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Abstract

Masked prediction has emerged as a promising pretraining paradigm in offline
reinforcement learning (RL) due to its versatile masking schemes, enabling flexi-
ble inference across various downstream tasks with a unified model. Despite the
versatility of masked prediction, it remains unclear how to balance the learning of
skills at different levels of complexity. To address this, we propose CurrMask, a
curriculum masking pretraining paradigm for sequential decision making. Moti-
vated by how humans learn by organizing knowledge in a curriculum, CurrMask
adjusts its masking scheme during pretraining for learning versatile skills. Through
extensive experiments, we show that CurrMask exhibits superior zero-shot perfor-
mance on skill prompting tasks, goal-conditioned planning tasks, and competitive
finetuning performance on offline RL tasks. Additionally, our analysis of training
dynamics reveals that CurrMask gradually acquires skills of varying complexity by
dynamically adjusting its masking scheme. Code is available at here.

1 Introduction

Humans distinguish themselves from machines by their capacity to adapt and generalize. One
crucial factor behind this discrepancy is the drive to acquire reusable knowledge (e.g., concepts and
behaviors) even in the absence of explicit reward (White, 1959). This has motivated research in
unsupervised reinforcement learning (RL) (Laskin et al., 2021; Chebotar et al., 2021), in which the
agent is required to learn from reward-free offline data (Carroll et al., 2022; Schwarzer et al., 2021)
or online interaction (Liu and Abbeel, 2021; Yarats et al., 2021) for pretraining.

To build generic decision-making agents, great efforts have been made recently to apply self-
supervised learning objectives for unsupervised offline pretraining (Schwarzer et al., 2021; Sun et al.,
2023). Among these studies, one popular approach is masked prediction, a simple but versatile self-
supervision framework that has proven its effectiveness in domains like language (Devlin et al., 2019)
and vision (He et al., 2022). By masking a portion of the input trajectory and predicting it conditioned
on the remaining unmasked tokens, the model can not only capture rich representations but also learn
transferable behaviors. For example, given a masked trajectory (s1, [MASK], s2, a2, [MASK], a3), a
model learned by masked prediction is forced to reason about both dynamics (i.e., masked state s3)
and behaviors (i.e., masked action a1).

Given the effectiveness of masked prediction, an important question arises: how can we design
and arrange the masking schemes for decision-making data to maximize its benefits? To explore
this question, our research stems from the finding that models trained with token-wise random
masking, a widely adopted masking strategy in natural language modeling, fall short in modeling
long-term dependencies (see Figure 4). While randomly masked words describe semantically dense
information, state-action sequences in decision-making data contain heavy information redundancy
(e.g., consecutive states are usually similar). This causes the model to predict masked tokens solely
based on their neighboring unmasked tokens. Besides, state-action sequences naturally come with a
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Figure 1: Illustration of CurrMask. Based on the framework of masked prediction modeling in (a),
the block-wise masking scheme in (b), we design a masking poolM in (c) consisting of masking
schemes at different levels of complexity, which CurrMask evaluates the learning progress of the
model θ and samples masking schemes from during pretraining in (d).

unique pattern of interleaved modality, unlike single-modal word sequences. These discrepancies in
information density and sequence pattern require a reevaluation of masking scheme design for RL
pretraining.

To this end, we propose CurrMask to address the above considerations. CurrMask leverages block-
wise masking and a curriculum-based approach arranging the order of different masking schemes to
boost pretraining. An illustration of our approach is shown in Figure 1. First, we posit that masking
for decision-making data needs to be designed in blocks rather than tokens. A block of consecutive
state and action tokens forms a semantic entity of skill (Ajay et al., 2021; Pertsch et al., 2021). For
example, applying block-wise masking of size 3 results in (s1, [MASK], [MASK], [MASK], s3, a3). By
using a block-wise masking scheme, the model is compelled to prioritize global dependencies over
basic local correlations when making masked predictions. Moreover, the combination of multiple
block sizes and mask ratios incentivizes the model to acquire adaptable skills that can be utilized for
diverse downstream tasks.

With different block-wise masking schemes representing skills at varying levels of complexity, we
further propose a curriculum-based approach to arrange the order of learning them for better capturing
semantically meaningful relations. Our main intuition is that since humans obtain knowledge by
organizing it into different subjects and learning the entire curriculum in an easy-to-hard order, the
ability of long-horizon reasoning can be developed by first learning how to act locally. This motivates
us to measure the learning progress and schedule proper masking schemes at regular intervals to boost
pretraining. Ideally, the curriculum can boost the pretrained model performance on downstream tasks.
However, obtaining downstream information is usually intractable during pretraining. Instead, we
consider the pretraining task, i.e., the reconstruction loss, as a proxy reference for learning progress.
Utilizing this proxy for skill learning, the goal of selecting masking schemes can be interpreted as
maximizing the decrease in reconstruction loss(Graves et al., 2017). Considering the exploitation
of the reconstruction loss decrease and the uncertainties in pretraining that require exploration of
different masking schemes, the masking scheme selection task can be formulated as a multi-armed
bandit problem (Lattimore and Szepesvári, 2020), where each arm represents a masking scheme.

We aim to enable the model to acquire versatile skills through CurrMask, meaning that the pretrained
model becomes adaptable to different potential downstream tasks. We conduct a series of empirical
studies on various MuJoCo-based control tasks, including locomotion and robotic arm manipulation.
Our results demonstrate that CurrMask enables the learning of a versatile model that achieves superior
performance in zero-shot skill prompting, zero-shot goal-conditioned planning as well as competitive
fine-tuning performance on offline RL. Further analysis reveals that CurrMask effectively mitigates
the issue of local correlations and is better at capturing long-term dependencies. These findings shed
light on the design and arrangement of masking schemes that can effectively balance the acquisition
of reusable skills at varying levels of temporal granularity and complexity.

