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ABSTRACT

Time series forecasting occurs in a range of financial applications providing es-
sential decision-making support to investors, regulatory institutions, and analysts.
Unlike multivariate time series from other domains, stock time series exhibit in-
dustry correlation. Exploiting this kind of correlation can improve forecasting
accuracy. However, existing methods based on hypergraphs can only capture
industry correlation relatively superficially. These methods face two key limi-
tations: they do not fully consider inter-industry lead-lag interactions, and they
do not model multi-scale information within and among industries. This study
proposes the Hermes framework for stock time series forecasting that aims to
improve the exploitation of industry correlation by eliminating these limitations.
The framework integrates moving aggregation and multi-scale fusion modules in
a hypergraph network. Specifically, to more flexibly capture the lead-lag rela-
tionships among industries, Hermes proposes a hyperedge-based moving aggre-
gation module. This module incorporates a sliding window and utilizes dynamic
temporal aggregation operations to consider lead-lag dependencies among indus-
tries. Additionally, to effectively model multi-scale information, Hermes employs
cross-scale, edge-to-edge message passing to integrate information from different
scales while maintaining the consistency of each scale. Experimental results on
multiple real-world stock datasets show that Hermes outperforms existing state-
of-the-art methods in both efficiency and accuracy. All datasets and code are avail-
able at https://anonymous.4open.science/r/Hermes-E150.

1 INTRODUCTION

Stock time series are typically composed of data from multiple stocks, each of which includes mul-
tiple key indicators such as stock opening prices, closing prices, etc. (Fan & Shen, 2024; Li et al.,
2024). Stock time series forecasting (STSF) is important in financial applications, providing crucial
decision-making support for investors, regulatory institutions, and analysts, helping them make data-
driven decisions in complex and ever-changing market environments (Rather et al., 2017; Faloutsos
et al., 2018; Jacob & Shasha, 1999; Zhang et al., 2014; Zheng et al., 2023).

Most existing studies treat stocks in stock time series independently, thus disregarding the inter-
connected nature of market dynamics and contradicting the intrinsic interdependencies observed in
real-world financial systems (Diebold & Yılmaz, 2014). In reality, stocks are often interrelated, and
there are rich signals in the relationships between them (Nobi et al., 2014). For example, with the
breakthroughs of Artificial Intelligence technology, companies like Apple, Microsoft, and Alpha-
bet that actively invest and innovate in this domain are expected to lead in the market due to their
technological advantages. It is one of the important factors for their stock prices to show a steady
upward trend in the overall stock market1—see Figure 1a. At the same time, the soaring power
demand, driven by electrification, decarbonization, and the advent of artificial intelligence, led to a
concurrent rise in the stock prices of companies in the energy sector2—see Figure 1a. Such industry
correlations have gradually attracted more attention. Especially within the same industry, different

1
www.morningstar.co.uk/uk/news/258865/tech-and-communication-stocks-drove-us-market-gains-in-2024.aspx

2
https://finance.yahoo.com/news/american-electric-power-aep-among-121752028.html?

1

https://anonymous.4open.science/r/Hermes-E150
www.morningstar.co.uk/uk/news/258865/tech-and-communication-stocks-drove-us-market-gains-in-2024.aspx
https://finance.yahoo.com/news/american-electric-power-aep-among-121752028.html?
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(c) Multi-scale correlation

Figure 1: (a): Intra-industry correlation. Relations between stocks within an industry (hyperedge)
can be represented by a hypergraph. (b): Lead-lag correlation. (c): Multi-scale correlation.

stocks often exhibit correlations, reflecting the common economic environment, market fluctuations,
policy changes, and other factors that impact the stocks.

Hypergraphs can connect multiple graph nodes (representing, e.g., stocks) through hyperedges. By
connecting stocks within the same industry by hyperedges to construct a hypergraph network, it is
possible to capture more comprehensively the interrelationships and dynamics among stocks within
an industry. However, existing hypergraph-based STSF methods that consider industry correlations
still have the following challenges.

Challenge 1: Current methods fail to fully consider inter-industry lead-lag interactions. In
financial markets, there are causal relationships and time dependencies among industries, and these
relationships are highly diverse and complex. As shown in Figure 1b, the technology industry has
flourished with breakthroughs in key technologies and market innovations, achieving significant
progress. Technological innovations from technology companies have injected new vitality into the
development of renewable energy, and energy companies have leveraged technologies such as big
data, AI, and the Internet of Things to enhance the efficiency of energy production and manage-
ment2, thereby driving up stock prices (Abid et al., 2025; Olanrewaju et al., 2024; Rafiei et al.,
2025). Therefore, in the modeling process, it is important to capture lead-lag correlations among
industries more accurately, so as to better reflect the dynamic interactions and dependencies in fi-
nancial markets, ultimately improving the accuracy and practicality of the forecasts.

Challenge 2: Current methods do not model multi-scale information within and among indus-
tries. Stock time series inherently possess multi-scale characteristics, and markets exhibit different
features and patterns at different time scales. For example, in Figure 1c, we can observe a clear
overall trend at a coarse-grained scale, and a cyclical pattern at a fine-grained scale. Moreover, two
different industries, may exhibit correlations at a coarse-grained scale. However, delving deeper
into a fine-grained analysis might find that two industries show opposite trends. Single-scale analy-
sis methods cannot fully capture such characteristics, so there is a pressing need to adopt multi-scale
analysis to reveal the dynamic changes in financial markets across different time scales, thereby
providing richer and more accurate information for stock time series forecasting.

