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ABSTRACT

Large language models (LLMs) make significant progress in Emotional Intelli-
gence (EI) and long-context understanding. However, existing benchmarks tend
to overlook certain aspects of EI in long-context scenarios, especially under re-
alistic, practical settings where interactions are lengthy, diverse, and often noisy.
To move towards such realistic settings, we present LONGEMOTION, a bench-
mark specifically designed for long-context EI tasks. It covers a diverse set
of tasks, including Emotion Classification, Emotion Detection, Emotion QA,
Emotion Conversation, Emotion Summary, and Emotion Expression. On
average, the input length for these tasks reaches 8,777 tokens, with long-form
generation required for Emotion Expression. To enhance performance under re-
alistic constraints, we incorporate Retrieval-Augmented Generation (RAG) and
Collaborative Emotional Modeling (COEM), and compare them with standard
prompt-based methods. Unlike conventional approaches, our RAG method lever-
ages both the conversation context and the large language model itself as retrieval
sources, avoiding reliance on external knowledge bases. The COEM method fur-
ther improves performance by decomposing the task into five stages, integrat-
ing both retrieval augmentation and limited knowledge injection. Experimental
results show that both RAG and COEM consistently enhance EI-related per-
formance across most long-context tasks, advancing LLMs toward more prac-
tical and real-world EI applications. Furthermore, we conduct a detailed case
study on the performance comparison among GPT series models, the appli-
cation of CoEM in each stage and its impact on task scores, and the advan-
tages of the LongEmotion dataset in advancing EI. All of our code and datasets
will be open-sourced, which can be viewed at the anonymous repository link
https://anonymous.4open.science/r/anonymous-578B.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly adopted in the domain of Emotional Intelligence
(EI) (Wang et al., 2023; Sabour et al., 2024). For instance, the EmoBench (Sabour et al., 2024)
highlights the necessity for robust, psychological-theory-grounded evaluation across both emotional
understanding and generation. By leveraging their advanced language understanding and genera-
tion capabilities, LLMs become valuable tools for facilitating emotional expression (Ishikawa &
Yoshino, 2025; Lu et al., 2025), with recent work showing their capacity to simulate specified emo-
tional states in accordance with established models such as Russell’s Circumplex (Russell, 1980;
2003). LLMs are increasingly serving in roles ranging from mental health assistants (Guo et al.,
2024; Malgaroli et al., 2025; Fu et al., 2024) to everyday conversational companions (Fu et al.,
2024; Duan et al., 2024; Zhang et al., 2025). This growing integration into emotionally sensi-
tive domains places greater demand on LLMs to maintain emotional coherence over time — not
only to understand but also to remember, adapt, and respond empathetically in prolonged interac-
tions (Zhong et al., 2024). In particular, during long-context interactions (Maharana et al., 2024),
LLMs are expected to recognize emotional cues embedded across temporally dispersed user inputs
and to deliver nuanced, empathetic responses that reflect continuity in emotional expression. As
such, users increasingly turn to LLM-based chatbots for both knowledge and emotional support in
dynamic, evolving conversations.
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(a) Token distributions across tasks. (b) Distribution of sample counts.

Figure 1: (a) Sequence length denotes average model output length for Emotion Expression, and
average input context length for other tasks. (b) Distribution of sample counts across the six tasks,
illustrating the overall composition of the dataset.

However, existing benchmarks (Sabour et al., 2024; Maharana et al., 2024; Paech, 2023; Hu et al.,
2025) for evaluating Emotional Intelligence (EI) in LLMs lack the contextual and temporal depth
needed to assess EI in long-context scenarios. Specifically: i) Most emotion recognition benchmarks
rely on short, explicit inputs with clear emotional labels, failing to reflect subtle, distributed, or
noisy emotional expressions typical of natural dialogue. ii) Existing generation-based benchmarks
largely focus on short, multi-turn dialogues with a limited number of conversational turns, which
do not adequately assess LLMs’ ability to sustain emotional coherence over longer interactions.
iii) Moreover, the LLM’s ability to generate its own emotional expressions in long-form outputs,
not just recognize or respond to others, still lacks robust evaluation. iv) The capacity of LLMs to
leverage internalized emotional knowledge—such as theoretical emotion models, social-emotional
reasoning, or culturally grounded affective norms—is crucial to demonstrating higher-order EI.

To bridge realistic scenarios and long-context evaluation, we introduce LONGEMOTION, a bench-
mark designed to mirror real-world conversational dynamics when assessing LLMs’ EI over long-
context interactions. LONGEMOTION comprises six complementary tasks. Two Emotional Recogni-
tion tasks—Emotion Classification and Emotion Detection—measure the model’s reasoning ability
when key emotional information is located in noisy, long-context scenarios; two Emotional Gen-
eration tasks—Emotion Conversation and Emotion Expression—evaluate the model’s empathy and
expression abilities in the context of long-text multi-turn conversations or self-narratives; two Emo-
tional Knowledge tasks—Emotion QA and Emotion Summary—probe how effectively the model
leverages and applies emotional knowledge in authentic scenarios. Figure 1 depicts the dataset’s
distribution, and a high-level overview appears in Figure 2.

To handle these realistic settings, we develop a Retrieval-Augmented Generation (RAG) approach
as well as a novel multi-agent emotional modeling framework called Collaborative Emotional Mod-
eling (COEM). Unlike standard RAG systems that pull from static, external corpora, our method
treats the conversation history itself as a dynamic vector store to capture aspect-level sentiment
terms. To further enhance long-context emotional understanding, we introduce COEM, where the
context is divided into coherent chunks, roughly ranked by relevance, and then processed by multi-
ple collaborating agents (e.g., an auxiliary GPT-4o instance (OpenAI, 2024a)). After a second-stage
re-ranking, these agents collectively generate an emotional “ensemble” response. This pipeline not
only reflects the unpredictability and noise of real-world dialogue but also emphasizes how emo-
tionally salient information can be continuously extracted, re-contextualized, and articulated over
long-context interaction. Our contributions are summarized as:

• We present LONGEMOTION, a long-context EI benchmark with six diverse tasks targeting
recognition, generation, and knowledge application.

