
Towards Vector Optimization on Low-Dimensional
Vector Symbolic Architecture

Shijin Duan1, Yejia Liu2, Gaowen Liu3, Ramana Rao Kompella3, Shaolei Ren2, Xiaolin Xu1
1Northeastern University, 2University of California, Riverside, 3Cisco Research
{duan.s, x.xu}@northeastern.edu, yliu807@ucr.edu, sren@ece.ucr.edu,

{gaoliu, rkompell}@cisco.com

Vector Symbolic Architecture (VSA) is emerging in machine learning due to its
efficiency, but they are hindered by issues of hyperdimensionality and accuracy. As
a promising mitigation, the Low-Dimensional Computing (LDC) method signifi-
cantly reduces the vector dimension by ∼100 times while maintaining accuracy, by
employing a gradient-based optimization. Despite its potential, LDC optimization
for VSA is still underexplored. Our investigation into vector updates underscores
the importance of stable, adaptive dynamics in LDC training. We also reveal the
overlooked yet critical roles of batch normalization (BN) and knowledge distilla-
tion (KD) in standard approaches. Besides the accuracy boost, BN does not add
computational overhead during inference, and KD significantly enhances inference
confidence. Through extensive experiments and ablation studies across multiple
benchmarks, we provide a thorough evaluation of our approach and extend the
interpretability of binary neural network optimization similar to LDC, previously
unaddressed in BNN literature.

1. Introduction
Vector symbolic architecture (VSA) has been emerging for resource-limited devices, because of their
low latency and high efficiency characteristics [1]. Towards practice, VSA has been applied in various
applications, such as DNA coding [2], holographic feature decomposition [3], brain-computer inter-
face tasks [4], and cognitive tasks [5]; and on different hardware includingmicro-controller [6], FPGA
[7], and in-memory computing [8]. In VSAs, the input samples are encoded as high-dimensional
vectors, i.e., s = sgn(∑i Fi ◦Vxi

), enabling parallel computations. Here, F and V are feature-related
vectors. Typically, a binary VSA model needs a few megabytes, highlighting its lightweight nature.
VSA has been receiving significant attention in recent years, with focuses on model design and opti-
mization [9–12] as well as implementations in diverse fields [2, 8]. Nevertheless, further deploying
binary VSA models on tiny devices with more strict resource constraints, like kilobyte-scale memory
and limited computing circuits, is challenging. Since the previous training strategy is heuristic-driven,
reducing vector dimensions significantly compromises the model performance. Even the basic loss
functions such as cross-entropy were just explored in recent years [9, 10].
More recently, a novel VSA training strategy, low-dimensional computing (LDC) [13] has been
proposed, whose vector dimension is reduced by orders of magnitude against that in previous binary
VSA models (e.g., 128 vs. 10,000), without noticeable harm on the model inference accuracy. In a
nutshell, LDC maps a binary VSA model to a neural network with mixed precisions (both binary
and non-binary weights), thus LDC jointly trains all involved vectors in a classification task. By
doing so, the trained vectors with low dimensions compress the binary VSA model from megabytes
to kilobytes. Despite the overwhelming advantage, the current LDC training is still empirical and
under-explored, with only basic settings, such as straight-through estimator (STE) [14]. On the
other hand, while LDC is trained as a partial binary neural network (BNN), the interpretation and
theoretical analysis of some critical strategies on BNN training are also absent. For example, while
batch normalization (BN) and knowledge distillation (KD), as two necessities to be discussed in our
work, have been implicitly employed in BNN training [14, 15], detailed analysis is still lack on them.
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In this paper, we take LDC training as an example, to analyze the training of binary VSA models,
specifically for the feature vectors F and class vectors C, from the gradient-based perspective. We
explore the expected behavior of these vectors for optimal sample representation and classification.
We also highlight how BN and KD enhance their optimization, which is neglected in standard
LDC training. Besides the interpretation, we further propose two novel views: 1 For BN, the
floating-point operation togetherwith trained parameters can be absorbed as channel-wise thresholds
during inference, thus eliminating costly computation. 2 For KD, we indicate that the temperature
hyperparameter can adjust the network prediction confidence, which could also be considered during
hyperparameter optimization. This can also save the extra post-processing scheme for confidence
calibration that has been proposed [16].
We summarize our contributions as follows:

• We investigate the binary vector training on VSA models under the LDC training strategy,
and indicate the significant benefit of batch normalization and knowledge distillation. We
further demonstrate corresponding numerical validation to support our analysis.

• We depict that BN will not burden the computing during VSA inference and KD design can
provide a metric to adjust the VSA prediction confidence. Not like previous conducted work,
we do not require extra mechanism to achieve these goals.

• Our evaluations show that the BN and KD-assisted LDC training can achieve the best or
comparable accuracies over SOTA binary VSA works, while only consuming about 2%
memory footprint and < 30% latency of binary VSA models. Other ablation studies (in
Appendix) are also provided to evaluate our analysis in depth.

2. Preliminary on Vector Symbolic Architecture
Vector symbolic architecture (VSA) represents objects using vectors and performs computation
element-wise [1]. Its binary format [17] is highly efficient in computation, favoring resource-limited
devices. Assuming a sample x has N features and each feature has M discretized values, binary
VSA generates the feature/value vector set F ∈ {1,−1}N×D and V ∈ {1,−1}M×D to represent N
feature positions andM values, respectively. Binary VSA encodes one sample with a binary vector s,

s = sgn
(

N∑
i=1

Fi ◦Vxi

)
(1)

where xi is the value for the i-th feature, ◦ is Hadamard product, and sgn() function binarizes the
accumulation result. We set up sgn(0) = 1 as tie-breaker. Given a classification task, binary VSA
training generates a class vector set C ∈ {1,−1}K×D to represent K categories in this task. The
similarity between vectors in C and s is calculated by the dot product, reduced from cosine similarity,

label = argmax
k

CT
k s (2)

where the most similar one (with the highest product) is the predicted label.
Current binary VSA utilizes very high-dimensional vectors (D ≈ 10, 000) for acceptable accuracy, as
F and V are generated randomly in advance [9, 10, 12]. The recently proposed strategy for binary
VSA training, low-dimensional computing (LDC) [13], addresses the high-dimension issue in binary
VSA by approximating the value vector mapping as a shallow neural network, V(xi) : xi 7→ Vxi .
Then, the encoding (Eq.1) and similarity measurement (Eq.2) are expressed as a two-layer binary
neural network (BNN),

[x1, ...,xN ] → V(·) [V(xi)∈{1,−1}D]−−−−−−−−−−−→ y =
∑N

i=1 Fi ◦ V(xi)︸ ︷︷ ︸
encoding layer

s=sgn(y)−−−−−−→ z = Cs︸ ︷︷ ︸
similarity layer

(3)

where F and C are treated as binary weights of each layer, and sgn() as the activation between layers.
Therefore, the encoding and the similarity measurement are translated to a binary weighted sum
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layer and a binary linear layer, respectively. All the involved vectors, including V(concluded from
V(·)), F, and C can be optimized by training this BNN rather than randomly generated. As a result,
the VSA with vectors generated by LDC can achieve comparable accuracy as SOTA binary VSA [10]
while only with less than 1%model size, leading to extremely lightweight hardware implementation.
While LDC provides a promising solution to binary VSA training, the training principles on it are still
under-explored. Previous LDC only applied the basic STE [14] and Adam [18] strategies that are
used in BNN training. Besides, BNN optimization is challenging and ongoing research. Motivated
by these considerations, we aim to explore current LDC training as a representative case study for
BNN training, and discuss our perspective on its optimization.
Note that optimization of V(·) is excluded from the discussion in this paper since it is a real-valued
network that can be well-trained with modern strategies, and the architecture difference of V(·)
showed insignificant impact on LDC training [13]. Still, we provide an introduction to V(·) in
Appendix A. Besides, the Quantization-Aware Training (QAT) algorithm [19] is applied, iteratively
freezing oscillating weights for a smooth convergence during LDC training, see Appendix B.