In this study, we address the two challenges by proposing a general stock time series forecasting
framework, Hermes, which integrates hyperedge-based moving aggregation and hyperedge-based
multi-scale fusion modules into a spatial-temporal hypergraph network. These integrations enhance
the precision and stability of stock forecasting. First, to more flexibly model lead-lag relationships
among industries, we integrate a hyperedge-based moving aggregation module into the hypergraph
network. This module incorporates a sliding window and utilizes dynamic temporal aggregation
operations to consider lead-lag dependencies among industries. This approach aims to capture a
market’s complex structure more precisely. Second, to address the issue that existing methods fail to
effectively model multi-scale information, we decompose raw data at multiple scales and integrate a
multi-scale fusion module into the hypergraph network. This module employs cross-scale, edge-to-
edge message passing to integrate information from different scales while preserving the consistency
of each scale, thereby boosting both the accuracy and stability of forecasts. Experimental results on
multiple real-world stock datasets show that Hermes outperforms existing state-of-the-art methods
in both efficiency and accuracy. Our contributions are summarized as follows.
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• To solve the STSF problem, we propose a general spatial-temporal hypergraph network frame-
work, Hermes, which learns more accurate and adaptive forecasting models by considering both
lead-lag and multi-scale industry correlations.

• We design a hyperedge-based multi-scale fusion module. This module utilizes a cross-scale,
egde-to-edge message-passing to integrate information from different scales while maintaining
the consistency of each scale.

• We propose a hyperedge-based moving aggregation module that introduces a sliding window
and utilizes dynamic temporal aggregation operations to consider lead-lag dependencies among
industries.

• We report on extensive experiments on public stock datasets, finding that Hermes is capable of
outperforming state-of-the-art baselines.

2 RELATED WORK

2.1 DEEP LEARNING STOCK TIME SERIES FORECASTING

With the rise of deep learning, notable progress has occurred in stock forecasting. This is mainly
because deep neural networks can model complex nonlinear patterns. Some studies use recurrent
neural networks (RNNs) (Nelson et al., 2017; Qin et al., 2017; Akita et al., 2016; Rahman et al.,
2019) to capture the historical development in individual stock prices and predict their short-term
trends. In addition, due to the significant progress of Multi-Layer Perceptrons (MLPs) architecture
in the general time series field (Zeng et al., 2023; Lin et al., 2025; 2024). Increasingly may proposals
target stock forecasting performance by improving the MLPs architecture. For example, a series of
studies (Fan & Shen, 2024; Lazcano et al., 2024; Tashakkori et al., 2024) enhance the learning abil-
ity of simple MLPs structures by utilizing the MLP-Mixer backbone, thereby improving forecasting
accuracy. Next, the Transformer model has become increasingly popular due to the ability of its
self-attention mechanism to capture long-term dependencies. For example, Master (Li et al., 2024)
proposes a novel stock transformer for stock price forecasting to effectively capture stock correla-
tion. While these deep learning methods have advanced stock forecasting, the complexity of stock
data and the need to account for intricate relationships among stocks have led researchers to explore
new methods based on hypergraphs.

2.2 HYPERGRAPH-BASED STOCK TIME SERIES FORECASTING

Traditional graphs have limitations when it comes to modeling higher-order multivariate relation-
ships, as they can only represent relations between pairs of nodes. To address this issue, Hypergraph
Neural Networks (HGNNs) (Feng et al., 2019c) were introduced. Hypergraphs extend the concept
of simple graphs to enable the capture of relationships among multiple stocks (Chen et al., 2020).
Hypergraphs have gained increasing attention and application across various fields. Hyperedge in
a hypergraph represents a set of vertices, making them suitable for modeling non-pairwise rela-
tionships (Luo et al., 2014; Sawhney et al., 2020; Huynh et al., 2023). For example, HGAM (Li
et al., 2022) is a hypergraph-based reinforcement learning method for stock portfolio selection.
THGNN (Xiang et al., 2022) is a temporal and heterogeneous graph neural network model that
aims to learn dynamic relationships by using two-stage attention mechanisms. STHAN-SR (Sawh-
ney et al., 2021) enhances corporate relevance based on Wiki data and uses hypergraph convolution
to propagate information from higher-order neighbors. ESTIMATE (Huynh et al., 2023), employs
hypergraphs to capture non-pairwise correlations, utilizing temporal generative filters to identify
individual patterns for each stock. Unlike the above methods, we propose a new hypergraph-based
stock time series forecasting model that specifically takes into account the multi-scale nature of stock
data, enabling it to capture the complexity of market dynamics more comprehensively. Furthermore,
our approach places particular emphasis on the lead-lag relationships between financial industries,
where the changes in one industry may precede or lag behind those in another. By capturing these
key relationships more fully, we aim to improve forecasting accuracy.
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Figure 2: The architecture of Hermes.

3 METHODOLOGY

In financial markets, a stock time series X = {X1, . . . ,XN} records the historical data of N stocks,
where Xi ∈ RT×F is data of one stock with a lookback window of T time steps and with F
technical indicators at each time step. In stock time series, the indicators may include opening price,
closing price, highest price, lowest price, and trading volume. Following existing studies (Huynh
et al., 2023; Fan & Shen, 2024), we input a stock time series with multiple indicators, denoted as
X ∈ RN×T×F , and aim to predict the closing price pti at time step t. We define the 1-day return

ratio as rti =
pt
i−pt

i−1

pt
i−1

. With θ representing the model parameters, the process can be expressed as
follows.

X ∈ RN×T×F θ→ p ∈ RN×1 → r ∈ RN×1 (1)

3.1 FRAMEWORK OVERVIEW

In this section, we introduce the framework of our proposed spatiotemporal hypergraph neural net-
work that considers multiple time scales and models the lead-lag relationships between industries.
Our framework takes historical financial sequences as input, first samples the time series into several
sequences of different granularities according to different time scales, and maps the feature dimen-
sion to the hidden dimension to consider the high-dimensional correlations between time series seg-
ments under different scales. Subsequently, we consider constructing relationships between agents
at each scale, specifically considering constructing hyperedges for agents in the same industry, and
modeling the lead-lag relationships between industries in the corresponding hypergraphs. Then,
we model the interactions between different scales, construct hyperedges for industries of different
scales, and adaptively learn the correlations between them under the corresponding multi-scale hy-
pergraph, thereby playing a role in fusing scales. Finally, we predict the corresponding indicators
for each agent for the next day through a prediction head based on a multilayer perceptron.