• We propose RAG and CoEM frameworks to enhance performance by retrieving and enrich-
ing contextually relevant information.

• We perform extensive experiments across all settings and comprehensive case study, offer-
ing detailed analyses of LLMs’ EI in long-context scenarios. We conduct analyses based
on models’ concrete outputs rather than relying solely on their scores.
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Figure 2: An illustrative overview of the LongEmotion dataset. To comprehensively evaluate the EI
of LLMs in long-context interaction, we design six tasks: Emotion Classification, Emotion Detec-
tion, Emotion QA, Emotion Conversation, Emotion Summary, and Emotion Expression.

2 RELATED WORK

Emotional Intelligence Benchmarks. Many benchmarks are developed to assess LLMs’ Emo-
tional Intelligence (EI). EmoBench (Sabour et al., 2024; Hu et al., 2025) draws on psychological
theories to evaluate both emotional understanding and application across 400 English–Chinese hand-
crafted questions, exposing significant gaps between model and human EI levels. EQ-Bench (Paech,
2023) measures LLMs’ ability to rate emotional intensity in dialogues through 60 English queries,
showing strong correlation with multi-domain reasoning benchmarks. More recently, Emotion-
Queen (Chen et al., 2024b) offers a specialized benchmark for empathy, requiring LLMs to rec-
ognize key events, implicit emotions, and generate empathetic responses. Despite their strengths,
all of these focus on short or synthetic interactions and lack the long contextual depth critical for
assessing EI in extended conversational or narrative settings.

Long-Context Understanding. LLMs make strides in processing long documents, yet robust
evaluation remains an open challenge. LongBench (Bai et al., 2023) introduces a bilingual, multi-
task benchmark covering QA, summarization, and code tasks with average context lengths over
6,000 words, revealing that even state-of-the-art models struggle with extended inputs. Comple-
menting this, LooGLE (Li et al., 2023) evaluates long-context reasoning using realistic documents
exceeding 24k tokens, uncovering dependencies that span across distant spans. For extreme-length
evaluation, XL2Bench (Ni et al., 2024) includes tasks on fiction, law, and scientific papers with
inputs up to 100k+ words—yet LLMs still fall short in handling long-range dependencies. Be-
yond these, RULER (Chen et al., 2023) focuses on complex reasoning chains in long-form texts via
fine-grained question types and inter-paragraph dependencies, providing a valuable diagnostic lens
into model reasoning depth. InfiniteBench (Sun et al., 2024), meanwhile, evaluates LLMs’ abilities
on open-ended, unbounded contexts with theoretically unlimited input lengths, highlighting model
degradation as input exceeds trained context windows. Survey work such as Liu et al. (2025) offers a
broad overview of long-context modeling and evaluation paradigms but emphasizes that most bench-
marks primarily target information retrieval or general comprehension—not emotional intelligence
or affective computing.

3 LONGEMOTION: CONSTRUCTION AND TASK

Building on LongEmotion, we evaluate models’ EI capabilities using three prompt-based methods:
Base, RAG, and CoEM. The statistical overview of LongEmotion dataset can be found in Table 1.
Appendix E provides a detailed explanation of metrics used in tasks where LLMs act as evaluators.
We summarize the advantages of LongEmotion in enhancing LLMs’ EI in Appendix B.3
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Table 1: A statistical overview of the LongEmotion dataset. ID denotes task abbreviations. EC, ED,
QA, MC, and ES involve long-text input, with Avg len showing average context length. EE is a
long-text generation task—Avg len here refers to average output length (marked with *).

Task ID Source Construction Metric Avg len Count

Emotional Recognition – Reasoning & Inference
Emotion Classification EC Emobench Segment Insertion Accuracy 16691 200
Emotion Detection ED Covid-worry Reorganization Accuracy 4106 136

Emotional Knowledge – Summarization & Knowledge
Emotion QA QA Literature Human Annotation F1 11207 120
Emotion Summary ES CPsycoun Human Annotation LLM as Judge 3129 100

Emotional Generation – Empathy & Expression
Emotion Conversation MC CPsycoun Expansion LLM as Judge 4856 150
Emotion Expression EE EmotionBench Reorganization LLM as Judge 8546* 428

3.1 TASK DESIGN

Emotion Classification. This task requires the model to identify the emotional category of a target
entity within long-context texts that contain lengthy spans of context-independent noise (Kamradt,
2023). Model performance is evaluated by its accuracy against the ground truth.

Emotion Detection. The model is given N+1 emotional segments. Among them, N segments
express the same emotion, while one segment expresses a unique emotion. The model is required to
identify the single distinctive emotional segment. During evaluation, the model’s score depends on
whether the predicted index matches the ground-truth index.

Emotion QA. In this task, the model is required to answer questions grounded in long-context
psychological literature. Model performance is evaluated using the F1 score between its responses
and the ground truth answers.

Emotion Summary. In this task, the model is required to summarize the following aspects from
long-context psychological pathology reports: (i) causes, (ii) symptoms, (iii) treatment process, (iv)
illness characteristics, and (v) treatment effects. After generating the model’s response, we employ
GPT-4o to evaluate its factual consistency, completeness, and clarity with respect to the reference
answer. These three evaluation criteria are validated in CPsyExam (Zhao et al., 2024).

Emotion Conversation. In our four-stage long-context counseling dialogue dataset, we select the
quartile, half, and three-quarter points of each stage as evaluation checkpoints to assess the model’s
EI capabilities. We introduce 12 specialized metrics informed by five major therapeutic frame-
works: Cognitive Behavioral Therapy (CBT) (Beck, 2021), Acceptance and Commitment Ther-
apy (ACT) (Waltz & Hayes, 2010), Humanistic Therapy (Elliott, 2002), Existential Therapy (May,
1994), and Satir Family Therapy (Rebner, 1972), which can be seen in Appendix E. The scoring is
performed by GPT-4o, which serves as the evaluator to ensure consistency and scalability.

