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Abstract

The development of vision-language and generative models has significantly
advanced text-guided image editing, which seeks preservation of core ele-
ments in the source image while implementing modifications based on the
target text. However, in the absence of evaluation metrics specifically tai-
lored for text-guided image editing, existing metrics are limited in their
ability to balance the consideration of both preservation and modification.
Especially, our analysis reveals that CLIPScore, the most commonly used
metric, tends to favor modification, resulting in inaccurate evaluations. To
address this problem, we propose AugCLIP, a simple yet effective evalua-
tion metric that balances preservation and modification. AugCLIP begins
by leveraging a multi-modal large language model (MLLM) to augment de-
tailed descriptions that encapsulate visual attributes from the source image
and the target text, enabling the incorporation of richer information. Then,
AugCLIP estimates the modification vector that transforms the source image
to align with the target text with minimum alteration as a projection into
the hyperplane that separates the source and target attributes. Addition-
ally, we account for the relative importance of each attribute considering the
interdependent relationships among visual attributes. Our extensive exper-
iments on five benchmark datasets, encompassing a diverse range of editing
scenarios, demonstrate that AugCLIP aligns remarkably well with human
evaluation standards compared to existing metrics. The code for evaluation
will be open-sourced to contribute to the community.

1 Introduction

Building on advancements in vision-language models (Radford et al., 2021; Li et al., 2022;
Geng et al., 2023), recent generative models (Kawar et al., 2022; Brooks et al., 2022; Hertz
et al., 2022) have been widely utilized as creative tools for image editing via text instructions.
Text-guided image editing models enable the modification of images in response to textual
guidance, ensuring that changes are aligned with the provided instructions. The primary
objective of these models is to apply specific modifications guided by the target text while
preserving the core attributes of the source image.
Despite the remarkable advancements in editing models, there has been a lack of rigorous
evaluation methods, tailored specifically for text-guided image editing. Consequently, most
studies (Hertz et al., 2023; Basu et al., 2023; Gal et al., 2022; Kim & Ye, 2021; Brooks
et al., 2022; Gal et al., 2022; Ruiz et al., 2023; Kocasari et al., 2022) have heavily relied on
human evaluation, which provides balanced consideration of preservation and modification
aspects. However, as it is costly and impractical for real-world applications, researchers have
adapted automatic evaluation metrics (Zhang et al., 2018; Kim & Ye, 2021; Caron et al.,
2021; Gal et al., 2022) originally designed for other vision tasks, such as image generation
or captioning. Particularly, CLIPScore (Gal et al., 2022) is widely used as a representative
metric, which evaluates the extent of alignment between the edited image and the target
text, based on the difference between the target and source text in the CLIP space.
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However, despite its widespread adoption, our analysis reveals significant limitations in
CLIPScore, contradicting the standard of human evaluators. First, it tends to prioritize
modification over preservation, unlike human evaluators who balance both aspects. This
bias leads to inflated scores for excessively modified images that neglect even key attributes
of the source image. Second, CLIPScore often focuses on peripheral parts rather than regions
that are pertinent to the target text, whereas human evaluators can focus on the regions
that must be edited. These observations underscore the need to reevaluate the effectiveness
of CLIPScore in text-guided image editing.
Based on our comprehensive analysis, we propose a novel metric, AugCLIP, which evaluates
the quality of edited images by comparing with an estimated representation of a well-edited
image that balances preservation and modification by identifying a key modification vector
that transforms the source image to match the target text while minimizing alterations. For
this purpose, we leverage large language models to extract attributes that capture various
visual aspects of the source image and target text. Then, we estimate the key modification
vector by a hyperplane that separates the source and target attributes, considering the
intertwined relationships between them. To this end, AugCLIP evaluates how closely the
edited image aligns with the estimated ideal derived by applying the modification vector to
the source image.
Our metric AugCLIP demonstrates remarkable improvement in alignment with human eval-
uators on diverse editing scenarios such as object, attribute, style alteration compared to all
other existing metrics. Moreover, our metric is even applicable to personalized generation,
DreamBooth dataset, where the objective is to identify the source object in provided image,
and generate into a completely novel context. This shows the flexibility of AugCLIP, that
seamlessly apply to variety of editing directions. Notably, our metric excels in identifying
minor differences between the source image and the edited image, showing superb ability in
complex image editing scenarios such as MagicBrush.
The major contributions are summarized as follows.