3.2 MULTI-SCALE FEATURE EXTRACTION

Multi-Scale Decomposition. Time series of different scales exhibit different characteristics, among
which fine scales primarily describe detailed patterns and contain more periodic information, while
coarse scales highlight macro changes and cover the overall trend changes. This multi-scale perspec-
tive can essentially unravel the complex variations within multiple components, thereby facilitating
time variation modeling. It is worth noting that, especially for prediction tasks, due to their different
dominant time patterns, multi-scale time series show different predictive capabilities.

4
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Specifically, for the financial input time series X ∈ RN×T×F , which denotes the records of F
key indicators for N market agents of T timestamps in the past. To decouple the intricate multi-
resolution information, we use convolutional layers of different sizes to adaptively down-sample the
time series into sequences of different scales:

Xi = 1D-Convi(X), (2)

where Xi ∈ RN×T i×F denotes the i-th scale of financial time series, T i is the down-sampled length.
We then obtain the multi-scale time series sequences {X1,X2, · · · ,XS} of S kinds of scales through
S convolutional layers with different kernel sizes and stride lengths.

Feature Extraction. Subsequently, for time series of different scales, we enhance their representa-
tions at two aspects. First, we adopt the Causal-Mixing technique to process the temporal dimen-
sional. The Causal-Mixing technique ensures causal relationships rather than full connectivity, and
ensure that time series points can only see previous points. It consists of a group of MLP layers:

Causal-Mixingi = {MLPi,1,MLPi,2, · · · ,MLPi,T i

}, MLPi,j = Rj → R (3)

Xi = Causal-Mixingi(Xi), (4)

the Causal-Mixing is applied along the temporal dimensional, which maps Xi
1:j through MLPi,j to

Xi
j . The new representation X ∈ RN×T i×F keeps the original shape.

Then their feature dimensions are mapped into the high-dimension hidden spaces to enrich their
representation capabilities, facilitating the extraction of more complex hidden relationships:

X i = Xi · Wi, (5)

where X i ∈ RN×T i×d, d is the dimension of the latent space. W i ∈ RF×d, constructing a linear
projection to enhance representational capability.

3.3 ADAPTIVE SPATIAL-TEMPORAL HYPERGRAPH CONSTRUCTION

For the representation X i ∈ RN×T i×d of i-th scale, the hypergraph of i-th scale X i can be con-
structed through a global-shared matrix H ∈ RN×K , where N represents the number of stocks, K
represents the number of industries, and Hl,m = 1 denotes that the l-th stock belongs to the m-th
industry. The i-th Spatial-Temporal hypergraph Gi is formulated as:

Gi = (H,X i, Ei), (6)

where X i is the representation of i-the scales and works as the nodes of the Gi, Ei ∈ RK×T i×d is
the hyperedge constructed through the stock-industry relationship matrix H:

scoresi = Lineari(X i) ∈ RN×1, Lineari = RT i×d → R, (7)

Hi = H ⊙ scoresi + (1−H)⊙ (−∞), Hi = SoftMax(Hi, dim = 0), Ei = (Hi)T · X i, (8)

where the matrix H is first processed with a learnable renovation to adapt to the current representa-
tion X i. Hi is the intermediate result obtained through endowing the Hl,m = 1 parts with learnable
scoresi and Hl,m = 0 parts with −∞ to ensure zeros in the SoftMax step. Then the Hi ∈ RN×K

with Continuous Weights is obtained, and the hyperedges Ei ∈ RK×T i×d of industries are gener-
ated through information integration from all the related agents. We obtain all the Spatial-Temporal
hypergraphs {G1,G2, · · · GS} for each scale as above mentioned.

3.4 HYPEREDGE-BASED MOVING AGGREGATION

After delineating different time series scales with Spatial-Temporal hypergraphs {G1,G2, · · · GS},
we further consider the lead-lag relationships between industries under each scale, to analyze the
complex correlations in financial markets—see Figure 3 in Appendix B.4.

We construct a message passing mechanism on the hyperedges to capture the lead-lag relationships
between industries. First, we employ a fixed-size sliding window as the range for examining the

5
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lead-lag relationships. For each hyperedge, through the sliding window, we can delineate different
patches, which serve as the smallest units for constructing the lead-lag relationships:

Pi = SlidingWindow(Ei, size = ki, stride = 1), (9)

where Pi ∈ RK×(T i−ki+1)×ki×d denotes the patches of Ei, containing local information with the
size of ki. From the perspective of causality, considering the relationship between the first few
points and the last point within the window, we can construct the relationship matrix of the leading
part and the lagging part. We then mine the lead-lag relationships inside each patch by considering
the correlations between Pi

before and Pi
last:

Pi
before = Reshape(P)i ∈ R[K×(T i−ki+1)]×ki×d, (10)

Pi
last = Reshape(P)i−1 ∈ R(K×1)×ki×d, (11)

Subsequently, by using the message passing method to propagate through the leading part, we obtain
the feature fusion among hyperedges:

Ãi = Pi
before ⊗ Pi

last ∈ R[K×(T i−ki+1)]×K×ki

, (12)

Ai = SoftMax(Ãi, dim = 2), Ẽi = Ai ⊗ Pi
before ∈ RK×ki×d, (13)

Êi = MLPi(Ẽi) + Ei, MLPi := Rki

→ RT i

, Vei = Êi ⊗H ∈ RN×T i×d, (14)

where Ãi considers the correlations among the leading parts and lagging parts, Ai probabilityizes
Ãi to control weightsuming, Êi ∈ RK×T i×d denotes the embedding of hyperedges integrated with
lead-lag relationships among different industries. Vei is the updated nodes of i-th scale integrated
with the lead-lag information extracted on hyperedges—see Figure 4 in Appendix B.4.