2 Related Work

Masked Prediction as a Self-Supervision Task. Masked prediction requires the model to predict
a missing portion of the input that has been held out. Pretraining via masked prediction has been
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explored in natural language processing (Devlin et al., 2019; Joshi et al., 2020), computer vision (He
et al., 2022; Bao et al., 2022; Xie et al., 2022), and decision making (Liu et al., 2022; Carroll et al.,
2022; Sun et al., 2023; Wu et al., 2023; Boige et al., 2023). One of the most notable applications
is masked language modeling (Devlin et al., 2019) for learning transferable text representations.
Recently, it has been shown that masked prediction can also facilitate decision making, either by
training visual backbones (Radosavovic et al., 2023; Seo et al., 2023) or by learning temporal
information (Liu et al., 2022; Carroll et al., 2022; Sun et al., 2023; Wu et al., 2023; Boige et al., 2023).
In line with this research direction, we investigate the impact of masking schemes on pretraining.

Masking Schemes. For masked prediction, a central question is what is masked. One common
scheme is to randomly mask some of the tokens from the input. Apart from random masking, recent
studies have proposed attention-guided masks (Li et al., 2021; Kakogeorgiou et al., 2022; Li et al.,
2022) and adversarial masks (Shi et al., 2022; Tomar et al., 2023) to force the model to focus specific
parts of the input for better performance. In the domain of decision making, previous work usually
considers the simplest random masking scheme (Liu et al., 2022), manually designed task-specific
masks (Carroll et al., 2022), random autoregressive masking (Wu et al., 2023) or a combination of
random masking with other representation learning objectives (Sun et al., 2023). In this work, we
aim to illustrate the connection between masking schemes and skill learning, in search for a proper
automatic learning curricula for masked prediction for decision-making data.

Unsupervised RL Pretraining. Our work also falls into the category of extracting prior knowledge
without extrinsic human supervision for sample-efficient RL. Previous work has vastly studied reward-
free RL, in which the agent can interact with the environment in the absence of rewards (Eysenbach
et al., 2019; Yarats et al., 2021). Another setting is to utilize unlabeled offline data for representation
learning (Schwarzer et al., 2021; Stooke et al., 2021) or skill learning (Ajay et al., 2021; Jiang et al.,
2022; Xie et al., 2023). Masked prediction presents a promising framework to enjoy the best of both
world. Our work focuses on leveraging masked prediction for unsupervised RL pretraining.

Curriculum Learning. Inspired by how humans learn faster when knowledge is ordered by easiness,
curriculum learning (Elman, 1993; Bengio et al., 2009) has been formulated for machine learning
algorithms to improve training efficiency. While curriculum learning has been actively explored in
the context of online RL (Jabri et al., 2019; Fang et al., 2021), in this work we show that offline RL
pretraining also benefits from a proper learning curriculum.

3 Preliminaries

To better contextualize our method, we provide an overview of essential background knowledge on
masked prediction and curriculum learning in this section.

3.1 Masked Prediction

Let τ = (st, at)
T
t=1 = (s1, a1, s2, a2, · · · , sT , aT ) denote a trajectory consisting of state-action

sequences and D denote the training dataset. The self-supervised task of masked prediction is to re-
construct τ from a masked view masked(τ), where masked(·) represents a specific masking function.
For example, if masked(·) represents a deterministic scheme that masks the initial and final actions
of the input, the resulting masked trajectory is masked(τ) = (s1, [MASK], s2, a2, · · · , sT , [MASK]).
Here, [MASK] represents a special learnable token. The learning objective is then given by:

max
θ

Eτ∼D

T∑
t=1

logPθ (st, at | masked(τ)) ,

where Pθ is parameterized by a bidirectional transformer (Devlin et al., 2019). By reconstructing
state-action sequences, the model learns to reason over temporal dependencies.

Importantly, the choice of masked(·) specifies a concrete task the model is trained on. Therefore, it
is crucial to design an appropriate masking scheme that enables learning of general relationships in
state-action sequences. This goal boils down to two aspects: 1) how much is masked, and 2) what
is masked. For the former, it has been shown that a high mask ratio (e.g., 95%) is meaningful for
decision-making data due to its low information density (Liu et al., 2022). For the latter, since it is
undesirable to specify the tasks of interest when pretraining, the random masking scheme is widely
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used (i.e., uniformly sampling a subset of tokens to mask). These principles form the basis of our
proposed masking approach, which is elaborated in Section 4.

3.2 Automated Curriculum Learning

Automated curriculum learning considers how to arrange the order of tasks during training by
adapting the selection of learning scenarios to match the learner’s abilities. Consider a series of tasks
represented by loss functions L1, . . . ,LK . The objective is to find a time-varying sequence of tasks
to accelerate training. To this end, a proper automatic curriculum needs to specify two factors: 1)
how to measure learning progress, in order to adjust its task schedule dynamically, and 2) how to
perform task selection based on progress signals. We describe our design in Section 4.

4 Curriculum Masked Prediction

In this section, we describe the proposed approach, CurrMask, for unsupervised RL pretraining.
Algorithm 1 summarizes the overall pipeline. At the core of CurrMask is masked prediction as
a versatile self-supervised learning objective and an automatic learning curriculum over masking
schemes to enable fast skill discovery. Once pretrained on offline data, CurrMask can perform various
downstream tasks in a zero-shot manner, or be finetuned for policy learning. In the following, we
elaborate the design of CurrMask and provide sufficient explanation.

4.1 Block-wise Masking Enhances Long-term Reasoning

Our research is based on the discovery that models trained using random masking, a commonly used
strategy in natural language modeling, fall short in capturing long-term dependencies (see Figure 4).
This is undesirable for decision-making agents that maximize long-term reward. To overcome this
issue, CurrMask applies the block-wise masking scheme (Joshi et al., 2020; Bao et al., 2022) that
masks the trajectory in blocks instead of individual tokens. By doing so, CurrMask pushes the model
to focus on semantically meaningful abstractions rather than simple local correlations. Predicting
missing blocks of state-action sequences also resembles multi-step inverse dynamics models (Lamb
et al., 2022), which has been shown to learn robust representations for decision making. We present
pseudocode of our block-wise masking implementation in Appendix A.

Blocks consisting of consecutive states and actions also form a notion of skills or primitives. Prior
works in offline skill discovery (Ajay et al., 2021; Jiang et al., 2022) typically use variational inference
to partition trajectories into skills. In this work, we argue that masked prediction with block-wise
masking represents an alternative approach for offline skill discovery. The link between masked
prediction and skill discovery inspires us to explore automatic curricula that can aid in learning skills.