• We are the first to point out CLIPScore’s reliability in text-guided image editing,
as it frequently exhibits a bias towards modification rather than preservation and
focuses on irrelevant regions.

• We introduce AugCLIP, a metric for image editing by automatically augmenting
descriptions via LLM and estimating a balanced representation of preservation and
modification, which takes into account the relative importance of each description.

• AugCLIP demonstrates a significantly high correlation with human evaluations
across various editing scenarios, even in complex applications where existing metrics
struggle.

2 Related Works

Currently widely used metrics for text-guided image editing assess one of the following as-
pects: image quality and image-text alignment. For evaluating image quality, FID (Heusel
et al., 2017), IS (Salimans et al., 2016), and LPIPS (Zhang et al., 2018) measure feature dis-
tance between generated images and real images. Additionally, DiffusionCLIP (Kim & Ye,
2021) introduces a disentanglement metric called segmentation consistency, which compares
segmentation maps of source and edited images under the assumption that the shape re-
mains unchanged. However, these metrics tend to focus primarily on the preservation of the
source image rather than assessing the quality of the modifications. To evaluate image-text
alignment, CLIPScore (Gal et al., 2022) is widely used, measuring the similarity between
the intended textual change and the actual modifications in the image, helping to assess
how well the source image is altered according to the target text.
Several works explore image generation or image fidelity evaluation with CLIP-based metrics
(Jayasumana et al., 2024; Kirstain et al., 2023; Kim et al., 2023; Lu et al., 2024). Li et al.
(2024) bears similarity to our approach, particularly in its use of Large Language Models
(LLMs) to extract detailed aspects. Nonetheless, this work focuses on image generation,
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Figure 1: CLIPScore’s Bias towards Modification over Preservation. Examples of cases in
the TEdBench dataset, where CLIPScore assigns higher scores on excessively modified images over
well-edited ground truth images. Similar observations persist over many cases in the TEdBench and
MagicBrush datasets, where modification bias prevails over source image preservation. The samples
used in the experiment are provided in the appendix.

making it less suited for editing tasks, where the preservation of original content alongside
modifications is critical.
In contrast, our proposed metric, AugCLIP, provides a comprehensive evaluation that ac-
counts for both preservation and modification. This dual assessment ensures that models
make appropriate changes while retaining essential features of the source image, offering a
more nuanced evaluation than existing metrics.

3 Problem Analysis on Existing Metrics for Text-Guided
Image Editing Model

In this section, we discover two major challenges in CLIPScore as an evaluation metric for
text-guided image editing. First, CLIPScore tends to overemphasize modification aligning
with the target text while neglecting the preservation of the source image (Sec. 3.2). Second,
it often fails to concentrate on the image regions that are directly relevant to the target text
(Sec. 3.3).

3.1 Preliminaries: CLIPScore

In common text-guided image editing scenarios, a model generates an edited image Iedit
from a source image Isrc accompanied by a target text Ttrg. Additionally, a source text Tsrc
that represents the source image is either provided as descriptions annotated by humans or
generated using image captioning models.
CLIPScore, the most widely used metric in text-guided image editing, evaluates the modi-
fication based on the difference between Ttrg and Tsrc in the CLIP space as follows:

CLIPScore = cs(∆I, ∆T ) = cs
(

CLIP(Iedit) − CLIP(Isrc), CLIP(Ttrg) − CLIP(Tsrc)
)

, (1)

where cs(a, b) = a·b
∥a∥∥b∥ denotes cosine similarity and CLIP(·) is a CLIP encoder for either

image or text.

3.2 Overemphasizing Modification over Preservation in Evaluation

Although CLIPScore attempts to incorporate the preservation by subtracting Tsrc from Ttrg,
we observe that it has a tendency to overemphasize modifications towards target text. In
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Standing heroically
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Figure 2: Problem Setting for Evaluation in Text-Guided Image Editing. An example
of evaluation metrics for assessing edited images, with an aim to balance modifications relevant to
the target text while preserving key aspects of the original image. (a) AugCLIP correctly determine
retention or modification case-by-case. (b) CLIPScore incorrectly emphasizes excessive modifica-
tion, preferring a standing Ironman. (c) LPIPS focuses on preservation, failing to apply necessary
modifications, such as the Ironman suit. This demonstrates the need for an evaluation metric that
judiciously balances both modification and preservation to achieve harmonious edits.