This is the method of considering the leading and lagging relationships between industries under
each scale using Spatial-Temporal hypergraphs. After performing the above operation for each
scale, we obtain a multi-scale representation of hyperedges {Ê1, Ê2, · · · , ÊS}. Subsequently, fu-
sion between scales will be carried out to integrate information of different granularities.

3.5 HYPEREDGE-BASED MULTI-SCALE FUSION

For multi-scale representation of hyperedges {Ê1, Ê2, · · · , ÊS} which contains the industry in-
formation, we further extract the potential correlations among different scales to reveal the latent
interactions among different industries. First, we up-sample different scales back to the original
length to ensure uniform representation size:

Ê i = Lineari(Êi) ∈ RK×T×d, Lineari = RT i

→ RT , (15)

Ê = {Ê1, Ê2, · · · , ÊS} ∈ RS×K×T×d (16)

Then, we construct adaptive adjacency matrices for these hyperedges of different scales to measure
the correlations between different industries at various information granularities. We employ metric
learning for this task and use a learnable Mahalanobis distance to automatically build relationships
between different industries in the hidden space:

Ẽ = Flatten(Ê) ∈ R(S×K)×T×d, Dij = (Ẽi − Ẽj)T ⊗Q⊗ (Ẽi − Ẽj), (17)

Cij =

{
1

Dij
if i ̸= j

0 if i = j
, B = SoftMax(C, dim = 0) (18)

where D,C,B ∈ R(S×K)×(S×K)×T×d. Q ∈ Rd×d is a learnable semi-positive definite matrix,
and can be practically constructed by Q = LT · L. Subsequently, we construct interactions be-
tween hyperedges at different scales using message passing and further update the representation of
hyperedges.

B̃ = D−1 ⊗B ⊗D, E ′ = B̃ ⊗ Ẽ ⊗W e, (19)

where D ∈ R(S×K)×T×d is the degree matrix, W e ∈ Rd×d is the learnable parameters in the
graph message passing mechanism. After integrating the lead-lag relationships between industries

6
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on the hyperedges and fusing the hidden relationships between different scales, the representation
of the hyperedges E ′ is adaptively updated. We then continue to complete the message passing from
hyperedges to nodes—see Figure 4 in Appendix B.4, thereby feeding back the complex correlations
within the industry to specific agents and completing the update of the representation of agent nodes:

V = E ′ ⊗H ∈ R(S×N)×T×d (20)

3.6 PREDICTOR

After completing the complex representation extraction using a hypergraph-based structure, we em-
ploy an MLP-based predictor and incorporate residual connection modules to forecast financial in-
dicators across each scale s.

X̂ s = MLPs,1(X s) ∈ RN×1, Ṽs = MLPs,2(Vs) ∈ RN×1, (21)

Ŷ s = X̂ s + Ṽs, Ŷ =

S∑
s=1

Ŷ s, (22)

where Xs ∈ R(N×T s×d) represents the initial node embedding in Equation 5 that does not consider
the lead-lag relationship and multi-scale interaction effects. However, Vs ∈ R(N×T×d) is the spatio-
temporal hypernode embedding in Equation 20 that incorporates lead-lag correlation and multi-
scale information. Finally, we combine the prediction results at different scales to obtain the final
prediction result.

3.7 OPTIMIZATION OBJECTIVES

Following StockMixer (Fan & Shen, 2024), we use the return ratio of a stock as the groundtruth.
We use a combination of a pointwise regression and pairwise ranking-aware loss to minimize the
MSE between the predicted and actual 1-day return ratios, while maintaining the relative order of
top-ranked stocks with higher expected return for investment as follows.

LMSE = ||Ŷ − Y ||22, LRank =

d∑
i=1

d∑
j=1

max(0,−(r̂ti − r̂tj)(r
t
i − rtj)), (23)

L = LMSE + αLRank, (24)

where r̂t and rt are the predicted and actual ranking scores, respectively, and α is a weight parameter.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach using three real-world datasets from the US stock market.
These datasets contain relatively complete stock-industry relationships or Wiki-based company re-
lations. The NASDAQ and NYSE datasets (Feng et al., 2019b) include EOD data from 01/02/2013
to 12/08/2017, filtered from the respective markets. Abnormal patterns and penny stocks were re-
moved, while preserving their representative properties, with NASDAQ being more volatile and
NYSE more stable. The S&P500 dataset (Huynh et al., 2023) gathers historical price data and in-
dustry information for the companies listed in the S&P500 index from the Yahoo Finance database,
covering the period from 01/04/2016 to 05/25/2022. The datasets statistics are provided in Table 4.

Baselines. We conduct a comparative analysis between our proposed Hermes and a range of base-
line methods, which include prominent approaches in both machine learning and deep learning
methods for STSF. Given that existing research has demonstrated the limited effectiveness of tradi-
tional statistical methods (Fan & Shen, 2024; Li et al., 2024), we exclude them from our comparative
evaluation to focus on more competitive approaches.

4.2 OVERALL PERFORMANCE

We present a detailed comparison of our approach (Hermes) with four types of baseline methods
in Table 1. We have the following observations: 1) For univariate methods, whether it is LSTM or
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Table 1: Comparison results on public stock market datasets (measured by t-test with p-value <
0.01). The methods for comparison are mainly divided into four types: RNN (Recurrent Neural
Network), GNN (Graph Neural Network), HGNN (HyperGraph Neural Network), and MLP (Multi-
Layer Perceptron). Bold indicates the best (SOTA) results.