4.2 Learning over a Mixture of Masking Schemes

The block size explicitly determines the level of temporal granularity for masked prediction. To
capture both short-term and long-term temporal dependencies, CurrMask employs a combination of
masking schemes with varying block sizes and mask ratios during pretraining.

Given a set of masking schemes M where |M| = K, we define the loss function for masked
prediction task k as:

Lk(τ ; θ) =

T∑
t=1

logPθ (st, at | maskedk(τ)) ,

where maskedk ∈M denotes a specific masking scheme. CurrMask aims to minimize the multi-task
learning objective Ltarget(τ ; θ) =

1
K

∑K
k=1 Lk(τ ; θ).

4.3 Automated Curriculum Learning Boosts Training Efficiency

A key feature of mixed masking schemes is their inherent variability in complexity. Intuitively, the
ability of reasoning over global dependencies can be developed by first learning how to plan within
a short horizon. This motivates us to consider curriculum learning to facilitate masked prediction.
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Algorithm 1: Curriculum Masking
Input :masking poolM with cardinality K, uniformly initialized probability distribution

πw, training steps T , evaluation interval I , offline training dataset D, validation
dataset Dval, bidirectional transformer Pθ

Initialize exponential weights wk ← 1 for k = 1, . . . ,K;
Compute initial target loss Ltarget(θ) on validation dataset Dval with Equation 4.2;
Sample initial masking scheme k ∼ πw;
for t← 1 . . . T do

/* Training */
Sample masks with k, compute training loss Lk on τ ∼ D;
Update θ by gradient descent;
if t mod I = 0 then

/* Evaluation & update of masking scheme */
Compute target loss Ltarget(θ) on Dval;
Calculate reward r using scaled target loss decrease in Equation 1;
Update weights w with Equation 4;
Update probability distribution πw with Equation 3;
Update masking scheme k ∼ πw;

end
end

By scheduling masking schemes in a meaningful order, we expect that the model will learn more
efficiently and quickly during training.

Evaluation of Learning Progress. The first factor to determine is the measure of learning progress.
Ideally, we would like the curriculum to maximize the rate at which the model learns to solve
downstream tasks. However, it is usually intractable to measure without downstream task information.
Hence, we consider target loss decrease (Graves et al., 2017) as a proxy signal for learning progress:

r = fscale(Ltarget(θ)− Ltarget(θ
′)), (1)

where θ and θ′ denote the model parameters before and after training on a masking scheme for an
interval I , respectively. The underlying rationale is that the most efficacious masking scheme is
evidenced by the greatest target loss decrease observed before and after training on it. To alleviate
the issue of time-varying magnitudes, we follow Graves et al. (2017) to rescale values into [−1, 1]
using the 20-th percentile rlot and 80-th percentile rhit of unscaled history values Rt = {r̂i|i =
0, I, 2I, ..., t}, where I represents the evaluation interval and t is some interval timestep (i.e., t is
divisible by I):

fscale(r̂t) = max(−1,min(1,
2
(
r̂t − rlot

)
rhit − rlot

− 1)). (2)

Task Selection. To schedule tasks in a meaningful order, we aim to minimize Ltarget achieved after
training on them sequentially, which is equivalent to maximizing the reward defined in Equation 1.
In the selection of masking schemes, we need to balance the maximization of the reward with
the uncertainties inherent in pretraining dynamics, requiring deliberate exploration among diverse
masking schemes. This can be formulated a multi-armed bandit problem (Lattimore and Szepesvári,
2020), where each arm represents a masking scheme and the goal is to maximize the total reward
earned over time. Since the reward distribution induced by Equation 1 shifts as the network learns, we
use the EXP3 algorithm (Auer et al., 2002), a non-stochastic multi-armed bandit algorithm that mixes
the probability distribution computed using exponential weights w with the uniform distribution
constituting an ϵ fraction of the total probability distribution. The sampling probability distribution
πw for each masking scheme is then given by:

πw(i) = (1− ϵ)
wi∑K
j=1 wj

+
ϵ

K
i = 1, . . . ,K, (3)

where ωi represents the weight of the i-th arm (or masking scheme), ω′
i represents the updated ωi in

Equation 4, K denotes the number of arms available in the masking scheme pool and π represents the
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sampling probability distribution for each masking scheme. This equation shows how to sample each
arm (i.e., each masking scheme) using weights. The weights ω determine the probability distribution
π from which we sample the masking schemes. This probabilistic approach allows us to balance
exploration and exploitation by dynamically adjusting the focus on different masking schemes based
on their performance.

Each time EXP3 samples an arm k by the policy πw, observes reward r, and uses the importance-
weighted estimator x̂i =

I{i=k}r
πw(i) to update its weights according to the following formula:

w′
i = wi exp (γx̂i/K) i = 1, . . . ,K. (4)

This equation describes how we update the arm weights based on the observed rewards, which in this
context are the computed pretraining progress. By updating the weights ω according to the rewards,
we ensure that the more effective masking schemes (those that lead to better pretraining progress) are
sampled more frequently in subsequent iterations. This adaptive mechanism helps the model to learn
an effective masking curriculum over time. As such, exponential growth significantly increases the
probability of choosing good arms (i.e., masking schemes). Please see Appendix C for discussions
on how CurrMask addresses non-stationarity.

5 Experiments
In this section we conduct an empirical study to answer the following questions: (Q1) Can CurrMask
learn a versatile model that achieves good performance on a variety of downstream tasks, both in
zero-shot and finetuning scenarios? (Q2) What role do block-wise masking and masking curricula
play in CurrMask? (Q3) Does CurrMask better capture long-term temporal dependencies, and if so,
what mechanism within CurrMask facilitate this capability?

