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Abstract The number of machine learning (ML) algorithms, and ML-related methodologies, which

increase the overall performance, grows every year. The abundance of possibilities makes it

impossible for the data scientists to test all of them every time, thus the need for best practices

evaluation studies exists. In the scope of this paper, we attempt to evaluate the impact of

preprocessing strategies on tree-based models. To conduct this study we prepare 38 different

preprocessing strategies and train almost one million tree-based models. Furthermore, we

analyze the impact of different data preparation strategies and outline the best-performing

ones with the usage of newly introduced preprocessibility measure.

1 Introduction

Data preprocessing is an essential part of the machine learning pipeline (García et al., 2015; Alasadi

and Bhaya, 2017; Çetin and Yıldız, 2022), as it greatly influences data quality (Famili et al., 1997)

and the discovery of relationships that can optimize machine learning models (Obaid et al., 2019).

Despite being a time-consuming process (Anaconda, 2022) it’s fundamental, especially for large

datasets where dimensionality reduction can save time in subsequent processes (García et al., 2016).

Data preprocessing encompasses not only quality checks but also key elements like transformation,

filling in missing data, outlier detection, and variable selection for the model.

Although it’s a common belief that tree-based models do not require preprocessing as they can

handle it without any changes, experiments suggest that we may achieve even better results

with proper preprocessing (Caruana et al., 2008; Grinsztajn et al., 2022). This understanding can

be beneficial for automated machine learning (AutoML) pipelines, allowing us to optimize and

implement an automated machine learning process that preprocesses the dataset appropriately for

the selected model to yield better results.

This paper presents an extensive experiment involving 38 data preprocessing strategies for binary

and multiclass classification and regression tasks. We use five tree-based models: decision tree,

random forest, XGBoost, LightGBM, and CatBoost. We expanded the forester1 software to include

more interference in preprocessing for automated model learning. More information about the tool

is available in Appendix A.

2 Datasets Description

For binary and multiclass classification tasks, we utilized datasets from the OpenML-CC18 bench-

mark (Bischl et al., 2019), whereas the regression tasks were sourced from OpenML (Gijsbers et al.,

2019). Furthermore, to guarantee that the preprocessing module encounters significant challenges

in some cases, we introduced modified versions of certain datasets where data quality was inten-

tionally diminished. For each task type we chose two datasets, one highly dimensional, and the

other with a small amount of columns to ensure various scenarios, and applied the modifications

described in Appendix B, where you can find all details concerning the dataset selection. Eventually

we ended up with 25 datasets, where 6 of them are the modified versions with lowered data quality.
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3 Preprocessing Strategies

The forester’s custom preprocessingmodule focuses on three major data preprocessing areas, namely

the heuristic removals, data imputation, and feature selection (more details in Appendix C). Each of

those sub-modules consists of methods that use hyperparameters, such as 𝑘 for the KNN algorithm.

To make the study computationally feasible, we decided to use only the default parameters for each

method. Furthermore, we aggregate the removal strategies to the following approaches:

• Minimal - it removes the observations that do not have the target value,

• Medium - it removes duplicate, id-like, static (threshold = 0.99), and sparse (threshold = 0.3)

columns and corrupted rows with too many missing values (threshold = 0.3),

• Maximal - it is medium approach with the removal of highly correlated columns.

In order to minimize the computational overhead, we decided to omit some presumably costly

combinations, which resulted in carrying on with 38 different preprocessing strategies, described

in Appendix D. Eventually, after conducting the data preprocessing, we ended up with 950 different

datasets, spanning over all the aforementioned possibilities.

4 Model Training

The next step is the model training, where we also incorporate the forester package. The train()
function is used for all 38 preprocessed versions of 25 datasets. Each data frame was split into

training, testing, and validation samples, with the proportions 60%, 20%, and 20%, respectively. To

ensure reproducibility of the results, we set the split seed to 123. To limit the computational time,

we only use random search as a tuning method, which is similar to conducting the experiments

multiple times.

Eventually, for each preprocessed dataset (950 tasks) and every engine (5 models: decision tree,

random forest, XGBoost, CatBoost, and LightGBM), we train 21 configurations, where 1 of them has

default parameters, and the other 20 have their parameters chosen by the random search algorithm.