Emotion Expression. In this task, the model is situated within a specific emotional context and
prompted to produce a long-form emotional self-narrative. Models first complete a psychometric
self-assessment (e.g., PANAS), followed by the generation of a structured narrative spanning five
phases: (i) Immediate Reaction, (ii) Cognitive Appraisal, (iii) Emotional and Physiological Expres-
sion, (iv) Regulation Strategies, and (v) Reflective Integration. The evaluation encompasses six
dimensions: emotional consistency, content redundancy, expressive richness, cognition–emotion in-
terplay, self-reflectiveness, and narrative coherence. All dimensions are assessed by GPT-4o, which
serves as the evaluator to score the model’s capacity for emotional expression.
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3.2 DATA CONSTRUCTION

Reorganization from Existing Datasets. In Emotion Classification, we embed short excerpts
from Emobench into BookCorpus passages (Zhu et al., 2015), by randomly inserting snippets and
manually adjusting proper nouns for coherence. In Emotion Detection, we build contrast sets by
grouping texts from Covid-worry (Kleinberg et al., 2020; van der Vegt & Kleinberg, 2023) by emo-
tion label and inserting mismatched segments. In Emotion Expression, we use situations from Emo-
tionBench (Huang et al., 2024) to provide models with specific emotional contexts.

Table 2: Emotion Conversation quality evaluation. Devi rep-
resents deviation of each stage score from the overall mean.

Stage GPT-4o Annotator
Score Devi Score Devi

Reception and Inquiry 4.36 0.17 3.89 0.05
Diagnostic 4.06 -0.13 3.86 0.02
Consultation 3.79 -0.40 3.65 -0.19
Consolidation and Ending 4.56 0.37 3.96 0.12

Expansion and Human Annotation
For Emotion Conversation, based on
CPsyCoun (Zhang et al., 2024), we
construct 100 emotionally rich dia-
logues by expanding seed prompts
into four functional stages: (i) Recep-
tion and Inquiry, (ii) Diagnostic, (iii)
Consultation, and (iv) Consolidation
and Ending. Dataset quality is eval-
uated through two parallel protocols:
(i) manual scoring by psychology ex-
perts and (ii) automated assessment
with GPT-4o. As reported in Table 2,
the Pearson correlation between LLM and human scores reaches 0.934 (p = 0.066), indicating
strong alignment. Inter-annotator agreement (Fleiss, 1971) is used to measure annotator consis-
tency, which can be seen in Appendix D. Annotator qualifications are detailed in Appendix C.

In Emotion Summary, drawing on CPsyCounR dataset, we first expand the experience and reflection
section of the dataset to meet our requirements for long-context inputs. Next, psychology annotators
label each sample across five standardized dimensions: i) Causes, ii) Symptoms, iii) Treatment
Process, iv) Illness Characteristics, and v) Treatment Effect. Finally, by filtering samples based on
format, content richness, and precision, we select a final set of 150 samples. In Appendix B.3, we
discuss the annotation discipline for the annotation process of Emotion Summary.

In constructing Emotion QA, the annotation pipeline is illustrated in Figure 3. The construction
process on psychological literature involves: i) expert-written questions targeting emotional under-
standing, ii) refinement of reference answers for clarity and consistency with F1-based evaluation,
and iii) filtering based on model performance to exclude overly ambiguous or trivial examples.
Through this series of manual annotation and selection process, we finally obtain 120 high-quality
pairs of psychological knowledge questions and answers.

Figure 3: Annotation process of Emotion QA.

4 COLLABORATIVE EMOTIONAL MODELING

Figure 4 illustrates the pipeline of CoEM. To address EI tasks involving long contexts, we propose
a hybrid retrieval-generation architecture that combines Retrieval-Augmented Generation (RAG)
with modular multi-agent collaboration. For the parameter settings and application details, please
refer to Appendix A. For the case analysis of RAG and CoEM, please refer to Appendix B.2. The
framework consists of five key stages:

5
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Figure 4: The pipeline of Collaborative Emotional Modeling (CoEM).

Chunking. The context is segmented into token-length-constrained chunks, whereas in Emotion
Detection, each segment is considered as an individual chunk. We set different chunk sizes based
on the characteristics of each task. We demonstrate the parameter settings in Appendix A.

Initial Ranking. A retrieval agent, implemented as CoEM-Rank, evaluates the relevance of each
chunk to the query using dense semantic similarity, with relevance scores computed based on cosine
similarity. Top-ranked chunks are passed forward for enhancement. By ranking the original context
chunks, the factual relevance of the retrieved information is ensured.

Multi-Agent Enrichment. A reasoning agent called CoEM-Sage, functioning as a knowledge
assistant, enriches the selected chunks by incorporating external knowledge or latent emotional sig-
nals through our task-specific prompts. Specifically, in Emotional Recognition tasks, CoEM-Sage
identifies subtle emotional cues; in Emotional Knowledge tasks, it provides summaries based on
psychological knowledge; and in Emotional Generation tasks, it enhances CoEM-Core’s empathy
and expression through emotional analysis. These signals, derived from psychological theories or
curated priors, are incorporated into the original chunks without task-specific leakage.

Re-Ranking. The enriched chunks, now augmented with emotional features, are then re-evaluated
by CoEM-Rank for their semantic relevance to the query, measured by cosine similarity. This final
ranking ensures that the selected context is not only factually grounded but also affectively coherent.
By ranking the enriched chunks, the emotional relevance of the retrieved information is ensured, as
these chunks contain not only the original text but also external emotional information.

Emotional Ensemble Generation. The selected and enriched chunks, along with the context and
prompt, is fed into a generation model denoted as CoEM-Core. This model (e.g., a long-context
LLM or an instruction-tuned model) produces the final task-specific output, whether it be classifica-
tion, summarization, or dialogue generation.

