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ABSTRACT

Expanding multimodal representations to novel modalities is constrained by
reliance on large-scale paired datasets (e.g., text–image, text–audio, text–3D,
text–molecule), which are costly and often infeasible in domains requiring ex-
pert annotation such as medical imaging, 3D modeling, and molecular analysis.
We introduce TextME, the first framework for text-only modality expansion that
removes paired data requirements. Our method leverages the universal geomet-
ric properties of pre-trained encoders—consistent modality gaps—which enable
zero-shot cross-modal transfer once embedding spaces satisfy these properties.
We empirically verify that these hold across audio, 3D, X-ray, and molecular do-
mains, enabling effective cross-modal tasks without paired supervision. Further-
more, we evaluated LLM and multimodal text encoders to determine which is
more effective as a unified anchor space. Experiments show that TextME achieves
88.2% of paired-data performance in zero-shot classification and cross-modal re-
trieval, while also supporting emergent capabilities between unseen modality pairs
(e.g., audio-to-3D, molecule-to-image). These results highlight text-only modal-
ity expansion as a practical and scalable path toward foundation models spanning
arbitrary modalities.

1 INTRODUCTION

Expanding multimodal representations to novel modalities constitutes a fundamental challenge in
contemporary representation learning (Baltrušaitis et al., 2018; Manzoor et al., 2023; Liang et al.,
2024; Yuan et al., 2025; Liu et al., 2025). Modality expansion aims to align heterogeneous data
modalities into a unified embedding space where semantically equivalent content maintains prox-
imity (Zhang et al., 2023a; Han et al., 2023; Zhu et al., 2023; Lyu et al., 2024; Wang et al., 2023a).
Large-scale paired datasets such as text–image or text–audio corpora have enabled remarkable
progress in vision–language (Radford et al., 2021; Jia et al., 2021) and audio–language (Wu et al.,
2023; Manco et al., 2022) modeling, but the construction of such resources proves prohibitively ex-
pensive or infeasible. Medical imaging requires costly expert annotations while navigating privacy
constraints (Wang et al., 2025; Kitamura et al., 2024; Ziller et al., 2021), molecular analysis demands
complex domain-specific representations (Edwards et al., 2024; Xiao et al., 2024), and 3D model-
ing necessitates labor-intensive curation (Deitke et al., 2023; Sarkar et al., 2025). Consequently, the
scalability of modality expansion is constrained not merely by architectural limitations but, more
fundamentally, by the availability of paired supervision.

Recent advances (Wang et al., 2023b; Zhang et al., 2024b; Wang et al., 2024a;b) demonstrate that
pre-trained multimodal encoders like CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) can
be effectively reused through lightweight projection networks to integrate multiple modalities into
shared representation spaces. However, these approaches still require fully-paired multimodal data
during training, demanding simultaneous access to all target modalities with corresponding super-
vision. This requirement becomes particularly challenging when extending to modalities beyond
standard vision-language pairs—such as audio, 3D point clouds, medical X-rays, and molecular
structures—where natural correspondences are often absent and domain expertise is scarce.

In this work, we eliminate the paired data requirement by exploiting an inherent geometric property
of pre-trained multimodal encoders—the consistent modality gap. Inspired by prior theoretical work
demonstrating this phenomenon (Liang et al., 2022; Zhang et al., 2023b), we propose Text-anchored
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Modality Expansion (TextME), a framework that leverages this gap for text-only training. Zhang
et al. (2024a) demonstrated that when a directionally consistent offset vector exists between pre-
trained image and text embedding spaces, cross-modal transfer can be achieved via simple vector
translation without paired training. As illustrated in Figure 1, we extend this insight by empirically
verifying that such modality gaps are a universal property of contrastively-trained encoders, regard-
less of the specific modality they encode. Since these encoders rely on text for alignment during
training, TextME exploits their shared text embedding space as a semantic anchor, applying pre-
computed offset translation to bridge modality spaces using only text descriptions.

We validate TextME’s effectiveness through comprehensive experiments on diverse modalities using
zero-shot classification and cross-modal retrieval tasks. Despite training exclusively on text descrip-
tions, TextME achieves an average of 88.2% performance preservation compared to paired-data
methods, with specific tasks like molecular retrieval, even surpassing supervised learning baselines.
Moreover, our framework enables emergent cross-modal capabilities between modality pairs that
have never seen during training, such as audio-to-3D and molecule-to-image retrieval, demonstrat-
ing that text-anchored alignment creates meaningful semantic bridges across arbitrary modalities.

In addition, we empirically evaluate two candidate text representation spaces as a semantic
anchor:LLM-based embeddings and multimodal text encoders. Experimental results reveal a con-
sistent trend: LLM-anchored embeddings deliver stronger performance on retrieval tasks, while
multimodal-anchored embeddings excel in classification. We attribute this distinction to their train-
ing paradigms—LLMs learn semantically rich representations well-suited for aligning natural lan-
guage queries, whereas multimodal encoders trained under contrastive objectives emphasize dis-
criminative boundaries advantageous for categorical separation.

Our contribution is three-fold:

• We provide comprehensive empirical validation that the consistent modality gap—a sys-
tematic offset between text and non-text embeddings—exists universally across diverse
pre-trained encoders (e.g., audio, 3D, X-ray, and molecule). We demonstrate that this gap
operates orthogonally to semantic content, enabling zero-shot cross-modal transfer without
requiring paired multimodal data.

• We propose TextME, the first framework that exploits this geometric consistency to achieve
modality expansion using only text descriptions. By leveraging LLM embeddings as a uni-
fied semantic anchor, our method captures richer semantic relationships across diverse do-
mains.

• We demonstrate that text-only training can achieve 88.2% of paired-data performance
across diverse modalities (i.e., audio, 3D, X-ray, molecule) while eliminating the need for
target modality data during training. TextME enables emergent cross-modal retrieval ca-
pabilities between modality pairs that were never seen during training (e.g., audio-to-3D,
molecule-to-image retrieval), demonstrating that text serves as an effective semantic bridge
across arbitrary modalities.