3. Training Optimization on Feature Vectors
Similar to BNN training, LDC also utilizes real-valued (or latent)weights for the gradient propagation,
and the binarized counterparts for the forward pass. For the feature vectors F, we denote Fr as the
real-valued counterparts for F during the LDC training, which has the following property,

Fi,d = α(Fd) sgn(Fri,d) =
{
+α(Fd) if Fri,d ≥ 0

−α(Fd) otherwise , where α(Fd) =
∥∥Fr:,d∥∥l1

N
. (4)

Here Fi,d means the binary element located at the i-th row and d-th column. Rather than directly
applying sgn() function for binarization, a scaling factor α is multiplied for weight updating, which is
the l1-normmean of correspondingweights. Scaling factors can be directly removed during inference.
Moreover, due to the zero gradient of sgn(), it is also approximated during backward propagation,

(forward) sgn(x) =
{

1, x ≥ 0
−1, x < 0

, (backward) sgn(x) =
{

1, x ≥ 1
x, −1 ≤ x < 1
−1, x < −1

(5)

3.1. Analysis of Vanilla Training Process
We first explore the updating step on F from Eq.4 and Eq.5 in the basic LDC training. The gradient
on a certain latent weight Fr

i,d, w.r.t. the sample vector s, is
∂s

∂Fri,d
= V(xi)d · [1(|yd| ≤ 1) + 0(|yd| > 1)] , where yd =

∑N
i=1 Fi,d ◦ V(xi)d (6)

The gradient of each weight element Fr
i,d is just based on the corresponding value vector bit V(xi)d,

i.e., the d-th bit of the i-th value vector, which is ±1. Following the chain rule, the magnitude of
Fri,d gradients can only be adjusted by the gradient from the loss term, ∂L/∂s. Explicitly expressing,
|∂L/∂Fri,d| = |∂L/∂sd| · |∂sd/∂Fri,d| = {−|∂L/∂sd|, 0,+|∂L/∂sd|}. This is inflexible because: 1 If
|∂L/∂Fri,d| ≪ |Fri,d|, the Fi,d might not change by learning from the Fri,d updates; 2 If |∂L/∂Fri,d| ≫
|Fri,d|, oscillation could happen [18] since the sign of Fri,d might change in every updating, hindering
the training convergence.
For numerical investigation, we run 10 epochs for the LDC training, and then feed in onemisclassified
image (supposed to induce noticeable weight gradients) for gradient calculation. We illustrate the
distributions of y, ∂L/∂Fr, and Fr in Figure 1(a)(b)(c), respectively. Firstly, the zero gradient makes
up the most part (78.13%) of the distribution, indicating that most y fall outside the slope range
[−1, 1]. This can be observed from Figure 1(a) as well, leading to inactively updating on latent
weights. Then, the non-zero gradient magnitudes (as large as 0.8) are rather larger than the latent
weights Fr (mostly in the range [−0.3, 0.3] as shown in Figure 1(c)), which is prone to change the
sign of Fr, causing oscillation. Consequently, the F optimization under vanilla training is insensitive
to the back-propagation and locally unstable due to large non-zero gradients.
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Figure 1: Feature vector training analysis for vanilla LDC (a)(b)(c) and our BN-based method
(d)(e)(f). All figures are histograms of distributions. We run 10 epochs for (a)(b)(d)(e) to demon-
strate the efficacy of BN on LDC training: BN shapes the accumulation y to zero mean and unit
variance, providing more active and moderate gradients for weight updating. We run 50 epochs for
(c) and (f) to show Fr distributino during training. The case study is tested on the LDC model with
dimension D = 64 and on FashionMNIST.

Table 1: Preliminary result on methods to mitigate the
F training deficiencies. α(F) ↓ is to reduce the scaling
factor. δ ↑ is to increase the active range of sgn(). BN is
the batch normalization method that we adopt in our
work. We show the variance of y distribution and the
range of ∂L/∂Fr as metrics since they directly dominate
the F updating.

LDC +(α(F) ↓) +(δ ↑) +BN
Var(y) 10.49 6.83 10.11 0.98
∂L/∂Fr [−0.8, 0.8] [−0.6, 0.6] [−0.45, 0.45] [−0.3, 0.3]

Intuitively, we propose two simple tricks
to mitigate the aforementioned issues. We
directly reduce the scaling factor of F so
that more y elements can fall into the ac-
tive range [−1, 1], i.e., more Fr with non-
zero gradients. Alternatively, we can also
enlarge the active range to [−δ, δ], where
δ > 1, to activatemore Fr. We show the pre-
liminary result in Table 1, with a bold con-
figuration that α(F) is scaled down by half
or enlarging the activate range to δ = 1.2.
Both lower scaling factor and larger active range are beneficial to feature vector optimization, with
lower y magnitudes (i.e., lower Var(y)) or smaller gradient magnitudes |∂L/∂Fr|. Nevertheless,
these intuitive tricks are still not sufficient. The scaling of α(F) and δ should be carefully tuned as
hyperparameters, which is time-consuming and tedious. On the other hand, while more active
latent weights participate in the training, the gradient magnitude is not directly tuned by these tricks.
Therefore, we emphasize the necessity of an adaptive method to solve the issues above, which is
batch normalization (BN) in the feature vector training.

3.2. Batch Normalization Benefits Feature Vector Training

BN [20] aims to stabilize the training procedure by normalizing the activation in dimension-wise.
Specifically, by applying BN to the encoding layer, we have

s = sgn(BN(y)), where y =

N∑
i=1

Fi ◦ V(xi) and BN(y) =
y − E(y)√
Var(y) + ϵ

× wBN + bBN . (7)
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E(y) and Var(y) are the statistical mean and variance of y during training, and bBN and wBN are the
trainable parameters to further adjust the distribution. ϵ is a small constant for numerical stability.
With BN, the gradient on latent weight Fr

i,d, w.r.t. the sample vector s, can be derived as
∂s

∂Fri,d
= V(xi)d ·

(
wBN,d/

√
Var(yd) + ϵ

)
· [1(|BN(yd)| ≤ 1) + 0(|BN(yd)| > 1)] (8)

Here, the BN contributes the gradient calculation of Fr in two ways: (i) appropriate affine transfor-
mation |BN(yd)| and (ii) trainable gradient magnitude wBN/

√
Var(yd) + ϵ.