We save the achieved outcomes, and measure the time of the training. Finally, we ended up with

999 750 models (950 × 5 × 21) for the whole study. More details are available in the Appendix E.

5 Results

To analyze the impact of data preprocessing strategies and not the particular trained models, for

each dataset we considered only the best performing solution in terms of accuracy for classification,

and 𝑅2
for the regression. Furthermore, we do not focus on the raw performance scores, but rather

its comparison to the baseline results.

The baseline preprocessing strategy is a preprocessing strategy which consists of minimal removal,

median-other imputation, and lack of feature selection. The baseline dataset for the dataset 𝐷 is

the dataset created from 𝐷 with the baseline preprocessing strategy. The baseline model for the
dataset 𝐷 is the best performing model trained on the baseline dataset.
To validate how often given strategies improve or worsen the results, we analyzed the number of

wins, ties and losses of all strategies in comparison to the baseline. For the dataset 𝐷 we compared

the results of the best model of each preprocessing strategy for 𝐷 (𝜃 (𝑚)) to the performance of it’s

baseline model (𝜃 (𝑚𝐵)). Afterwards, we counted the number of wins (𝜃 (𝑚) > 𝜃 (𝑚𝑏)), ties (𝜃 (𝑚) =
𝜃 (𝑚𝑏)) and losses (𝜃 (𝑚) < 𝜃 (𝑚𝑏)).
Furthermore, we introduce the preprocessibility measure, based on tunability from (Probst et al.,

2018). It describes how much performance can we gain or lose for a dataset 𝐷 by using various

preprocessing strategies. The Equation (1) describes positive preprocessibility, and Equation (2)

the negative preprocessibility.
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𝑃+(𝐷) = max

𝑑𝑖 ∈𝐷
( max

𝑚 𝑗 (𝑑𝑖 )
(𝜃 (𝑚 𝑗 ))) − max

𝑚 𝑗 (𝐵)
(𝜃 (𝑚 𝑗 )), (1)

𝑃− (𝐷) = min

𝑑𝑖 ∈𝐷
( min

𝑚 𝑗 (𝑑𝑖 )
(𝜃 (𝑚 𝑗 ))) − min

𝑚 𝑗 (𝐵)
(𝜃 (𝑚 𝑗 )), (2)

where 𝐷 is a set preprocessed datasets, 𝑑𝑖 ∈ 𝐷 is a dataset from 𝐷 , 𝜃 is the performance

measurement metric which values have probabilistic interpretation (in our case it’s accuracy or 𝑅2
),

𝑚 𝑗 (𝑑𝑖) is the model trained on 𝑑𝑖 dataset, and 𝐵 is a baseline dataset for 𝐷 .

Table 1: The impact of preprocessing methods on the tree-based models predictive quality.

Statistic All strategies

Is FS Used? Feature Selection Methods Removal Strategy Imputation Method

No Yes Boruta MCFS MI VI Minimal Medium Maximal MICE

Median-

other

Median-

frequency

KNN

Wins [%] 15.5% 12.3% 17.3% 22.5% 8.0% 14.4% 22.7% 10.0% 13.3% 13.0% 29.2% 29.2% 27.5% 58.3%

Ties [%] 56.6% 70.6% 48.5% 53.0% 76.0% 40.4% 36.0% 85.0% 71.4% 55.0% 12.5% 41.6% 40.0% 25.0%

Losses [%] 27.9% 17.1% 34.2% 24.5% 16.0% 45.2% 41.3% 5.0% 15.3% 32.0% 58.3% 29.2% 32.5% 16.7%

Average positive

preprocessibility

0.009 0.006 0.009 0.008 0.001 0.008 0.003 0.005 0.005 0.005 0.005 0.004 0.002 0.017

Average negative

preprocessibility

-0.048 -0.013 -0.047 -0.013 -0.010 -0.044 -0.021 -0.002 -0.003 -0.011 -0.021 -0.019 -0.016 -0.011

The Table 1 presents us with the results depending on various aspects of data preprocessing

strategies. The first column shows us the general impact of data preprocessing on tree-based

models, and we can see that only for 15.5% of cases this step contributed positively to the outcomes.

Although it is not much, delving deeper into the results helps us outline which data preparation

techniques work best with considered model family.