2 THEORETICAL FOUNDATION: CROSS-MODAL INSTANCE MAPPING

We establish the theoretical underpinnings for text-only modality expansion by analyzing the ge-
ometric structure of pre-trained multimodal encoders. Our investigation reveals that contrastively-
trained encoders exhibit a consistent modality gap—a systematic offset between text and non-text
embeddings—enabling zero-shot cross-modal transfer through simple offset translation.

2.1 GEOMETRIC PROPERTIES OF CROSS-MODAL ALIGNMENT

Building on observations of vision-language models (Liang et al., 2022; Zhang et al., 2023b; 2024a),
we extend the theoretical analysis to diverse specialized modalities, including audio, 3D, medical
imaging, and molecular structures. We identify three critical hypotheses that support offset-based
alignment: intra-modal clustering (Hypothesis 0), inter-modal gap consistency (Hypothesis 1), and
orthogonality between gap and content variations (Hypothesis 2).
Definition 1 (Cross-Modal Instance Mapping). Given a set of modalitiesM = {m1,m2, . . . ,mk}
with embeddings in a shared space Rd, a cross-modal instance mapping is a transformation Φij :
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Figure 1: Geometric analysis of modality gaps across five multimodal encoders. Centroid Proximity
(top): Mean pairwise distances from embeddings to modality centroids. Gap Direction (second):
Cosine similarity between different sample pairs’ gap vectors. Noise Mean (third): Distribution of
alignment noise mean values. Gap Orthogonality (bottom): Cosine similarity between gap vectors
and content variations within modalities.

Rd → Rd that aligns embeddings from modality mi to modality mj:

Φij(e) = e−∆ij (1)

where ∆ij = µmi
− µmj

is the inter-modal offset between modality centroids µmi
= E[emi

] and
µmj

= E[emj
]. The mapping enables zero-shot cross-modal transfer when Hypotheses 0–2 are

satisfied, ensuring that semantically corresponding embeddings ei, ej satisfy ∥Φij(ei) − ej∥ < δ
for small δ.
Hypothesis 0 (Intra-Modal Alignment Independence). For a modality m ∈ M, normalized em-
beddings concentrate within a bounded region on the unit hypersphere: cos(êi, êj) > τintra for all
embeddings ei, ej from modality m, where ê = e/∥e∥2 denotes normalization and τintra is deter-
mined by the contrastive objective.

This property emerges from the ℓ2 normalization applied during contrastive learning, which projects
representations onto the unit hypersphere. We verify this through Centroid Proximity statistics, mea-
suring the mean pairwise cosine similarity of normalized embeddings within each modality. This
concentration property establishes a well-defined centroid µm = E[em] for each modality, enabling
the characterization of inter-modal offsets ∆ij = µi−µj as meaningful geometric transformations.
Hypothesis 1 (Inter-Modal Gap Consistency). For modalities mi,mj ∈ M, a consistent offset
exists between their embedding spaces:
Hypothesis 1.1 (Space-level Gap Consistency). Instance-level offsets can be approximated by a
single group-level offset: ∆(k)

ij ≈ ∆ij for all instance pairs k, where ∆ij = µi−µj is the difference
between modality centroids.

The modality gap originates from inherent differences in modality characteristics and architectural
properties from initializing separate encoders. We verify this through Gap Direction analysis, mea-
suring an average cosine similarity between instance-level and group-level offsets. Our experiments
show cos(∆

(k)
ij ,∆ij) > 0.95 across all instance pairs, demonstrating strong alignment with the

mean gap direction.
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Hypothesis 1.2 (Instance-level Gap Consistency). Deviations from the mean offset follow a bounded
distribution: ϵk = ∆

(k)
ij −∆ij ∼ N (0, σ2) where σ < γ ·τ , with τ being the temperature parameter

and γ a modality-specific constant.

The robustness of the offset is related to the temperature parameter in the contrastive objective. We
verify this through Alignment Noise analysis, confirming that E[ϵk] ≈ 0 with bounded variance,
demonstrating robustly predictable instance-level variations.
Hypothesis 2 (Orthogonality of Inter/Intra Variations). The inter-modal offset ∆ij is orthogonal to
intra-modal semantic variations: ∆ij ⊥ r

(p,q)
m for any instances p, q within modality m ∈ {mi,mj},

where r
(p,q)
m = ep − eq denotes the difference vector between embeddings.

This orthogonality indicates that ∆ij operates independently of semantic content within each modal-
ity. Since the offset is orthogonal to semantic variations r

(p,q)
m , applying the mapping Φij(e) =

e−∆ij preserves relative distances and semantic relationships. We verify this through Gap Orthog-
onality analysis, measuring | cos(∆ij , r

(p,q)
m )| < 0.1 for random within-modality pairs.

2.2 EMPIRICAL MODALITY GAP VALIDATION ACROSS DIVERSE MODALITIES

To validate our theoretical framework, we analyzed five pre-trained multimodal encoders spanning
diverse modalities: LanguageBind (Zhu et al., 2023) for vision, CLAP (Elizalde et al., 2023) for
audio, Uni3D (Zhou et al., 2023) for 3D point clouds, CXR-CLIP (You et al., 2023) for medical X-
rays, and MoleculeSTM (Liu et al., 2023) for molecular structures. For each encoder, we randomly
sampled N = 5, 000 text-modal pairs from their training domains to compute the inter-modal offset
∆ij = E[Emi(x)]−E[Emj (t)] and analyze its geometric properties. Figure 1 presents comprehensive
validation results demonstrating that all three hypotheses hold across diverse modalities.

Centroid Proximity (Hypothesis 0) confirms tight intra-modal clustering across most modalities,
though X-ray shows notably dispersed distributions that correlate with reduced modality expansion
performance as demonstrated in Section 4.2. Gap Direction demonstrates cos(∆

(k)
ij ,∆ij) > 0.96

consistency (Hypothesis 1.1), validating single-vector characterization across modalities. Noise
Mean confirms zero-centered distributions with E[ϵk] ≈ 0 (Hypothesis 1.2), indicating predictable
alignment variations. Gap Orthogonality shows | cos(∆ij , r

(p,q)
m )| < 0.05 (Hypothesis 2), confirm-

ing that modality gaps operate independently of semantic content, enabling effective cross-modal
transfer through simple offset operations. These geometric properties establish a unified framework
for understanding and exploiting cross-modal relationships in pre-trained encoders.