Fig. 1, CLIPScore often assigns higher scores to excessively modified images that neglect
the key aspects of the source image.
To investigate this further, we conduct an experiment on the TEdBench (Kawar et al., 2022)
and MagicBrush (Zhang et al., 2024) datasets, which consist of pairs of source images and
target texts, along with ground truth edited images reflecting the desired edits. We gener-
ate excessively modified images using the text-to-image generation model, Stable Diffusion
1.5, based solely on the target text. Our results show that CLIPScore struggles to differ-
entiate between ground truth images and excessively modified ones, favoring ground truth
images in only 37% of cases in Tedbench, and 64.9% of cases in MagicBrush. This highlights
CLIPScore’s bias toward modification over preservation.
This inability of CLIPScore to properly account for the source image preservation stems from
its design of the text direction, which assumes that a well-edited image should primarily
adhere to the target text. As illustrated in Fig. 2, conflicts frequently occur between the
visual elements of the source image and the target text regarding which features should
be preserved or modified. For example, the ‘sitting’ posture of the source image should be
preserved over the ‘standing heroically’ description in the target text, while the ‘orange
T-shirt’ should be modified to a ‘red armor suit.’ A well-designed metric would account for
these conflicts, but CLIPScore, due to its underlying assumption, blindly favors features
from the target text, leading to unreliable results. This highlights the need for a metric that
better balances preservation and modification.

3.3 Overlooking Edited Regions in the Image

An evaluation metric is more effective when it focuses on the image regions modified follow-
ing the target text, rather than peripheral or unchanged regions. For example, if a target
text specifies making a dog yawn, the evaluation metric works better when it concentrates
primarily on the dog’s mouth, not its ears. To assess CLIPScore’s capability in this re-
gard, we conduct an experiment using the relevancy map (Chefer et al., 2021), denoted
as R, which visualizes the transformer’s attention on an image corresponding to a given
text. Specifically, for an image I ∈ Rh×w and text T , the relevancy map is computed as
R(I; T ) = ∇Acs(CLIP(I), CLIP(T );A) ⊙ A ∈ Rh×w, where A represents the attention
scores of the CLIP visual encoder and ⊙ denotes the Hadamard product. To visualize the
relevancy map of CLIPScore, which is a cosine similarity between ∆I and ∆T , we subtract
the two relevancy maps as R(∆I; ∆T ) = R(Iedit; ∆T ) − R(Isrc; ∆T ).
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Figure 3: CLIPScore’s Overlooking Edited Regions in the Image. This figure compares
the relevancy map of CLIPScore R(∆I; ∆T ) with the description-augmented relevancy map across
various editing scenarios. The text related to the edits is written in red. CLIPScore highlights
regions of the edited images irrelevant to the target text. However, when manually annotated visual
descriptions are added, the relevancy maps demonstrate a significant improvement in accurately
localizing the edited regions in red boxes as indicated by the target text.

Fig. 3 illustrates the relevancy maps of CLIPScore, R(∆I; ∆T ), for randomly selected text-
image pairs in TEdBench. We observe that CLIPScore is not an ideal metric as it often
fails to attend to image regions relevant to the target text. This limitation arises because
the target text alone does not fully capture the detailed aspects of desired edits. To provide
the missing details, we use manually annotated visual descriptions, such as ‘opened mouth’
and ‘pink tongue extended’ for the target text ‘yawn’. As shown in Fig. 3, this additional
information enables CLIPScore to more accurately attend to the relevant regions as demon-
strated in Fig. 3. This suggests that more explicit descriptions of essential attributes can
improve the effectiveness of image editing evaluations.

4 AugCLIP: A Novel Metric Balancing Preservation and
Modification

In this section, we propose a novel evaluation metric, AugCLIP, that estimates the represen-
tation of a well-edited image by identifying a key modification vector that transforms the
source image to match the target text while minimizing alterations. AugCLIP starts by aug-
menting the source image and target text with fine-grained attributes (Sec. 4.1). Then, the
key modification vector is determined by identifying the normal vector of a hyperplane that
separates the source and target attributes, balancing the preservation of the source image
with the modifications required by the target text (Sec. 4.2). In this process, we also account
for the relative importance of each visual attribute, considering their interrelationships in
response to the target text (Sec. 4.3).

