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Abstract

Weed detection is a critical task in precision agriculture, as
weeds significantly reduce crop yields and increase produc-
tion costs. This work presents an efficient, low-cost, and low-
power UAV-deployable weed detection pipeline that relies
solely on consumer grade RGB cameras. We propose novel
lightweight U-Net and Attention U-Net architectures opti-
mized for real-time semantic segmentation on an edge device.
To enhance segmentation accuracy, we integrate additional
RGB derived features. Experiments on the CoFly-WeedDB
detection dataset demonstrate that both architectures per-
form effectively on RGB imagery, with further improvements
when incorporating hue and edge detection features. The pro-
posed lightweight U-Net architectures, made more efficient
through quantization, achieves IoU scores above 50% and
Dice scores exceeding 60% on the CoFly-WeedDB dataset
across multiple augmentation levels. These findings highlight
the practicality of deploying lightweight deep learning mod-
els for precision weed detection in resource-constrained agri-
cultural environments.

Code — https://github.com/elmohandes2002/SeniorDesign
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1 Introduction
Precision Agriculture (PA) is an agricultural management
strategy that aims to enhance agronomic output and reduce
resource waste through the integration and utilization of
technology and farming management principles in agricul-
tural fields. Image segmentation is used in PA to identify
different features or components of a field, such as crops,
weeds, soil types, and water content. By segmenting an im-
age, farmers can obtain detailed information about the spa-
tial distribution and characteristics of these features, which
can be used to inform decisions about planting, fertilizing,
irrigating, and harvesting. There are various methods for
image segmentation in PA, including traditional techniques
such as thresholding, clustering, and edge detection, as well
as more advanced methods such as deep learning-based ap-
proaches. Deep learning-based approaches such as convolu-
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tional neural networks (CNNs) have shown promising re-
sults in crop segmentation tasks, particularly in complex
and variable environments. By combining image segmenta-
tion with other PA technologies such as sensors, GPS, and
drones, farmers can obtain real-time information about their
crops and fields, which can be used to make data driven
decisions and improve crop yields, efficiency, and sustain-
ability. This agrarian data can then be used by farmers to
optimize and tailor their farming practices to their fields’
requirements, allowing farmers to apply the right resources
exactly where needed and at the time needed (Bongiovanni
and Lowenberg-DeBoer 2004). Therefore, PA aids in reduc-
ing resource waste and agrochemical usage, increasing crop
yield and quality, and reducing human labor.

One of agriculture’s most pressing problems today is
weed infestation in fields. Due to the severity and impact of
the problem, PA has gained attention from agricultural re-
searchers. PA technologies offer cost efficiency by reducing
blanket herbicide applications, improve treatment efficacy,
and promote environmental sustainability (Bongiovanni and
Lowenberg-DeBoer 2004). Notably, recent interest has fo-
cused on deep learning approaches using remote sensing
data and real-time processing, as these technologies enable
large-scale field monitoring and timely decision-making.

Weeds are undesirable, persistent plants that infiltrate
fields and hamper the growth of surrounding crops. Weeds
mainly cause problems by consuming resources required for
keeping crops alive and sustaining their growth. To be pre-
cise, weeds compete with crops over water, soil nutrients,
space, and even sunlight. Hence, unsurprisingly, when fields
are infested with weeds, crop yield loss is noted. In fact,
weeds have been the cause behind 35% of global crop yield
loss annually, presenting one of the most significant factors
causing yield loss (Khan et al. 2021). Therefore, the main
goal of our work is to implement such a system, which can
be described as a comprehensive deep learning-based UAV
deployable system for weed detection and control. The main
contributions of this paper are summarized in the following
points:

• Implement a cost-effective end-to-end drone-based weed
detection system that utilizes consumer grade cameras to
achieve real-time weed detection in agricultural fields.

• Develop two lightweight U-Net models.



• Analyze UAV imagery to evaluate how image augmenta-
tion techniques and RGB-derived features and edge de-
tectors influence overall model performance.

2 Related Works
Recently, there has been a significant focus on the prob-
lem of weed detection in agricultural fields, leading to ex-
tensive research efforts. Numerous proposals have emerged,
presenting complete pipelines to tackle this issue. Among
the most notable are those that address the problem by de-
ploying semantic segmentation techniques. Given its abil-
ity to accurately classify and localize objects through pre-
cise boundary detection, this technique has been the sub-
ject of much prior work, specifically in tackling the problem
of weed and crop detection, where the objects (weeds and
crops) are sometimes indistinguishable and, in many cases,
interwoven. This ability makes segmentation models an es-
sential component in effective, comprehensive weed detec-
tion systems (Saini and Nagesh 2025).

