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Abstract

Multitask models have been the key to the most AI-driven applications on smart
devices like phones. Such applications often infer on-devices using a pre-trained
model. However, pre-trained multitask models fail when in-the-wild data distribu-
tion differs from the training data. While adapting to the target test data is a natural
solution, conventional algorithms from transfer learning and unsupervised domain
adaptation are impractical in the above on-device adaptation requirement due to
the unavailability of labeled runtime data and limited resources at the devices. Re-
cent methods in Test-time Adaptation (TTA) are deemed suitable as they neither
require access to labels for test data nor the training data. However, the current
state-of-the-art (SOTA) TTA approaches only consider models with single-task
objectives and thus may fail to capture the nuances of multitask modeling.
For the first time in literature, we systematically explore this novel but practical
problem regime. Firstly, we investigate the impact of different tasks on the en-
tropy of class probability distribution, a key optimization criterion for many TTA
approaches. Next, we extend a popular SOTA TTA approach and systematically
investigate its performance on a benchmark multitask image dataset under various
domain shifts. With different experiments, we observe that the current TTA ap-
proaches fail to capture the intricacies of the different tasks. We envision this study
will pave the way for further investigation and development of TTA approaches
designed explicitly for multitask architectures.

1 Introduction

An emerging paradigm in edge computing is to utilize the same pre-trained machine learning (ML)
model for multiple purposes. For instance, a ML model for vision deployed on a smartphone may
need to process the camera data to identify faces, segment the background, classify the scenery, and
other tasks simultaneously [1, 2]. Such a multitask model offers a much better usage of smartphones’
memory, battery, and other compute resources. Existing multitask models typically consists of a
shared encoder followed by a task-specific classifiers [3]. In practice, a common strategy is to train
the multitask model at server side, and then deploy the model on the edge devices for on-device
inference, which improves the users’ privacy, since personal data does not leave users’ devices.

The key problem with pre-trained multitask models is that they often experience a significant drop
in performance when the distribution of test data (i.e., target data) shifts from the data used during
training (i.e., source data). In the most real-world scenarios, the target data is unlabeled, due to
the cost and complexities of labelling or the lack of expertise. Therefore, classical transfer learning
methods [4] are not suitable, as they typically require a minimum amount of labeled data. Moreover,
while methods of unsupervised domain adaptation (UDA) [5, 6, 7, 8, 9] can adapt to unlabeled target
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data, they all require access to source data at adaptation time. Storing training data on each user’s
device is highly impractical due to storage limitations, and the source data may also be private.
To adapt to unlabeled target data without needing to store source training data, the community has
developed test-time adaptation (TTA) solutions [10, 11, 12, 13, 14, 15, 16], which do not assume
any modification of the training pipeline, e.g., employing a self-supervised task.

In TTA, the most common approach is to minimize the entropy of the softmax outputs, and based on
such an unsupervised objective function, to fine-tune some specific layers of the model, like the batch
normalization [10, 14], at test time. Entropy-based TTA, due to empirical success, is also combined
with other state-of-the-art (SOTA) approaches, such as psuedo-labeling [13, 17], sharpness-aware
optimization [14, 18], and contrastive learning [16]. Overall, softmax-entropy minimization is still
one of the key component of many objective functions for TTA. The main limitation of current TTA
methods is that they only focus on a single classification task, and rely on softmax-entropy min-
imization as a proxy to improve the performance of this single task [19]. However, in multitask
models, the softmax outputs of different tasks may not be aligned or correlated, even though they
share the same input features. The extension of TTA to multitask models, and the challenges of stan-
dard softmax-entropy minimization as the main optimization criterion, has not yet been explored.

In this paper, we present the first comprehensive analysis of SOTA TTA methods in multitask sce-
narios, motivated by the complex interaction between heterogeneous task objectives and the diverse
forms of domain shifts that can occurs at test time. We investigate (a) how the distribution of softmax
entropy changes for each task across different domain shifts, and (b) how the correlation between
tasks impacts the adaptation of the shared encoder. In particular, we extend one of the most practical
TTA methods, test entropy minimization (TENT) [10], to adapt multitask models while analyzing
the uncertainties associated with different task objectives and their impact on each other.

