = x, Y = y∗) (4)

Here j denotes a non-true candidate label or additional label. A partial labeled instance satisfies the
small ambiguity degree condition when 0 ≤ γ < 1, signifying that no co-occurring labels are present
alongside the ground truth. Next, we present an extensive analysis of learning via minimizing ℓSAT

to show the properties of SAT loss can mitigate these challenges.

5.1 ROBUSTNESS TO HIGH LABEL AMBIGUITY.

As shown in the Corollary 5.2, we first discuss that the SAT loss holds the property that its risk is
non-increasing as the small ambiguity degree increases.
Corollary 5.2 (Monotonicity under ambiguity). Let P1(X,S) and P2(X,S) be two par-
tial distributions over X × S with ambiguity degrees γ1 and γ2, such that for each sam-
ple (x, s1) occurring with probability α in P1(X,S), a sample of the form (x, s2) oc-
curs with probability α in P2(X,S) and s1 ⊆ s2, and hence, γ1 ≤ γ2. Then,
E(x,s)∼P1(X,S)[ℓ

SAT (f(x), s1)] ≥ E(x,s)∼P2(X,S)[ℓ
SAT (f(x), s2)].

If s1 ⊆ s2, and hence γ1 ≤ γ2 then 1− ∏j∈s1
(1− f j(x)) ≥ 1− ∏j∈s2

(1− f j(x)). Taking the
expectation considering samples from P1(X,S) and P2(X,S), respectively, leads to the above
corollary. This property indicates that the risk of SAT loss is determined by the model prediction and
will not be significantly affected by high label ambiguity as NLL losses, such as partial cross entropy
loss and modified negative log likelihood loss(Wu et al., 2022b). As an example, the partial cross
entropy loss, defined as ℓCE

P = −∑j∈s log(1− f j(x)), will result in a higher loss value as the size
of candidate label set increasing.

5.2 LABEL DISAMBIGUATION VIA ENTROPY MINIMIZATION

Fine-grained categorized data (Wah et al., 2011; Nilsback & Zisserman, 2008) is extremely challeng-
ing for previous PLL methods (Wang et al., 2022b;c; Xia et al., 2023a) using cross entropy loss for
label disambiguation, as the high similarity among the candidate labels causing the pseudo labels
generated by these methods become noisy and unreliable.

The advantage of SAT loss on fine-grained categorization data can be attributed to its two key
characteristics. On the one hand, SAT loss gets rid of the pseudo label, which may lead to erroneous
guidance by the representation learning module or self-supervised manner. On the other hand, SAT
loss forces the classifier to concentrate the prediction probability on one single candidate label during
the training process. To show that, we provide the second important property of SAT loss below, the
low entropy preference.
Proposition 5.3. [Low entropy preference] Let H(f(x); s) := −∑j∈s f

j(x) log f j(x) denote the
entropy of the PLL sample (x, s) subject to f . Then ℓSAT (f(x), s) ∝ H(f(x); s).

Notice that favoring low-entropy solutions, essentially means that ℓSAT penalizes classifiers that
output uniform (or close to uniform) softmax probabilities, as visualized in Figure 3. When the
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prediction entropy H(f(x), s) is low, indicating the model is very confident in a single class and
gives it a high prediction probability, encouraging the label disambiguation process. We provide the
proof of the above proposition in Appendix A.3.

5.3 ERROR BOUND WITH SAT LOSS

We study the error bound between the SAT loss and the zero-one loss. As the risk minimization under
the zero-one loss is impractical even for a linear classifier, therefore we use SAT loss as the surrogate
loss. We aim to show that for a classifier f trained on a partial labeled dataset DN , as N goes to
infinity, then the partial risk of SAT loss subject to f converges to the risk of zero-one loss.

We discuss the error bound of SAT loss for a partial label learning dataset DN with size N under
a small ambiguity degree γ. We extend the small ambiguity degree to the uniformed partial label
learning scenario that ∀j ∈ s, we have P (j ∈ z|X = x, Y = y∗) = γ, which means given a partial
label learning instance x, any non-true labels have a probability of γ to be in the candidate label set s.
The average candidate label number can be calculated as |s| = ⌊(C − 1)γ + 1⌋. We show the error
bound below and provide full proof in Appendix A.4.
Theorem 5.4. [Error bound under small ambiguity degree] Given partial labeled dataset DN with
small ambiguity degree γ ∈ (0, 1), ∀ϵ, δ ∈ (0, 1), with probability at least 1− δ, we have:

R01(f ;DN ) ≤ 1

1− γ

(
R̂SAT (f ;DN ) + 2

√
(C − 1)γ + 1ℜN (F) +

√
log(1/δ)

2N

)
. (5)

R̂SAT (f ;DN ) is the empirical risk of SAT loss ℓSAT over an arbitrary partial labeled dataset DN ;
ℜ(F) denotes the Rademacher complexity (Definition A.1) of hypothesis space F.