3 TEXT-ANCHORED MODALITY EXPANSION FRAMEWORK

Building on the theoretical insights from Section 2, we propose TextME, a framework that exploits
the consistent modality gap property to enable text-only training for modality expansion. Our ap-
proach leverages the geometric consistency demonstrated in Section 2.1—that pre-trained encoders
exhibit a constant offset between text and non-text embeddings orthogonal to semantic content. This
property allows us to create an interchangeable coordinate system through simple centering opera-
tions, eliminating the need for paired multimodal data.

3.1 PROBLEM FORMULATION

Modality expansion aims to integrate diverse pre-trained encoders into a unified semantic space
where similar concepts maintain proximity regardless of their originating modality. Consider a set
of pre-trained encoders {Em : Xm → Rdm}, where each encoder Em maps inputs from modality
m’s input space Xm to dm-dimensional embeddings. Given a source modality ms with established
semantic representations and target modalitiesMT = {m1, . . . ,mk} to be incorporated, the objec-
tive is to learn projection networks Pm : Rdm → Rdh that preserve semantic relationships across
modalities, where dh denotes the dimensionality of the shared embedding space.

We consider a practical scenario where only unpaired textual descriptions Dtext = {ti}Ni=1 are avail-
able for training. Pre-trained multimodal models consist of text encoders Etext

m and modal encoders
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Emodal
m jointly optimized through contrastive learning. Our approach exploits the geometric proper-

ties identified in Section 2.1—specifically, the consistent offset between these encoders—to enable
alignment without paired multimodal data.

3.2 FRAMEWORK OVERVIEW

TextME operates through three stages that decouple geometric alignment from semantic projection.
First, we pre-compute modality-specific offsets ∆m = µmodal

m −µtext
m using Equation 1 to characterize

the geometric transformation between text and modal encoders. Second, we train lightweight projec-
tion networks Pm exclusively on centered text embeddings, mapping them to a shared representation
space using only unpaired text descriptions. Third, at inference, we apply the pre-computed offset
to non-text modality embeddings, then project them using the text-trained network. This design ex-
ploits the orthogonality property (Hypothesis 1) to preserve semantic relationships while enabling
cross-modal transfer without paired supervision. Algorithm 1 formalizes the complete procedure.

3.2.1 OFFSET COMPUTATION

We establish interchangeability between text and modal embedding spaces by pre-computing
modality-specific offsets. For each encoder Em, we compute centroids µtext

m = E[Etext
m (t)] and

µmodal
m = E[Emodal

m (x)] over representative samples from each distribution. By centering each modal-
ity independently—subtracting µtext

m from text embeddings and µmodal
m from modal embeddings—we

create a shared coordinate system where both modalities are aligned at the origin. This enables pro-
jection networks trained on centered text embeddings to generalize to centered modal embeddings
at inference. The offset computation requires only 5,000 samples—a 99% reduction from typical
paired training requirements (Zhu et al., 2023; Zhang et al., 2024b).

3.2.2 TEXT-TO-TEXT ALIGNMENT

Contrastive Learning for Projection Network. Given text descriptions Dtext = {ti}Ni=1 from
the target modality domain, we train a lightweight projection networks Pm : Rdm → Rdh to map
centered text embeddings into a shared representation space. Each projection network consists of a 2-
layer MLP with GeLU activation, requiring only ∼10M parameters. The training objective employs
contrastive learning with hard negative mining (Lee et al., 2024; Moreira et al., 2024; Rösch et al.,
2024):

Lalign = − 1

B

B∑
i=1

log
exp(sim(zi, z

′
i)/τ)∑

j∈Ni∪{i} exp(sim(zi, z′j)/τ)
(2)

where zi = Pm(Etext
m (ti) − µtext

m ) is the projected centered embedding, z′i = Es(ti) is the shared
space embedding, and Ni contains hard negatives with similarity scores in [0.1 · sim(zi, z

′
i), 0.9 ·

sim(zi, z
′
i)]. This sampling strategy accelerates convergence by focusing gradients on informative

examples near the decision boundary.

Figure 2: Semantic anchoring comparison be-
tween LLM embeddings and multimodal en-
coders on 3,000 semantically equivalent cross-
modal description pairs.

Choice of Shared Anchor Space. We em-
pirically validate two candidate text represen-
tation spaces as semantic anchors: LLM em-
beddings (i.e., NV-Embed-v2 (Lee et al., 2024)
and Qwen3-Embeddings (Zhang et al., 2025))
and multimodal text encoders (i.e., Language-
Bind (Zhu et al., 2023)). To assess whether
the embeddings faithfully capture semantic rep-
resentations, we evaluated their performance
on the STS benchmark, a widely used metric
for contextual understanding that measures sen-
tence similarity on a 0–5 scale. LLM embed-
dings achieve 85.79 ∼ 90.40 Spearman cor-
relation on STS benchmarks versus 68.29 ∼
68.83 for multimodal encoders (Table 3 in Ap-
pendix C), reflecting their superior semantic
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understanding from extensive next-token prediction training. To assess cross-domain alignment ca-
pabilities, we analyzed 3, 000 audio-image caption pairs from FlickrNet (Senocak et al., 2018),
where we generated linguistically distinct but semantically equivalent descriptions using the Gemini
API (Google, 2024). For instance, an image caption “a red sports car speeding on highway” was
paired with its audio equivalent “loud engine roar with wind rushing past”, testing whether encoders
can recognize semantic similarity despite different surface forms. Figure 2 shows LLM embeddings
(Qwen) maintain 2.4× higher similarity (0.56 vs 0.23-0.26) for matched pairs compared to multi-
modal encoders, demonstrating their effectiveness as semantic anchors for text-only training despite
lacking cross-modal supervision.

3.2.3 INFERENCE-TIME CROSS-MODAL TRANSFER

At inference, TextME enables zero-shot cross-modal capabilities through offset-based transforma-
tion. For a non-text input x from modality m, we compute:

efinal = Pm(Emodal
m (x)− µmodal

m ) (3)

The centering operation (Emodal
m (x) − µmodal

m ) transforms the modal embedding into the coordinate
system used during text training. Since the offset is orthogonal to semantic variations (Hypothe-
sis 2), this transformation preserves semantic relationships while enabling the text-trained projec-
tion network Pm to map modal embeddings to the shared representation space, achieving effective
cross-modal retrieval and classification without paired supervision.