In summary, the followings are the key contributions of this paper:

1. To the best of our knowledge, we introduce the first analysis of TTA for multitask models.

2. On top of CelebA dataset [20], and using the well-know domain shift [21], we create and
publish a benchmark dataset for multitask domain adaptation.

3. We extend TENT [10] to multitask architectures and study its performance for adaptation
across different task objectives.

4. We present the key insights gained from our analysis and provide directions for developing
TTA algorithms suitable for multitasking architecture.

2 Related Work

To address domain shift at test time, one solution is transfer learning [4], although challenges arise
due to the lack of labeled target data [10]. To overcome this, unsupervised domain adaptation (UDA)
leverages unlabeled target data alongside labeled source data to fine tune a model [5, 6, 7, 8, 9].
Current domain adaptation strategies for multitask models like [22, 23, 24] mostly follow UDA
approach, in conjunction with other strategies like cross-task distillation [23]. However, these UDA
approaches often rely on resource-intensive adversarial training with cross-domain loss. Moreover,
they needed access to the labeled source training data, which can become impractical with large-
scale models and limited device resources.

Test-time training (TTT) [25, 26, 27] is an alternative to UDA, by using a multitask architecture and
a self-supervised auxiliary task, such as image rotation for re-training the model at the test time.
However, such a specific model design requirement may need control of the source data and training
pipeline, which can be an impractical assumption [16].

In contrast, test-time adaptation (TTA) emerges as a more robust solution, requiring no specific
alterations to the model architecture while optimizing the entropy of the model’s outputs at test
time. TTA can effectively simplify the adaptation process, avoiding the need for auxiliary tasks and
model re-engineering [10, 11, 12, 13, 14, 15, 16]. The problem is that TTA is often only suitable
for single-task models [19]. Notably, to the best of our knowledge, there is no previous work that
explore the extension of TTA for multitask models.
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3 Methodology

We discuss the two major ingredients of our exploration: i) the dataset for benchmarking multitask
TTA, and ii) the policies to extend a STOA TTA method, called TENT, for multi-task settings.

3.1 CelebA-C: a New Benchmark for Multitask TTA

Building on top of the well-known multi-task image dataset, CelebA [20], we use a benchmark im-
age corruptions algorithm [21]. CelebA contains 200K facial images, each annotated with 40 binary
attributes, but it has highly imbalanced labels [28]. Considering this, (1) we select the four most bal-
anced attributes as tasks for training a multi-task model (see Table 1), and (2) we choose weighted
F1-score as the metric for evaluations. The four tasks are TA:‘Attractive’, TM :‘Male’, TS :‘Smiling’,
and TL:‘Wearing Lipstick’, with the distribution of each label shown in Figure 2. These tasks have
varying degree of correlation as depicted in Figure 1 measured with Pearson correlation coefficient.
For example, TA and TM show a negative correlation of −0.39, whereas TA and TS show a slight
positive correlation of 0.15.

In [21], 15 corruption to images are introduced, to mimic real-world domain shift in images. We
select 6 corruptions to explore: Gaussian Noise, Shot Noise, Impulse Noise, Defocus Blur, Bright-
ness, and Contrast. As an example, Gaussian Noise adds noise drawn from a Gaussian distribution
to each pixel of the original image. The standard deviation of the Gaussian distribution depends
on the severity of the corruption. We follow the definition provided by [21] and divide the severity
into a scale of 1 to 5. To make our analyses more practical, we only evaluate the highest possible
corruption with a severity of 5.