Appropriate affine transformation is a straightforward benefit that BN provides. Since the input
of sgn() tends to approach a lower variance with BN (0.98 vs. 10.49 at epoch 10 in Figure 1(a)
and (d)), more accumulations y after BN fall into the active range [−1, 1], allowing more latent
weights to participate in the updating. In Figure 1(e), only 40.63% gradients of Fr are still zero,
which is much less than 78.13% of the case without BN in Figure 1(b). Note that bBN in BN is
supposed to shift the accumulation y, but its influence is actually negligible. This is because binary
VSA exhibits centrosymmetric properties with respect to zero, i.e., vectors are from {−1,+1} and
activation function is also symmetric w.r.t. zero. Therefore, zero-centered distribution is favored for
the optimization; in fact, regardless of the absence or presence of BN, the y distribution is near-zero
centered, i.e., −0.4581 vs. −0.0038 in Figure 1(a) and (d).
Trainable gradient magnitude benefits from the trainable BN weights wBN . Since the derivation
of an optimal wBN is rather complicated and the space is limited, we provide a detailed analysis in
Appendix C and just include a brief interpretation here. wBN is introduced to rescale the variance
of y together with Var(y), for potentially better distribution [21]. Regarding the similarity layer
in LDC, the optimal input distribution can be learned by calculating ∂L/∂BN(y). This leads to
the optimization of BN parameter, ∂L/∂wBN , which is under the influence of current loss and
the latent weight Cr. Thus, the BN weights wBN can adaptively scale the weight gradients on Fr

in an appropriate range. For example in Figure 1(e), the gradients are scaled from [−0.8, 0.8] (in
Figure 1(b)) to [−0.3, 0.3]. Proper gradient magnitudes can effectively prevent weight oscillation,
since the sign of latent weight is not prone to flip in one updating step.
As a straight comparison, we demonstrate the weight distribution of Fr in Figure 1(c) and (f).
Throughout the training, the latent weights of Fr run fast to move away from zero quickly diverge
from zero or are frozen to the steady state ±1 (by QAT algorithm) with the help of BN. As discussed
in [19], less near-zero latent weights will mitigate the oscillation during BNN training. On the other
hand, without BN, a big part of Fr stays near zero at the end of the training, indicating that the LDC
training is not well converged and significant oscillation still exists in the encoding layer of LDC.

3.3. Batch Normalization as A Threshold
We indicate that all BN parameters can be absorbed into binarization as a threshold during binary
VSA implementation. According to Eq. 1, y =

∑N
i=1 Fi ◦ V(xi) is calculated for the binarization, i.e.,

0 as the threshold of sgn() function. Similarly, the threshold in Eq. 7 can be expressed as

BN(y) ≥ 0 ⇔
(∑N

i=1 Fi ◦ V(xi)
)
≥ θ, where θ =

⌈(
E(y)−

√
Var(y) + ϵ · bBN

wBN

)
/αF

⌉
(9)

Therefore, the binarization operation with BN during inference can be translated to a comparison
with dimension-wise thresholds θ. Since the accumulation yd on binary vectors is an integer, the
threshold θ is also rounded.
Extending to BNN. This derivation can be generalized to the BN in BNNs as well. Hence, BN
will not introduce additional computation in BNN if followed by sgn() activation, while improving
the performance during inference. Prior work has developed efficient alternatives to BN [22, 23],
addressing its floating-point computations during inference; yet, our analysis suggests that BN can be
seamlessly integrated as dimension-wise thresholds in binary VSA, without introducing additional
computational overhead.
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Table 2: Top-1 accuracy of LDC training with and without normalization, with standard deviation.
We consider the proposed batch normalization (BN) and other layer normalization strategies (Layer-
Norm [24] and RMSNorm [25]). We vary the vector dimension D of binary VSA model. The results
are on 5 runs, and the best is marked as bold.

Acc.(%) D = 32 64 128 256 512 1024
LDC 81.20±0.34 83.62±0.21 85.49±0.30 86.66±0.25 86.94±0.85 86.97±0.82

+LayerNorm 83.04±0.25 84.35±0.69 85.86±0.26 87.01±0.30 87.75±0.19 87.31±0.98

+RMSNorm 82.99±1.17 84.69±0.37 85.05±0.58 86.14±0.37 86.74±0.20 85.86±0.72

+BN 84.24±0.30 85.52±0.37 86.58±0.10 87.41±0.28 88.01±0.16 88.53±0.17

3.4. Early Evaluation
For a preliminary evaluation of batch normalization (BN) in LDC training, we compare its effective-
ness against other normalization strategies across various vector dimensions, with results shown in
Table 2 on the FashionMNIST dataset. All normalization methods improve training by stabilizing the
process, as discussed in Section 3.2. (i) Comparing BN and vanilla training, BN not only can improve
the inference accuracy of binary VSA models on various vector dimensions, but also mitigates the
saturation issue existing in vanilla training when D is large, e.g., D = 512 and 1024. Besides, vanilla
training exhibits large oscillation (higher variance on accuracy) under large vector dimension. In
contrast, BN-assisted LDC shows a much lower variance in accuracy, so less oscillation occurs during
LDC training with BN. This also proves that BN can yield smooth convergence. (ii) When comparing
normalization strategies, BN outperforms layer normalization (LN) due to its approach of normaliz-
ing across the data batch. In a data batch for the VSA model, each bit has roughly equal probabilities
of being 1 and -1 along the batch. This primarily rescales the variance without introducing significant
bias, as evidenced by the near-zero bBN (see Appendix G). In contrast, LN normalizes across vector
dimensions for each sample. However, in low-dimensional VSA models, each vector bit contributes
individually, and the 1/-1 distributions of vectors s could vary significantly between samples across
classes. This variability makes it more challenging to generalize a distribution along dimensions,
potentially introducing non-zero and inconsistent biases across classes. This observation also aligns
with the finding that LayerNorm slightly performs better than RMSNorm, as the latter excludes bias,
which may limit its effectiveness in such scenarios. Furthermore, LN also leads to overfitting at large
dimensions, as shown by increased variance and reduced accuracy from D = 512 to D = 1024, an
issue BN avoids by averaging vectors in batches instead of individual dimensions. In addition, we
evaluate the batch normalization performance by varying the batch size of data in Appendix F.1.