At first, we focus on the feature selection (FS) methods being the most influential aspect of data

preprocessing. We can notice that the incorporation of such algorithms drastically lowers the

number of ties, and we observe more wins and losses. Unfortunately, the general results show

us that although the positive preprocessibility grows when FS is used, the contribution to the

negative preprocessibility is even larger. However, the analysis of particular methods shows us that

Boruta algorithm works very well, whereas the methods like Mutual Information (MI) or Variable

Importance (VI) are rather poor.

The analysis of removal strategies unravels that we should not remove highly correlated features

before using tree-based models, as the maximal approach, which uses this method performs far

worse than the simpler counterparts.

Finally, the outcomes indicate that KNN imputation works best among the selected methods with

a remarkably high win percentage exceeding 50%. Quite surprisingly, MICE algorithm, which

is another advanced imputation method, losses severely with much simpler median-other, and

median-frequency approaches.

Additionally we decided to analyze which models are more influenced by preprocessing. The

’All preprocessing strategies’ column of Table 2 shows us the differences between considered

architectures. The decision tree, and LightGBM mostly yield a negative impact, whereas random

forest, XGBoost and CatBoost benefit a lot. Random forest has the highest average positive

preprocessibility, however, if we consider the baseline performance, we will see that it also is the

worst performing one, thus it has more opportunities to improve.

To validate our findings that describe which preprocessing methods work best with tree-based

models, we decided to check how well the optimal strategy works out. To do that we considered the

preprocessing pipeline which includes medium removal strategy, KNN as an imputation method

and Boruta or lack of feature selection. Furthermore, we limited the results to the models that

benefit from preprocessing the most, being XGBoost, CatBoost and random forest. The outcomes
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Table 2: The behaviour of different tree-based models on preprocessing pipelines and the validation of

best strategy.

Statistic

All preprocessing strategies Best preprocessing strategies

Decision

tree

Random

forest

XGBoost LightGBM CatBoost XGBoost CatBoost

Random

forest

All

Wins [%] 13.7% 18.2% 17.0% 10.7% 22.0% 18.0% 36.0% 36.0% 30.0%

Ties [%] 60.6% 52.5% 55.5% 62.8% 50.5% 64.0% 52.0% 58.0% 58.0%

Losses [%] 25.7% 29.3% 27.5% 26.5% 27.5% 18.0% 12.0% 6.0% 12.0%

Average positive

preprocessibility

0.007 0.014 0.010 0.004 0.010 0.006 0.007 0.008 0.007

Average negative

preprocessibility

-0.063 -0.039 -0.043 -0.066 -0.070 -0.001 -0.001 -0.001 -0.001

Average maximal score

(Accuracy/𝑅2
)

0.752 0.694 0.845 0.795 0.866 0.840 0.862 0.688 0.797

are presented in the second column of Table 2. They prove that the optimal preprocessing strategy

works well, as the average negative preprocessibility is a few times smaller than the positive one,

and the models prepared that way beat the baseline more often than they lose.

To delve deeper into the analysis of results for the optimal strategy, we take a closer look at the

Figure 1. Previous analyses showed us that the average positive preprocessibility achieved much

higher values than the negative ones, however from the middle subplot we can see how exactly

it was distributed. Eventually it comes out that in the case of 11 datasets the performance does

not change at all. Moreover, the highest positive preprocessibility values reach up to 0.05, and are

achieved mostly for the modified datasets. It indicates that preprocessing strategies are more useful

when we deal with real-life data that is not perfect.

6 Limitations and Broader Impact Statement

The main limitation of our study is related to computational feasibility and regards the limitations

to 38 out of 60 possible strategies. Covering the whole search space would be more beneficial

and provide more insights. Furthermore, to minimize costs, we arbitrary chose the parameters of

preprocessing algorithms, such as the desired number of columns for feature selection methods.

Covering larger space of those parameters, for example by random searching them, would provide

more reliable results. One of the future works following this study could be focusing only on the

real-world data or adding more data preprocessing techniques related to feature engineering (e.g.,

Principal Component Analysis (PCA), scaling).

After careful reflection, the authors have determined that this work presents no notable negative

impacts to society or the environment. On the contrary, it provides an insightful analysis of data

preprocessing techniques for tree-based models outlines the best practices in this area, so the ML

specialists do not have to conduct trial and error on their own.