In cases where multispectral imagery is not available,
filters and combinations of RGB channels can be used to
perform accurate segmentation of weeds. Several Vegeta-
tion Indices (VIs) have been derived to allow accurate es-
timation of vegetation properties from RGB images (Liang
et al. 2022). Various architectures have been proposed for
the task of semantic segmentation of crops and weeds in
agricultural fields, with the U-Net being the most popular
architecture. U-Nets can be easily customized to better fit
the problem they are being used for. This adaptability has
allowed many researchers working on semantic segmenta-
tion in agriculture to tailor their architectures to their spe-
cific needs, and hence achieve optimal performance (Saini
and Nagesh 2025). MSEA-Net is a recent architecture that
currently has the best perfomance on the dataset we are us-
ing which is CoFly-WeedDB. U-Net and MESA-Net are en-
coder–decoder segmentation architectures, with U-Net be-
ing the traditional baseline and MESA-Net representing a
more recent, high-performing design (Syed et al. 2025).

3 Methodology and Proposed Solution
3.1 Dataset and Preprocessing
The images used in this work are obtained from the pub-
licly available CoFly-WeedDB dataset. The dataset contains
366 RGB images captured through a DJI Phantom 4 drone
from a cotton field in Larissa, Greece during the first stage
of growth (Krestenitis et al. 2022). All images were captured
at a 5 m altitude and 3 m/s speed with a resolution of 1280
× 720 pixels. The original dataset includes three types of
weeds namely Johnson grass, Field bindweed, and Purslane.
While the dataset provides original segmentation labels, we
have found that the masks provided are imprecise as they ex-
tend to contain soil and crop areas. Hence, we have manually
labeled the dataset using Label Studio software after drop-
ping out empty images resulting in a dataset of 201 images
that was split using an 80%, 10%, 10%, training, validation,
and testing split respectively. Figure 1 shows a sample im-
age, along with the corresponding pixel-wise mask annota-
tion.

(a) (b)

Figure 1: An example from the dataset. (a) Original image
captured showing Johnson Grass weeds (b) The correspond-
ing mask annotation.

Vegetation Index Equation
ExG 2G−R−B
ExR 1.4R−G

CIVE 0.441R− 0.881G
+0.385B + 18.78745

Modified CIVE −CIVE
NDI (G−R)/(G+R)

Table 1: RGB-based VIs and their equations.

3.2 Multispectral Bands Extraction
To extract a richer set of features from RGB images, we
divided the features into three categories: Hue, Saturation,
and Value (HSV) alternate color representation, VIs derived
from light spectra, and Edge Detector (ED) features. Table
1 summarizes a selected set of VIs, including the Excess
Green (ExG), Excess Red (ExR), Color Index of Vegetation
(CIVE) (Liang et al. 2022), and Normalized Difference In-
dex (NDI) (Meyer and Neto 2008). While many VIs exist,
these represent a few commonly used indices. The original
CIVE formula subtracts the green channel, so we invert the
formula by multiplying it by -1 to make the green values
positive, as shown in Table 1.

3.3 Augmentation
Image augmentation has been employed to increase the size
of the training dataset. Taking into consideration that the im-
ages are captured through a UAV, the type of augmentation
applied was chosen in a way such that it can reflect an image
captured in the same method. Thereby, we decided to aug-
ment our images by horizontally flipping the images, ran-
domly cropping certain segments of the image, and finally
by applying grid distortion on the image at hand.

3.4 Proposed Architecture
We propose a custom model that follows a U-Net based ar-
chitecture to perform image segmentation of weeds in the
CoFly-WeedDB dataset. The model is tested in two differ-
ent configurations in which the first is a straightforward U-
Net model with five levels of convolutions while the second
configuration contains attention blocks as shown in Figure 2.
The attention mechanism applied implements a gating layer
in which spatial information extracted from the encoder lay-
ers are added with the current decoder layers which tend
to contain deeper features (Oktay et al. 2018). This way,



Figure 2: The proposed U-Net based model along with the
attention block mechanism.

both the spatial and feature information are retained, nor-
malized, resampled, and fed to the following layer. The at-
tention block in Figure 2 provides the procedure followed in
further detail.