This modular approach encourages interpretability, emotional awareness, and task robustness. The
CoEM setting encompasses all five stages, while the RAG setting only comprises Chunking, one-
time Ranking, and Emotional Ensemble Generation. The CoEM framework achieve improvements
in the majority of tasks through information extraction and external injection. We conduct an em-
pirical case study of the entire framework, analyzing the reasons for task score improvements or
declines, which can be found in Appendix B.2.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

In our experiments, for closed-source models, we choose GPT-4o-mini (OpenAI, 2024b) and GPT-
4o, while for open-source models, we select DeepSeek-V3 (DeepSeek-AI, 2024), Llama3.1-8B-
Instruct (Grattafiori et al., 2024), and Qwen3-8B (Team, 2025). For tasks employing automatic
evaluation, we adopt GPT-4o as the evaluator. Under the base setting, we compare a broader range
of advanced open-source and closed-source models. For comparison, we have the performance of
GPT-5 (OpenAI, 2025), Qwen3-14B and Qwen3-32B under the Base setting.

6
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Table 3: Experiment result across Base, RAG and CoEM. EC represents Emotion Classification,
ED represents Emotion Detection, QA represents Emotion QA, MC-4 represents the fourth stage of
Emotion Conversation, ES represents Emotion Summary, and EE represents Emotion Expression.

Method Model EC ED QA MC-4 ES EE

Base

GPT-4o-mini 28.50 16.42 48.61 3.75 4.14 86.77
GPT-4o 51.17 19.12 50.12 3.77 4.19 81.03
DeepSeek-V3 44.00 24.51 45.53 3.99 4.28 81.75
Qwen3-8B 38.50 18.14 44.75 3.97 4.21 73.40
Llama3.1-8B-Instruct 26.17 9.80 45.74 4.00 3.98 75.61

(Extended Comparison Models)
GPT-5 64.50 22.79 43.22 4.67 4.37 86.77
Qwen3-14B 31.00 20.83 46.35 3.95 4.26 84.49
Qwen3-32B 48.00 20.59 43.11 4.17 4.29 84.81

RAG

GPT-4o-mini 38.33 21.57 50.72 3.78 4.19 80.41
GPT-4o 54.67 22.55 51.81 3.80 4.13 79.49
DeepSeek-V3 52.17 23.53 50.44 4.34 4.28 81.83
Qwen3-8B 39.67 19.12 44.34 4.14 4.20 73.28
Llama3.1-8B-Instruct 28.00 11.27 47.04 3.94 3.71 75.16

CoEM

GPT-4o-mini 48.00 20.59 47.51 3.77 3.91 80.38
GPT-4o 52.83 25.00 47.24 3.81 4.02 80.41
DeepSeek-V3 54.33 23.04 46.52 4.34 4.12 82.83
Qwen3-8B 52.83 18.14 46.31 4.14 4.09 73.59
Llama3.1-8B-Instruct 38.17 11.27 44.79 4.00 3.60 75.71

Table 4: Performance of models at each stage of the Emotion Conversation task under the Base
setting. The entire conversation is divided into four stages: i) Reception and Inquiry, ii) Diagnostic,
iii) Consultation, and iv) Consolidation and Conclusion. Each stage includes 3 checkpoints, denoted
as X-Y, where X indicates the stage number and Y indicates the checkpoint index.

Model Stage 1 Stage 2 Stage 3 Stage 4 Avg
1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3

GPT-4o-mini 4.23 4.17 4.19 3.53 3.48 3.44 3.41 3.54 3.59 3.61 3.76 3.87 3.73
GPT-4o 4.06 4.17 4.19 3.47 3.44 3.41 3.44 3.54 3.60 3.63 3.75 3.92 3.72
Deepseek-V3 4.38 4.47 4.45 3.86 3.88 3.78 3.55 3.69 3.81 3.75 3.98 4.22 3.98
Qwen3-8B 4.46 4.51 4.50 3.99 3.90 3.78 3.75 3.87 3.95 3.80 3.97 4.15 4.05
Llama-3.1-8B-Instruct 4.22 4.27 4.28 3.69 3.65 3.65 3.48 3.61 3.74 3.84 3.95 4.22 3.88

To accelerate inference, we use vllm library (Kwon et al., 2023) as the inference engine and set
temperature=0.8 and top p=0.9 for all open-source models. For Qwen3 series models, we
enable its thinking capabilities and manually remove the reasoning process between <think> and
</think> to keep the answers concise. All experiments are conducted using NVIDIA A800 80G
GPUs, with open-source models under 14B parameters running on a single GPU and the 32B models
utilizing two GPUs.

In the Emotion Classification, Emotion Detection, Emotion QA, and Emotion Expression, we em-
ploy GPT-4o as the CoEM-Sage, while Deepeek-V3 is used for the Emotion Conversation-4 and
Emotion Summary in the same role. For the retrieval and ranking components across both the RAG
and CoEM settings, we adopt bge-m3 (Chen et al., 2024a) as the CoEM-Rank. The generation mod-
els listed in Table 3 are used as the CoEM-Core. Full configuration details for both the RAG and
CoEM frameworks are in Appendix A.
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5.2 RESULTS ON LONGEMOTION

The overall experimental results can be seen in Table 3. We evaluate the performance of each model
on all tasks under the Base, RAG, and CoEM settings. As the first three stages of the dialogue are
relatively brief, RAG and CoEM are only applied in the fourth stage of the Emotion Conversation
task. The performance of models in all stages under the Base setting can be seen in Table 4.

Overall Analysis of Experimental Results. By analyzing the experimental results, we can ob-
serve the following: i) While GPT-4o and DeepSeek-V3 generally exhibit stronger Emotional Intel-
ligence, Llama-3.1-8B-Instruct and Qwen3-8B significantly outperform GPT-4o and GPT-4o-mini
in the Emotion Conversation-4 task. This is further supported by our experimental results across all
stages in the Base setting, as shown in Table 4. ii) In the Emotion Classification and Emotion De-
tection tasks, which heavily test the models’ reasoning and classification abilities, we maximize the
potential of the models through the use of CoEM. iii) In contrast, in the Emotion QA and Emotion
Summary tasks, which are strongly context-based, the model’s score largely depends on the align-
ment between the model’s response and the original text. Therefore, injecting external knowledge
may introduce harmful noise into the context, leading to a drop in the score. iv) In the Emotion Ex-
pression task, we use GPT-4o as the CoEM-Sage to enrich the model’s expression. Compared to the
results of RAG and CoEM, the score of GPT-4o-mini drops, while the scores of the other four mod-
els improve. This indicates that the ability of the CoEM-Sage greatly influences the performance
of the tested models. Our ablation study on the CoEM-Sage models for Emotion Conversation and
Emotion Summary further supports this conclusion, as shown in Figure 5.