Task Description
TA if person is attractive
TM if person is a male
TS if person is smiling
TL if person is wearing lipstick

Table 1: Task descriptions Figure 1: Task correlation Figure 2: Label Imbalance

3.2 M-TENT: An extension of TENT to Multitask Models

To adapt multitask models, we extend one of the most popular TTA algorithms, test entropy mini-
mization (TENT) [10], initially designed for single-task models only. TENT uses softmax-entropy
minimization to fine-tune the affine parameters of the batch normalization (BN) layers of the model
using the unlabeled target data at test time.

In Figure 3, we visualize the idea of M-TENT: our extension of TENT for multitask models. M-
TENT allows us to study the effectiveness of softmax-entropy minimization in TTA for multitask
models. In particular, in M-TENT, we compute the average of softmax entropies across all the task
heads and utilize it to fine-tune the statistics of BN layers in the shared encoder. Formally, the
entropy loss for the shared encoder Lse can be represented as

Lse =
1

M

M∑
m=1

H(ŷm)

where M is the number of tasks, H(ŷm) represents Shannon entropy, and ŷm denotes the model’s
softmax outputs for the mth task. This specific design of Lse allows us to setup different policies in
M-TENT for selecting one or more tasks that would contribute to the adaptation of the final model
under domain shift. In particular, we utilize a subset of tasks for adaptation to better understand the
marginal gain of using different tasks and impact of their correlations with other tasks.
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Figure 3: Overall setup of adapting the multitask model using softmax entropy minimization. We
use a ResNet18 as the shared encoder and update only the affine parameters of the batch norm layers
at the test-time for adaptation.

4 Evaluations: Performance under Domain Shift

Experimental Setup. We use ResNet18 [29] as the shared encoder, and to design a multitask model
we add one fully-connected layer as the head per each task. We train the model (ResNet18 and all
the heads) with 70% of the CelebA dataset (as the source dataset) using cross-entropy loss function.
To create the CelebA-C dataset (see § 3.1), we put the remaining 30% of the CelebA dataset as
the held-out target dataset. For the target dataset, we do not use the labels to be aligned with our
application constraint. All the reported results are based on this setup.

We first examine the accuracy of the pre-trained multi-task model on the in-distribution test data
(i.e., CelebA) and the domain-shifted test data (i.e., CelebA-C). In Table 2, we present the accuracy
of the CelebA trained model without adaptation.

Table 2: Test binary-classification accuracy of a CelebA trained model on CelebA-C. A particular
shift have varying impacts across different tasks. Bold font shows the lowest percentage weighted
F1-Score for a task across shifts.

Source
Distribution

Gaussian
Noise

Shot
Noise

Impulse
Noise

Defocus
Blur Brightness Contrast

Attractive 79.56 35.08 50.74 35.08 55.52 35.08 32.95
Male 97.91 43.30 44.44 43.30 44.15 43.30 87.89
Smiling 91.07 35.86 35.86 35.86 35.86 35.86 54.13
Wearing Lipstick 92.45 30.69 30.74 30.69 37.01 30.69 37.14

In-distribution and Domain-shifted Accuracy. We observe that each type of domain shifts im-
pact each tasks in a different way, which causes significant accuracy degradation for some tasks.
Notably, the results show that with distribution shift the model is failing not only in identifying the
correct features but also learning incorrect mapping with the class labels. For example, in most
cases the weighted F1-score highlights that the model is mapping a significant number of features
to completely opposite labels. This also highlights how the distribution shift impacts the general
prediction for multitask models across different task objectives.

However, certain domain shifts like ‘contrast’, have lower impact on performance on some of the
tasks like TM . Figure 4 shows the impact of shifts on the feature embeddings extracted by the
unadapted shared encoder for the task TM . We observe that the model fails to segregate the classes
in the feature space, causing the significant degradation of model performance for domain shifts like
the addition of Gaussian noise.
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(a) (b) (c)

Figure 4: Feature embeddings from the CelebA pre-trained model for TM with – (a) No domain
shift (b) Gaussian noise shift, and (c) Contrast shift.