3.5 Optimization and Deployment
The Jetson Nano model chosen for this paper had a 16 GB
storage and an NVIDIA Maxwell GPU with 128 NVIDIA
CUDA cores. It was equipped with 4 GB 64-bit LPDDR4
memory running at a clock frequency of 1600MHz. Given
the clear RAM and disk space limitations of our edge com-
puting device, in addition to the latency constraints of our
real-time system, we needed to optimize the selected mod-
els before deployment. As a result, we converted the cho-
sen models into two optimized compressed formats using
the TensorFlow Lite and Tensor-RT libraries.

3.6 Power Consumption, Drone speed, and
Inference time

This section details the feasibility of our model’s deploy-
ment on a drone in a real-time setting. The camera used in
our experiment is an RPi camera module V2. Therefore, our
Ground Sample Distance (GSD) calculation is done using
this camera’s specifications. The GSD is the distance, mea-
sured on the ground, between the centers of two consecutive
pixels. It is a metric for measuring accuracy in remote sens-
ing and aerial mapping activities (Enterprise 2022). Equa-
tion (1) illustrates the GSD formula.

GSD =
Sensor Width × Drone Altitude

Image Width × Camera Focal Length
(1)

Given the RPi module’s sensor width and focal length of
2.76mm and 3.04mm respectively, and our image width and
drone altitude of 720 pixels and 5m respectively, the GSD
calculates to be 0.63 cm/pixel. Therefore, the linear length
captured by the drone in a single shot at 5m altitude given
our image length of 1280 pixels is 8.06m. An altitude of 5m
is estimated here since most farming applications that em-
ploy drones also maintain the same resolution. Furthermore,
the dataset over which our model is trained is also acquired
at a 5m resolution. Therefore, this altitude estimation is cho-
sen to maintain consistency. Ideal drone speed can be calcu-
lated using Equation (2).

Figure 3: Weed detection results using U-Net + Hue multi-
spectral bands.

Ideal Speed = Linear Length (at 5m altitude) × FPS (2)

Power consumption was determined after measuring the
current drawn by the Nvidia Jetson Nano during model in-
ference. To measure the current, a Yocto-Amp device was
connected between the power source and the power jack of
the Nvidia Jetson Nano. The measured current values were
then saved in a CSV file. These values were iterated over,
averaged, and subsequently used to calculate the power con-
sumption during inference.

4 Results and discussion
4.1 Weed Detection Results - Pre-Optimization
Weed detection results were obtained using different num-
ber of training samples; specifically, using 160 samples, 320
samples, 480 samples, and 640 samples. The weights were
stored using Float-32 decimal points. Forward variable se-
lection was implemented at each augmentation level and
the top five performing combinations of multispectral bands
were recorded. Figure 3 shows some sample outputs of the
weed detection results obtained from using RGB channels
along with an additional hue band along with the corre-
sponding IoU score. Table 2 summarizes the results of our
custom U-Net, U-Net with attention and the best performing
multispectral bands added.

As can be seen in Table 2, U-Net which employed the
RGB bands with a single additional multispectral band re-
sulted in the best performing model at three different aug-
mentation levels. Hue spectrum and Laplacian edge detector
appeared to be more informative bands than others. In gen-
eral, adding an additional spectral band appears to be as in-
fluential as adding attention blocks to our architecture with
a slight difference in performance in favor of the additional
band and less computational complexity. A further look into
the features extracted shows that while the attention model
captures more shape features on the decoder end of the U-
Net, the addition of a multispectral band adds more spatial
information on the encoder end of the U-Net. We argue that
both methods boost the U-Net performance in two differ-
ent ways leading to almost equal enhancement in the overall
performance. It is worth mentioning that combining multi-
spectral bands with attention did not result in an improve-
ment in the performance of our models. We believe that this



Bands Used # of Images Model IoU F32 Dice Coefficient F32
RGB (3) 160 U-Net 0.2436 0.3696
RGB (3) 160 U-Net + Attention 0.4707 0.6226

RGB + H (4) 160 U-Net 0.5066 0.6605
RGB (3) 320 U-Net 0.4475 0.6039
RGB (3) 320 U-Net + Attention 0.4705 0.6261

RGB + LAP (4) 320 U-Net 0.4992 0.6522
RGB (3) 480 U-Net 0.5192 0.6721
RGB (3) 480 U-Net + Attention 0.5181 0.6714

RGB + LAP (4) 480 U-Net 0.5018 0.6544
RGB (3) 640 U-Net 0.4740 0.6271
RGB (3) 640 U-Net + Attention 0.4926 0.6473

RGB + H (4) 640 U-Net 0.5212 0.6736

Table 2: Results obtained using different multispectral bands.