4.1 Extracting Visual Attributes

Inspired by the finding that detailed descriptions of the target text make the edited region
more noticeable in Sec. 3.3, we extract visual attributes from the source image and target
text using a state-of-the-art multi-modal large language model (MLLM), GPT-4V (OpenAI,
2023). To extract visual attributes from the source image, we prompt GPT-4V to generate
a detailed caption that encapsulates the key visual attributes present in the source image.
This caption is then parsed into discrete visual attributes. For example, given a source image
depicted in Fig. 2, let us assume that GPT-4V generates the caption: ‘a man is sitting and
wearing both blue caps and orange T-shirt’. Then, this caption is broken down into individual
attributes such as ‘a sitting man’, ‘wearing a T-shirt’, and ‘wearing a blue cap.’
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When processing the target text, the focus shifts to identifying the modifications that need
to be made to the source image during the editing process. To achieve this, GPT-4V is
prompted with both the source and target text and then instructed to describe the aspects of
the target text that diverge from the source text. To ensure that each generated description
corresponds to a single visual attribute, we provide example descriptions along with the
prompt.
These attributes are encoded into CLIP, where the source attributes are denoted as S =
{si}Ns

i=1 and target attributes as T = {tj}Nt
j=1. Ns and Nt are the number of attributes for the

source and target, respectively. The detailed prompting process and statistics are described
in the appendix.

4.2 Deriving the Key Modification Vector

Based on the source and target attributes extracted in Sec. 4.1, we identify a key modification
vector v in CLIP space, representing the minimum modification that adjusts the source
image to align with the target text. Essentially, Isrc + v approximates a well-edited image.
Here, the direction of v is chosen to highlight the differences between the source image
and the target text. An intuitive way to estimate such direction is by using the normal
vector w of the decision boundary that separates the source distribution, S, from the target
distribution, T . Formally, the classifier function f(x) = wT x + b assigns x to the ‘target’
class if f(x) > 0, or to the ‘source’ class if f(x) < 0. Since this classification relies on the
projection onto the normal vector w, this vector captures the attributes most distinguishing
between S and T .
Then, the v is a vector that has minimum norm and satisfies the condition that the edited
image is classified as belonging to the ‘target’ class (f(Isrc + v) > 0):

min
v

∥v∥ subject to wT v > −(wT Isrc + b). (2)

Finally, the modification vector is expressed as

v = w⊤Isrc + b

∥w∥2 w, (3)

which represents the projection of the source image Isrc onto the decision boundary.

4.3 Considering Intertwined Relationship between Attributes

When determining the separating hyperplane between the source and target attributes, it
is crucial to account for the relative importance of each attribute, considering the inter-
connections between them. This is because most image editing tasks require simultaneous
modification of multiple related visual attributes, as these attributes often work together to
create a cohesive appearance. For instance, transforming a human face into a ‘smiling face’
involves adjusting several interconnected features, such as upturned mouth corners, crinkled
eyes, and raised cheeks, all of which must appear together in the edited image. However,
the current approach to defining the hyperplane focuses solely on separation and does not
consider these attribute relationships.
To address this, we refine the hyperplane optimization process so that v reflects the in-
terdependencies between attributes. Specifically, we enhance the cohesiveness of attributes
within the same class to quantify their degree of interrelation, and use this information to
weigh each attribute during optimization. Additionally, source or target attributes that are
already similar to those in the opposite class (i.e., target or source, respectively) are less
relevant to the editing process and thus have less impact on the modification vector. As a
result, their influence should be reduced during the hyperplane optimization.
The final weightings, as for source attributes and at for target attributes, are then defined
as:

a(i)
s = Es∈S [cs(si, s)] − Et∈T [cs(si, t)] for si ∈ S, (4)

a
(j)
t = Et∈T [cs(ti, t)] − Es∈S [cs(ti, s)] for tj ∈ T . (5)
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Then, the refined version of v is obtained through hyperplane optimization using as and at.
Finally, AugCLIP evaluates how the edited image aligns with the estimation of the well-edited
image in CLIP space as

AugCLIP = cs(Iedit, Isrc + v), (6)
where v = (w⊤Isrc + b)/∥w∥2 · w from Eq. (3).

5 Experiments

Implementation details. For our experiments, we employ a pre-trained CLIP-ViT 16/B
model for CLIP-based metrics. Source and target attributes are generated using GPT-4V
(OpenAI, 2023). Further details on prompting the source and target descriptions are deferred
to the appendix due to spatial constraints.