5.1 Environment Setup
We evaluate our method on a set of environments from the DeepMind control suite (Tunyasuvunakool
et al., 2020). Each environment has several tasks specified by how the reward function is defined.
Specifically, we consider a total of 9 tasks that are associated with 3 different environments (walker,
quadruped and jaco). At evaluation, we test how well the model pretrained for each environment
on offline datasets adapts to different downstream tasks. For more details and experimental results,
please refer to Appendix B.2 and Appendix D, respectively.
Environments. The walker environment consists of 3 locomotion tasks (run, stand, and walk)
and the quadruped environment provides 2 locomotion tasks (run and walk). All the tasks provide
a dense reward measure of task completion. For example, task run provides rewards encouraging
forward velocity. We also conduct experiments on jaco, which is an environment for robot arm
manipulation including 4 reaching tasks (bottom left, bottom right, top left, and top right).
These tasks are sparse-reward tasks given that nonzero rewards are provided only when the current
position is within a certain distance threshold of the target position.
Dataset Collection. For each environment, we construct a multi-task dataset by collecting trajectories
of 12M steps from the replay buffer of TD3 agents (Fujimoto et al., 2018). This collection procedure
ensures that the pretraining dataset contains experiences of varying quality. For zero-shot evaluation,
we additionally construct a validation set for each environment using the same protocol but with
different random seeds, following the setting in the prior work (Liu et al., 2022).
Implementation Details. We consider multiple mask ratiosR = {15%, 35%, 55%, 75%, 95%} and
multiple block sizes B = {1, 2, . . . , 20} to construct the masking poolM = {(r, b) | r ∈ R, b ∈ B}
(|M| = 100) for CurrMask. For all the evaluated masked prediction methods, we use the same
bidirectional encoder-decoder transformer architecture with a 3-layer encoder and a 2-layer decoder,
following prior works (He et al., 2022; Liu et al., 2022). The encoder input is unmasked states and
actions and the decoder input is the whole trajectory including both masked and unmasked tokens.
The evaluated autoregressive baselines consist of 5 layers for fair comparison.
Baselines. We compare CurrMask with the following baselines: MaskDP (Liu et al., 2022) samples
a mask ratio fromR and randomly masks a portion of individual tokens in each training step; MTM
(Wu et al., 2023) adopts random autoregressive masking which first randomly samples masked tokens
and all future tokens of the last masked token are masked; Mixed randomly samples a masking
scheme fromM with a uniform distribution; Mixed-prog uses a manually designed mask curriculum
that progressively increases the block size during pretraining, divided into four stages. In each
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Table 1: Skill prompting results. We report the zero-shot performance of models pretrained with
different masking schemes. Results are averaged over 10 random seeds. The best and second results
are bold and underlined, respectively.

Reward ↑ walker s walker w walker r quad w quad r jaco bl jaco br jaco tl jaco tr Average
MaskDP 103.2 ± 2.6 58.4 ± 2.3 29.3 ± 1.4 36.6 ± 2.2 45.1 ± 2.4 58.1 ± 4.4 58.4 ± 3.0 56.9 ± 3.9 64.0 ± 3.3 56.7
MTM 107.1 ± 2.8 58.8 ± 2.7 27.3 ± 1.4 37.1 ± 2.3 42.8 ± 2.7 72.0 ± 4.5 71.8 ± 3.9 72.5 ± 5.1 77.6 ± 3.5 63.0
Mixed-inv 103.3 ± 3.1 59.5 ± 3.0 23.8 ± 1.2 45.1 ± 3.0 43.2 ± 2.9 51.8 ± 3.3 53.0 ± 2.8 56.8 ± 3.6 59.7 ± 4.8 55.1
Mixed-prog 103.5 ± 2.4 55.0 ± 2.8 25.8 ± 1.2 40.5 ± 1.8 45.6 ± 2.2 85.3 ± 5.5 85.4 ± 3.7 84.2 ± 4.8 88.5 ± 3.7 68.2
Mixed 110.8 ± 2.2 54.2 ± 2.0 30.5 ± 1.2 43.3 ± 2.7 51.3 ± 2.8 66.0 ± 6.4 61.6 ± 3.7 62.3 ± 3.6 66.5 ± 4.0 60.7
GPT 101.8 ± 2.9 34.6 ± 1.3 21.6 ± 1.0 41.9 ± 2.9 48.8 ± 3.2 86.1 ± 5.7 83.1 ± 2.7 83.9 ± 5.1 85.7 ± 3.0 65.3
CurrMask 111.2 ± 2.4 79.9 ± 1.2 38.9 ± 1.9 38.0 ± 2.2 51.0 ± 3.4 88.4 ± 5.1 88.5 ± 3.6 86.0 ± 4.3 92.9 ± 3.5 75.0

stage, block sizes are sampled from {1, 2, . . . , 5}, {1, 2, . . . , 10}, {1, 2, . . . , 15}, and {1, 2, . . . , 20}
respectively, while the mask ratio is sampled fromR; Mixed-inv adopts an inverted approach to the
mask curriculum of Mixed-prog, utilizing the block size pools in reverse order. Apart from masked
prediction baselines, we also compare with GPT and Goal-GPT, which are auto-regressive models
similar to GPT (Brown et al., 2020). GPT takes the past states and actions as inputs and outputs the
next state or action. To accommodate downstream tasks that require information about the goal state,
Goal-GPT is modified to take a goal state as well as past states and actions as input and predict the
next state or action to reach the goal.