Model
NASDAQ NYSE S&P500

IC RIC prec@N SR IC RIC prec@N SR IC RIC prec@N SR

RNN LSTM 0.032 0.354 0.514 0.892 0.024 0.256 0.512 0.857 0.031 0.186 0.531 1.332
ALSTM 0.035 0.371 0.522 0.941 0.023 0.276 0.519 0.764 0.029 0.181 0.532 1.298

GNN
RGCN 0.034 0.382 0.516 1.054 0.025 0.275 0.517 0.932 0.028 0.175 0.528 1.359
GAT 0.035 0.377 0.530 1.233 0.025 0.297 0.521 1.070 0.034 0.191 0.541 1.484

RSR-I 0.038 0.398 0.531 1.238 0.026 0.284 0.519 0.098 0.033 0.200 0.542 1.437

MLP Linear 0.019 0.188 0.505 0.517 0.015 0.163 0.497 0.625 0.016 0.156 0.520 0.674
StockMixer 0.043 0.501 0.545 1.465 0.029 0.351 0.539 1.454 0.041 0.262 0.551 1.586

HGNN
STHAN-SR 0.039 0.451 0.543 1.416 0.029 0.344 0.542 1.228 0.037 0.227 0.549 1.533
ESTIMATE 0.037 0.444 0.539 1.307 0.030 0.327 0.536 1.115 0.035 0.241 0.553 1.547

Hermes (Ours) 0.044 0.538 0.535 2.161 0.032 0.466 0.549 1.655 0.050 0.334 0.539 2.247

ALSTM, their performance is inferior to that of other hybrid architectures. This strongly highlights
the necessity and importance of capturing the complex industry and stock relationships in financial
markets. 2) For GNNs algorithms such as RGCN, GAT, and RSR-I, their performance shows a
significant improvement over RNNs, indicating that GNNs have strong stock relationship modeling
capabilities. However, compared to HGNNs algorithms like STHAN-SR and ESTIMATE, GNNs
perform slightly worse. This suggests that in the context of the financial market industry, using
hypergraph models to unify the relationships of stocks within the industry plays a crucial role in
enhancing forecasting performance. 3) The simple linear model fails due to insufficient inductive
bias. While StockMixer strikes a balance between the simplicity of MLP models and the excellent
performance of hybrid networks, it achieves the second-best results across most metrics. However,
because MLP-based models inherently have smaller model capacities, the issue of insufficient induc-
tive bias in StockMixer becomes more apparent when dealing with larger datasets. 4) Compared to
other hypergraph algorithms that consider stock relationships within industries (such as STHAN-SR
and ESTIMATE), the Hermes algorithm we propose shows significant performance improvement.
This clearly demonstrates that, based on the consideration of stock relationships within industries,
incorporating inter-industry lead-lag relationships and multi-scale relationships plays a crucial role
in enhancing forecasting capability.

4.3 ABLATION STUDIES

Table 2 illustrates the unique impact of each module and contrasts them with two hypergraph-based
baseline models, STHAN-SR and ESTIMATE. We have the following observations: 1) When the
multi-scale fusion module in Section 3.5 and the total multi-scale module (Remove the Total
Multi-Scale module, including Decomposition in Section 3.2 and Fusion in Section 3.5, respec-
tively) are removed, the performance of the model decreases in both cases. The performance drop
is more severe when the entire module is removed, indicating that while decomposition helps, the
internal fusion of multi-scale information is key to further enhancing performance. 2) Ablating the
lead-lag module in Section 3.4, which limits the model to only intra-industry correlations, causes
a notable performance decline. This highlights the importance of modeling inter-industry lead-lag
relationships. Even without this module, Hermes still outperforms STHAN-SR and ESTIMATE
which only consider internal industry correlations, demonstrating the superiority of Hermes’s core
architecture over other hypergraph-based approaches. 3) Removing the skip-connection module in
Section 3.6 also reduces performance, confirming its crucial role in facilitating information trans-
mission and gradient flow, thereby improving the model’s feature extraction capabilities.

4.4 EFFICIENCY ANALYSIS

In order to ensure good applicability of the model in practical applications, the runtime and memory
usage of the model are crucial. We conducted an efficiency comparison analysis of Hermes and two
other hypergraph-based methods, STHAN-SR and ESTIMATE—see Table 3.
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Table 2: Ablation study results on public datasets NASDAQ, NYSE, and S&P500.

Ablation NASDAQ NYSE S&P500
Model Component IC ICIR Prec@N SR IC ICIR Prec@N SR IC ICIR Prec@N SR

w/o Multi-Scale Fusion 0.038 0.464 0.521 1.374 0.028 0.421 0.545 1.354 0.031 0.248 0.531 1.517
w/o Total Multi-Scale 0.030 0.422 0.506 0.975 0.023 0.347 0.527 1.199 0.032 0.213 0.503 1.075

w/o Lead-Lag 0.039 0.472 0.526 1.451 0.028 0.420 0.540 0.225 0.037 0.201 0.519 1.628
w/o Skip-Connection 0.041 0.441 0.536 1.655 0.029 0.345 0.539 1.449 0.043 0.252 0.522 1.653

STHAN-SR 0.039 0.451 0.543 1.416 0.029 0.344 0.542 1.228 0.037 0.227 0.549 1.533
ESTIMATE 0.037 0.444 0.539 1.307 0.030 0.327 0.536 1.115 0.035 0.241 0.553 1.547

Hermes (Ours) 0.044 0.538 0.535 2.161 0.032 0.466 0.549 1.655 0.050 0.334 0.539 2.247

Table 3: Efficiency analysis on public stock datasets, concerning the training time, inference time
(measured in milliseconds per batch under the condition of a batch size being 1), and memory usage
(quantified in GB) of different models.

Dataset NASDAQ NYSE S&P500
Property STHAN-SR ESTIMATE Hermes STHAN-SR ESTIMATE Hermes STHAN-SR ESTIMATE Hermes

Training Time 257 ms 1,267 ms 215 ms 384 ms 1,462 ms 282 ms 297 ms 1,317 ms 211 ms
Inference Time 52 ms 163 ms 42 ms 73 ms 241 ms 61 ms 32 ms 109 ms 25 ms
Memory Usage 2.15 GB 9.62 GB 0.98 GB 2.82 GB 10.25 GB 1.14 GB 1.23 GB 4.52 GB 0.54 GB

Runtime Analysis: In practical application scenarios, fast response is one of the key factors. For
example, in the field of financial market forecasting, timely obtaining forecasting results can provide
valuable decision-making basis for investors. If the model takes too long to operate, even if the
prediction accuracy is high, it will be difficult to meet the actual needs. Therefore, we evaluate the
computational speed by recording the time each model takes to train and infer a sample (that is, the
batch size is uniformly set to 1) with the same dataset. The results show that the Hermes model
performs excellently. Compared with the other two hypergraph-based methods, its computational
time is reduced. This is mainly attributed to the fact that some modules of the Hermes model adopt
an efficient MLP structure in the algorithm design process. This structure can significantly improve
the computational efficiency while ensuring the accuracy of forecasting results.