4 EXPERIMENTS

We evaluate TextME’s ability to expand multimodal representations through comprehensive ex-
periments across diverse modalities. Our analysis includes quantitative evaluation on the standard
benchmarks for cross-modal retrieval and zero-shot classification (Section 4.2), and qualitative ex-
amination of emergent cross-modal capabilities between modality pairs never paired during training
(Section 4.3).

4.1 EXPERIMENTAL SETUP

Source and Target Modalities. We conducted experiments to verify the modality expansion capa-
bility of TextME. For the source representation space, we select LanguageBind (Zhu et al., 2023), an
image-text aligned standard multimodal foundation model. As target modalities, we integrate four
specialized domains that lack natural multimodal correspondences: Audio using CLAP (Elizalde
et al., 2023) trained on AudioCaps (Kim et al., 2019) descriptions, 3D using Uni3D (Zhou et al.,
2023) trained on Cap3D-Objaverse (Luo et al., 2023) captions, X-ray using CXR-CLIP (You et al.,
2023) trained on CheXpert (Irvin et al., 2019) reports, and Molecule using MoleculeSTM (Liu et al.,
2023) trained on PubChem (Kim et al., 2025) descriptions. For fair comparisons across modalities,
we sample 100K text descriptions from each modality-specific training dataset.

Text Anchor Space. To establish a unified text embedding space, we utilize three distinct models:
LanguageBind (LB; Zhu et al. 2023), NV-Embed-v2 (NV; Lee et al. 2024), and Qwen3-Embedding-
4B (Qwen; Zhang et al. 2025). These models are carefully selected to evaluate the efficacy of our
proposed framework across diverse shared anchor spaces, each exhibiting different representational
capabilities as Section 3.2.2. For clarity, we denote the corresponding implementations as OursLB ,
OursNV , and OursQwen.

Baselines. We compare against two categories of methods to evaluate TextME’s effectiveness.
Paired-data methods include LanguageBind (Zhu et al., 2023), which trains modality-specific en-
coders from scratch, and Ex-MCR (Zhang et al., 2024b), which adapts frozen pre-trained encoders.
For direct comparisons, we implement Oursupper-bound, a variant of TextME with the same ar-
chitecture but trained on paired multimodal data, representing the performance upper bound. Un-
paired-data methods lack established baselines for our zero-shot setting. We therefore compare our
approach with COX (Huang et al., 2025), which fine-tunes target modalities without instance-level
pairing, although it requires labeled target data, unlike our approach. We re-implemented COX fol-
lowing the specification of the paper; details are given in Appendix E.2. We also include a Naı̈ve
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Table 1: Zero-shot cross-modal retrieval performance. Highlighted rows share identical architec-
ture but differ only in training data type (paired multimodal vs. text-only) and LLM anchoring. Avg.
Preservation represents the average percentage of the supervised upper bound (Oursupper-bound)
achieved by each TextMEvariant, computed across R@1 and R@5 metrics. † indicates our repro-
duction due to unavailable public code. Bold indicates best among unsupervised methods.

Text → Audio Text → Molecule Audio → Image

AudioCaps Clotho DrugBank FlickrNet
Method R@1 R@5 R@1 R@5 MRR@4 MRR@20 R@1 R@5

Paired
LanguageBind 12.42 36.70 11.32 31.03 – – 1.52 6.36
Ex-MCR 19.07 47.05 7.01 22.04 – – 1.57 5.94
Oursupper-bound 19.79 51.48 9.53 26.56 27.97 22.03 – –

Unpaired
Naı̈ve 0.02 0.35 0.04 0.23 10.17 4.24 0.02 0.06
COX† 0.08 0.64 0.11 0.78 7.63 2.54 0.02 0.10
OursLB 14.54 41.02 6.93 22.33 29.66 20.34 0.92 3.42
OursNV 16.20 45.15 7.75 23.73 26.27 22.88 0.74 3.28
OursQwen 15.35 43.88 7.81 23.81 31.36 26.27 1.06 3.14

Avg. Preservation 77.6% 84.2% 78.7% 87.7% 104.0% 105.1% – –

Table 2: Zero-shot classification performance across diverse modalities.
Audio 3D X-ray

AudioSet ESC-50 ModelNet40 ScanObjectNN RSNA
Method mAP Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1

Paired
LanguageBind 18.33 94.00 99.70 – – – – –
Ex-MCR 6.67 71.20 96.80 66.53 93.60 40.31 77.20 –
Oursupper-bound 6.67 70.55 94.25 81.85 97.00 61.56 88.44 52.71

Unpaired
Naı̈ve 1.14 2.90 8.45 0.81 8.95 3.32 30.52 26.36
COX† 1.26 2.00 10.00 4.05 13.70 2.84 26.68 23.18
OursLB 6.42 74.65 94.60 81.12 97.49 54.81 84.88 26.03
OursNV 5.13 79.40 97.20 76.30 94.37 40.24 75.95 22.26
OursQwen 5.80 77.25 96.85 70.86 92.14 42.15 77.89 22.46

Avg. Preservation 86.7% 109.3% 102.1% 93.0% 97.6% 74.3% 90.0% 44.7%

baseline using PCA projection to the source embedding space (i.e., 768 dimensions for Language-
Bind) with standard normalization, demonstrating that simple dimensionality reduction without
learned alignment is insufficient.