5.2 Downstream Tasks

To demonstrate the versatility of CurrMask, we consider various downstream tasks that require
different capabilities, including zero-shot inference by specifying certain masking schemes (i.e., skill
prompting and goal-conditioned planning) and adaptation via finetuning (i.e., offline RL).
Skill Prompting. A unified model trained on diverse multi-task data is expected to acquire various
skills that can be invoked to perform certain tasks. Skill prompting tests this ability by requiring the
model to generate consecutive behaviors given a short state-action sequence. An input example of
which prompt context length is 3 looks like (s0, a0, s1, a1, s2, a2, [MASK], [MASK], ..., [MASK]) and
during evaluation, we set the environment state to s2, perform predicted actions and record rewards.
For each task, we sample prompt contexts of length eight from the validation set, and evaluate the
quality of the generated trajectory of length 120 by its task rewards.
Goal-conditioned Planning. Another type of downstream task we consider is goal-conditioned
planning. Starting from a given state, the model needs to roll out actions that can achieve tar-
get goals within a number of steps. We condition the pretrained model a start state and four
goal states to evaluate the model’s capability to generate long-term plans. With the input pattern
of (sstart, MASK, ..., MASK, sgoal1, MASK, ..., MASK, sgoal2, MASK, ...), we set the environment state to
sstart perform the predicted actions. The performance is assessed by the L2 distance between each
goal and the state that is achieved by executing the predicted actions within the given time budget and
is closest to the goal. We choose the goal states at distances of 20, 40, 60, and 80 future timesteps
from the start states to evaluate the long-term planning capability of model.
Offline RL. Finally, we study if the representations learned by CurrMask can accelerate offline RL.
For each task, we add a critic head and actor head on top of the encoder and run TD3 (Fujimoto
et al., 2018) to perform offline RL training, following prior work (Liu et al., 2022). Although TD3
is originally designed as an off-policy RL algorithm, Yarats et al. (2022) show that it achieves very
competitive performance on offline datasets of diverse behaviors. The offline dataset is collected
from the entire replay buffer of a ProtoRL agent (Yarats et al., 2021) trained for 2M environment
steps. Notably, the datasets consist of highly exploratory data, which emphasizes the importance of
having good representations.

5.3 Main Results

We test the versatility of CurrMask over a variety of downstream tasks, in answer to Q1 and Q2.

Table 2: Goal-conditioned planning results. We report the zero-shot performance of models
pretrained with different masking schemes. Results are averaged over 20 random seeds. The best and
second results are bold and underlined, respectively. The lower the better.

Distance ↓ walker s walker w walker r quad w quad r jaco bl jaco br jaco tl jaco tr Average
MaskDP 4.85 ± 0.48 10.10 ± 0.27 15.52 ± 0.39 20.71 ± 0.69 21.62 ± 0.79 1.42 ± 0.05 1.42 ± 0.05 1.39 ± 0.06 1.40 ± 0.06 8.71
MTM 6.05 ± 0.61 12.20 ± 0.41 17.92 ± 0.55 23.93 ± 0.70 25.09 ± 0.80 2.38 ± 0.08 2.42 ± 0.10 2.35 ± 0.07 2.30 ± 0.10 10.59
Mixed-inv 5.32 ± 0.53 11.25 ± 0.31 16.51 ± 0.51 22.63 ± 0.74 23.31 ± 0.77 1.55 ± 0.06 1.53 ± 0.05 1.57 ± 0.07 1.53 ± 0.08 9.47
Mixed-prog 4.96 ± 0.48 10.18 ± 0.28 15.77 ± 0.48 23.49 ± 0.72 24.28 ± 0.86 1.46 ± 0.04 1.44 ± 0.04 1.44 ± 0.05 1.44 ± 0.09 9.38
Mixed 4.83 ± 0.47 10.15 ± 0.28 15.47 ± 0.46 20.67 ± 0.73 21.66 ± 0.75 1.47 ± 0.06 1.47 ± 0.04 1.43 ± 0.06 1.44 ± 0.08 8.73
Goal-GPT 7.47 ± 0.74 15.15 ± 0.41 21.04 ± 0.60 27.36 ± 0.77 28.76 ± 0.90 3.34 ± 0.10 3.58 ± 0.11 3.26 ± 0.15 3.50 ± 0.11 12.61
CurrMask 4.85 ± 0.47 9.90 ± 0.27 15.31 ± 0.49 20.47 ± 0.71 21.39 ± 0.67 1.39 ± 0.05 1.38 ± 0.04 1.33 ± 0.05 1.34 ± 0.07 8.60
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Figure 2: Offline RL results. We report the finetuning performance of models pretrained with
different masking schemes. Results are averaged over 10 random seeds.

Skill Prompting Results. Table 1 summarizes the zero-shot performance for skill prompting. We
observe that CurrMask achieves the best performance in 7 out of 9 tasks and also attains the highest
average performance, outperforming MaskDP by a margin of 32%. suggesting that CurrMask is
proficient in mirroring skill prompts to accomplish specific tasks. Besides, other baseline methods that
incorporate block-wise masking (i.e., Mixed, Mixed-prog, and Mixed-inv) generally outperform
random masking. This matches our expectation that blocks form more semantically meaningful
entities than individual tokens and can be utilized by masked prediction to facilitate skill learning.
The only exception is Mixed-inv. The poor performance of Mixed-inv sends a strong signal that a
proper curriculum is important for masked prediction training.
Goal-conditioned Planning Results. Next, we evaluate how capable CurrMask is for long-horizon
planning. As shown in Table 2, CurrMask can roll out better goal-reaching trajectories than the
baselines in 8 out of 9 tasks. We can observe that Goal-GPT exhibits the worst performance in all
the tasks, suggesting that the autoregressive model falls short in downstream tasks that necessitate
the simultaneous use of bidirectional information, compared to directional models. Another notable
observation is that, in contrast to skill prompting results, Mixed, Mixed-prog and Mixed-inv have
worse performance than MaskDP. This indicates that the superior performance of CurrMask is not
only due to block-wise masking but rather a consequence of dynamically balancing what to mask
during training.
Offline RL Results. Finally, we present offline RL results in Figure 2. Compared with learning
from scratch, learning with pretrained representations obtained by CurrMask results in training
speedup and performance improvement. We observe that CurrMask generally outperforms other
masked pretraining baselines as well as autoregressive architecture based baselines, which suggests
that CurrMask not only learns diverse skills but also extracts transferable representations for policy
learning. It should also be noted that in some cases (e.g., walk and run) pretraining with GPT leads
to diminished performance for finetuning, whereas CurrMask is generally more stable.