Memory Analysis: Memory usage is also an important factor to measure the efficiency of the model.
Excessive memory usage will not only limit the application range of the model in different hardware
environments but also may cause the system to run slowly or even crash. In this experiment, we mon-
itored the memory usage of each model in detail during operation. The results show that the Hermes
has a lower memory usage rate. This advantage primarily stems from its unique architectural design,
which enables superior performance without requiring large hidden dimensions, as further validated
in Section B.5 through sensitivity analysis of the Latent Space Dimension parameter. Consequently,
Hermes effectively reduces memory usage while maintaining high performance, enhancing both the
practicality and deployment flexibility of the model.

5 CONCLUSIONS

Stock time series forecasting plays a pivotal role in the modern economy, serving as a key tool
for investors, financial institutions, and policymakers to make accurate decisions. However, exist-
ing forecasting methods often fall short in fully considering the lead-lag between industries and
multi-scale information, resulting in limited predictive performance. To address these challenges,
this study introduces the Hermes framework. By ingeniously fusing multi-scale analysis with lead-
lag modules within a hypergraph network, the Hermes framework significantly boosts the perfor-
mance of stock forecasting. Specifically, the hyperedge-based moving aggregation module incor-
porates a sliding window and utilizes dynamic temporal aggregation operations to consider lead-lag
dependencies among industries. Meanwhile, the hyperedge-based multi-scale fusion module de-
composes raw data at multiple scales, and then employs cross-scale, edge-to-edge message pass-
ing to integrate information from different scales while preserving the consistency of each scale.
Experimental results on multiple real-world stock datasets show that Hermes outperforms exist-
ing state-of-the-art methods in both efficiency and accuracy. All datasets and code are available
at https://anonymous.4open.science/r/Hermes-E150.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We do not use Large Language Models in our methodology and writing.

A.2 EXPERIMENTAL SETUP

A.2.1 DATASETS

To validate the performance of Hermes, we use three publicly available stock market datasets,
with the dataset statistics provided in Table 4. These datasets provide a diverse set of stock time
series, allowing us to comprehensively assess the model’s effectiveness across different financial
scenarios. We evaluate our approach using three real-world datasets from the US stock market.
These datasets contain relatively complete stock-industry relationships or Wiki-based company re-
lations. The NASDAQ and NYSE datasets (Feng et al., 2019b) include EOD data from 01/02/2013
to 12/08/2017, filtered from the respective markets. Abnormal patterns and penny stocks were re-
moved, while preserving their representative properties, with NASDAQ being more volatile and
NYSE more stable. The S&P500 dataset (Huynh et al., 2023) gathers historical price data and in-
dustry information for the companies listed in the S&P500 index from the Yahoo Finance database,
covering the period from 01/04/2016 to 05/25/2022.

Table 4: Statistics of datasets.

Property
Dataset NASDAQ NYSE S&P500

# Stocks 1026 1737 474
# Industries 113 130 11

# Technical Indicators 5 5 5
Start Time 13-01-02 13-01-02 16-01-04
End Time 17-12-08 17-12-08 22-05-25

Total Time Steps 1281 1281 1611
Train Time Steps 756 756 1006

Validate Time Steps 252 252 253
Test Time Steps 273 273 352

A.2.2 IMPLEMENTATION DETAILS

For fair comparison, all samples are generated by moving a 16 time steps lookback window. All
experiments with Hermes are conducted using PyTorch (Paszke et al., 2019) in Python 3.9, and are
executed on a server featuring an Intel(R) Xeon(R) Platinum 8358 CPU and an NVIDIA Tesla-A800
GPU. We use ADAM (Kingma & Ba, 2015) with an initial learning rate of 5e - 3. The “Drop Last”
issue is reported by several researchers (Qiu et al., 2024; 2025). That is, in some previous works
evaluating the model on test set with drop-last=True setting may cause additional errors related to
test batch size. In our experiment, to ensure fair comparison in the future, we set the drop last to
False for all baselines to avoid this issue.

A.2.3 METRICS

Previous studies use different evaluation metrics, making it challenging to perform a comprehensive
comparison of various methods. To provide a thorough assessment of the methods performance, we
use four of the most commonly applied and reliable metrics: IC and ICIR, which are rank-based
evaluation metrics; Prec@N, which measures accuracy; and SR, which is return-based.
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• Information Coefficient (IC): IC is a coefficient that shows how close the prediction is to the
actual result, computed by the average pearson correlation coefficient.

ICt =
1

N

(Ŷt −mean(Ŷt))
T (Yt −mean(Yt))

std(Ŷt) · std(Yt)
, (25)

where Yt are the raw stock price trends and Ŷt are the model predictions at each timestamp. We
report the average IC over all test dataset.

• Information Ratio-based Information Coefficient (ICIR): The information ratio of the IC met-
ric, calculated by:

ICIR =
mean(IC)

std(IC)
. (26)

• Precision@N (Prec@N): Prec@N evaluates the precision of the top N short-term profit predic-
tions from the model. This way, we assess the capability of the techniques to support investment
decisions. For example, when N is 10, and the labels of 6 among these top 10 predictions are
positive, then the Prec@10 is 60%.

Prec@N =
TP@N

N
, (27)

where TP is the number of true positive classifications. In this study, N is set to 10.
• Sharpe Ratio (SR): Sharpe ratio (Sharpe, 1994) measures the profitability of the investment

method and take into account risk.