(a) (b)

(c) (d)

Figure 5: Distribution of softmax entropy across different tasks with various domain shifts – (a)
Noise Contrast on ‘Attractive’, (b) Defocus blur on ‘Attractive’, (c) Contrast on ‘Male’, and (d)
Defocus blur on ‘Male’.

Key Observations from class distribution entropy. As indicated in works like [10], softmax-
entropy can be a good measure of the certainty of a model. The example figures shown in Figure 5
and Figure 6 show that different domain shifts impact the certainty of the model differently. In most
cases, the model tends to become more uncertain (higher entropy) under domain shift. However, for
some instances like Figure 5 (a) and Figure 6 (b)-(d), the model tends to provide wrong predictions
with higher certainty (lower entropy) under the impact of noises like defocus blur and contrast shift.
This highlights that the same domain shift can also cause a model to make confident yet wrong
predictions for some tasks while being more uncertain on others.

5 Analysing M-TENT on CelebA-C

Evaluating M-TENT with Policies In this section, we evaluate four policies for M-TENT. These
policies are designed to based on the observed correlation between the tasks (as shown in Figure 1).
The primary goal of using these policies is to see how the correlation impact the uncertainty between
the tasks under the distribution shift. More specifically, we design the following four policies for a
principled evaluation. i) using all four tasks for adaptation, ii) using only TA for adaptation, iii)
using TA and TL for adaption, and iv) using only TM for adaptation. For each policies with more
than one tasks involved, the loss is averaged across the tasks used for adaptation. The performance
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(a) (b)

(c) (d)

Figure 6: Distribution of softmax entropy across different tasks with various domain shifts – (a)
Noise Contrast on ‘Smiling’, (b) Defocus blur on ‘Smiling’, (c) Contrast on ‘Wearing Lipstick’, and
(d) Defocus blur on ‘Wearing Lipstick’.

accuracy of M-TENT is reported in Table 3, and the critical observations are summarized as follows.

Table 3: Test accuracy after adapting using M-TENT. The drop in performance is reported by a
negative change highlighted in bold and red with a down-arrow. Increase in performance is reported
in green and an uparrow with certain entries in bold highlighting those conditions where even after
adaptation the performance was less than 60%.

Task All Tasks Only Attractive

Gaussian Shot Impulse Defocus Brightness Contrast Gaussian Shot Impulse Defocus Brightness Contrast

Attractive ↓ 32.54 ↓ 32.54 ↓ 32.55 ↓ 33.01 ↓ 32.85 ↓ 32.94 ↓ 32.54 ↓ 32.54 ↓ 32.54 ↓ 32.87 ↓ 32.69 ↓ 32.73
Male ↓ 25.45 ↓ 25.59 ↓ 25.45 ↑ 46.13 ↑ 93.13 ↑ 96.01 ↓ 34.96 ↓ 35.4 ↓ 35.53 ↑ 48.67 ↑ 86.73 ↑ 89.48
Smiling ↑ 35.89 ↑ 35.9 ↑ 35.88 ↑ 36.29 ↑ 85.27 ↑ 88.17 ↑ 37.03 ↑ 37.61 ↑ 36.96 ↑ 43.93 ↑ 79.11 ↑ 81.92
Wearing Lipstick ↑ 37.0 ↑ 37.01 ↑ 37.01 ↑ 37.27 ↑ 88.1 ↑ 38.71 ↑ 37.01 ↑ 37.02 ↑ 37.02 ↑ 38.73 ↑ 51.81 ↑ 45.26

Task Attractive and Wearing Lipstick Only Male

Gaussian Shot Impulse Defocus Brightness Contrast Gaussian Shot Impulse Defocus Brightness Contrast