Based on the conclusions, which shows that the majority of improvements occurred for the modified

datasets, we advocate for creating the real-life data benchmark for ML and AutoML solutions. Those

results show that using well-prepared datasets limits the impact of preprocessing methods, and

does not reflect the real world, where it remains a crucial component.

7 Conclusion

In this work we analyzed the impact of preprocessing strategies on tree-based models, and pointed

out how use them in an efficient way. We provide evidence that although in the majority of

preprocessing scenarios, the obtained results were the same (56.6%) or worse (27.9%) than the

baseline, for some examples (15.5%) we were able to increase model performance. Furthermore,
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Figure 1: Detailed analysis of results for the optimal strategy. The left subplot presents the performance

range, with the baseline marked as an X. The second one shows the positive and negative

preprocessibility values.

we analyzed the impact of three major components of preprocessing heuristic removals, data

imputation, and feature selection. The outcomes showed us that the most beneficial strategies

for tree-based models are: the removal of duplicate, id-like, static, and sparse columns with the

deduction of rows with too many missing values; imputation with KNN algorithm; and using Boruta

or none feature selection methods. Additionally, we checked which tree-based models are the most

influenced by the data preprocessing, which showed us that it has a negative impact on decision

trees, and LightGBM, and a positive one on random forest, XGBoost, and CatBoost. Eventually, we

validated the theoretical outcomes, by proper filtering of data, and the results further underlined

our findings. Lastly, we observed that the data preprocessing was the most beneficial for the dataset

with artificially worsened quality, which indicates its significance while dealing with real-life data.
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Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The main claims from the abstract mention that this paper

studies the impact of preprocessing strategies on tree-based models, and inform about the

outline of the study. We describe our methodology in detail in Sections 2, 3, 4, and the

results are presented in Section 5.

(b) Did you describe the limitations of your work? [Yes] See Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 6.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes] We believe that our paper con-

forms to the guidelines.

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] Each preprocessing strategy was

evaluated on the same datasets, and with the usage of the same measures, namely the

win-ratio, and preprocessibility (based on accuracy and 𝑅2
.)

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] The evaluation details are mentioned in the

Sections 3, 4, and Appendices C, D, E.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] We did not explicilty repeat

the experiments, but for each preprocessing strategy we trained 21 models of each engine

with random search, which can be treated as repetitions of experiments.

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [N/A] We did not analyze the uncertainty of results, although the raw results are

available via the Appendix E.

(e) Did you report the statistical significance of your results? [No] Reporting the statistical

significance is of no use for this study.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We used

a tabular OpenML-CC18 benchmark for part of considered datasets, as described in Section

2, and Appendix B.

(g) Did you compare performance over time and describe how you selected the maximum

duration? [No] We did not compare the performance over time.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] The computational resources are described

in the Appendix F.

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] This study can be treated as the ablation study of preprocessing strategies of the

forester package.
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3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] Such materials are present on our GitHub

repository, for the details see Appendix E.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [No] We did not include such an example, although the user is capable of

doing so on their own, by modifying our notebooks.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] The code is available on the package’s GitHub repository

in the form of R Markdown notebooks, for the details see Appendix E.

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes] The semi-raw results are available on the package’s GitHub repository,

for the details see Appendix E.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] The code is available on the

package’s GitHub repository in the form of R Markdown notebooks, for the details see

Appendix E.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] A full list of the cited papers/tools is described

in the references.

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [Yes] See Section 2, we are using OpenML-CC18

and its data. We cited all data sources according to the guidelines of datasets on OpenML

(and in OpenML-CC18).

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] Our data does not contain personally identifiable

information or offensive content.

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

The new version of the forester package is shortly described in Appendix A, which includes

its license.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes] The new version of the forester package is shortly described
in Appendix A, which includes a link to projects GitHub repository.

6. If you used crowd-sourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] We did not do research with human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] We did not do research with human subjects.
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(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] We did not do research with human subjects.

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We have no

theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] We have no theoretical

results.

A The forester package

This study is entirely based on the forester package (Ruczyński et al., 2023; Kozak and Ruczyński,

2023), being Open-source (GPL-3 License) AutoML tool created for R users. For the sake of this

study we modified it, mainly by adding the multiclass classification task and custom preprocessing

module, described in detail in Appendix C. The current version of forester and other supplementary

materials regarding the project are available on our GitHub repository
2
, and the AutoML’24 branch

3

contains the package version 1.6.1 that was used for the study.