5.4 Analysis

In this section, we investigate several aspects of CurrMask to further answer Q2 and Q3.
Impact of Block-wise Masking. To better understand how block-wise masking contributes to
CurrMask, we conduct an ablation study on the choice of block sizes. Figure 3a shows the influence
of the block size, where masked prediction is combined with a fixed block size and mask ratios
randomly sampled fromR. With block-wise masking, masked prediction benefits from larger block
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mance. Left: the performance of zero-shot skill prompting as a function of fixed block size. Right:
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Figure 4: Analysis of long-term prediction capability. Left: We visualize the attention map
(L2-normalized over different heads) of the first decoder layer, when the model is conducting skill
prompting. The horizontal axis represents the keys, and the vertical axis represents the queries. Right:
the performance of zero-shot skill prompting as a function of rollout length (tasks: walker run and
jaco reach top left).

sizes to perform zero-shot skill prompting. Besides, mixing different block sizes uniformly for
training, referred to as Mixed, leads to average performance. By leveraging a proper combination
of masking schemes with different block sizes, CurrMask boost the skill prompting performance
matching or exceeding the best results among all the block-wise masking schemes shown in Figure 3a.
This indicates that the block size does have a great impact over final performance, and a proper
learning curriculum can be also crucial.
Impact of Masking Curricula. Another important question is whether good masking curricula
should be determined manually or found adaptively during training. We would like to emphasize
that Mixed-prog does not consistently lead to performance improvements compared to Random.
Specifically, in most goal-conditioned planning tasks and in offline RL (shown in Figure 2) and skill
prompting tasks of the walker domain, Mixed-prog performs worse than Random. In contrast, for
CurrMask, we consistently observe improvements over Random.
We provide additional experimental results to better illustrate that CurrMask is not just rediscovering
the programmatic curriculum. Figure 5 displays the skill prompting results versus training steps
during pretraining, revealing noticeable differences in skill learning progress between Mixed-prog
and CurrMask. This comparison emphasizes that a proper masking scheme and curriculum-based
pretraining progress are unlikely to be predetermined and highlights the benefits of CurrMask for its
adaptivitity.
Evaluation of Long-term Prediction. One of the most important intuition behind CurrMask is
that block-wise masking can enhance the model’s capability to capture long-term dependencies. To
verify this, we look into the attention maps during prediction with skill prompts even when they are
far from current timesteps. Figure 4a shows how CurrMask predicts the attention map for all 32
tokens based on the first 8 unmasked tokens and the subsequent 24 masked tokens. The vertical axis
represents the query, and the horizontal axis represents the key. The black-boxed area highlights the
model’s dependency on the keys of the first 8 unmasked tokens when predicting the attention map for
the subsequent 24 masked tokens. We notice significant differences in how the approaches use the
prompt. It can be observed that the attention of CurrMask in the bounded region is more pronounced,
indicating that CurrMask is better at recalling prompt context when predicting the future compared to
random masking. Besides, the predictions of CurrMask attend to prior actions more than they do to
prior states. These findings support our intuition that CurrMask is more effective at extracting useful
long-term dependencies. We offer a more comprehensive assessment in Appendix E.
This discrepancy in attention patterns is further validated by the performance of long-horizon skill
prompting. Figure 4b shows the skill prompting performance as a function of the rollout length. We
observe that CurrMask outperforms the baselines significantly when the rollout length is extended.
Notably, Random, Mixed and Mixed-inv have degenerated performance for long rollouts on the right
task, supporting our hypothesis that CurrMask acquires non-trivial long-term prediction capacity.
Visualization of Masking Curricula. Next, we investigate how automatic curricula steer masking
schemes during training. Figure 3b visualizes the time-varying probabilities of choosing different
block sizes and mask ratios during CurrMask pertaining. We can see that CurrMask gradually
increases the probability of choosing large block sizes while also preferring a moderate mask ratio.
The former observation reveals that CurrMask has a tendency to learn more complex skills, which
aligns with our intuition. For the latter, we believe it reflects the degree of information redundancy in
sequential decision-making data, also reported in previous work (Liu et al., 2022; He et al., 2022).
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We also visualize the mean block size and mean mask ratio during pretraining in Appendix D.1 for
further reference.

6 Conclusion
In this work, we propose CurrMask, a curriculum masking approach for unsupervised RL pretraining.
Motivated by the unique pattern of sequential decision-making data (i.e., low information density and
interleaved modality), we propose to apply block-wise masking with mixed mask ratios and block
sizes to capture temporal dependencies at both short-term and long-term levels of granularity. As
different masking schemes naturally vary in prediction difficulty, we consider automated curriculum
learning as the inner drive to facilitate training by scheduling these schemes in a meaningful order.
We show through extensive experiments that CurrMask learns a versatile model that consistently
outperforms the baselines in various downstream tasks. Our analysis of the impact of block-wise
masking and curriculum learning emphasizes the adaptivity of CurrMask and its superior ability to
extract global dependencies.
Limitations. One limitation of CurrMask is the computational overhead, as CurrMask relies on an
extra bandit model to schedule masking schemes for training1. Furthermore, the advantages offered
by CurrMask could be affected by the underlying structure of the environment. This encourages us to
extend our method to more challenging settings like image-based RL in future research.
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A Pseudocode of Block-wise Masking
Algorithm 2 demonstrates the block-wise masking mechanism, which is employed as an intermediate
step for masking in CurrMask and other baseline models.

Algorithm 2: Block-wise Masking
Input : sequence length L, mask ratio p, block size b
Output : binary mask matrix m ∈ {0, 1}L (0 for masked, 1 for unmasked),
if b = 1 then

return random masking(L, p);
end
l← p · L ; /* length of masked tokens */

c← ⌊L−1
b ⌋ ; /* number of blocks in a sequence */

Initialize mask m← 1;
Randomly choose start index s← random(0, · · · , b− 1);
Shuffle block indices bs← shuffle(0, . . . , c− 1);
Expand block indices to token indices ts← (i · b+ j + s for i in bs for j in (1, · · · , b− 1));
Mask tokens m← set zero(m, ts[−l :]);
if len(ts) < l then

Mask remaining tokens m← set zero(m, ((0, · · · , L− 1)− ts)[len(ts)− l :]);
end
return m;

B Experimental Details
B.1 Data Collection
Pretraining Datasets For all the environments, we create a multi-task dataset by gathering tra-
jectories from the replay buffer of TD3 agents. We collect a total of 12M steps from the replay
buffer for each environment. Each task in the walker environment is trained for 4M environment
steps, each task in the jaco environment is trained for 3M steps and each task in the quadruped
environment is trained for 6M steps. By following this procedure, we ensure that the pretraining
datasets encompasses experiences of varying quality.