Proof Sketch. To prove Theorem 5.4, we first utilize the inequality between zero-one loss and partial
zero-one loss (Proposition A.4). Then we show the Lipschtness of the SAT loss (Lemma A.3). We
show that SAT loss is upper bound by partial cross-entropy loss and lower bound by partial zero-one
loss (Lemma A.5). We get the final result by Applying standard Rademacher complexity bounds.
Remark 5.5. The error bound we get in Theorem 5.4 indicates that the increasing of small ambiguity
degree,i.e. γ or number of class C in the training data will increase the learning difficulty, which
is intuitive. In approach to the optimal classifier, the training set is expected to satisfy the quantity
condition N → ∞, we have the empirical risk of SAT loss R̂SAT (f ;DN ) approaches to the risk of
ideal zero-one loss, which shows the learnability and generalization ability of SAT loss.

6 EXPERIMENTS

Datasets. We consider a variety of multi-class benchmarks, CIFAR-100 (Krizhevsky, 2009) (100
classes) and TINY IMAGENET (Chrabaszcz et al., 2017) (200 classes) and fine-grained classification
datasets, CUB-200 (Wah et al., 2011) (200 classes), and OXFORD FLOWER 102 (Nilsback &
Zisserman, 2008) (102 classes). To generate PLL scenarios out of the above benchmarks, we adopted
the steps from Wang et al. (2022b;c); Xia et al. (2023a). In particular, we generated conventional
uniform partial label setting by flipping negative labels y′ ̸= y to false positive labels with a probability
q = P (y′ ∈ s|y′ ̸= y), all C−1 labels that are different from the gold one have a uniform probability
to be false positive. To form the candidate label sets, the gold label is aggregated to the flipped ones.
The above means that each candidate label set has in total q × c labels on average. We refer to q as
the partial label rate. We considered q ∈ {0.1, 0.2, 0.3} for CIFAR-100, TINY IMAGENET, and
OXFORD FLOWER 102, and q ∈ {0.05, 0.1, 0.15} for CUB-200. Finally, we carried out experiments
in instance-dependent partial label settings (Xu et al., 2021) using CIFAR-10 and CIFAR-100. In
this setting, we adopted the steps in (Xu et al., 2021) to generate PLL scenarios and, in particular, by
utilizing the pre-trained model’s predictions as the label flipping probabilities.

Baselines. We compared the efficiency of ℓSAT against state-of-the-art classifier- and risk-consistent
PLL techniques that do not rely on representation learning, namely LWC (Wen et al., 2021), RC (Feng
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Table 1: Mean classification accuracy on CIFAR-100, TINY IMAGENET, CUB-200, and OXFORD
FLOWER 102 for uniform partial labels. Best results across all baselines are in red.

METHODS
CIFAR-100 TINY IMAGENET OXFORD FLOWER 102 CUB-200

q = 0.1 q = 0.2 q = 0.3 q = 0.1 q = 0.2 q = 0.3 q = 0.1 q = 0.2 q = 0.3 q = 0.05 q = 0.1 q = 0.15

CC 67.19% 63.55% 44.32% 52.03% 31.28% 12.63% 66.43% 33.66% 21.54% 48.86% 22.45% 12.32%
RC 66.36% 56.57% 33.71% 34.16% 7.82% 2.74% 84.55% 52.90% 39.79% 59.18% 27.82% 18.08%

LWC 67.60% 60.31% 34.18% 32.50% 8.19% 3.46% 83.18% 52.41% 44.12% 56.85% 28.03% 18.85%
SAT 71.05% 70.31% 51.74% 54.10% 50.17% 29.02% 92.16% 81.36% 61.26% 69.75% 58.85% 37.06%

PAPI 81.14% 79.77% 47.55% 52.44% 34.29% 22.34% 95.32% 92.11% 82.83% 70.40% 53.31% 37.05%
PAPISAT 81.16% 80.11% 71.56% 58.83% 52.96% 44.26% 95.34% 93.58% 85.01% 72.16% 61.52% 49.55%

PICO+ 68.20% 57.15% 37.76% 39.89% 17.86% 7.74% 88.99% 85.55% 75.86% 66.59% 57.37% 42.45%

PICO+
SAT 73.44% 67.44% 62.88% 51.21% 46.22% 35.16% 92.30% 86.67% 78.22% 69.26% 62.18% 51.28%

DPLL 78.24% 75.67% 63.91% 52.13% 20.47% 6.74% 91.33% 67.52% 42.17% 67.36% 38.63% 21.73%
DPLLSAT 78.27% 76.28% 66.49% 55.55% 35.77% 17.16% 92.16% 72.17% 46.21% 70.33% 42.16% 27.28%

et al., 2020), CC (Feng et al., 2020). We use SAT to denote the cases where training is conducted
via minimizing the ℓSAT loss only. We also compared the classification accuracy of PICO+ (Wang
et al., 2022c) and PAPI (Xia et al., 2023a) against their ℓSAT -based counterparties PICO+

SAT and
PICO+

SAT, by replacing the cross entropy loss with ℓSAT . For DPLL (Wu et al., 2022a), we added
ℓSAT as a new term in the loss. We refer to this variant as DPLLSAT.