4. Training Optimization on Class Vectors
For the class vectors C, we denote its latent weights Cr, i.e., the real-valued counterparts, as follows:

Ck,d = α(C) sgn(Cr
k,d) =

{
+α(C) if Cr

k,d ≥ 0

−α(C) otherwise , where α(C) = ∥Cr∥l1
K ·D

(10)

Here Ck,d is the binary element located at the k-the row and d-th column. GivenK categories andD
vector dimension, α(C) is the unique scaling factor for the entire class vectors.
Unlike feature vectors, the optimization on class vectors is more straightforward, since the gradient
of Cr is directly reflected by the loss, ∂LCE/∂Cr

k,d = −sd(tk − σ(z)k), where σ(z) is soft-max and
cross-entropy is utilized in the vanilla LDC training. tk denotes the targeted probability on the k-th
class, which is a hard target (0 or 1) in one-hot encoding. Since s and σ(z) are determined by the
data input and current model weights (i.e., forward-pass information), the training optimization lies
in how the loss is calculated and how the target probability t is expressed.
Binary VSA models have limited capacity [26] in capturing relationships between input-target
pairs due to their constrained parameter space compared to real-valued models, i.e., 2|θ| vs. R|θ|.
Consequently, the training procedure is expected to adaptively locate a more generalizable fit on
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complex tasks, by prioritizing success on simpler samples and selectively forgoing those that are
excessively challenging. We highlight that knowledge distillation (KD) [27] can be an ideal candidate.
Specifically, KD requires an advanced network (namely teacher network) pre-trained for the current
classification task, and uses its logits zt as the criterion. The gradient of Cr can be calculated as

∂LKLDiv

∂Cr
k,d

= −sd(σ(zt/T )k − σ(z/T )k) · T (11)

where T is the temperature hyperparameter. While previous work usually takes KD as regularization
during training, i.e., formulate the final loss as L = γLCE + (1 − γ)LKLDiv, we only consider the
LKLDiv to emphasize KD’s influence in the following discussion.

4.1. KD Provides More Adaptive Training
Compared with the hard labels that perfectly reflect the input’s true category, teacher networks
might produce wrong predictions on a small number of samples. These imperfect labels actu-
ally can provide a smoother classification boundary, by recognizing the hard-to-classified sam-
ples beforehand, and replace the true labels with wrong-but-smooth probability distributions.
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Figure 2: The Cr gradient dis-
tribution of binary VSA after
training for 10 epochs with
and without KD.

This will mitigate the gradient magnitude of latent weights when
LDC encounters these samples, thus reducing unnecessary weight
oscillations. By “unnecessary”, we interpret it as there is no need to
force LDC, to learn the probability distribution that even the teacher
network cannot well fit. We validate this advantage in Figure 2,
where 1000 misclassified samples are selected by binary VSA after
10-epoch training, to contain some hard-to-classified samples. KD
provides more near-zero gradients, mitigating the oscillation in up-
dating Cr from these samples; specifically, only 2.19% of Cr flipped
signs after updated from KLDiv loss, while 15.16% Cr flipped signs
from CE loss. The near-zero gradients in KD are different from the
case we discussed in BN, because there is no inactive range on Cr

updating, and near-zero gradients are only caused by small losses.
Table 3: Investigating the influence of label smooth-
ing and teacher on LDC training. f is the scaling
factor for label smoothing, i.e., ft + (1 − f)/K.
“HL-T” means hard-label from teacher.

LDC +f = 0.1 +f = 0.2 +f = 0.5 +HL-T
Acc. (%) 85.09 84.07 83.53 82.43 85.89

Another common benefit of KD is that it can
yield a soft probability distribution, facilitating
easier convergence. However, this benefit is not
obvious in LDC training. We provide a quick ex-
ploration in Table 3 that applies label smoothing
[28], which can just soften probability distribu-
tion, under various scaling factors. The results
indicate that label smoothing does not positively impact the LDC training, whereas the teacher
network improves performance, even with hard labels (HL-T). This disparity is likely attributed to
the limited capacity of binary VSA models. Unlike current deep learning models which employ label
smoothing for better generalization, binary VSA models, due to their low capacity, focus more on
boundary smoothness rather than addressing overfitting issues.

4.2. KD Can Reshape the Confidence Distribution
From Eq.11, the temperature hyperparameter T will rescale the logits zt and z, in a softened
scale when T > 1. This introduces a previously overlooked efficacy of KD that when T is large,
the VSA model will have higher confidence during inference. We employ Shannon entropy [29]
H(σ(z)) = −

∑
k σ(z)klog(σ(z)k) to estimate the confidence for one inference. Specifically, the one-

hot distribution (very confident prediction) induces the lowest entropyH = 0, while the uniform
distribution (all 1/K) gives the highest entropy H = log(K). For a correct prediction, we expect
a low entropy; on the contrary, the wrong prediction should have a high entropy so that VSA can
report an unreliable prediction. We calculate the average entropy of correct predictions H(σ(z))T
(T for True) and wrong predictions H(σ(z))F (F for False) in Table 4. In the common range of
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Table 4: The confidence and accuracy of the binary VSA model trained by LDC without KD or with
KD under various temperatures.

w/o KD T=0.5 T=2 T=4 T=8 T=10 T=20
H(σ(z))T 0.1689 0.4681 0.0654 0.0372 0.0268 0.0249 0.0263
H(σ(z))F 0.6209 1.0738 0.3883 0.2506 0.1976 0.1897 0.1879
Acc. (%) 85.09 84.43 86.17 86.30 86.51 86.39 85.07

1 ≤ T ≤ 10, KD shows a positive influence to produce a high-confident VSA model for correct
predictions. However, the entropy of wrong predictions also decreases along T , which is against
our expectation for an ideal model. Nevertheless, the correct prediction can always show a lower
entropy (meaning high confidence) than the wrong predictions on all T selections. Note that the
entropy of predictions under T = 0.5 is larger than the case without KD, because T < 1 temperature
will sharpen the probability distribution. Consequently, we propose another metric to evaluate the
performance of KD, i.e., the prediction confidence that a VSA model can provide. This can be jointly
considered with accuracy as a trade-off when designing the temperature T . To evaluate distillation in
a more general context, we further explore teacher networks with different capacities in Appendix F.2,
and different divergence losses in LDC training in Appendix F.3.

5. Evaluation

Datasets. We select representative datasets for binary VSA models. ISOLET [30] and HAR [31] are
two commonly evaluated benchmarks in previous VSA work, where ISOLET is a voice recording
collection and HAR is an activity gesture collection. Besides, we evaluate two other lightweight
applications, i.e., seizure detection (CHB-MIT) [32] on brain-computer interface and credit card
fraud detection (CreditCard) [33] for portable devices. Also, we include FashionMNIST [34] since it
is the most challenging one in previous VSA work. A detailed description is provided in Appendix D.
Training Setup. As basic configuration, we follow the LDC training setup [13]. We apply batch
normalization and knowledge distillation with their default setup. For KD, we still set γ = 0
(without considering LCE) to emphasize the KD benefit and T = 4 as a common choice. We employ
3-layer MLP on the first four datasets (with accuracies in order 96.54%, 97.08%, 99.10%, and 94.90%,
respectively), since they are all 1-D signal samples; and use ResNet-18 for the KD on FashionMNIST
(with accuracy 92.51%). Other teacher networks are evaluated in Appendix E.
Model Comparison. We compare our strategy (noted as “LDC+BNKD”) with the vanilla LDC, and
other SOTA binary VSA works [9, 10, 12]. For LDC+BNKD and LDC, we evaluate them on different
vector dimensions D, while we keep the configuration of V(·) fixed as suggested, i.e., 4 [13]. For
other binary VSA models, we assume the dimension D = 10, 000, as suggested in their works.