(a) Impact of different CoEM-Sage models on MC-4. (b) Impact of different CoEM-Sage models on ES.

Figure 5: Ablation experiments on CoEM-Sage models.

Ablation Experiments. To investigate how the reasoning processes of models affect their Emo-
tional Intelligence in long-context scenarios, we perform ablation studies on the Qwen3 model series
using two emotional reasoning tasks—Emotion Classification and Emotion Detection—along with
one emotional generation task, Emotion Expression, under the Base setting. By analyzing Table 5,
we can observe that through thinking, Qwen3-8B achieve the most significant improvement, while
the improvement of Qwen3-14B is not substantial. When the models are place in a noisy long-
context scenario, reasoning allows models to more accurately identify valuable information, thereby
enhancing their EI capabilities.

Table 5: Ablation experiments of the thinking process in the Qwen3 series models.

Task Qwen3-8B Qwen3-14B Qwen3-32B

w/ thinking w/o w/ thinking w/o w/ thinking w/o

EC 38.50 (↑ 9.83) 28.67 31.00 (↑ 0.25) 30.75 48.00 (↑ 10.50) 37.50
ED 18.14 (↑ 6.13) 12.01 20.83 (↑ 0.00) 20.83 20.59 (↑ 0.49) 20.10
EE 73.40 (↑ 3.08) 70.32 84.49 (↑ 1.36) 83.13 84.81 (↑ 0.79) 84.02

To explore models’ ability in emotion recognition across different context lengths, we evaluate their
performance on the Emotion Classification under the Base setting, as shown in Figure 6a. It can
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be observed that GPT-4o demonstrates the overall best performance, while DeepSeek-V3 shows the
highest stability. In the longest range of 24k-27k, Llama-3.1-8B-Instruct experiences a significant
drop in performance, reflecting its limitations in handling long contexts. We also conduct ablation
experiments on RAG with different chunk sizes and retrieval quantities, as shown in Figure 6b. From
the image, it can be seen that GPT-4o-mini achieved the best performance in the 128 tokens/chunk
setting with 8 retrieved chunks. Furthermore, although increasing the chunk size or retrieved count
allows the model to acquire more information, it also introduces more noise, which can harm the
model’s performance. Therefore, selectively incorporating useful information and discarding irrele-
vant information is crucial to improving RAG performance.

(a) Model accuracy by context length range on
EC.

(b) Impact of chunk size and retrieved count on GPT-
4o-mini’s RAG performance on QA.

Figure 6: Ablation experiment results.

Case Study. i) We select the GPT series of models and conduct qualitative comparisons across all
tasks under the Base setting. Through experiments, we conclude that GPT-5 is theoretically stronger
but more mechanical, GPT-4o-mini is more human-like but lacks a solid theoretical foundation,
while GPT-4o strikes a balance between the two aspects. ii) Based on the structure of the CoEM
framework, we provide a detailed and visual representation of the the input information in each
stage. Starting from specific cases, we analyze the impact of each stage on emotional information
empirically. iii) In addition, we analyze the advantages of the LongEmotion dataset in advancing
Emotional Intelligence, which can be summarized as psychological theories-guided benchmark de-
sign, quality-guaranteed synthetic translation data, and comprehensive experiment results analysis.
For complete details of case study, please refer to Appendix B.

6 CONCLUSION

In this work, we introduce LongEmotion, a benchmark for measuring models’ Emotional Intelli-
gence in long-context scenarios. LongEmotion comprises six tasks that comprehensively challenge
models across multiple dimensions—emotion recognition, emotional support, emotional expres-
sion, emotional knowledge, and more. Beyond constructing the dataset, we also build Retrieval-
Augmented Generation (RAG) and Collaborative Emotional Modeling (CoEM) frameworks for each
task, achieving improvements on the vast majority of them. We conduct exhaustive experiments on
the LongEmotion dataset under Base, RAG, and CoEM settings, analyzing models’ Emotional In-
telligence from perspectives such as emotion enhancement, long-text performance, and expressive
capability. Through detailed case studies, we demonstrate examples from each stage of the CoEM
framework and their performance impact, highlight the advantages of the LongEmotion dataset in
facilitating Emotional Intelligence, and compare the performance of GPT series models across var-
ious emotional tasks in long-context scenarios.

7 REPRODUCIBILITY STATEMENT

All data used in the LongEmotion dataset comes from open-source datasets, and we will make
all code and data open-source. These can be viewed at the anonymous repository link https:
//anonymous.4open.science/r/anonymous-578B.
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A DETAILS OF RAG AND COEM

We present the application details of the CoEM framework in Table 6. To ensure the accuracy of the
ranking, in the Emotion Detection task, we skip the initial ranking and directly carry out multi-agent
enrichment. The Chunking and Re-Ranking in the table are also applicable to the RAG framework.

Table 6: Application details in the CoEM framework.

Task Chunking Initial Ranking Multi-Agent
Enrichment

Re-Ranking

EC Chunk by length Compute chunk-query
similarity

External injection
into each chunk

Compute chunk-query
similarity

ED Each segment as
a chunk

Skip this stage External injection
into each chunk

Select chunks with
lowest similarity scores

QA Chunk by length Compute chunk-query
similarity

External injection
into each chunk

Compute chunk-query
similarity

MC-4 Chunk by length Compute chunk-query
similarity

Generate an over-
all summary

Compute chunk-query
similarity

ES Chunk by length Compute chunk-query
similarity

External injection
into each chunk

Compute chunk-query
similarity

EE Chunk by length Compute chunk-query
similarity

External injection
into each chunk

Compute chunk-query
similarity

We also report the chunk size and retrieved count for each task in Table 7. In QA, models use
different chunk sizes. For EE, the retrieved counts correspond to stages 2–5. The retrieved count of
the one-time ranking in RAG is the same as the parameter settings for Re-Ranking in the table.