Evaluation Tasks. To verify the effectiveness of TextME, we evaluate its performance on two
categories of cross-modal downstream tasks. For cross-modal retrieval, we evaluate: (i) Text→X
retrieval on AudioCaps (Kim et al., 2019), Clotho (Drossos et al., 2020), and DrugBank (Knox
et al., 2024) (using MRR@k for molecules following MoleculeSTM (Liu et al., 2023)); (ii) X→X
retrieval on Flickr30k (Plummer et al., 2015) for Audio→Image, demonstrating emergent cross-
modal capabilities between modalities never paired during training. For zero-shot classification,
we test on ModelNet40 (Qiu et al., 2021) and ScanObjectNN (Uy et al., 2019) for 3D point clouds,
AudioSet (Gemmeke et al., 2017) and ESC-50 (Piczak) for audio, and RSNA Pneumonia Detec-
tion (RSNA, 2018) for X-ray images, reporting top-k accuracy and mAP.
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Figure 3: Emergent cross-modal retrieval without paired supervision. Audio queries retrieve se-
mantically related 3D objects (top), and molecular structures retrieve contextually appropriate im-
ages (bottom). Results obtained by sampling 5, 000 instances per modality and performing cosine
similarity-based retrieval in the learned embedding space.

4.2 ZERO-SHOT CROSS-MODAL TASK PERFORMANCE

Tables 1 and 2 demonstrate that TextME achieves competitive zero-shot performance across diverse
modalities. To understand what drives this efficacy, we examine two key factors: the effectiveness of
cross-modal mapping mechanisms and the impact of shared anchor space selection.

Effectiveness of Cross-Modal Mapping. While all three hypotheses are empirically validated
in Section 2.2, Hypothesis 0 emerges as the critical determinant of cross-modal transfer perfor-
mance, as centroid proximity directly governs the effectiveness of the constant offset approximation
central to TextME’s approach. The experimental results demonstrate a clear inverse correlation be-
tween centroid proximity and performance preservation: Molecule, 3D, and Audio modalities ex-
hibit relatively low centroid proximity values, enabling an average preservation rate of 91.56% that
approaches or exceeds paired-data performance. In contrast, X-ray modality shows significantly ele-
vated centroid proximity, creating dispersed embeddings that undermine the constant offset approx-
imation and result in substantially degraded preservation. Overall, TextME achieves strong preser-
vation rates compared to paired-data methods while significantly outperforming unpaired baselines
like COX and the naı̈ve approaches, demonstrating the effectiveness of exploiting consistent modal-
ity gap.

Effectiveness of Shared Anchor Selection. We evaluate the performance of TextME across three
different shared anchor spaces—LanguageBind (Zhu et al., 2023) for multimodal models’ text en-
coder and NV-Embed-v2 (Lee et al., 2024), Qwen3-Embedding-4B (Zhang et al., 2025) for LLMs.
Our evaluation reveals a clear pattern: LLM-anchored methods excel on retrieval tasks, while mul-
timodal anchoring performs better on classification tasks. This distinction likely reflects the funda-
mental differences in their training objectives. Specifically, LLM embeddings capture rich semantic
relationships crucial for matching natural language queries in retrieval, while multimodal encoders
trained with contrastive objectives develop discriminative boundaries better suited for categorical
classification. These complementary strengths demonstrate that optimal anchor selection depends
on downstream task requirements, validating our framework’s flexibility in accommodating various
semantic pivot spaces. We leave the exploration of unified anchoring strategies that leverage these
complementary strengths as future work.
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4.3 QUALITATIVE ANALYSIS OF CROSS-MODAL CAPABILITIES

To evaluate emergent cross-modal transfer capabilities, we conducted qualitative analysis through
retrieval experiments involving modality pairs not present in the training data. Due to the absence
of established benchmarks for these novel cross-modal tasks, we designed an evaluation protocol
sampling 5, 000 instances from AudioCaps (Kim et al., 2019) for audio, Objaverse (Deitke et al.,
2023) for 3D, PubChem (Kim et al., 2025) for Molecule, and COCO (Lin et al., 2014) for image,
performing nearest-neighbor retrieval based on cosine similarity in the learned embedding space.
Results in Figure 3 demonstrate semantic coherence across modalities. The audio-to-3D retrieval
correctly associates acoustic signatures with corresponding semantics—equestrian sounds retrieve
morphologically appropriate horse models, indicating a preserved semantic understanding of au-
ditory features that have been transformed across the modality gap. Similarly, molecule-to-image
retrieval reveals that chemical compounds described with pharmaceutical terminology to retrieve
semantically related visual scenes. These observations suggest that text-only training with a sim-
ple offset operation successfully preserves semantic information from non-text modalities during
inference, despite the projection networks being trained exclusively on textual representations.

5 RELATED WORK

Modality Expansion. Contrastive learning has emerged as the dominant paradigm for multimodal
alignment, pioneered by CLIP (Radford et al., 2021) for vision-language tasks. This success moti-
vated extensions to multiple modalities: ImageBind (Girdhar et al., 2023) uses images as a central
hub to align co-occurring modalities, while LanguageBind (Zhu et al., 2023) leverages text as a
semantic pivot. To reduce computational costs, recent methods connect frozen pre-trained encoders
through lightweight projectors—C-MCR (Wang et al., 2023b) and Ex-MCR (Zhang et al., 2024b)
learn adapters between encoders, while FreeBind (Wang et al., 2024a) and OmniBind (Wang et al.,
2024b) ensemble multiple encoders per modality. However, all these approaches require instance-
level correspondence between modalities through paired supervision. This requirement becomes
prohibitive in specialized domains (e.g., medical imaging, molecular analysis) where paired data
is scarce or infeasible, and the computational complexity scales quadratically with the number of
modalities.

Text-only Training. Recent work has explored cross-modal alignment using only unimodal data
to circumvent the requirement for paired data. DeCap (Li et al., 2023) learns image captioning
without image-text pairs by training a decoder to reconstruct sentences from CLIP text embed-
dings, then projecting image embeddings into text space at inference. LinCIR (Gu et al., 2024)
distills sentence semantics into token-like representations for composed image retrieval. Separately,
theoretical analyses have revealed that contrastively-trained encoders exhibit a consistent modal-
ity gap—a systematic offset between text and non-text embeddings that can be eliminated through
mean-centering (Liang et al., 2022; Zhang et al., 2023b; 2024a). While these approaches demon-
strate the feasibility of text-only training, they remain limited to specific tasks or modality pairs.
TextME unifies these insights by combining modality gap correction with LLM-anchored semantic
alignment, providing the first framework for expanding to arbitrary specialized modalities.