5.1. Inference Accuracy

We demonstrate the inference accuracy of related binary VSA works in Table 5. The original LDC
training generally has slightly worse inference performance than SOTA binary VSA works. Also,
the saturation issue is also apparent on LDC, i.e., little accuracy increment by doubling the vector
dimension from 256 to 512. This highlights the necessity of investigation on better VSA training
strategy, rather than directly increasing vector dimensions. On the other hand, the LDC training with
BN and KD assistance can obviously improve inference performance. While BN and KD can mitigate
but not entirely eliminate the saturation issue on certain tasks (e.g., FashionMNIST), we advocate
for architectural enhancements to binary VSA models to fundamentally augment their capabilities.
In the breadth view, “LDC+BNKD” demonstrates superior accuracy on two benchmarks while
maintaining a performance gap of < 1% compared to the highest-performing SOTA VSA models on
two other benchmarks. Therefore, the BNKD-assisted LDC training can provide an LDC model with
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Table 5: Inference accuracy comparison between SOTA VSA works, LDC, and our training strategy.
We assume D = 10, 000 for binary VSA models (the first four), and vary the dimension D =
(64, 256, 512) for LDC and our method. Best results are in bold, and second bests are underlined.

Model
Accuracy (%)

QuantHD
[12]

G(23)
-VSA[9]

G(24)
-VSA[9]

LeHDC
[10]

LDC[13] LDC+BNKD
64 256 512 64 256 512

ISOLET 92.70 94.40 96.00 94.89 88.26 92.97 93.70 88.72±0.46 93.87±0.34 94.28±0.28

HAR 91.25 95.60 96.60 95.23 93.08 94.67 94.90 93.66±0.54 95.20±0.30 95.64±0.25

CHB-MIT 86.57 N/A N/A 91.16 95.30 96.39 96.53 97.32±0.65 98.01±0.56 98.04±0.35

CreditCard 94.69 N/A N/A 93.88 93.37 93.88 93.88 94.19±0.46 94.49±0.23 94.69±0.36

FashionMNIST 80.26 86.70 87.40 87.11 83.62 86.66 86.94 86.48±0.22 88.38±0.21 88.91±0.10

Table 6: The inference accuracy on datasets by varing γ, assuming the vector dimension D = 64 for
our LDC+BNKDmodel. Results are averaged on 5 runs. The best results for each benchmark are
marked as bold, and the second bests are underlined.

Acc. (%) γ =0.0 0.2 0.4 0.6 0.8 1.0
ISOLET 88.92±0.36 88.02±0.41 88.08±0.91 87.66±0.97 88.06±0.52 88.30±0.81

HAR 93.64±0.58 93.71±0.26 93.56±0.24 94.01±0.37 93.60±0.24 93.48±0.46

CHB-MIT 97.14±0.64 97.92±0.42 97.35±0.48 97.33±0.67 97.14±0.65 96.84±0.78

CreditFraud 94.08±0.58 94.39±0.81 94.49±0.67 93.98±0.67 94.08±0.46 92.86±0.72

FashionMNIST 86.30±0.25 86.37±0.13 86.34±0.26 86.39±0.15 86.13±0.43 85.37±0.38

inference performance comparable to that of SOTA VSA work. Notably, this superiority is achieved
with only 1/20 vector dimensions of VSA models, i.e., D = 512 vs. D = 10, 000.

5.2. Trade-off Between LCE and LKLDiv

To evaluate the trade-off between the knowledge from the ground-truth label and the advanced
framework, we varies γ in the final KD loss, L = γLCE + (1− γ)LKLDiv. The accuracy results are
given in Table 6. The differences between various γ are relatively low for most benchmarks (but
indeed significant in some such as CreditFraud and FashionMNIST). Nevertheless, the efficacy of
KD is obvious on most benchmarks; without KD, i.e., γ = 1, LDC is prone to perform the worst.
On the other hand, all benchmarks have the best performance when γ ≤ 0.6, meaning that partly
inducing LKLDiv are likely to give an inference improvement for LDC training.

5.3. Hardware Preparation

Table 7: The memory footprint (in KB) and hard-
ware latency (in CDC) for different binary VSA
models, evaluated on ISOLET and FashionMNIST.

ISOLET FashionMNIST
Mem. (KB) CDC Mem. (KB) CDC

QuantHD 1124 295 1313 295
LeHDC 1124 295 1313 295
G(23)-VSA (1058)⋆ 402 (998)⋆ 405
G(24)-VSA (1410)⋆ 430 (1330)⋆ 434
LDC-64 5.27 73 6.48 74
LDC-256 20.70 118 25.54 119
LDC-512 41.28 145 50.94 146
LDC+BNKD-64 5.35 73 6.56 74
LDC+BNKD-256 21.02 118 25.86 119
LDC+BNKD-512 41.92 145 51.58 146
⋆Not given in original work, but estimated by us.

Since binary VSA is well-known for its ultra-
lightweight and real-time implementation. It
is necessary to estimate the memory footprint
and potential hardware latency. We calculate the
memory requirement of involved binary vectors,
including V, F, and C. We also evaluate the la-
tency by calculating model’s circuit-depth com-
plexity (CDC). Its calculation on binary VSA is
discussed in [9]. We take the ISOLET and Fash-
ionMNIST as two examples to evaluate the hard-
ware performance in Table 7, and the results of
other datasets are available in Appendix F.5. 1
SOTA binary VSA models, e.g., QuantHD, G-
VSA, and LeHDC have heavy-loaded hardware
overhead, because they have very large vector dimensions,D = 10, 000, showing the deficiency of cur-
rent high-dimensionVSAmodels. 2 In contrast, low-dimensionVSAmodels (LDCandLDC+BNKD)
have much lower memory footprint and hardware latency. They can achieve 1/20∼1/260 memory
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usage compared to SOTA VSA models; yet our LDC+BNKD strategy will induce slightly larger
(1.2% ∼ 1.6%) memory than their LDC counterparts, because we store the thresholds derived from
BN. Nevertheless, this memory increment is negligible and can be easily handled by tiny devices.
Jointly, LDC+BNKD and LDC have only 17% ∼ 49% hardware latency (CDC) compared to those
high-dimension VSA models, depicting their real-time advantage. Correspondingly, we also demon-
strate the real inference time of different binary VSA models in Appendix F.5. Further, LDC+BNKD
has the same latency as its LDC counterpart, because the BN and KD training does not introduce
extra computation.
We present other evaluations of KD temperature and model robustness in Appendix F.4 and F.6, and
further evaluate the effectiveness of BN and KD on BNNs in Appendix F.7.