Table 7: Parameter settings applied to CoEM. Initial Ranking and Re-Ranking denote the number of
chunks retrieved in each respective stage.

Task Chunk Size Initial Ranking Re-Ranking

EC 128 1 1

ED Num of segs – 8

QA

GPT-4o-mini 128 16 8

GPT-4o 128 16 4

Deepseek-V3 512 8 4

Qwen3-8B 128 16 4

Llama-3.1-8B-Instruct 512 8 4

MC-4 128 16 4

ES 128 10 4

EE 128 4,8,8,8 2,4,4,4
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B CASE STUDY

B.1 COMPARISON OF GPT SERIES MODELS

From Table3, it can be seen that GPT-5’s overall capabilities surpass those of GPT-4o and GPT-4o-
mini. In the tasks of Emotion Classification and Emotion Detection, we only prompt the models to
output the final label. The results show that GPT-5’s reasoning ability is significantly better than that
of GPT-4o and GPT-4o-mini.

In the Emotion QA task, GPT-4o and GPT-4o-mini tend to respond more literally based on the
original text, which can be seen in Figure 7. In contrast, GPT-5 modifies content according to its
own understanding, which leads to a lower F1 score due to reduced alignment with the ground truth.

Figure 7: Comparison of the performance of GPT series models on Emotion QA.

In the Emotion Conversation task, GPT-5 achieved higher scores based on our psychology theory-
driven metrics. However, by examining the model outputs in Figure 8, we can see that GPT-5 merely
makes better use of psychological knowledge to offer advice to the patient, rather than genuinely
demonstrating empathy toward the client.

Figure 8: Comparison of the performance of GPT series models on Emotion Conversation.

In the Emotion Expression task, GPT-4o-mini performed more like a real person, with the generated
content closely resembling what an actual individual might say in a given situation. In contrast, GPT-
4o’s expressions were more like a rigidly told story, lacking natural fluidity. Meanwhile, GPT-5’s
generation was more comprehensive and balanced, providing a well-rounded and objective descrip-
tion of emotions across various features, as clearly shown in Figure 9.
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Figure 9: Comparison of the performance of GPT series models on Emotion Expression.

In the Emotion Summary task, GPT-4o-mini and GPT-4o directly analyzed various features of the
case, whereas GPT-5 structured its analysis based on psychological theories, resulting in a higher
score, as shown in Figure 10.

Figure 10: Comparison of the performance of GPT series models on Emotion Summary.

From the tasks above, we can conclude that GPT-4o-mini behaves more like a human, with richer
emotional features, but its application of psychological theory is somewhat lacking. On the other
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hand, GPT-5 has a better understanding of psychological theories, but the output is too rigid and
mechanical, which might lead to a less empathetic user experience in practice. GPT-4o strikes a
more balanced approach between theoretical understanding and emotional features.

B.2 CASE ANALYSIS OF RAG AND COEM

We conduct a concrete analysis of how the information retrieved by the RAG and CoEM methods
affects model performance. In models’ final generation prompts, the Base setting includes none
of the information; the RAG setting includes only the Chunk information; and the CoEM setting
includes both the Chunk and Summary information.

Emotion Classification. In this task, the model is given a long context in which an emotional
segment is embedded within unrelated noise. The RAG method enables the model to retrieve a more
accurate segment, leading to improved performance; CoEM further conducts emotional analysis on
the retrieved segment, resulting in the greatest performance improvement, as shown in Figure 11.

Figure 11: Case analysis of RAG and CoEM in Emotion Classification.

Emotion Detection. In this task, the model receives multiple emotional segments. The RAG
method ranks the original segments based on their relevance, while CoEM further enhances the
emotional features of the segments and ranks the enriched packs. This relevance-based ranking ap-
proach significantly boosts the model’s ability to distinguish emotions. We skip the Initial-Ranking
to capture richer emotional features. After enhancing the chunks with Multi-Agent Enrichment, we
perform Re-Ranking to select the chunks that are least similar to others, as shown in Figure 12.

Figure 12: Case analysis of RAG and CoEM in Emotion Detection.

Emotion QA. In this task, we evaluate the model’s responses based on the F1 similarity with the
ground truth. RAG helps the model retrieve more relevant source content, thereby improving its
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performance. However, the CoEM method, when introducing external knowledge, may alter certain
internal details, which can lead to a drop in model performance, as shown in Figure 13.

Figure 13: Case analysis of RAG and CoEM in Emotion QA.

Emotion Conversation. In this task, the model is placed within a multi-turn dialogue context. The
RAG method ranks the context chunks based on their relevance to the previous three dialogue turns.
CoEM, after the initial ranking, generates a summary by combining the previous three turns with
the initially selected chunks, and then performs a second round of relevance ranking between the
initially filtered chunks and this summary, further ensuring the accuracy of the relevance assessment,
as shown in Figure 14.

Figure 14: Case analysis of RAG and CoEM in Emotion Conversation.

Emotion Summary. In this task, the model is required to summarize specific characteristics of a
psychological counseling report. RAG ranks the chunks based on their similarity to the target char-
acteristics. CoEM further injects the analysis of these chunks provided by CoEM-Sage. However,
since psychological counseling is a holistic process, analyzing only isolated chunks may lead to
incorrect conclusions, resulting in a decline in model performance, as shown in Figure 15.

Figure 15: Case analysis of RAG and CoEM in Emotion Summary.

Emotion Expression. In this task, the model is placed in an emotional situation, where it is re-
quired to answer the PANAS scale and express its emotions. RAG ranks the context chunks based on
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the query at each stage, while CoEM performs a finer-grained emotional analysis of these chunks.
The CoEM-Sage model, with its stronger emotional intelligence (EI) capabilities, captures emo-
tional cues more precisely, which in turn helps the tested CoEM-Core model better understand and
express its own emotions, as shown in Figure 16.

Figure 16: Case analysis of RAG and CoEM in Emotion Expression.

B.3 ADVANTAGES OF LONGEMOTION IN ENHANCING EMOTIONAL INTELLIGENCE

In this section, we discuss the advantages of the LongEmotion benchmark in promoting the full
utilization of LLMs’ Emotion Intelligence capabilities in long-context interaction.