B Datasets

In this appendix we present the details concerning the dataset selection and modifications,

mentioned in the Section 2.

Binary classification
Table 3 summarizes the characteristics of the employed binary classification tasks. Most of the

tasks are imbalanced, and none of them originally contain identifier-like columns. The artificially

modified datasets are credit-g-mod, and phoneme-mod.

Table 3: The quantitative description of a subset of OpenML-CC18 benchmark. These are the binary
classification tasks with small to medium size, and moderate preprocessing issues used for

the study.

Data set Observations Features Static

Duplicate

pairs

Missing

fields

Dimensional

issues

Correlation

pairs

Imbalance ID-like

banknote-

authentication

1372 5 0 0 0 No 1 No No

blood-transfusion-

service-center

748 5 0 0 0 No 1 Yes No

breast-w 699 10 0 0 16 No 9 Yes No

credit-approval 690 16 0 0 37 No 1 No No

credit-g 1000 21 0 0 0 No 0 Yes No

diabetes 768 9 0 0 0 No 0 Yes No

kr-vs-kp 3196 37 4 0 0 Yes 0 No No

phoneme 5403 6 0 0 0 No 0 Yes No

credit-g-mod 1000 26 2 2 271 No 2 Yes Yes

phoneme-mod 5403 11 2 2 1477 No 2 Yes Yes

Multiclass classification
Table 4 presents multiclass classification tasks, which are of moderate size, and stand out from the

previous ones because of generally higher dimensionality. Due to this fact, in this case, we can

2https://github.com/ModelOriented/forester
3https://github.com/ModelOriented/forester/tree/AutoML’24
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also observe more highly correlated columns than before. The artificially modified datasets are

satimage-mod, and car-mod.

Table 4: The quantitative description of a subset of OpenML-CC18 benchmark datasets. These are
the multiclass classification tasks with moderate size, but high dimensionality, and moderate

preprocessing issues used for the study.

Data set Observations Features Static

Duplicate

pairs

Missing

fields

Dimensional

issues

Correlation

pairs

Imbalance ID-like

balance-scale 625 5 0 0 0 No 0 Yes No

mfeat-karhunen 2000 65 0 0 0 Yes 0 No No

satimage 6430 37 0 0 0 Yes 285 Yes No

car 1728 7 0 0 0 No 0 Yes No

dna 3186 191 0 0 0 Yes 0 Yes No

satimage-mod 6430 42 2 2 1753 Yes 320 Yes Yes

car-mod 1728 12 2 2 476 No 2 Yes Yes

wine_quality 6497 12 0 0 0 No 1 Yes No

Regression
Table 5 details the characteristics of the regression tasks used in the study. These tasks are

significantly larger in size compared to the binary classification tasks and exhibit more instances

of data corruption. In general, regression tasks also introduce a greater number of scenarios with

dimensionality issues (excessive features) and imbalanced target variables. The artificially modified

datasets are elevators-mod, and kin8nm-mod.

Table 5: The quantitative description of a subset of OpenML datasets. These are the regression tasks

with medium to large size and major preprocessing issues used for the study.

Data set Observations Features Static

Duplicate

pairs

Missing

fields

Dimensional

issues

Correlation

pairs

Imbalance ID-like

2dplanes 40768 11 0 0 0 No 0 No No

bank32nh 8192 33 0 0 0 Yes 0 Yes No

elevators 16599 19 2 0 0 No 11 Yes No

kin8nm 8192 9 0 0 0 No 0 No No

Mercedes-Benz

Greener-Manufacturing

4209 378 145 134 0 Yes 522 No Yes

elevators-mod 16599 24 4 2 4519 No 15 Yes Yes

kin8nm-mod 8192 14 2 2 2231 No 2 No Yes

Dataset modifications
As mentioned in the Section 2 in order to include more real-life data, we artificially worsened the

quality of 6 benchmark datasets in the following way:

• We added a numeric column id (ID-like column), whose values are in the range from 0 to the

number of rows,

• We added two static columns, where the first one consists of repeated number 1, whereas the

second one mostly has letter 𝑎, and sometimes letter 𝑏,

• We randomly (with seed) sampled two original columns, and created duplicates of them,

• We randomly selected three original columns (with the exclusion of the ones used in the previous

step) and introduced missing values to them. The amount of missing elements per column is 5%,

10%, and 15%.
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The outcoming dataset is named after the original one with the suffix ’-mod’, for example the

modification of credit-g is credit-g-mod.