Validation Datasets For zero-shot evaluation of both skill prompting and goal-conditioned planning,
we construct a separate validation set for each environment using the same collection protocol for
pretraining datasets but with different random seeds.

Training Datasets for Offline RL Each offline dataset is obtained from the complete replay buffer
of a ProtoRL agent, which was trained for 2M environment steps. For each task, the collected dataset
is relabeled with task-specific rewards during offline RL. It is worth mentioning that these datasets
contain highly exploratory data, emphasizing the significance of having effective representations.
Table 3 summarizes the statistics.

Table 3: Episodic return statistics of training datasets used for offline RL.

task min max mean
stand 27.07 408.59 198.85
walk 4.81 199.95 72.95
run 4.55 79.00 38.61

B.2 Implementation Details
Hyperparameters Our CurrMask implementation is based on the MaskDP codebase2. Table 4
summarizes the hyperparameters used by CurrMask for training and evaluation.

2https://github.com/FangchenLiu/MaskDP_public
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Table 4: Hyperparameters used for model training and evaluation.
model value
# encoder layers 3
# decoder layers 2
# autoregressive transformer layers 5
# attention heads 4
context length 64
hidden dimension 256
mask ratio [15%, 35%, 55%, 75%, 95%]
block size [1, 2, . . . , 20]
training
optimizer Adam
batch size 384
learning rate 1e-4
# gradient steps 300k
EXP3 ϵ 0.2
EXP3 γ 0.1
evaluation interval I 100
# evaluation samples N 10
skill prompting
# seeds 10
# trajectories sampled per seed 100
prompt length 8
rollout length 120
goal-conditioned planning
# seeds 20
# trajectories sampled per seed 100
offline RL
# seeds 10
# training steps 35k

Baselines and Implementation Details Our method CurrMask focuses on masked prediction.
Therefore, we aim to compare CurrMask with the most relevant skill learning methods that are also
based on masked prediction. For all the baselines, we use the same model architecture and common
hyperparameters as CurrMask. The implementation of Mixed-prog involves evenly dividing the
pretraining process into four stages based on the ratio of training steps to total training steps. We se-
quentially apply four distinct mask schemes, denoted as {(r, b) | r ∈ R, b ∈ {1, 2, . . . , 5}}, {(r, b) |
r ∈ R, b ∈ {1, 2, . . . , 10}}, {(r, b) | r ∈ R, b ∈ {1, 2, . . . , 15}}, and {(r, b) | r ∈ R, b ∈
{1, 2, . . . , 20}}. This deliberate control enables the progressive increase in block size of the mask,
posing greater challenges to the training procedure as it unfolds. The implementation of Mixed-inv
shares significant similarities with Mixed-prog. Both methods adopt a four-stage approach to
partition the training process. The key distinction lies in the sampling of sub-sequence lengths
as training progresses. In the case of Mixed-inv, these lengths follow a descending pattern:
{(r, b) | r ∈ R, b ∈ {1, 2, . . . , 20}}, {(r, b) | r ∈ R, b ∈ {1, 2, . . . , 15}}, {(r, b) | r ∈ R, b ∈
{1, 2, . . . , 10}}, and {(r, b) | r ∈ R, b ∈ {1, 2, . . . , 5}}.
For all the evaluated bidirectional masked prediction methods, we use the same encoder-decoder
transformer architecture with a 3-layer encoder and a 2-layer decoder and the same learning objective
following prior works (Liu et al., 2022). The learning objective is a design choice to compute loss on
the entire input (Vincent et al., 2008) or only on the masked tokens (Devlin et al., 2019). In this work,
we apply the former as it has been shown to work better with sequential decision-making data (Liu
et al., 2022).

Compute Resources CurrMask is intended to be approachable to the RL research community. The
entire workflow can be executed on a single GPU. Utilizing a single RTX 3090 graphics card, the
pretraining on the assembled datasets takes approximately 7-8 hours for 300k gradient steps.

Evaluation of Skill Prompting To facilitate skill prompting, the agent is provided with a short
state-action segment randomly extracted from a trajectory in the validation dataset. The agent is
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then positioned at the final state of the segment and tasked with generating subsequent behaviors
in an autoregressive manner. The quality of the generated sequence is evaluated by comparing its
accumulated rewards with those obtained from the rollout of an expert with advanced skills. In detail,
we employ a prompt length of 8 timesteps and the initial position of each prompt is randomly sampled
within the range of [0.1 · trajectory length, 0.85 · trajectory length]. Therefore, the prompt
may be located at the beginning of a trajectory or skewed towards the later stages, resulting in the
agent’s state being in a low-speed starting phase or a high-speed running phase in the cases of the
walk/run task.

Evaluation of Goal-conditioned Planning To implement goal-conditioned planning, we randomly
sample a goal context of length 100 from the trajectories in the validation set. The position of the
goal is set at specific locations [20, 40, 60, 80]. The agent is initially placed at the starting position of
the goal context, and the rollout continues for the remaining tokens. We calculate the L2 distance
between each goal state and its closest state token within the rollout length as a metric for evaluation.
Evaluation of Offline RL In offline RL, the main objective is to train a model to maximize the
return for a specific task, as defined by a reward function. This differs from our self-supervised
pretraining objective, so additional finetuning is required. To align with the RL setting, we modify
the bidirectional attention mask in the transformer to a causal attention mask. This change allows the
model to attend only to previous states and actions during training, simulating the sequential nature
of RL tasks. We also utilize a standard actor-critic framework similar to TD3 by incorporating a critic
head and an actor head on top of the pretrained encoder. The actor takes a sequence of states as input,
while the critic takes a sequence of state-action pairs as input. Both components operate without any
masking. Then we perform RL training using the modified architecture.