Attractive ↓ 32.54 ↓ 32.54 ↓ 32.55 ↓ 32.89 ↓ 32.77 ↓ 32.82 ↓ 32.72 ↓ 32.6 ↓ 32.85 ↓ 47.96 ↑ 66.57 ↑ 69.36
Male ↓ 28.44 ↓ 29.0 ↓ 28.83 ↓ 41.95 ↑ 45.49 ↓ 58.24 ↓ 25.54 ↓ 25.74 ↓ 25.76 ↓ 42.69 ↑ 92.78 ↑ 96.49
Smiling ↑ 36.77 ↑ 37.31 ↑ 36.84 ↑ 42.52 ↑ 75.63 ↑ 78.96 ↑ 37.64 ↑ 39.04 ↑ 38.04 ↑ 50.09 ↑ 86.66 ↑ 87.83
Wearing Lipstick ↑ 37.0 ↑ 37.01 ↑ 37.0 ↑ 37.2 ↑ 45.25 ↑ 38.25 ↑ 37.03 ↑ 37.03 ↑ 37.06 ↑ 48.89 ↑ 86.87 ↑ 87.91

Key Observations

Firstly, the straightforward policy of averaging the softmax entropy across all tasks might not be
the best policy for adapting a multitask model. For example, considering the performance of the
model across all tasks under brightness and contrast, as shown in Table 3, adaptation using only TM

provides significantly higher weighted F1-score for all tasks as compared to when adapting using all
the tasks.

Secondly, we observe that the straightforward inter-task correlation may not be a strong indicator
of the best policy for adaptation. For example, the task TA is positively correlated with TS and
TL. However, as shown in Table 3, adapting only TA does not improve the model’s performance for
the tasks TS and TL. On the other hand, adapting TM , which is negatively correlated with all other
tasks, improves the model performance significantly for all the tasks under the domain shifts caused
by shifts in brightness and contrast.
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Finally, we can conclude that the effect of domain shift is heterogeneous across the tasks and the
adaptation policies we tried. For example, adaptation to brightness and contrast noise is compara-
bly more successful across all policies. In contrast, adaptation to shot, impulse, and Gaussian noise
is more challenging as the model mostly makes insignificant gains or no gains while adapting for
any tasks under these domain shifts.

6 Discussion and Future Work

Works like TENT have been developed in the past few years, and since then, there have been many
developments in TTA with works like [14, 15] even refining entropy minimization with sharpness-
aware strategies. Similarly, works like SHOT [13] and AdaContrast [16] consider vanilla softmax
entropy as a part of the overall optimization function. Alternatively, a few approaches like [30,
31] allow an optimization-free TTA for fine-tuning the models at runtime. The optimization-free
approaches often rely on the class prototypes to fine-tune the model at runtime, albeit still depend
on entropy-based sample selection at runtime [31]. Such an approach with class prototype-based
feature matching and classifier fine-tuning may need additional investigation considering a multitask
model where a particular shift has varying impacts across the different tasks.

The key objective of this paper is to take the first step in analyzing and discussing the impact of
domain shift on multitask models, considering TTA as a solution mechanism. In the future, we aim
to integrate and analyze the specific impact of domain shift on all these approaches in a multitask
setting as part of a more extensive future study. We also envision that the lessons learned from
the study would allow us to develop a more robust TTA framework catering to a multitask model’s
needs.

Notably, the above problem appears beyond vision applications; for example, a healthcare applica-
tion on a smartwatch might utilize a single model to detect arrhythmia and atrial fibrillation from
PPG sensor data [3]. While we limit our focus to vision applications in this exploration, other
modalities are equally important to be explored in the future. Also, we believe, our way to create
CelebA-C dataset will be useful in benchmarking similar methods in the future.

7 Conclusions

In this paper, we explore the idea of performing TTA on multitask models using a softmax entropy
minimization-based approach. To perform this, we first introduce the benchmark CelebA-C dataset
and extend the SOTA TTA algorithm to develop M-TENT, a framework for performing TTA on
multitask models. Systematic analysis shows that the effect of domain shift is heterogeneous across
different tasks and highlights the necessity of designing TTA approaches specific to the needs of the
multitask model.
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