C Custom preprocessing
The forester’s custom preprocessing focuses on three major data preparation areas, being the heuris-

tic removal of corrupted features or observations, missing data imputation, and feature selection.

In this Appendix we describe the methods available for the users via considered functionality.

The sub-module responsible for removing irrelevant features employs up to six separate criteria to

determine whether a column or row should be eliminated. These criteria are user-configurable by

setting the appropriate threshold parameters:

1. Duplicated columns - identify and remove columns that are identical to others,

2. Id-like columns - identify and remove columns resembling identifiers based on either a provided

or a default list,

3. Static columns - remove features exhibiting a high percentage (governed by user-defined thresh-

old 𝑘) of identical values,

4. Sparse columns - remove features with a low percentage (governed by user-defined threshold 𝑙 )

of non-empty values,

5. Corrupted rows - remove observations with either a low percentage (governed by user-defined

threshold𝑚) of non-empty values or an empty target value,

6. Highly correlated columns - iteratively remove the minimal number of features exceeding a user-

defined correlation threshold (𝑛) to achieve the desired outcome of reducing multicollinearity.

Parameters𝑘, 𝑙,𝑚, 𝑛 are threshold parameters provided by the user, corresponding to the appropriate

criterion.

The second sub-module addresses missing values within the dataset by selecting an appropriate

imputation method based on user selection. Four algorithms are available. With the median-other,

and median-frequency approaches the numeric features are imputed with the median value, while

categorical features are imputed with either the "other" string or the most frequent value, depending

on the chosen method. It is also possible to choose more advanced algorithms such as K-Nearest

Neighbors (KNN), (Batista and Monard, 2002) from VIM package (Kowarik and Templ, 2016), or

Multivariate Imputation by Chained Equations (MICE) (Buuren and Groothuis-Oudshoorn, 2011)

and determine their major parameters.

The final component of the preprocessing module focuses on feature selection. The package offers

four state-of-the-art (SOTA) algorithms, being Mutual Information (MI) (Sulaiman and Labadin,

2015) from varrank package (Kratzer and Furrer, 2018), Boruta (Kursa and Rudnicki, 2010), Monte

Carlo Feature Selection (MCFS) (Dramiński et al., 2008), and Variable Importance (VI) (Louppe

et al., 2013). The interface of custom_preprocessing() function allows users to fine-tune the

most crucial parameters of these methods. The selection of algorithms caters to varying time

complexities, with MI and MCFS being faster compared to the more time-consuming Boruta and VI.

D Preprocessing strategies
In this section we describe the reasoning which stands behind achieving 38 preprocessing strategies

stated in the Section 3. If we considered all the possible options, including the aggregation of

removal methods, we would end up with 60 (3 removal x 4 imputation x 5 feature selection)

combinations. However, due to the limited time and resources we decided to narrow it down to 38

strategies, which exclude presumably the most expensive configurations. This way we ended up

with 7 exploration areas described in the list below:
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• RM - tests all removal strategies, where other modules are set to the most basic options: median-

other for imputation, and none for feature selection,

• IMP - tests all imputation methods, where other modules are set to the most basic options:

minimal for removals, and none for feature selection,

• FS - tests all feature selection methods, where other modules are set to the most basic options:

minimal for removals, and median-other for imputation,

• RM + IMP - tests medium and maximum removal options combined with all imputation methods,

• RM + FS - tests medium and maximum removal options combined with all feature selection

methods,

• IMP + FS - tests all imputation methods with MI and Boruta feature selection,

• RM + IMP + FS - tests medium and maximum removal options combined with median-frequency,

median-other and KNN imputation, and MI and Boruta feature selection.

We have to notice, that when the MI-based feature selection method was used, we selected the

’estevez’ (Estévez et al., 2009) method for binary classification, and ’peng’ (Peng et al., 2005) for

regression tasks. To ensure a detailed insight into particular strategies, in Table 6 we present every

configuration. The horizontal lines represent the segments described above.