C Discussions on Non-stationarity
Non-stationarity is a major challenge for algorithm design in our context. We want to emphasize two
important properties: 1) The reward distribution is non-stationary, and 2) Despite this, the learning
process usually progresses gradually without sudden regime shifts (Zhou et al., 2021).
For the former, we want to emphasize that our method tackles the non-stationarity in two aspects.
Firstly, EXP3, a special case of online mirror descent, is inherently adaptable to reward distributions
that change over time. Secondly, we alleviate this issue by rescaling rewards using historical
percentiles. For the latter, while abrupt distribution changes are not typically observed, we believe
that our framework can easily accommodate other techniques like sliding windows and reward
discounting to address significant non-stationarity.

D Additional Experimental Results
D.1 Impact of Masking Curricula
In Figure 5, we plot the cumulative reward of each 30 steps of the generated trajectory. The patterns
of Mixed-prog and CurrMask are substantially different. During the initial stage of pretraining,
Mixed-prog (trained with small blocks only) struggles to learn skills at all levels of temporal
granularity. CurrMask however exhibits faster skill acquisition and adapts its masking scheme
dynamically during training.
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Figure 5: Skill prompting performance on Walker run in the pretraining phase.

Figure 6 illustrates the mean block size and mean mask ratio used by CurrMask during pretraining,
as a function of training steps. We can see that during the pretraining process, CurrMask continually
adjusts the block size and mask ratio according to the training progress. Overall, there is an upward
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Figure 6: Visualizations of mean block size and mean mask ratio during curriculum pretraining on
walker domain.
Table 5: Reward results. We report the performance across Token-wise masking and Block-wise
masking with different block sizes. The best and second-best results are bold and underlined,
respectively.

Reward ↑ walker s walker w walker r quad w quad r jaco bl jaco br jaco tl jaco tr Average
Token 103.2 ± 2.6 58.4 ± 2.3 29.3 ± 1.4 36.6 ± 2.2 45.1 ± 2.4 58.1 ± 4.4 58.4 ± 3.0 56.9 ± 3.9 64.0 ± 3.3 56.7
Block-5 95.8 ± 2.2 31.4 ± 1.4 14.7 ± 0.5 37.1 ± 1.8 33.8 ± 1.9 24.4 ± 2.0 24.8 ± 1.4 25.3 ± 1.2 28.2 ± 1.2 35.0
Block-10 107.2 ± 2.9 35.6 ± 1.1 18.3 ± 0.9 48.3 ± 2.8 40.6 ± 2.4 56.6 ± 5.5 56.7 ± 3.3 55.0 ± 3.4 61.0 ± 3.1 53.3
Block-15 111.2 ± 1.9 83.9 ± 3.7 32.2 ± 2.0 48.4 ± 3.0 38.4 ± 2.3 71.2 ± 5.6 70.4 ± 3.5 70.0 ± 5.1 76.2 ± 3.5 66.9
Block-20 112.0 ± 2.5 78.4 ± 1.9 33.4± 1.5 49.2 ± 2.7 41.6 ± 2.6 84.7 ± 5.8 85.6 ± 2.0 84.5 ± 4.2 91.7 ± 3.0 73.4

trend in block size, suggesting that CurrMask progressively enhances masking difficulty. For the mask
ratio, CurrMask also continuously adjusts, CurrMask also continuously adjusts, slightly decreasing
from 0.55 to 0.54. Through continual adjustments on mask schemes, CurrMask ensures steady
improvement on downstream tasks.

D.2 Impact of Block size
We have conducted experiments on token-wise masking and block-wise masking with constant block
sizes of 5,10,15 and 20 to prove the significance of block-wise masking empirically. The results of
skill-prompting are in Table D.2.
We can observe from the table that on most tasks, Block-15 and Block-20 achieve higher rewards
compared to token-wise masking. Additionally, as the block size increases, the performance of
block-wise masking on skill-prompting also improves. These observations support our intuition
that block-wise masking with relatively high block sizes helps the model better capture long-term
dependencies.

E Attention Visualization
In this section, we provide more details about our attention map visualization and additional results.

Setup To provide a clearer visualization of the differences between CurrMask and other baselines
in zero-shot skill prompting and goal reaching, we visualize the attention maps of their first layer
decoders.For comparison purposes, we employ two masking techniques: prompt masking and goal
masking. Prompt masking masks all tokens except the first 8 tokens, while goal masking masks all
tokens except two randomly sampled state tokens.
Specifically, we evaluate the aforementioned masking methods on 10 trajectories randomly sampled
from validation sets using the pretrained model. We then compute the average attention map for each
technique, and finally apply L2 normalization to the attention maps of all four heads to obtain the
first layer attention map. We focus on a truncated token sequence of length 32, resulting in a final
attention map of size 32× 32 for clearly demonstrating the differences.

Additional Results We provide additional visualization results in Figure 7-8. Apart from the obser-
vation that CurrMask better captures long-term dependencies than Random, we find that increasing
the block size for Block-wise leads to greater capabilities in long-term prediction, which supports
our intuition regarding the benefits brought by block-wise masking.
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Figure 7: Attention visualization with prompt masking.

F Impact Statement
In this paper, we present a curriculum-based masked prediction approach for unsupervised RL
pretraining. Although our method is not expected to pose direct social risks, the use of extensive pre-
training datasets highlights the significance of avoiding harmful bias in training data. We emphasize
the need for ethical responsibility to ensure that our method contributes positively to societal and
technological progress.
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Figure 8: Attention visualization with goal masking.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide clear statement of the paper’s contributions and scope in the
abstract and introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Section 6.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the detailed descriptions on the assumptions of our CurrMask in
Section 4.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide implementation details of our method in the Section 5 and Ap-
pendix B.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide detailed instructions for data collection and code implementation.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the training and test details in the Appendix B.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report all the experimental results with appropriate errors or error bars in
figures.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details on experiments compute resources in the Appendix B.2.
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conducted in the paper conforms in every respect with the
NeurIPS Code of Ethics.
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societal impacts of the work performed?
Answer: [Yes]
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impacts of CurrMask in the Appendix F.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We describe how to avoid misuse of CurrMask in Appendix F.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We respect and cite the creators or original owners of assets used in the paper.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We communicate the details of CurrMask in the paper as well as the Ap-
pendix B.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not include crowdsourcing experiments and research with human
subjects in this paper.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not include crowdsourcing experiments and research with human
subjects in this paper.
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