Compared Metrics. We compare AugCLIP with two categories of existing metrics. The
first category comprises the metrics that focus solely on preservation aspects, including
DINO similarity, LPIPS, and L2 distance. The other category measures target text align-
ment, for which the only metric is CLIPScore. Additionally, we utilize description-augmented
versions of CLIPScore.

Evaluation Datasets. We evaluate AugCLIP and existing metrics across several text-
guided image editing benchmarks, including TEdBench (Kawar et al., 2022), EditVal (Basu
et al., 2023), MagicBrush (Zhang et al., 2024), DreamBooth (Ruiz et al., 2023), and CelebA
Liu et al. (2015).

Table 1: Difference Types of Benchmark Datsaet in Text-guided Image Editing

CelebA EditVal DreamBooth TEdBench MagicBrush
Dataset Types Facial Attribute General Object Personalized Generation Object Centric Local Region Editing

5.1 Quality Assessment on Evaluation Metrics

To evaluate the effectiveness of different evaluation metrics, we conduct two types of ex-
periments, named 2AFC test and Ground truth test. Two-Alternative Forced Choice
(2AFC) test (Tab. 2a) reveals the alignment between the evaluation score and human judg-
ment. In this test, human evaluators are asked with two options of edited images, and then
to choose the one they favor through the systematic survey. The alignment score measures
if the evaluation metric prefers the same option as human evaluators. Secondly, Ground
Truth Test (Tab. 2b) assess the ability of evaluation metric to correctly assign the highest
score to the well-edited image among a triplet of images, (well-edited, excessively modified,
excessively preserved). Yielding high scores in this test means that the evaluation metric
can balancedly consider preservation and modification aspect, without being biased to either
side.

Two-Alternative Forced Choice (2AFC) test The 2AFC score, denoted as salign,
ranges from 0 to 1, where 1 indicates perfect alignment between an evaluation metric and
human judgment. Tab. 2a demonstrates a comparison between AugCLIP and other evalua-
tion metrics, across three benchmark datasets: CelebA, EditVal, and DreamBooth. These
three text-guided image editing benchmark dataset represent a very distinct editing sce-
nario. First, CelebA focuses on fine-grained editing of facial attributes such as eyebrows or
lips. EditVal is a dataset that consists of general object modification, oftentimes including
multiple objects in the source image. The target text instructions guide various types of
editing such as style transfer, size transformation, and attribute alteration. Finally, Dream-
Booth is a dataset tailored for personalized text-guided image generation, which aims to
preserve the identity of the object depicted in the image while generating in a completely
different contextual background.
Among these three datasets of different scenarios, CLIPScore demonstrates the competitive
level of alignment with human judgment, as salign scored 0.673 and 0.697 for CelebA and
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Table 2: Comparison on AugCLIP and Other Existing Metrics. (a) 2AFC Test. The
alignment score salign between human judgment and the evaluation metric is compared over three
datasets, CelebA, EditVal, and Dreambooth. (b) Ground Truth Test. The accuracy of assigning
higher scores to ground truth images over excessively preserved and modified images (Accboth)
are compared on two datasets, TEdBench and MagicBrush.

* DINO: DINO similarity, P, M: consideration of preservation and modification, the best results are em-
phasized in bold font and the second best in underline.

P M
(a) 2AFC Test (b) Ground Truth Test

CelebA EditVal DreamBooth TEdBench MagicBrush
salign salign salign Accboth Accboth

L2 ✓ ✗ 0.653 0.348 0.464 0.310 0.002
LPIPS ✓ ✗ 0.465 0.360 0.286 0.090 0.000
DINO ✓ ✗ 0.574 0.348 0.286 0.280 0.008
CLIPScore ▲ ✓ 0.673 0.697 0.357 0.350 0.601
AugCLIP ✓ ✓ 0.883 0.831 0.857 0.570 0.889

EditVal, respectively. However, in the specific setting of personalized text-guided image
generation, CLIPScore largely fails to align with human judgments, scoring merely 0.357.
AugCLIP, which is augmented by rich visual semantics to flexibly be adapted into a difficult
editing scenario, shows remarkable improvement in alignment score from 0.357 to 0.857.