6 CONCLUSION

We presented TextME, a text-only training framework leveraging the consistent modality gap in
pre-trained encoders to enable zero-shot cross-modal transfer using only text descriptions. Through
experiments across audio, 3D, medical X-ray, and molecular domains, TextME achieved 88.2%
average performance preservation compared to paired-data methods, while reducing data require-
ments by 95%, demonstrating that text-anchored text embeddings can effectively serve as semantic
bridges between arbitrary modalities. Our framework addresses the critical bottleneck of paired
dataset scarcity in specialized domains, establishing a scalable paradigm for multimodal represen-
tation learning in resource-constrained and data-limited settings where conventional paired data ac-
quisition remains computationally prohibitive or infeasible in real-world scenarios. Future work will
explore the relationship between modality-specific characteristics and alignment quality, examining
how inherent properties of different data types influence the effectiveness of text-based bridging and
developing adaptive strategies that better account for these variations.
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A GENERATIVE AI USAGE DISCLOSURE

During the preparation of this manuscript, the following generative AI tools were used:

• GitHub Copilot was used solely for code completion and code snippet generation during
the development of experimental pipelines and auxiliary scripts. All generated code was
manually reviewed and, where necessary, modified by the authors.

• Grammarly, Perplexity and ChatGPT were used only for grammar checking, typo cor-
rection, and minor language editing of author-written text. No sections of the paper were
written or generated entirely by generative AI models; all scientific content, analysis, and
claims were produced by the authors.

No generative AI tool was used to produce any scientific content, experimental results, or substantive
text in the manuscript. The use of generative AI tools was strictly limited to the above purposes, in
accordance with ICLR 2026 policy.

B STATISTICS OF MODALITY GAP

To analyze the geometric structure of pre-trained multimodal encoders, we compute several statistics
that characterize the separation between text and non-text embedding spaces.

B.1 STATISTICAL DEFINITIONS

For each encoder Em, we randomly sample N = 5000 text-modal pairs (ti, xi) and compute:

• Individual gap: d(i)
j = e

(i)
xj − e

(i)
tj — the vector difference between paired embeddings.

• Group gap: d(i) = Ej [d
(i)
j ] = 1

N

∑N
j=1 d

(i)
j — the average gap across all pairs.

• Gap length: ∥d(i)∥2 — the magnitude of the average gap vector.

• Gap direction consistency: cos(d(i),d(j)) = d(i)·d(j)

∥d(i)∥2∥d(j)∥2
— cosine similarity between

gap vectors from different sample sets.

• Content orthogonality: cos(d(i), r
(i)
j,k) where r(i)j,k = e

(i)
xj −e

(i)
xk — cosine between gap and

content variations.

• Alignment noise: ϵ(i)j = d
(i)
j − d(i) — deviation from the average gap.

B.2 INTERPRETATION OF STATISTICS

The statistics in Figure 4 reveal three key properties:

High directional consistency (cos(d(i),d(j)) > 0.96 for most encoders) indicates that the modality
gap is nearly constant across the entire dataset, suggesting a systematic geometric separation rather
than instance-specific variations.

Near-zero orthogonality (cos(d(i), r
(i)
j,k) ≈ 0) confirms that the gap direction is perpendicular to se-

mantic content variations, meaning the modality gap represents a pure coordinate shift independent
of semantic information.

Zero-mean alignment noise (E[ϵ(i)j ] ≈ 0) validates that individual gaps cluster tightly around the
mean, supporting our approximation of the modality gap as a single constant vector.

These properties justify our centering-based approach. Since the modality gap is consistent and or-
thogonal to content, we can create an interchangeable space through independent centering without
losing semantic information.
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Figure 4: Distribution of modality gap statistics across five multimodal encoders. From top to bot-
tom: gap length, gap direction consistency, gap orthogonality, alignment noise, and noise direction.
Red curves show fitted normal distributions. The consistent patterns across all encoders demonstrate
the systematic nature of the modality gap.

C SEMANTIC TEXTUAL SIMILARITY BENCHMARK ANALYSIS

To validate our choice of LLM embeddings as the semantic anchor space, we conducted compre-
hensive evaluation on the Semantic Textual Similarity (STS) benchmark suite. Table 3 presents
the Spearman correlation scores across six STS tasks (STS12-16 and STSBenchmark) comparing
multimodal encoders (CLIP (Radford et al., 2021), LanguageBind (Zhu et al., 2023)) against LLM
embedding models (NV-Embed-v2 (Lee et al., 2024), Qwen3-Embed variants (Zhang et al., 2025)).

Table 3: Semantic Textual Similarity (STS) benchmark performance comparison between multi-
modal encoders and LLM embedding models. Spearman correlation scores across six STS tasks.

Model STS Tasks (Spearman ρ) Avg.
STS12 STS13 STS14 STS15 STS16 STSBenchmark

Multimodal Encoders
CLIP 61.87 63.83 62.09 76.82 72.89 72.26 68.29
LanguageBind 63.12 67.46 63.27 73.82 73.73 71.60 68.83

LLM Embedding Models
NV-Embed-v2 77.89 88.30 84.30 89.04 86.77 88.41 85.79
Qwen3-Embed-0.6b 79.35 87.31 79.81 87.28 87.07 86.51 84.56
Qwen3-Embed-4b 84.31 93.20 88.61 92.31 92.07 91.92 90.40

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The results demonstrate a substantial performance gap, with LLM embedding models achieving av-
erage correlations of 84.56-90.40 compared to 68.29-68.83 for multimodal encoders. This 22-point
difference in correlation scores indicates that LLM embeddings capture more nuanced semantic
relationships in textual data. The superior performance stems from their distinct training objec-
tives: while multimodal encoders optimize for cross-modal alignment through contrastive losses,
LLMs undergo extensive next-token prediction on diverse text corpora, learning complex linguistic
patterns and semantic nuances. These findings provide empirical justification for employing LLM
embeddings as the shared anchor space in TextME, particularly when training exclusively on text
descriptions without paired multimodal supervision.