6. Conclusion
Low-dimensional computing (LDC) has been put forth as a promising training strategy for binary
VSA, due to its ability to generate VSA with ultra low-dimensional vectors. However, the potential
for LDC training remains a lack of exploration. In this paper, we offer a thorough analysis of vector
optimization in LDC and highlight the indispensability of batch normalization (BN) and knowledge
distillation (KD) during training. We argue that BN does not add computational overhead to
hardware implementations, and that KD positively impacts confidence calibration during training.
Our analysis can also be extended to general BNN, thereby helping theoretical analysis of the roles
of BN and KD in BNN optimization. Further discussion is provided in Appendix G.
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A. Value Vector Mapping
In LDC, the vector mapping of an input value is expressed as a shallow neural network, namely
ValueBox, V(xi) : xi 7→ Vxi

. The structure of V(xi) applied in our work is

xi → Linear(1,20) → BN(20) tanh()−−−−→

Linear(1,Dv) sgn()−−−→ v duplicate−−−−−→ Vxi

Here, Dv is the output dimension of the second linear layer, which is the dimension of the value
vector. As indicated in the original paper [13], theDv can be unequal to the vector dimensionD of F
and C, but only requiring D is multiples of Dv. Therefore, after the network output, v, this binary
vector is duplicated by D/Dv times as the final output of ValueBox, Vxi

, to align with the vector
dimension of F and C. This trick can save the memory footprint and results from the observation
that value vectors usually do not need as large dimensions as feature and class vectors. For the N
input features, only one unique ValueBox is generated. The ValueBox later is translated to a Look-up
Table, recording the binary vector outputs for all possible input values.
Remark: depth of V(x) network. The original LDC work [13] explores several designs for the
value mapping function V(x) : x 7→ Vx (see Fig. 6 in [13]), experimentally concluding that
a shallow network is sufficient to express value mapping. While the original paper does not
analyze this approximation, we offer our perspective that it may be related to the “value im-
portance” in classification, where V(x) determines the optimal segmentation of values from 1
to M . Each segment corresponds to a single vector representation, and values within a seg-
ment have similar importance for classification. For instance, V(x) could divide the range [0, 255]
into segments such as {[1, 50], [51, 100], [101, 150], [151, 200], [201, 255]}, corresponding to vectors
{0000, 0001, 0011, 0111, 1111} for values in each segment. The optimization of segmentations is done
automatically during LDC training. This mapping is relatively easy to optimize, given the character-
istics of data in VSA tasks, so a shallow network can satisfy the approximation of V(x). Note that
more complicated value distributions could require a more complex V(x) architecture, e.g. forcing
above segments to generate vector set {0000, 0101, 0011, 0110, 1111}, deeper network may be needed
to fit this projection. However, observations in [13] indicate that a shallow network is adequate for
current VSA tasks, as value-vector projections are not as complicated as aforementioned. Following
the original LDC design, we adopt a two-layer network in our work.

B. Training Details
Except for the basic training setup shown in the paper, we provide other training information here.
We apply Adam as the optimizer with 1e-3 initial learning rate, which is linearly decayed to zero
during training. We run our experiments for 50 epochs to guarantee convergence. The gradient of
latent weights are clipped within the magnitude ±1.
For the quantization-aware training (QAT) strategy [19], we briefly show themain idea here for quick
reference. QAT first defined the oscillation of a certain latentweightw, in our binary training scenario,
by satisfying two conditions: 1 the sign of w flipped between two consecutive iterations t− 1 and t,
i.e.,∆t = sgn(wt)−sgn(wt−1) ̸= 0. Here∆t = 2means the sign ofw is changed from -1 to 1,∆t = −2
means the opposite, and ∆t = 0 represents no sign flipping. 2 one oscillation is the sign flipping
directions between two consecutive iterations are opposite, i.e., ot = (∆t ̸= ∆t−1) · (∆t ×∆t−1 ̸= 0).
Thus, ot = 1means there is an oscillation in iteration t, and 0 otherwise. The frequency of oscillations
over iterations is tracked using the exponential moving average (EMA):

f t = m · ot + (1−m) · f t−1

For the iterative weight freezing on QAT, we define a threshold fth that once the oscillation frequency
of a certain weight exceeds fth, this weight will be frozen and not updated for the rest of training.
To minimize the difference in computations between forward and backward [18], we set the frozen
state of a latent weight wz as wz = sgn(w). Therefore, the frozen latent weights will be equal to their
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Figure 3: The Cr distribution along 50 epochs.

signed results. Note that the scaling factor α computing will exclude the frozen weights, i.e., we
only calculate the l1-norm mean of active latency weights. In our experiments, we empirically set
m = 0.01 and fth = 0.02. And in order to make QAT effective when LDC and LDC+BNKD tend to
converge, we activate QAT at epoch 15 until the end.
Remark: advantage of LDC training over post-training quantization (PTQ). LDC training on
VSA [13] is a QAT strategy, which generally outperforms PTQ in accuracy, albeit beingmore compute-
intensive. However, thanks to the lightweight nature of the LDC model with a kilobyte-sized
architecture, QAT training is highly efficient, taking only about 5 minutes on an NVIDIA 3070 GPU,
as measured in our experiments. Regarding the similar training procedure in BNN, QAT is also
widely adopted [35] for its ability to effectively handle the highly discrete nature of binarization,
which is more extreme than integer quantization (e.g., 8-bit).

C. Trainable Gradient Magnitude
Weprovewhy the parameterwBN in batch normalization is optimized on both forward and backward
information. Therefore, wBN has more adaptive adjustment on the encoding accumulations. Recall
that the LDC model with BN can be expressed as, starting from the accumulation result y,

z = C× sgn
(

y − E(y)√
Var(y) + ϵ

× wBN + bBN

)
We still assume the LDC model is trained on softmax activation and cross-entropy loss, then after
feeding in one query sample, the derivative of the d-th element wBN,d w.r.t. LCE is

∂LCE

∂wBN,d
=

∂LCE

∂sd

∂sd
∂wBN,d

where ∂LCE

∂sd
= −

[∑
k

Cr
k,d(tk − σ(z)k)

]
,

∂sd
∂wBN,d

=
yd − E(yd)√
Var(yd) + ϵ

· [1(|BN(yd)| ≤ 1) + 0(|BN(yd)| > 1)] .

Here we boldly assume the discussed optimizing surface of wBN,d is not constant, i.e., |BN(y)| ≤ 1;
otherwise the gradient is always zero, disabling updating. The term in ∂LCE/∂wBN,d related to
wBN,d is

∑
k C

r
k,dσ(z)k; this term is not monotonous to wBN,d since Cr

:,d are not constant and even
does not has the same sign, as shown in Figure 3. This conclusion can be also described as the
weighted sum of softmax members is not monotonous. Therefore, the wBN,d optimization is not
convex, and only the local optimum can be derived. Besides, since the non-linearity of softmax, there
is no analytical solution for the equation ∂LCE/∂wBN,d = 0. Nevertheless, if numerically solving
this equation, it can be equivalent to Cr

l,d =
∑

k C
r
k,dσ(z)k assuming the true label of this query

sample is l. From this analysis, we can derive that the local optimum of wBN,d highly relies on the
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latentweight Cr. This gives a valuable perspective that the BN can be well adjusted from its followed
layers through backward propagation, while the normal regularization E(y) and Var(y) can only
statistically reshape the accumulation based on feedforward information.

D. Supplementary of Evaluation Setup
Table 8: Configurations of the evaluated datasets.

Dataset ISOLET HAR CHB-MIT CreditCard FashionMNIST
# of features (N) 617 561 1472 29 784

# of (train, test, class) (6238, 1559, 26) (7352, 2947, 6) (13920, 664, 2) (3940, 196, 2) (60000, 10000, 10)
We provide the basic information of our selected benchmarks in Table 8. Since LDC models (and
even current high-dimension VSA models) have limited capacity, due to their straightforward and
simple calculation, they are specifically proposed for those tasks that are not difficult to classify but
still require rather limited hardware resourcesand real-time response. For example, the classification
of segmented signals and simple images on portable devices is favorable to LDC. Therefore, we select
the four representative datasets covering different lightweight scenarios. For image classification,
binary VSA models so far can only handle easy image recognition with just passable accuracy, such
as MNIST[36] and FashionMNIST[34], thus we did not include complex tasks, such as CIFAR[37]
or ImageNet[38] in our evaluation.