Ground Truth Test Among the triplet of three images, (well-edited image, excessively
preserved, and excessively modified), the well-edited image is provided in the benchmark
dataset, TEdBench, and MagicBrush. Excessively preserved images are generated by apply-
ing noise jitter on the source image, completely disregarding the target text. Excessively
modified images are generated using the text-to-image generation model, Stable Diffusion
1.5, to generate the image instructed by the target text, while completely ignoring the source
image.
Given the triplet of three images, we count the number of cases where evaluation metrics
correctly assign the highest score to the well-edited image, and denote this count over all
test cases in the benchmark dataset as AccBoth. High accuracy reflects a metric’s ability to
balance both preservation and modification. In Tab. 2b, we observe that CLIPScore has a low
Accboth score, failing on 65 % of the cases in TEdBench triplets, and on 39.9% of MagicBrush
triplets. This observation corresponds to the problem analysis in Sec. 3.2, which pointed
out the problem of CLIPScore favoring excessive modification, even ignoring preservation
aspects. This proves that CLIPScore falls short of balancing the source preservation and
target modification aspects. Such inability is also observed by In contrast, AugCLIP, which
balances preservation and modification aspects through the estimation of an ideal image
with separating hyperplane, scores the highest accuracy among all datasets and baseline
metrics.

5.2 Ablation Study

In this section, we conduct an ablation of the effect of integrating visual attributes into
CLIPScore. The original formulation of CLIPScore is simply a subtraction between the
target text and source text. We experiment with the strategy of simply augmenting CLIP-

Table 3: Effect of Augmenting Descriptions into CLIPScore

CelebA EditVal DreamBooth TEdBench MagicBrush
CLIPScore 0.673 0.697 0.357 0.350 0.601
+ src desc. 0.816 0.629 0.357 0.400 0.429
+ trg desc. 0.819 0.708 0.536 0.420 0.533
+ both 0.816 0.607 0.536 0.440 0.402
AugCLIP 0.883 0.831 0.857 0.570 0.889
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Score with source and target descriptions, extracted in Sec. 4.1. First, the source text is
augmented by averaging all CLIP features of the source descriptions. In Tab. 3, ‘+src desc’
shows the effect of this strategy. In CelebA, source augmentation has led to a gain in align-
ment score, but in the other four datasets, the performance rather dropped. Second, the
target text is augmented by averaging the CLIP features of target descriptions. This has led
to a small gain in performance in CelebA, EditVal, DreamBooth, and TEdBench. However,
MagicBrush suffers from a drop in accuracy. Finally, the third variant is to augment both
source text and target text with corresponding descriptions. This strategy fails to improve
over the second strategy, augmenting the target text only, except for the dataset TEdBench.
AugCLIP outperforms all the description-augmented variants of CLIPScore. The major dif-
ference between these simple strategy and AugCLIP is firstly a absence of weighting strategy
that captures the relative importance of each attribute. Moreover, AugCLIP derives a min-
imum modification vector in the form of projection into separating hyperplane between
source and target descriptions. CLIPScore is a simple method that subtracts the difference
between source and target. This suggests that our approach, which estimates a well-edited
image by discovering only necessary attributes, and inflicting only the necessary modifica-
tion is meaningful, as mere description augmentation does not provide improvement in most
of the cases.

Table 4: Ablation study. We use salign for CelebA, EditVal, and Dreambooth, and Accboth for
TEdBench and MagicBrush. AugCLIP extracts short descriptions with unrestricted numbers.

(a) Effect of weighting strategy.

CelebA EditVal DreamBooth TEdBench MagicBrush
Unweighted 0.849 0.787 0.786 0.400 0.830
Weighted 0.883 0.831 0.857 0.570 0.889

(b) Effect of choice of linear hyperplane.
∗ Average misclassification rate of source attributes and target attributes in hyperplane fitting.

CelebA EditVal DreamBooth TEdBench MagicBrush Average Misc.∗
LDA 0.884 0.827 0.821 0.545 0.863 0.0337
Logistic regression 0.849 0.830 0.821 0.550 0.866 0.0138
Linear SVM 0.883 0.831 0.857 0.570 0.889 0.0135

(c) Effect of length and number of descriptions.