D ALGORITHM DETAILS

This section provides a comprehensive description of the TextME framework’s algorithmic details.
We describe the three-stage pipeline that enables modality expansion using only text data: (1) pre-
computing centering offsets for text and non-text embedding alignment, (2) training lightweight
projectors on centered text embeddings, (3) and performing inference-time adaptation for non-text
modalities. Algorithm 1 formalizes this procedure, showing how we leverage the inherent struc-
ture of pre-trained multimodal encoders to achieve zero-shot cross-modal transfer without paired
supervision.

Algorithm 1 LLM-anchored Modality Expansion (LLaME)
Require: Encoders {Em}m∈M, LLM encoder ELLM, texts Dtext
Ensure: Projections {Pm}m∈M, offsets {µtext

m , µmodal
m }m∈M

1: Stage 1: Compute Centering Offsets
2: for each modality m ∈M do
3: µtext

m ← 1
N

∑N
i=1 E

text
m (ti) // Text centroid

4: µmodal
m ← 1

N

∑N
i=1 E

modal
m (xi) // Modal centroid

5: end for
6: Stage 2: Text-to-Text Alignment
7: for each modality m ∈M do
8: Initialize Pm : Rdm → RdLLM as 2-layer MLP
9: while not converged do

10: Sample batch {ti}Bi=1 ∼ Dtext
11: zi ← Pm(Etext

m (ti)− µtext
m ) for i ∈ [1, B]

12: z′i ← ELLM(ti) for i ∈ [1, B]
13: Select hard negatives: Ni = {j : sim(zi, z

′
j) ∈ [0.1si, 0.9si]}

14: where si = sim(zi, z
′
i)

15: L ← − 1
B

∑B
i=1 log

exp(sim(zi,z
′
i)/τ)∑

j∈Ni∪{i} exp(sim(zi,z′
j)/τ)

16: Pm ← Pm − η∇Pm
L

17: end while
18: end for
19: Stage 3: Cross-Modal Inference
20: Given input x of modality m:
21: e← Emodal

m (x) // Encode modal input
22: e′ ← e− µmodal

m // Apply offset
23: efinal ← Pm(e′) // Project to LLM space

Implementation details and pre-computed offsets will be available in our open-source release upon
publication.

D.1 CENTERING-BASED INTERCHANGEABILITY

The core insight of TextME’s algorithm is that pre-trained multimodal encoders trained with con-
trastive objectives naturally separate text and non-text embeddings into distinct subspaces. Rather
than attempting to bridge this modality gap directly, we create an interchangeable coordinate system
through independent centering, following previous works Zhang et al. (2023b; 2024a).
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Given an encoder Em with text branch Etext
m and modal branch Emodal

m , we compute centering offsets:

µtext
m = E[Etext

m (t)] (mean of text embeddings) (4)

µmodal
m = E[Emodal

m (x)] (mean of modal embeddings) (5)

By centering each modality independently (e′ = e− µ), we align their coordinate origins, enabling
the projection network trained on centered text embeddings to generalize to centered modal embed-
dings at inference.

D.2 IMPLEMENTATION NOTES

Stage 1: Offset Computation. The centering offsets require only 5,000 samples per modality, as
the mean embeddings converge quickly (see Section ??). These offsets are computed once before
training and remain fixed. Importantly, text and modal samples need not be paired—we simply need
representative samples from each distribution.

Stage 2: Text Alignment Training. The projection network Pm is implemented as a 2-layer MLP
with GeLU activation and hidden dimension of 2, 560. We train exclusively on centered text embed-
dings, learning to map from the encoder’s text space to the LLM embedding space. Hard negative
mining improves convergence by focusing gradients on challenging examples where sim(zi, z

′
j) falls

within [0.1, 0.9] of the positive pair similarity.

Stage 3: Cross-Modal Inference. At inference, modal inputs are processed through three steps:

1. Encoding: e = Emodal
m (x)

2. Centering: e′ = e− µmodal
m

3. Projection: efinal = Pm(e′)

The centering step transforms the modal embedding into the same coordinate system used during
text training, enabling zero-shot cross-modal transfer.

D.3 COMPUTATIONAL COMPLEXITY

The algorithm’s efficiency stems from its minimal requirements:

• Memory: Store only centering offsets (2× dm floats per encoder) and projection networks
(∼10M parameters per modality).

• Training: Process only text data, reducing data requirements by >99% compared to paired
multimodal training.

• Inference: Add only one vector subtraction to standard encoder inference.

This design enables practical deployment even in resource-constrained settings while maintaining
competitive performance with fully-supervised methods.

E IMPLEMENTATION DETAILS

E.1 TEXTME IMPLEMENTATION

Model Architecture. Each projection network Pm is implemented as a 2-layer MLP with a hid-
den dimension of each pre-trained encoders and GeLU activation. The input dimension dm varies
according to the source encoder’s embedding dimension, while the output dimension is fixed at
dLLM = 2560 to match the Qwen3-Embedding-0.6B anchor space.

Training Configuration. We train each projection network with the following hyperparameters:

• Batch size: 512

• Optimizer: AdamW with β1 = 0.9, β2 = 0.999, and weight decay of 0.01
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• Learning rate: 5× 10−4 with cosine annealing schedule

• Training epochs: 50

• Temperature parameter: τ = 0.07

• Hard negative mining: Select examples where similarity falls within [0.1 · sim(zi, z
′
i), 0.9 ·

sim(zi, z
′
i)]

• Mixed precision training: fp16

Data Preprocessing. For each target modality, we sample 100K text descriptions from the
modality-specific training dataset. Text inputs are tokenized using the respective encoder’s tokenizer
with a maximum sequence length of 77 tokens. Centering offsets are pre-computed using 5,000
randomly sampled text-modal pairs per modality and remain fixed throughout training.

Computational Resources. All experiments are conducted on a single NVIDIA A6000 GPU with
48GB memory. Training time per modality averages 2 hours, with peak memory usage of approxi-
mately 8GB.

E.2 COX BASELINE IMPLEMENTATION

Since the original COX (Huang et al., 2025) codebase was not publicly available, we reimplemented
the method following the paper. However, we adapted the approach to an zero-shot setting to match
the evaluation constraints. Our implementation adheres to the following configuration.