E. Knowledge Distillation under Ensemble Models

Table 9: The inference accuracy of benchmarks by training LDC with ensemble-model KD, assuming
the vector dimension D = 64 for LDC+BNKD and the size of ensemble is G = 10. Results are
averaged on 5 runs.

Acc. (%) ISOLET HAR CHB-MIT CreditFraud FashionMNIST
D = 64 88.05±0.49 93.51±0.22 96.57±0.58 92.04±1.47 84.32±0.20

256 93.14±0.44 95.27±0.20 98.77±0.29 92.76±0.67 87.75±0.12

512 94.41±0.05 95.74±0.21 98.73±0.17 93.37±0.36 88.62±0.13

There are many knowledge distillation strategies that have been discussed [39]. As a consensus, the
teacher and the student networks have the similar architecture, so that the transferred knowledge can
be well mimicked by the student. However, there is currently no developed model akin to the LDC.
Thus, we also try to use the ensemble of several LDC models as the teacher network, so the teacher
network can perform better than a single LDC model and has a similar classification boundary of
which the LDC training is capable as well. As a general approach for ensemble knowledge distillation,
the average rule is mostly applied in development. Specifically, the ensemble categorical probability
we utilized for k-th class is

σ (zt)k =
1

G
·

G∑
g=1

σ (zg
t )k (12)

assuming there are G teacher models. Since the ensemble strategy averages the prediction, the bias
and noise on boundaries during training are mitigated, so that the ensemble boundary is more of
generalization. We present the LDC+BNKD training results in Table 9, which includes 10 LDC
models as the teachers. Compared with the result we demonstrated in Table 5 in the main paper,
neither an ensemblemodel nor an advanced network consistently outperforms the other as the teacher
model. The two strategies have similar performance on ISOLET and HAR; however, the ensemble
strategy has a slight advantage on the CHB-MIT dataset while the advanced-network strategy has
obvious superiority on CreditFraud and FashionMNIST datasets. Especially for FashionMNIST, low
dimensional models, e.g., D = 64, the real-valued advanced network has a significant advantage (as
large as 2% accuracy gap) over the ensemble model.
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F. Supplementary on Evaluation

F.1. Batch Normalization Performance under Different Batch Size

Since BN normalizes across data batches, it is important to evaluate the accuracy of LDC+BN under
various batch sizes, exploring whether the normalization strategy can be applied to different training
configurations. Table 10 presents the results of applying LDC trainingwithD = 64 on FashionMNIST.

Table 10: The inference accuracy of
LDC+BN under different batch sizes.
Results are averaged on 5 runs.

32 64 128 256
LDC+BN 85.28 85.52 85.04 85.79

Across varying batch sizes, the accuracy remains consis-
tent with minor fluctuations, i.e., there is no degradation
on small batches. This suggests that batch size has mini-
mal influence on normalization during LDC training. This
behavior highlights the efficiency and flexibility of BN
in LDC, as it maintains performance consistently across
different training configurations.

F.2. Distillation Performance under Different Capacity Mismatch

Table 11: The inference accuracy of LDC+KD with different teacher networks, with the accuracy of
each teacher network provided in parentheses.

− MLP(89.21) AlexNet(92.14) ResNet18(92.51) ResNet50(92.65)
LDC+KD 83.62 83.89 85.41 86.30 86.13

Since LDC distillation relies on learning knowledge from the teacher network, it is important to
investigate how the capacity of teacher networks affects distillation performance. Table 11 presents
a comparison of results from teacher networks with varying capacities using the FashionMNIST
dataset, taking vector dimension D = 64 and distillation temperature T = 4 as an example. The
results show that the complexity and capacity of the teacher network significantly influence LDC+KD
performance. As the teacher becomes more advanced (e.g., from MLP to ResNet18), it captures task
knowledge more effectively, improving the accuracy of LDC+KD. However, overly large teacher
networks, such as ResNet50, provide little additional benefit compared to ResNet18, and LDC
struggles to extract more useful knowledge from them. Therefore, selecting a teacher network
requires balancing model capacity with training effort to optimize both efficiency and effectiveness.

F.3. Distillation Performance under Other Divergence Loss

Table 12: The inference accuracy of the binary VSAmodel trained by LDC under KLDiv or JSDiv [40]
loss, with various temperatures.

T = 0.5 2 4 8 10 20

KLDiv 84.43 86.17 86.30 86.51 86.39 85.07
JSDiv 85.03 85.40 86.05 85.23 85.59 84.26

Due to the significant capacity mismatch between low-dimensional VSA models and the teacher
networks, KL divergence (KLDiv) may lead to "mode-seeking" during distillation [41, 42]. To
address this, we investigate whether a more generalized divergence metric, such as Jensen-Shannon
divergence (JSDiv), could mitigate this issue. Table 12 compares the performance of KLDiv and
JSDiv under different temperatures. Our results show that KLDiv and JSDiv perform similarly in
LDC training, but when T > 1, KLDiv achieves slightly better results despite JSDiv being the more
generalized metric. This may be because (i) VSA tasks are less complex than modern vision or
language tasks, making the mode distribution simpler and allowing KLDiv to capture dominant
modes effectively, which the student network can learn. (ii) Less significant modes captured by the
teacher network might be ignored by the student, enabling the student to focus on dominant modes,
improving performance with KLDiv. This observation aligns with our discussion in Section 4.1,
where KD encourages the student to prioritize easier-to-classify samples while de-emphasizing
harder ones.
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F.4. Performance of BNKD under Different Distillation Temperatures

Table 13: The inference accuracy on datasets by varying temperature T in KD, assuming the vector
dimension D = 64 for LDC+BNKD. Results are averaged on 5 runs.

Acc. (%) T =0.5 2 4 8 10 20
ISOLET 87.44±0.45 88.34±0.42 88.65±0.77 87.11±0.62 86.79±0.92 84.84±0.62

HAR 93.24±0.52 93.67±0.29 93.84±0.27 93.46±0.18 93.25±0.25 93.23±0.26

CHB-MIT 96.84±0.83 97.14±0.60 97.05±0.64 97.68±0.81 96.93±0.78 96.51±0.50

CreditFraud 93.47±0.91 93.78±0.67 94.39±0.43 93.16±0.93 93.98±0.56 94.08±0.46

FashionMNIST 84.43±0.44 86.17±0.30 86.30±0.34 86.51±0.18 86.39±0.22 85.07±0.19

We further demonstrate the temperature influence on the LDC+BNKD model for other benchmarks,
which is shown in Table 13. While temperature could have a significant impact on the accuracy (e.g.,
on ISOLET), empirical temperatures, such as T = 4, indeed can perform best in most cases. On
the other hand, if the temperature falls outside the common range T ∈ [1, 10] that is suggested in
previous works, the accuracy usually is compromised a little. While current KD works commonly
use T = 4 as a default choice, there is no theoretical analysis on temperature optimization, which
could be a potential topic, especially for binary neural networks.