Length Number CelebA EditVal DreamBooth TEdBench MagicBrush
short 10 0.870 0.719 0.857 0.540 0.889
short 20 0.829 0.809 0.821 0.540 0.868
short 30 0.829 0.764 0.714 0.570 0.863
long 30 0.843 0.697 0.750 0.530 0.862
short unrestricted 0.883 0.831 0.857 0.570 0.889

Weighting Strategy for Hyperplane We demonstrate the effectiveness of our weighting
strategy, described in Eq. (4), by comparing human alignment score and ground truth test
accuracy in Tab. 4a. The weighting strategy enables AugCLIP to prioritize the integration
of key features that are central to preservation and modification, into the representation of
an ideally edited image.

Choice of Linear Hyperplane We compare latent discriminant analysis, linear SVM,
and logistic regression to evaluate their effectiveness in finding the separating hyperplane.
As shown in Tab. 4b, linear SVM yields minimum misclassification over all benchmark
dataset, in which the hyperplane sufficiently divide source attributes and target attributes.
Since source image and target text may entail some visual similarities, the extracted source
and target descriptions cannot be perfectly separable by a linear hyperplane. Therefore,
the usage of SVM, that can flexible manage overlapping factors and find a more accurate
hyperplane, leads to better performance over other hyperplanes. For instance, when editing
an image of an orange to resemble a tangerine, both source and edited images have a round
shape. In such cases, these factors are closely positioned in the embedding space and do not
need to be perfectly separated.
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Length and Number of Descriptions Since AugCLIP employs descriptions extracted
by LLM, therefore we analyze the impact of variation in descriptions on evaluation results.
In Tab. 4c, we compare the cases where the attribute extraction process is restricted by
description length and the total number of descriptions. Among short and long descriptions,
we observe that short descriptions tend to outperform long descriptions over five bench-
mark datasets. This explains that short descriptions correspond to a single visual attribute,
preventing the unwanted entanglement of multiple attributes into a single description. The
number of descriptions is configured among 10, 20, and 30. The length of descriptions showed
varying performance depending on the dataset type. Unrestricting the number of descrip-
tions achieves the best overall performance over all configurations.

5.3 Application of AugCLIP in Diverse Editing Scenarios

Text-guided image editing spans a wide range of tasks, including style editing, object re-
placement, partial alteration, texture change, color change, and shape change. Given the
diverse editing scenarios covered in the EditVal dataset, we report the human alignment
score, salign, for each specific editing scenario to demonstrate the effectiveness of our metric,
AugCLIP, in handling various types of text-guided image editing tasks. Over all of the eight
scenarios, AugCLIP outperforms CLIPScore, except for the texture modification task.

Table 5: Human Alignment Score salign on Various Text-guided Image Editing Scenar-
ios We report the alignment score of CLIPScore and AugCLIP over eight variants of text-guided
image editing tasks in EditVal. Best scores are emphasized in bold.
∗Pos. Add and Obj. repl. denotes positional addition and object replacement respectively

Pos. Add Obj. repl. Alter Parts Background Texture Color Action Style
CLIPScore 0.667 0.688 0.730 0.5 0.806 1.0 1.0 0.529
AugCLIP 1.0 0.75 0.838 1.0 0.742 1.0 1.0 0.647

Limitations

While AugCLIP demonstrates strong performance in balancing preservation and modification
in text-guided image editing, several limitations remain. First, the reliance on GPT-4V for
visual attribute extraction can lead to inconsistencies, especially in complex scenarios where
subtle details are crucial. The quality of extracted attributes may vary depending on the
specificity of the scene and the quality of the model’s understanding, which can affect the
accuracy of the modification vector. Additionally, AugCLIP requires longer computation
times due to the need for detailed description generation and the optimization process
involved in fitting the hyperplane. This makes it less efficient for real-time or large-scale
applications where rapid evaluation is necessary.

Conclusion

In this paper, we introduce AugCLIP, a novel evaluation metric for text-guided image editing
that balances both preservation of the source image and modification toward the target text.
By leveraging a multi-modal large language model to extract fine-grained visual attributes
and applying a hyperplane-based optimization approach, AugCLIP estimates a representa-
tion of a well-edited image that closely aligns with human evaluators’ preferences. Extensive
experiments across five benchmark datasets demonstrate AugCLIP’s superior alignment
with human judgments compared to existing metrics, particularly in challenging editing
tasks. Consequently, AugCLIP offers a significant advancement in the evaluation of text-
guided image editing, providing a more nuanced and reliable approach for assessing mod-
ifications while maintaining core image attributes. This metric holds promise for broader
applications in personalized image editing and other vision-language tasks.
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