SR =
Et[ρt − ρF ]√
vart(ρt − ρF )

, (28)

where ρt = pt

pt−1
−1 is the return on the portfolio and pF is the return on the risk-free asset which

is always 0.

A.2.4 BASELINES

We conduct a comparative analysis between our proposed Hermes and a range of baseline meth-
ods, which include prominent approaches in both machine learning and deep learning methods for
STSF. Given that existing research has demonstrated the limited effectiveness of traditional statisti-
cal methods (Fan & Shen, 2024; Li et al., 2024), we exclude them from our comparative evaluation
to focus on more competitive approaches.

• LSTM (Hochreiter & Schmidhuber, 1997) refers to the standard LSTM model, which operates
on sequential data, including closing prices and moving averages over 5, 10, 20, and 30 days, to
generate a sequential embedding. A fully connected (FC) layer is then employed to predict the
return ratio.

• ALSTM (Feng et al., 2019a) integrates adversarial training and stochastic simulation into an
enhanced LSTM model, allowing it to more effectively capture market dynamics.

• RGCN (Li et al., 2021) introduces a model that captures both positive and negative correlations
among stocks using a correlation matrix computed from historical market data. The LSTM mech-
anism in RGCN layers helps mitigate over-smoothing issues when predicting overnight stock
price movements.

• GAT (Veličković et al., 2017) employs Graph Attention Networks (GAT) to aggregate stock
embeddings, which are encoded by a GRU, on the stock graph. By combining the advantages of
Graph Neural Networks (GNN) and attention mechanisms, it enhances performance in large-scale
graph settings.

• RSR (Feng et al., 2019b) introduces a novel neural network-based framework called Relational
Stock Ranking, which addresses the stock forecasting problem in a learning-to-rank approach.
Additionally, it proposes a new component in neural network modeling, called Temporal Graph
Convolution, which is designed to explicitly capture the domain knowledge of stock relationships
in a time-sensitive manner.
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• STHAN-SR (Sawhney et al., 2021) introduces a novel Spatio-Temporal Hypergraph Attention
Network that models inter-stock relationships of different types and strengths as a hypergraph
for stock ranking. It combines temporal Hawkes attention with spatial hypergraph convolutions
through hypergraph attention to capture both the correlations in the movements of related stocks
and the temporal evolution of their historical features.

• ESTIMATE (Huynh et al., 2023) integrates temporal generative filters within a memory-based
shared parameter LSTM network, enhancing the model’s ability to learn temporal patterns for
each stock. Furthermore, it introduces attention hypergraph convolutional layers that utilize the
wavelet basis—a convolution approach that leverages the polynomial wavelet basis to streamline
message passing and focus on localized convolutions.

• Linear (Zeng et al., 2023) employs a straightforward approach by utilizing only fully connected
layers to predict the final price. This method does not incorporate any advanced architectures or
temporal dependencies, relying solely on basic linear transformations to generate the forecasting.
Despite its simplicity, it serves as a baseline model for comparison with more complex models.

• StockMixer (Fan & Shen, 2024) introduces a lightweight yet effective MLP-based architecture
for stock price forecasting. The model incorporates three key components—indicator mixing,
time mixing, and stock mixing—which work together to capture the intricate correlations within
the stock data.

B RELATED WORK

B.1 TRADITIONAL STOCK TIME SERIES FORECASTING

Early stock forecasting methods rely mainly on statistical learning techniques to capture patterns
and relationships in time series (Ye et al., 2016; Ariyo et al., 2014; Gupta & Dhingra, 2012; Elton
et al., 2009). One of the most widely used techniques is the Autoregressive Integrated Moving
Average (ARIMA) (Ariyo et al., 2014) model, which stabilizes data by combining Autoregressive
components, Moving Average, and differencing, thereby modeling time series. Another commonly
used traditional method is the Hidden Markov Model (HMM) (Gupta & Dhingra, 2012), which is
used to describe unobservable states in the market and can detect changes in market conditions,
making it suitable for analyzing market transitions. Although these methods provide predictive
capabilities, they exhibit significant limitations when dealing with nonlinear, dynamic changes, and
sudden events in financial markets. As a market environment becomes more complex, traditional
statistical methods increasingly fail to provide sufficient predictive accuracy and robustness.

With the rapid development in machine learning, machine learning methods for stock time series
forecasting have emerged (Alkhatib et al., 2013; Nugroho et al., 2014; Kim, 2003). For example,
Support Vector Machines (SVMs) (Kim, 2003) map data to high-dimensional spaces using kernel
functions and find optimal separating hyperplanes in those spaces, which allows them to capture
complex relationships and dynamics in financial markets. However, SVMs are highly sensitive
to parameter selection and often struggles to capture long-term dependencies. Overall, although
machine learning methods show considerable potential in stock forecasting, they still rely on manual
feature engineering and model design. Moreover, these traditional stock forecasting methods have
not delved into the exploration of lead-lag relationships and multi-scale modeling.

B.2 DEEP LEARNING STOCK TIME SERIES FORECASTING

With the rise of deep learning, notable progress has occurred in stock forecasting. This is mainly
because deep neural networks can model complex nonlinear patterns. This is mainly because deep
neural networks can model complex nonlinear patterns. Some studies use recurrent neural networks
(RNNs) (Nelson et al., 2017; Qin et al., 2017; Akita et al., 2016; Rahman et al., 2019) to capture the
historical development in individual stock prices and predict their short-term trends. For example,
Long Short-Term Memory (LSTM) networks combined with historical stock data and text informa-
tion are used to predict stock prices (Akita et al., 2016). In addition, due to the significant progress
of Multi-Layer Perceptrons (MLPs) architecture in the general time series field, the DLinear (Zeng
et al., 2023), CycleNet (Lin et al., 2025), and SparseTSF (Lin et al., 2024) show the benefits of this
simple architecture for time series forecasting. Increasingly may proposals target stock forecasting
performance by improving the MLPs architecture. For example, a series of studies (Fan & Shen,
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2024; Lazcano et al., 2024; Tashakkori et al., 2024) enhance the learning ability of simple MLPs
structures by utilizing the MLP-Mixer backbone, thereby improving forecasting accuracy. Next, the
Transformer model has become increasingly popular due to the ability of its self-attention mech-
anism to capture long-term dependencies. For example, Master (Li et al., 2024) proposes a novel
stock transformer for stock price forecasting to effectively capture stock correlation.