Psychological theories guided benchmark design. In the Emotion Conversation task, we design
scientifically rigorous evaluation metrics based on various psychological therapies and stages of di-
alogue data. For the Emotion Summary task, annotators summarize key elements of patient records
considering physiological factors, personal growth history, and social factors, which can be seen
in Table 8. In the Emotion Expression task, under given scenarios, models are guided to perform
staged long-text self-expression in the rigorously designed framework.

Table 8: Annotation discipline for the annotation process of Emotion Summary.

Physiological Factors i) Biological, Genetic & Medical Factors. e.g., family medical history.
ii) Lifestyle Habits. e.g., sleep, diet, and exercise patterns.

Growth History i) Quality of interpersonal relationships during development.
ii) Academic and occupational performance during development.

Social Factors
i) Family support system. e.g., emotional and financial support.
ii) Peer support system. e.g., friendship, social belonging and trust.
iii) Stressful life events. e.g., bereavement, job loss and daily stress.

Quality-guaranteed synthetic translation data. We employ the two-stage generation framework
of CPsyCoun to generate Emotion Conversation dataset, and compare it with the direct use of a
single-stage straightforward generation without the counseling note and the detailed skills in the
prompt. The prompt we use can be found in Figure 17, and the comparison of experimental results
can be seen in Table 9.

Comprehensive Experiments and In-Depth Case Studies. We conducted extensive experiments
on Base, RAG, and CoEM frameworks, accompanied by detailed case studies based on model out-
puts. Under the LongEmotion benchmark, various models exhibited distinct limitations—even the
most advanced GPT-5 demonstrated issues such as overly mechanical responses despite its stronger
theoretical capabilities.
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Table 9: The comparison experiment results of synthetic data. One-Stage represents straightforward
generation without the counseling note and the detailed skills. Two-Stage represents our generation
method.

Metric One-Stage Two-Stage

Establishing the Therapeutic Alliance 4.88 4.92
Emotional Acceptance and Exploration Guidance 4.36 4.38
Systematic Assessment 3.86 3.79
Recognizing Surface-Level Reaction Patterns 4.13 4.1
Deep Needs Exploration 4.13 4.32
Pattern Interconnection Analysis 3.66 3.77
Adaptive Cognitive Restructuring 3.60 3.73
Emotional Acceptance and Transformation 4.12 3.96
Value-Oriented Integration 3.94 3.69
Consolidating Change Outcomes and Growth Narrative 4.52 4.63
Meaning Integration and Future Guidance 4.16 4.19
Autonomy and Resource Internalization 4.84 4.86

Avg 4.18 4.20

Figure 17: Dataset generation prompt for Emotion Conversation.

C QUALIFICATIONS OF ANNOTATORS

Our annotation team consists of psychology researchers and computer science researchers. In the
psychology research team, there is a postdoctoral fellow expert specializing in psychology and seven
Master’s students majoring in the same field. The theoretical foundation of our dataset and metrics
involves deep participation from the psychology team. Under the guidance of the expert, the seven
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psychology Master’s students carry out the annotation work. In the computer science research team,
there are three Master’s students and one PhD student majoring in computer science. Their main
responsibility is to modify, adjust, and organize the data annotated by the psychology team according
to the characteristics of the tasks.

D INTER-ANNOTATOR AGREEMENT

We use inter-annotator agreement to measure the consistency among human annotators. Specif-
ically, our annotators independently re-annotate the same set of 20 Emotion Conversation exam-
ples—yielding a total of 240 metric-level judgments. We calculate inter-annotator agreement using
Fleiss’ Kappa coefficient, with results presented in Table 10.

Table 10: Fleiss’ kappa coefficient for inter-annotator agreement in Emotion Conversation.

Metric Result
Establishing the Therapeutic Alliance -0.064
Emotional Acceptance and Exploration Guidance 0.037
Systematic Assessment -0.156
Recognizing Surface-Level Reaction Patterns 0.045
Deep Needs Exploration -0.005
Pattern Interconnection Analysis -0.011
Adaptive Cognitive Restructuring 0.004
Emotional Acceptance and Transformation -0.057
Value-Oriented Integration -0.055
Consolidating Change Outcomes and Growth Narrative -0.065
Meaning Integration and Future Guidance -0.111
Autonomy and Resource Internalization -0.022

E LLM AS JUDGE METRICS DESIGN

In this section, we provide a detailed presentation of the metric designs that employ large models as
evaluators.

Emotion Summary. In the Emotion Summary, we design three metrics—consistency, complete-
ness, and clarity—with respect to the reference answer. Table 11 shows the explanations of these
metrics:

Table 11: Design of Emotion Summary evaluation metrics.

Metric Description

Factual Consistency Is the model output factually aligned with the ground truth?
Completeness Does the model include all key details found in the ground truth?
Clarity Is the expression clear and coherent?

Emotion Conversation. In the Emotion Conversation task, we design metrics for each dialogue
stage based on Cognitive Behavioral Therapy (CBT), Acceptance and Commitment Therapy (ACT),
Humanistic Therapy, Existential Therapy, and Satir Family Therapy. The description and theoretical
foundations for the design of each metric can be found in Table 12.

Emotion Expression. In the Emotion Expression task, we design six metrics—emotional consis-
tency, content redundancy, expressive richness, cognition–emotion interplay, self-reflectiveness, and
narrative coherence. Table 13 shows the detailed explanations of these six metrics.
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F UNIFIED FORMAT OF DATA

We present data samples for each task in Figures 18 to 23. Emotion Detection requires the model to
identify segments that carry distinct emotional expressions. In the Emotion Classification task, the
model analyzes the subject’s emotional state based on the given context. In Emotion QA, the model
answers questions grounded in contextual information. The Emotion Conversation task places the
model in the role of a psychological counselor, responding to the client’s previous turn. Emotion
Summary challenges the model to generate a structured summary of a counseling session, including
the cause, symptoms, treatment process, illness characteristics, and treatment effect. Finally, in the
Emotion Expression task, the model is immersed in an emotional situation, responds to the PANAS
scale, and articulates its emotional state.