Bands Used # of Images Model IoU F16 Dice Coefficient F16
RGB (3) 160 U-Net 0.2437 0.3698
RGB (3) 160 U-Net + Attention 0.4704 0.6223

RGB + H (4) 160 U-Net 0.5069 0.6608
RGB (3) 320 U-Net 0.4475 0.6038
RGB (3) 320 U-Net + Attention 0.4709 0.6265

RGB + LAP (4) 320 U-Net 0.4994 0.6523
RGB (3) 480 U-Net 0.5192 0.6721
RGB (3) 480 U-Net + Attention 0.5182 0.6714

RGB + LAP (4) 480 U-Net 0.4201 0.5698
RGB (3) 640 U-Net 0.4742 0.6273
RGB (3) 640 U-Net + Attention 0.4925 0.6471

RGB + H (4) 640 U-Net 0.5212 0.6735

Table 3: Results obtained using different multispectral bands after quantization.

is because the information gain is the same even though
both techniques provide enhancement in opposite ends of
the U-Net model. Besides, attention model can be slightly
improved by modifying the spatial to feature information
gain ratio within the attention block. Nonetheless, our em-
pirical results showed an improvement of around 0.7% and
1.5% in terms of IoU and Dice only, hence, it is not signifi-
cant.

Generally speaking, RGB bands seemed to be enough
given having around a threshold of 500 images. In fact, the
simple RGB model slightly outperformed both attention and
multispectral U-Net models using 480 samples with a mean
IoU (mIoU) score of 51.92% and a Dice score of 67.21%.
To further verify these findings, the top five best perform-
ing multispectral models were plotted along with the RGB
model and attention model with a 10% margin of error. As
can be seen in Figure 4 the addition of a multispectral band
and attention were significant as long as the number of im-
ages was below the second augmentation level (480 images)
in terms of IoU and Dice scores. After crossing this thresh-
old, the RGB bands provide enough information for the U-
Net model to perform well. This is important to point out as
UAVs flight time ranges between 10 to 30 minutes captur-
ing a small number of images at that time. Additionally, the
Kruskal-Wallis test for significance was carried out for the
FPS rates at each augmentation level at a significance level

of 0.05. For FPS at FP32, the Kruskal-Wallis H test indicated
that there is a non-significant difference between the differ-
ent augmentation levels, with a mean rank score of 5.17,
8.0, 4.5, and 8.33 for each of the four augmentation levels
respectively. Given that we aim towards a low power con-
suming approach, adding multispectral bands seems to be
the optimal approach as it requires a smaller number of im-
ages, using RGB images only and has lower computational
complexity than that required by attention models.

4.2 Weed Detection Results - Post-Optimization
Table 3 summarizes the results obtained after optimization.
In order to deploy our models on a system-on-chip (SoC),
it was necessary to optimize the model given that SoCs are
resource limited in terms of memory, speed, and power. For
that, we have decided to optimize our models by storing the
weights using Float-16 decimal points and on an Nvidia Jet-
son Nano microcomputer. The models were optimized using
TensorRT and TensorFlow Lite to evaluate how processor
type affects inference time, power consumption, and post-
optimization performance.

4.3 Power Consumption, Inference Time, and
Speed

Table 4 shows the average performance loss due to optimiza-
tion and the obtained Power consumption and inference time
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Figure 4: Performance comparison between standard RGB models, attention-enhanced RGB models, and multispectral models.
(a) IoU scores of the RGB model versus multispectral models. (b) IoU scores of the best multispectral models versus RGB and
attention-enhanced RGB models. (c) Dice scores of the RGB model versus multispectral models. (d) Dice scores of the best
multispectral models versus RGB and attention-enhanced RGB models.