Some deep learning models have begun to explore lead-lag relationships and multi-scale modeling.
For instance, StockMixer (Fan & Shen, 2024) engages in multi-scale modeling by segmenting the
original time series into subsequence-level patches and mixing features at different scales. However,
this approach lacks effective integration of information across scales; it merely concatenates infor-
mation from different scales without thorough fusion. On the other hand, ESTIMATE (Huynh et al.,
2023) takes into account lead-lag relationships through data-driven detection of leading and lagging
time series clusters. Nonetheless, this method falls short in capturing fine-grained lead-lag dynam-
ics, as clustering can only reveal global lead-lag relationships. Distinctive from the aforementioned
approaches, Hermes employs a sliding window technique and utilizes dynamic temporal aggrega-
tion operations to consider fine-grained lead-lag dependencies among stock industries. Moreover, it
features a multi-scale fusion module, which utilizes a cross-scale, egde-to-edge message-passing to
integrate information from different scales while maintaining the consistency of each scale.

While these deep learning methods have advanced stock forecasting, the complexity of stock data
and the need to account for intricate relationships among stocks have led researchers to explore new
methods based on hypergraphs.

B.3 HYPERGRAPH-BASED STOCK TIME SERIES FORECASTING

Traditional graphs have limitations when it comes to modeling higher-order multivariate relation-
ships, as they can only represent relations between pairs of nodes. To address this issue, Hypergraph
Neural Networks (HGNNs) (Feng et al., 2019c) were introduced. Hypergraphs extend the concept
of simple graphs to enable the capture of relationships among multiple stocks (Chen et al., 2020).
Hypergraphs have gained increasing attention and application across various fields. Hyperedge in
a hypergraph represents a set of vertices, making them suitable for modeling non-pairwise relation-
ships (Luo et al., 2014; Sawhney et al., 2020). For example, HGAM (Li et al., 2022) is a hypergraph-
based reinforcement learning method for stock portfolio selection. THGNN (Xiang et al., 2022) is
a temporal and heterogeneous graph neural network model that aims to learn dynamic relationships
by using two-stage attention mechanisms. STHAN-SR (Sawhney et al., 2021) enhances corpo-
rate relevance based on Wiki data and uses hypergraph convolution to propagate information from
higher-order neighbors. DHSTN (Liao et al., 2024) is a dynamic hypergraph network for learning
spatio-temporal relations of stocks. Dynamic hypergraphs are generated adaptively using (Graph
Attention Networks) GATs to capture time-varying higher-order spatial relationships among stocks.
The latest method, ESTIMATE (Huynh et al., 2023), employs hypergraphs to capture non-pairwise
correlations, utilizing temporal generative filters to identify individual patterns for each stock.

Unlike the above methods, we propose a new hypergraph-based stock forecasting model that specif-
ically takes into account the multi-scale nature of stock data, enabling it to capture the complexity
of market dynamics more comprehensively. Furthermore, our approach places particular emphasis
on the lead-lag relationships between financial industries, where the changes in one industry may
precede or lag behind those in another. By capturing these key relationships more fully, we aim to
improve forecasting accuracy.

B.4 ILLUSTRATION FIGURES

B.5 HYPERPARAMETER SENSITIVITY

This experiment addresses question RQ3 on the hyperparameter sensitivity. Due to space limitations,
we focus on the most important hyperparameters—see Figure 5.

Lookback window length T : We examine the predictive performance of Hermes as we adjust the
lookback window length, T , illustrated in Figure 5a. Consistently across all datasets, a balanced
window length emerges as the most effective. Window lengths that are too short result in a swift
decline in performance due to inadequate information, whereas excessively lengthy sequences also
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Figure 3: The specific lead-lag interaction pro-
cess within the window, with a lead-lag step of
3 as an example.
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(b) Latent space dimension
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Figure 5: Parameter sensitivity studies of main hyper-parameters in Hermes.

underperform because of the absence of timely information benefits and the heightened learning
expenses for stocks.

Latent space dimension d: In Section 3.2, we enhance the representational capacity of indicators
by mapping them into a high-dimensional hidden space d, thereby facilitating the extraction of more
intricate hidden relationships. In Figure 5b, we explore the impact of different hidden dimensions d
and observe that datasets exhibit optimal performance at varying m values. Notably, when d is set
to smaller values such as 5 or 8, models tend to achieve good performance; however, as d increases,
models become prone to overfitting, leading to a decline in performance. Furthermore, selecting
smaller d not only improves model performance but also effectively reduces the number of model
parameters.

Multi-scale Lead-Lag steps w1, w2, · · · , wS: In Section 3.4, for time series at each scale, we study
the lead-lag correlations within ws time steps to better extract complex dependencies in the time
series, thereby improving forecasting performance. Here, we select three scales and specify the lead-
lag time steps as w1, w2, and w3, respectively. As shown in Figure 5c, we find that different datasets
have variations in their multi-scale lead-lag time steps when achieving optimal performance. This
is because different datasets possess unique characteristics, and their cyclicity (fine-grained scale)
and trend (coarse-grained scale) may change due to external factors. Therefore, we recommend
adjusting this parameter specifically when dealing with new datasets.

Score weight α: Besides, we adopt the score weight in section 3.7 to trade off the MSE loss and
the ranking-aware loss—see Figure 5d. Experimental results show that all datasets achieve optimal
performance and exhibit high stability when the score weight is set to 1. Therefore, we recommend
setting this parameter to 1 in future research to obtain more optimized results.
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