E Resources

In this Appendix we include the information regarding the reproducibility, focusing on the initial

data, source codes, and raw results. These files are available from the foresters GitHub repository4.
The directory regarding this study contains:

• RData files containing datasets used in the study,

• Rmd notebooks, starting with 01-08 which indicating the order of their execution,

• MSc_processed_results directory containing the final results after the model training.

The structure of files is described in detail in README.md file included in the aforementioned

directory.

F Computational resources

During the thesis development process, two different machines were used. The first is author’s

private PC with 32GB of RAM, CPU: 11th Gen Intel(R) Core(TM) i7-11700KF @ 3.60GHz (16 cores),

and the GPU: NVIDIA GeForce RTX 3070 Ti. The package development, testing, and the results

analysis, including plots were conducted there.

For heavier computations, such as data preprocessing, model training, and results aggregations

we were able to use the PLGrid
5
infrastructure. We managed to acquire the proper computational

grant there, which enabled conducting such a wide study. The computational grants we used, were

both on Ares supercomputer. The first one was a pilot grant where we used all available 1000 hours

of computational time. The main grant however has a limit of 25 000 hours where additional 1 300

hours were consumed. Large storage capabilities also enabled us to save over 150 GB of results

there.

4https://github.com/ModelOriented/forester/tree/AutoML’24/docs/articles/AutoML24Workshop_

MScThesis
5https://www.plgrid.pl
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According to their website PLGrid is a nationwide computing infrastructure designed to support

scientific research and experimental development across a wide range of scientific and economic

fields. PLGrid provides access to supercomputers, quantum computers, specialized accelerators for

artificial intelligence, cloud computing, disk storage, optimized computing software and assistance

from experts from the entire Poland.

Ares is a state-of-the-art supercomputer with a computing power of more than 3.5 PetaFlops (CPU)

and 500 TFlops (GPU). With its innovative direct liquid-cooling technology for CPUs and RAM

modules, it ranks among the most energy-efficient computing systems of its class in the world. It

offers: disk system consisting of more than 11 PB, 17 824 computing cores, a total of 147.7 TB RAM,

and computing servers with the latest generation of Intel Xeon Platinum processors, divided into

three groups with the following configurations: 532 servers supplied with 192 GB of RAM, 256

servers with 384 GB of RAM, 9 servers supplied with 8 NVIDIA Tesla V100 cards.
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Table 6: Compact representation of the preprocessing strategies. The abbreviations from the first

column are: RM - removal, IMP - imputation, and FS - feature selection.

Strategy Removal Imputation Feature Selection

RM

IMP

Minimal Median-other None

RM

RM + IMP

Medium Median-other None

RM

RM + IMP

Maximal Median-other None

IMP Minimal KNN None

IMP Minimal Median-frequency None

IMP Minimal MICE None

FS

IMP + FS

Minimal Median-other Boruta

FS

IMP + FS

Minimal Median-other MI

FS Minimal Median-other MCFS

FS Minimal Median-other VI

RM + IMP Medium KNN None

RM + IMP Medium Median-frequency None

RM + IMP Medium MICE None

RM + IMP Maximal KNN None

RM + IMP Maximal Median-frequency None

RM + IMP Maximal MICE None

RM + FS

RM + IMP + FS

Medium Median-other Boruta

RM + FS

RM + IMP + FS

Medium Median-other MI

RM + FS

RM + IMP + FS

Maximal Median-other Boruta

RM + FS

RM + IMP + FS

Maximal Median-other MI

RM + FS Medium Median-other MCFS

RM + FS Medium Median-other VI

RM + FS Maximal Median-other MCFS

RM + FS Maximal Median-other VI

IMP + FS Minimal KNN Boruta

IMP + FS Minimal Median-frequency Boruta

IMP + FS Minimal MICE Boruta

IMP + FS Minimal KNN MI

IMP + FS Minimal Median-frequency MI

IMP + FS Minimal MICE MI

RM + IMP + FS Medium KNN Boruta

RM + IMP + FS Medium Median-frequency Boruta

RM + IMP + FS Medium KNN MI

RM + IMP + FS Medium Median-frequency MI

RM + IMP + FS Maximal KNN Boruta

RM + IMP + FS Maximal Median-frequency Boruta

RM + IMP + FS Maximal KNN MI

RM + IMP + FS Maximal Median-frequency MI
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