G COMPREHENSIVE PROMPT COLLECTIONS

This section presents the complete set of prompts used throughout the framework, encompassing
Evaluation, Multi-agent Enrichment, and Emotional Ensemble Generation stages across all tasks.
For tasks adopting automatic evaluation as the metric, we utilize GPT-4o as the evaluation model,
with detailed evaluation prompts illustrated in Figures 24 to 29. During the Multi-Agent Enrichment
stage, task-specific prompts are designed to guide agent collaboration and reasoning, as shown in
Figures 30 to 35. Finally, in the Emotional Ensemble Generation stage, we employ carefully con-
structed prompts to support emotional diversity and coherence in response generation, with the full
set depicted in Figures 36 to 41.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the process of writing, we utilize LLMs to polish parts of the paper. Throughout the writing
process, we ensure that the content is manually reviewed multiple times to guarantee the quality of
the paper.
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Table 12: Design of Emotion Conversation evaluation metrics.

Stage Metric Name Description

Reception
&

Inquiry

Establishing the
Therapeutic Alliance

Establish initial trust through empathy and a non-
judgmental attitude, providing a safe foundation for
further interventions.

Emotional Acceptance and
Exploration Guidance

Guide the client to express emotions (e.g., anxiety,
helplessness) in a safe atmosphere, demonstrating
acceptance.

Systematic Assessment
Integrate cognitive, behavioral, emotional, relational,
and existential factors into a multidimensional as-
sessment.

Diagnostic

Recognizing
Surface-Level Reaction
Patterns

Identify the client’s automatic cognitive, emotional,
and behavioral responses.

Deep Needs Exploration Reveal unmet psychological needs such as security,
autonomy, connection, or meaning.

Pattern Interconnection
Analysis

Understanding the interaction of problems within
the individual’s internal systems and external sys-
tems; integrating findings from various dimensions
to present a panoramic view of how the problem is
maintained.

Consultation

Adaptive Cognitive
Restructuring

By examining the truthfulness and constructiveness
of thoughts, build a more adaptive cognitive frame-
work.

Emotional Acceptance and
Transformation

Developing Emotional Awareness, Acceptance, and
Transformation Skills.

Value-Oriented Integration Anchor Change to the Life Dimension Beyond
Symptoms.

Consolidation
&

Ending

Consolidating Change and
Growth Narrative

Review therapeutic progress and reinforce positive
change through a coherent personal narrative.

Meaning Integration and
Future Guidance

Internalize therapy gains into a life philosophy and
create a value-driven future plan.

Autonomy and Resource
Internalization

Strengthen the client’s internal coping resources and
ability to continue growth independently.
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Table 13: Design of Emotion Expression evaluation metrics.

Metric Description

Consistency Between Emo-
tional Ratings and Generated
Text

Evaluate whether the emotional ratings from the scale align with
the content in the model’s self-description. Are the emotions rated
in the scale accurately reflected in the model’s self-description?
Also, assess whether the intensity of the ratings matches the emo-
tional expression in the generated text.

Repetition of Content Check if there is noticeable repetition in the generated text, es-
pecially in the emotional descriptions. Are there repeated emo-
tional, thought, or behavioral descriptions that make the text feel
redundant or unnatural? Also, evaluate whether the generated text
avoids repeating the same emotional descriptions and provides a
multi-dimensional analysis.

Richness and Depth of Content Assess whether the generated text thoroughly explores the differ-
ent dimensions of emotions (e.g., psychological, physical, and be-
havioral responses). Examine whether it delves into the origins,
progression, and impact of the emotions, and whether it uses suf-
ficient detail and examples to enrich emotional expression.

Interaction Between Emotion
and Cognition

Determine whether the generated text effectively showcases the
interaction between emotions and cognition. For example, does
it demonstrate how the protagonist adjusts emotional reactions
based on thoughts and situation evaluations? Also, check whether
the emotions and behaviors in the text are consistent.

Emotional Reflection and Self-
awareness

Evaluate whether the protagonist reflects on their emotional reac-
tions. Does the text explore personal growth, self-awareness, or
suggest strategies for emotional improvement?

Overall Quality and Flow of
the Text

Assess whether the generated text flows smoothly and has a clear
structure. Is there a natural progression from emotional reaction to
evolution and reflection? Also, does the text use varied sentence
structures and expressions to avoid monotony?
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Figure 18: Emotion Detection dataset example.
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Figure 19: Emotion Classification dataset example.

Figure 20: Emotion QA dataset example.
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Figure 21: Emotion Conversation dataset example.
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Figure 22: Emotion Summary dataset example.
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Figure 23: Emotion Expression dataset example.
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Figure 24: Evaluation prompt for the first stage of Emotion Conversation.
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Figure 25: Evaluation prompt for the second stage of Emotion Conversation.
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Figure 26: Evaluation prompt for the third stage of Emotion Conversation.
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Figure 27: Evaluation prompt for the fourth stage of Emotion Conversation.
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Figure 28: Evaluation prompt for Emotion Summary.
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Figure 29: Evaluation prompt for Emotion Expression.
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Figure 30: Multi-agent enrichment prompt for Emotion Classification.

Figure 31: Multi-agent enrichment prompt for Emotion Detection.

Figure 32: Multi-agent enrichment prompt for Emotion Conversation.
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Figure 33: Multi-agent enrichment prompt for Emotion QA.

Figure 34: Multi-agent enrichment prompt for Emotion Summary.

Figure 35: Multi-agent enrichment prompt for Emotion Expression.

Figure 36: Emotional ensemble generation prompt for Emotion Classification.
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Figure 37: Emotional ensemble generation prompt for Emotion Detection.

Figure 38: Emotional ensemble generation prompt for Emotion Conversation.

Figure 39: Emotional ensemble generation prompt for Emotion QA.
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Figure 40: Emotional ensemble generation prompt for Emotion Summary.
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Figure 41: Emotional ensemble generation prompt for Emotion Expression. The prompt for the
Emotion Expression task was originally structured in multiple stages; for better clarity and intuitive
understanding, it has been consolidated into a single prompt.
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