F.5. Hardware Preliminaries for Other Datasets

Table 14: The memory footprint (in KB) and hardware latency (in CDC) for different binary VSA
models, evaluated on HAR, CHB-MIT, and CreditCard. “ours” refers to the “LDC+BNKD”.

HAR CHB-MIT CreditCard
Mem. (KB) CDC Mem. (KB) CDC Mem. (KB) CDC

QuantHD 1029 295 2163 296 359 291
LeHDC 1029 295 2163 296 359 291
G(23)-VSA (983)⋆ 401 (968)⋆ 414 (968)⋆ 363
G(24)-VSA (1310)⋆ 428 (1290)⋆ 445 (1290)⋆ 377
LDC-64 4.66 73 11.92 75 0.38 69
LDC-256 18.27 118 47.30 120 1.12 134
LDC-512 36.42 145 94.46 147 2.11 141
ours-64 4.74 73 12.01 75 0.42 69
ours-256 18.59 118 47.65 120 1.28 134
ours-512 37.06 145 95.17 147 2.43 141
⋆Not given in original work, but estimated by us.

Besides the ISOLET and FashionMNIST, we further demonstrate the hardware overhead of other
datasets in our paper, in Table 14. The hardware performance results are akin to the observation we
get from the main paper. Besides, there is another interesting observation that, compared with other
high-dimension VSA models (QuantHD and LeHDC), G-VSA seems to occupy more memory when
the input samples have a small number of features, such as CreditCard (N = 29), while it has less
memory footprint when the dataset has a large number of features, such as CHB-MIT (N = 1472).
This is because G-VSA does not generate feature vector set F but uses permutations to encode value
vectors V. Nevertheless, LDC and LDC+BNKD models still have overwhelming advantages on the
hardware overhead against other VSA models.
Further, we exemplarily report the actual inference time of different binary VSA models on ISOLET
and FashionMNIST dataset, corresponding to CDC results. The actual inference time is shown in
Table 15, where the data input has a batch size of 100, with vector dimensions of 10,000 for (QuantHD,
LeHDC, G-VSA) and 64 for (LDC, LDC+BNKD). Similar to the results in Table 7, low-dimensional
VSA models (LDC, LDC+BNKD) significantly outperform high-dimensional VSA models. G-VSA
requires more time than QuantHD and LeHDC due to its multi-bit vector computations, whereas
QuantHD and LeHDC rely on binary vectors. Among the G-VSAmodels, G(23)-VSA and G(24)-VSA
exhibit similar runtimes, despite the latter using more bits, thanks to optimized integer kernels on
hardware. Additionally, GPU execution is considerably faster than CPU execution, owing to parallel
processing and superior computational capabilities.
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Table 15: Actual inference time comparison of different VSA models, on GPU and CPU devices. CPU
tests are run on a 3.80GHz 16-core Intel i7-10700K, and GPU tests are run on an NVIDIA 3070 GPU.
Time is measured in microseconds.

Latency (µs) QuantHD,
LeHDC G(23)-VSA G(24)-VSA LDC-64,

LDC+BNKD-64
LDC-256,

LDC+BNKD-256
LDC-512,

LDC+BNKD-512

G
PU ISOLET 43.6 63.8 63.0 0.18 0.61 1.36

FashionMNIST 55.0 77.7 77.8 0.22 0.78 1.74

C
PU ISOLET 102.7 830.3 825.6 4.6 18.2 33.9

FashionMNIST 131.3 975.2 994.6 5.8 23.7 44.7
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Figure 4: Bit-error robustness for selected VSA models, tested on FashionMNIST. We compare the
LDC and LDC+BNKD models with the LeHDC model.

F.6. Robustness Evaluation

The robustness of VSA models is of paramount importance. As vector dimension decreases, the
models may become increasingly sensitive to bit errors, potentially impacting their performance. We
investigate the bit error robustness in Figure 4. The results show that while high-dimensional VSA
models indeed demonstrate excellent robustness against bit error, low-dimensional LDC models
are less robust. However, our LDC+BNKD training method interestingly shows great robustness.
Nevertheless, since hardware in practice will have a much lower bit-error rate than we tested, e.g.,
< 10−6[43], even the vanilla LDC is still robust against normal bit errors [44].

F.7. BN and KD on Binary Neural Networks

Table 16: The accuracy (%) of different models on FashionMNIST. The evaluation is conducted on
their real model, binarized model, and the BN/KD assisted versions.

Real Binary Binary+BN Binary+KD Binary+BNKD
MLP 90.29 87.20 88.45 88.39 89.12
CNN 90.47 83.67 84.59 85.53 86.14

ResNet-18 92.15 91.31 91.96 91.93 92.25

We apply the BN and KD strategy to a 3-layer binary MLP, a shallow binary CNN (which has 3-layer
convolution followed by a 2-layer classifier), and the binarized ResNet-18 on the FashionMNIST
dataset, as a quick validation of interest. The results are presented in Table 16. We draw the same
conclusion, as from the binaryVSA training, that both BN andKDare beneficial for BNNoptimization.
However, there are also unique observations on each BNN. For example, the binarized CNNperforms
much worse than the real-valued counterpart, because we change the activation from ReLU to sgn(),
which loses much information. On the other hand, we keep ReLU as activation in binary ResNet-18,
and the trained BNN can almost achieve the same performance as its real-valued counterpart.
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G. Discussion
By generalizing our interpretation to other BNN networks, we evaluate the BN and KD assistance on
BNN model in Appendix F.7, and address the following discussion:
Importance of bBN . bBN shows little help during LDC training since the LDC model is centrosym-
metric w.r.t. zero. However, for general BNN models, other asymmetric activations are involved,
such as PReLU [15]. bBN will potentially play an important role in these cases, thus BN is still
necessary For BNNs, and its lightweight expression as a threshold (Eq.9) is still preserved.
Temperature in Knowledge Distillation. For the KD setup, the choice of temperature T is critical.
Current works only evaluate the performance variation along different T choices. However, the T
selection should be determined in advance based on the network architectures and classification
tasks or adaptive during training. Since the large capacity difference between a well-performed
teacher network and a BNN, it is also a potential effort to explore individual temperatures on each
network. As an extension of our analysis, these could be the future effort on the KD for BNN training.
Comparison and Relationship between LDC, VSA, and BNN. Before LDC, VSA training is heuristic
and involves random generation and iterative updates, resulting in high vector dimensionality. LDC
proposes to train VSA in a BNN-like manner, optimizing binary vectors to significantly reduce
dimensionality. (i) LDC is the first gradient-based method for VSA training, but its optimization
remains basic and underexplored. This is the main motivation of our work to investigate the stable
and adaptive dynamics in LDC training. (ii) Unlike BNNs, LDC is a partial-BNN architecture where
the value mapping V(x) is real-valued and applied to individual values. This distinction makes LDC
training different from typical BNNs, which often have a real-valued first layer accepting all features
in input data and different activations. However, since the updates for F and C in LDC resemble
BNN binary weight training, our analysis of LDC with BNKD can also be extended to BNN training.
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