Architecture. COX trains target modality encoders from scratch using a unified architecture
across modalities. We employ Vision Transformer Tiny (ViT-T/16) as the encoder backbone, con-
sisting of 12 layers with 3 attention heads and an embedding dimension of 192. The final embed-
ding dimension is projected to 768 to align with LanguageBind’s representation space. Following
the original design, we incorporate a Variational Information Bottleneck (VIB) layer (Alemi et al.,
2016) that applies stochastic dimensionality reduction to 256 dimensions to enforce information
compression.

Training Protocol. The training protocol follows the original paper’s two-stage methodology. In
the first stage, we perform supervised pre-training on labeled target data for 10 epochs to establish
basic feature representations. The second stage applies information bottleneck fine-tuning for 50
epochs to learn generalizable features through information compression. We use a batch size of 256
with the Adam optimizer configured with a learning rate of 1× 10−3 and weight decay of 1× 10−5.
The learning rate follows a step decay schedule with reduction at predetermined epochs. Critically,
COX requires labeled data from the target modality, using approximately 10% of the labeled dataset
(roughly 10K samples) for training. Specifically, we utilize labeled datasets for each modality:
COCO with 80 object classes for visual tasks, ESC-50 with 50 environmental sound classes for au-
dio, Objaverse with 1,000 object classes for 3D point clouds, PubChem with 100 molecular classes
for chemical structures, and SIIM with 2 classes for medical X-ray classification.

The key differences from TextME are substantial. COX requires labeled data for the target modality,
necessitates training encoders from scratch with over 300M parameters, and demands architectural
alignment between source and target encoders. In contrast, TextME leverages pre-trained encoders
with only text descriptions, requires merely 10M trainable parameters, and imposes no architec-
tural constraints on the target encoders. These fundamental differences highlight the efficiency and
flexibility advantages of our approach over traditional modality generalization methods.

F ABLATION STUDY ON NUMBER OF SAMPLES FOR OFFSET

We investigate the impact of the number of samples used to compute the centering offset in our
method. The centering offset is a crucial component that helps align representations from different
modalities by estimating and removing systematic biases in the embedding space. To understand
how sensitive our approach is to the sample size used for offset computation, we conduct experi-
ments with varying numbers of samples ranging from 100 to 10,000.
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Table 4: Impact of sample size for computing centering offsets on performance.

# Samples AudioCaps ModelNet40 DrugBank RSNA Relative Perf.R@1 Acc. R@1 Acc.

100 14.91 70.66 34.75 23.01 90%
500 14.77 70.58 33.05 22.08 95%
1,000 14.89 70.62 36.44 22.56 97%
5,000 (default) 15.35 70.86 31.36 22.46 100%
10,000 14.95 70.58 32.20 22.73 100%

Std. 0.21 0.11 2.02 0.36 -

Table 4 presents the results across four diverse tasks: AudioCaps (audio-text retrieval), ModelNet40
(3D shape classification), DrugBank (molecular retrieval), and RSNA (medical image classification).
We report Recall@1 (R@1) for retrieval tasks and accuracy for classification tasks, along with the
relative performance compared to our default setting of 5,000 samples. Our results reveal several
important findings.

Stability across sample sizes. The method demonstrates remarkable stability across different sam-
ple sizes. Even with as few as 100 samples, we achieve 90% of the performance obtained with 5,000
samples, indicating that our centering approach is robust and does not require extensive sampling to
estimate reliable offsets.

Optimal range. Performance plateaus between 1,000 and 10,000 samples, with our default choice
of 5,000 samples providing a good balance between computational efficiency and performance. The
relative performance reaches 97% with just 1,000 samples and remains stable at 100% for both 5,000
and 10,000 samples. Task-specific variations. While AudioCaps and ModelNet40 show consistent
improvements with increased sample size up to 5,000, DrugBank exhibits more variance (std =
2.02), with the best performance surprisingly achieved at 1,000 samples (36.44 R@1). This suggests
that for some domains, particularly those with inherently more diverse or noisy representations, the
optimal sample size may vary.

Diminishing returns. Doubling the sample size from 5,000 to 10,000 provides no significant im-
provement and even shows slight degradation in some metrics (AudioCaps R@1: 15.35 → 14.95,
ModelNet40 Acc: 70.86 → 70.58), indicating that beyond a certain threshold, additional samples do
not contribute to better offset estimation and may introduce noise.

These findings have important practical implications for deployment. The robustness to small sample
sizes means our method can be effectively applied even in low-resource scenarios where obtaining
large numbers of samples might be challenging.

G ABLATION STUDY ON DOMAIN-SPECIFIC TRAINING DATA
REQUIREMENTS

Different modalities exhibit distinct representational characteristics that may require tailored train-
ing data. We hypothesize that modalities with specialized vocabularies and domain-specific con-
cepts benefit more from targeted text descriptions than those with representations already aligned
with general language. To test this, we compare training with general-purpose text (Wiki1M) versus
modality- specific captions.

Table 5 quantifies this intuition through the distance ratio ρ = dintra/dinter, where dintra and
dinter represent average pairwise distances within and between datasets, respectively. Lower ratios
indicate specialized, sparse distributions distinct from general language, while higher ratios suggest
denser distributions with greater linguistic overlap. Our results validate that specialized modalities
(ρ < 1.7) like molecules and audio show dramatic improvements with domain-specific data training
(181.9% and 170.7%) gains respectively), as their technical vocabularies require precise terminol-
ogy. Conversely, modalities closer to general language (ρ > 2.4) like images and 3D show modest
gains (19.7% and 23.4%), as their semantic concepts largely overlap with general linguistic corpora.
This pattern extends to cross-modal retrieval—Audio→Image improves by 55.9% with specialized
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Table 5: Impact of training data quality on performance across modalities.
Dense Sparse Cross-modal

Image 3D Molecule Audio Audio→Image
Flickr ScanObj. DrugBank AudioCaps FlickrNet

Distance ratio (ρ) 2.93 2.44 1.65 1.55 –

Wiki1M (general) 43.16 34.15 9.32 5.67 0.68
Modality-specific Captions 51.66 42.15 26.27 15.35 1.06

∆ (%) +19.7% +23.4% +181.9% +170.7% +55.9%

captions, demonstrating that matching training data to modality-specific representational character-
istics enhances semantic alignment even without paired supervision.
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