Implementation. We followed the official implementation for all baselines (Wang et al., 2022c; Xia
et al., 2023a; Wu et al., 2022a; Wen et al., 2021; Feng et al., 2020). In all experiments, we adopted a
ResNet18 classifier and ran training for 800 epochs in each case. The learning rate was set to 0.01
with weighted decay. Similarly to (Wang et al., 2022c) and (Xia et al., 2023a), we used a pre-trained
ResNet18 as the initial parameters for experiments on CUB-200 and OXFORD FLOWER 102and
randomly initialized for the others. The experiments ran on 8 NVIDIA RTX A6000 GPUs.

6.1 EMPIRICAL RESULT

We provide experiment result analysis in this section. Specifically, Table 1 shows results for uniform
partial labels on CIFAR-100 and TINY IMAGENET and fine-grained benchmarks OXFORD FLOWER
102 and CUB-200. Table 2 shows results for instance-dependent partial labels on CIFAR-10 and
CIFAR-100. We provide further details and experimental results on noisy partial label setting and
real-world benchmarks as PASCAL VOC (Everingham et al.) in the Appendix B.

Results on Multi-class Datasets. Table 1 shows that the integration of ℓSAT notably enhances
the classification accuracy of the baseline method across all scenarios on CIFAR-100 and TINY
IMAGENET. Specifically, on CIFAR-100 and when q = 0.3, PAPISAT has accuracy 71.56%
compared to the original PAPI of 47.55%. On TINY IMAGENET, PICO+

SAT reaches an accuracy
of 35.16% for p = 0.3, a marked improvement over PICO+’s 7.74%. These results suggest that
integrating ℓSAT can significantly increase the robustness and performance of the existing frameworks
under challenging high-label ambiguity scenarios.

Results on Fine-grained Datasets. Table 1 also shows that ℓSAT leads to consistently higher accuracy
against state-of-the-art across varying levels of label ambiguity on fine-grained, complex datasets.
Notably, PAPISAT achieves exceptionally high accuracy on OXFORD FLOWER 102, reaching up
to 95.34% for q = 0.1, maintaining high accuracy as the partial label rate increases. Similarly, the
integration of ℓSAT into PICO+ significantly improves upon PICO+ on CUB-200, where it records
a notable accuracy of 51.28% for q = 0.15. These results underline the high resilience of ℓSAT in
challenging fine-grained contexts where the candidate labels come from subcategories (i.e., Raven,
Crow, Blackbird) of the same class (e.g., bird).

SAT loss helps learn more distinguishable representations. In Figure 4, we illustrate the image
representation encoded by the ResNet18 model using t-SNE (Van der Maaten & Hinton, 2008).
We use the instance-dependent partial labeled CIFAR-10 data as the training set and present four
approaches. Figure 4(a) and (b) shows the result from PICO+ and its ℓSAT -based counterparty
PICO+

SAT . Similarly, Figure 4(c) and (d) show the results of PAPI and PAPISAT , respectively. It
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can be observed that the integration of ℓSAT greatly enhanced the representation quality, producing
well-separated clusters. This is because the classifier and encoder share the same parameters in
PICO+ and PAPI , and integrating ℓSAT greatly enhanced the classifier performance. Therefore, we
see the more distinguishable representations.

Results for Instance-Dependent Partial Labels.
From Table 2, we can see that ℓSAT demon-
strates superior performance, achieving the second
highest accuracy of 89.32% on CIFAR-10 and
56.93% on CIFAR-100 without integrating with
other techniques. The incorporation of ℓSAT into
PICO+, PAPI, and DPLL enhances their per-
formance by a large margin. We can see that
PAPISAT and PICO+

SAT show remarkable im-
provements over their standalone counterparts.
The consistent improvements across different base-
lines and benchmarks confirm the utility of ℓSAT

in improving classification outcomes in different
complex label scenarios, verifying the effective-
ness of our satisfiability-based PLL reduction.

METHODS CIFAR-10 CIFAR-100

CC 82.92% 35.42%
RC 83.61% 44.56%

LWC 88.04% 46.99%
SAT 89.32% 56.93%

PAPI 85.87% 54.46%
PAPISAT 90.10% 57.66%

PICO+ 83.54% 56.62%

PICO+
SAT 86.52% 57.74%

DPLL 71.46% 35.46%
DPLLSAT 74.74% 36.02%

Table 2: Mean classification accuracy for
instance-dependent partial labels. Best re-
sults across all baselines are in red.

(a) PiCO+ features (b) PiCO+ with SAT features

(c) PaPi features (d) PaPi with SAT features

Figure 4: t-SNE visualization of the image representation on CIFAR-10(instance-dependent).

7 CONCLUSIONS

To conclude, this paper introduces a novel approach to Partial Label Learning (PLL) by framing it as
a satisfiability problem and introducing a SATisfiability-based (SAT) loss function. Through both
theoretical and empirical analyses, we demonstrate that this method offers substantial improvements in
classification accuracy, especially in scenarios with high label ambiguity and fine-grained categories.
Our SAT loss does not rely on pseudo labels and helps the model focus on low-entropy solutions,
resulting in better label disambiguation. This work provides a solid foundation for future research on
applying logical constraints to weakly supervised learning, with potential extensions to more complex
and real-world datasets.
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