Optimization Platform Tensorflow Lite Tensor-RT
Model Inference time (s) FPS (1/s) Power (W) Inference time (s) FPS (1/s) Power (W)
U-Net 3.6858 0.2713 4.684 0.5366 1.864 4.806
U-Net + Attention 3.5850 0.2789 4.658 0.5370 1.862 4.760
U-Net + MS 3.6415 0.2746 4.656 0.5422 1.844 4.861

Table 4: Inference time, FPS, and power consumption of different models on Tensorflow Lite and Tensor-RT optimization
platforms.

results using the two libraries. Both methods resulted in a
negligible loss in the overall performance with an average
loss of 0.01% for TF-Lite and 0.005% for Tensor-RT. How-
ever, utilizing a GPU using Tensor-RT resulted in a lower
inference time of almost 3 seconds with a slight increase in
power consumption which is approximately about 0.2 Watts.
For FPS at FP16, the Kruskal-Wallis H test indicated that
there is a non-significant difference between the different
augmentation levels, with a mean rank score of 4.67, 8.5,
5.0, and 7.83 for each of the four augmentation levels re-
spectively. Given that real time detection requires fast infer-
ence time, it is safe to say that utilizing a GPU would be
the optimal choice as it improves FPS without consuming
much additional power. Our custom U-Net model was able
to achieve maximum FPS rate of approximately 2. Accord-
ingly, the ideal drone speed given 2 FPS for inference would
be 16.08 m/s. However, drones generally have a limitation
of 5 m/s on its maximum speed. Consequently, the maxi-
mum FPS rate required given the speed of 5 m/s is 0.62,

and the minimum FPS rate required given a minimum drone
speed of 1 m/s is 0.12. By capturing non-overlapping frames,
these estimated values therefore elucidate our model’s high
FPS rate and subsequently its feasibility of conducting real-
time inference. Given the low power consumption of our
model, the inference can be executed directly onboard the
UAV without significantly affecting flight time.

4.4 Comparison With State of the Art Models
We did a comparison between our lightweight model and the
state of the art models that are reviewed in the MSEA-Net re-
search paper. The authors show that their proposed MESA-
Net is the current state-of-the-art evaluated on the same
CoFly-WeedDB dataset. Their method achieved a mIoU of
71.35%, outperforming several models (Syed et al. 2025).
However, as illustrated in Figure 5, this accuracy comes
at a significant computational and memory cost. MSEA-
Net is approximately 9.53× larger than our proposed quan-
tized custom U-Net model. Despite the drop in IoU, our
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model provides a substantial reduction in model size and
complexity. This highlights its suitability for deployment
on resource-constrained platforms, where minimizing power
consumption, and onboard compute load is essential for ex-
tending flight time and improving operational efficiency.

5 Future Work
For future work, our model will be evaluated through on-
board simulations in real-world environments. Moreover,
power consumption can be further reduced by using Lo-
RaWAN network modules instead of Wi-Fi networks. The
reason for this is that we require an energy efficient method
to send the processed images from the drone to the farmer’s
device. Research shows that LoRaWAN has a lower power
consumption and can cover a large range when compared to
Wi-Fi (de Carvalho Silva et al. 2017). Additionally, the sys-
tem sets the floor for further improvements such as real-time
herbicide spraying, whereby weeds are sprayed by the drone
as soon as they are detected. With this approach, we reduce
the farmer’s workload of planning spraying routes. Another
option would be to generate optimal field spraying routes us-
ing the generated scan reports, where an agricultural drone
can use these routes at any time to perform efficient herbi-
cide spraying of the field. These two potential expansions of
the system would render our project a comprehensive weed
management and control system. Our image dataset could
also be enhanced further to reduce pixelation and improve
results using an Enhanced Super Resolution GAN (ESR-
GAN) but at the cost of higher memory footprint. Addition-
ally, NIR estimations from similar fields can be obtained to
derive more weed sensitive indices.

6 Conclusion
In this work, we proposed an efficient real time weed detec-
tion pipeline using UAVs while maintaining a lightweight
model and utilizing low power consumption. The proposed
model proved to be highly effective on the CoFly-WeedDB
dataset. We were able to achieve promising results using a
very small model compared to the state of the art and other
models on the same dataset. The effect of incorporating at-

tention blocks and multiple multispectral bands on model
performance was also analyzed. We found that features de-
rived from RGB images and edge detectors can rapidly im-
prove the model’s performance especially using small num-
ber of images. Moreover, the models were optimized to be
suitable for on-drone deployment and the inference time,
power consumption, and required speed were computed.
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