On the Complexity of Computing the Planning Width

Jiajia Song', Seeun William Umboh! 3, Nir Lipovetzky' ?, Sebastian Sardina’

'The University of Melbourne
2RMIT University
3 ARC Training Centre in Optimisation Technologies, Integrated Methodologies, and Applications (OPTIMA)
jiajia.songl @unimelb.edu.au, william.umboh @unimelb.edu.au, nir.lipovetzky @unimelb.edu.au,
sebastian.sardina@rmit.edu.au

Abstract

The width of a classical planning instance, among other met-
rics, indicates the computational difficulty of the instance.
However, no result exists on the complexity of comput-
ing the width itself. In this paper, we address this by util-
ising an optimisation complexity framework. We focus on
planning instance with polynomially bounded solutions, and
prove that computing their width is OptP[O(loglog L)]-
hard, where L is the size of the instance. In turn, for
the upper bound, we show that computing width is in
OptP[O(log L)|PPOUe DI problem set OptP[O(z(L)))
is the optimisation complexity class with their optimal val-
ues’ length in binary bounded by O(z(L)). These results con-
tribute to the understanding of width as a proxy measure for
the computational difficulty of planning, and suggest that ex-
ploiting other structural restrictions beyond bounding solu-
tion length, can provide further insights on the complexity of
width computation.

Introduction

Width-based algorithms such as SIW (Lipovetzky and
Geffner 2012) and BFWS (Lipovetzky and Geftner 2017)
have achieved good performance in many planning tasks,
even in lifted planning (Corréa and Seipp 2022). The suc-
cess of these algorithms is mainly due to the observation
that planning instances can often be decomposed into sub-
instances featuring single atomic goals with relatively small
widths, and that low-width planning tasks can be solved
in low polynomial time (Lipovetzky and Geffner 2012).
The notion of “width” is useful beyond (classical) plan-
ning and has been applied to other settings, such as con-
straints (Dechter 2003), motion planning (Ferrer-Mestres
2018), reasoning over epistemic knowledge (Hu, Miller, and
Lipovetzky 2019), optimal control (Ramirez et al. 2018),
and reinforcement learning (O’ Toole et al. 2021).

The width of a planning instance can indicate its diffi-
culty: a smaller width implies a relatively easier instance.
For example, Lipovetzky and Geffner (2012) have proved
that domains such as Blocks-World with single atomic goals
bear a width of no more than two, and thus instances within
these sub-domains can be solved efficiently, regardless of
their initial state and size.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Furthermore, width can help gain insight into the perfor-
mance of Relational Neural Networks on learning generalis-
able polices in object-centric domains (Mao et al. 2023), as
the circuit complexities of goal-conditioned polices can be
derived from width.

However, an open problem remains: how difficult is it,
in general, to compute the width of planning instances? In
this paper, we address this question and formally analyse the
computational complexity of finding the width of any plan-
ning instance (regardless of its domain).

It is natural to study the width computation problem from
the perspective of optimisation, given that the width met-
ric is defined as the minimum atomic size ranging over
all so-called “admissible sets” (Bonet and Geffner 2024).
Therefore we utilise the optimisation complexity frame-
work (Krentel 1988) to analyse the complexity of the width
computation problem.

The optimisation complexity class OptP[O(z(L))] is the
set of optimisation functions that can be computed in poly-
nomial time by a Metric Turing machine (Krentel 1988),
and the length of the computed optimal value in binary is
bounded by O(z(L)) with L being the input size. Intuitively,
any optimisation problem within this complexity class can
be solved by at most O(z(L)) calls to an NP TM to conduct
binary search over the thresholds in the decision versions,
therefore the quantity z(L) represents the “amount of NP-
completeness” (Krentel 1988) in the problem.

One of the advantages to study the width computation
problem via the optimisation complexity framework is that
it is more desirable to find the exact width value than to
decide if the width is above (or below) a given thresh-
old. Moreover, the decision versions of problems may lose
important structures of the original optimisation problems:
not all NP-complete problems are equivalent when viewing
them as optimisation problems (Krentel 1992). For example,
while the decision versions of TSP and CLIQUE are both
NP-complete, their optimisation versions are OptP[LY(1)]-
complete and OptP[O(log L)]-complete, resp. This indi-
cates that, unless P = NP, TSP is strictly harder than
CLIQUE (Krentel 1992).

In this paper, we provide lower and upper bounds for
width computation on polynomially bounded classical plan-
ning instances. The polynomial constraint is motivated by
practice as one usually looks for “tractable” plans that

can be executed (and possibly stored, verified) in polyno-
mial time and it is customary in classical planning to con-
duct complexity analysis with polynomial bound on plan
lengths such as in (Bylander 1994). For the lower bound,
we prove OptP[O(loglog L)] hardness and, for the upper
bound we show membership in OptP[O(log L)]*“F, where
FCP is a problem (defined later) which we prove to be
OptP[O(log L)]-complete. Given the completeness result
for FCP, it is equivalent to state that the upper-bound is
OptP[O(log L)]OPPIOUos L)] - where L is the size of the
planning instance as an input.

The main conceptual insight underlying our complexity
bounds is to move from abstract admissible sets to a more
concrete notion of admissible sequences, which recovers the
essential metaphor of a sequence of “stepping stones”, a key
element needed to compute width.

While width is an important proxy measure to planning
complexity, there is no known efficient mechanistic method
to extract the width of a problem. Even worse, there is no
current understanding of how difficult that method would be.
This paper aims to close this gap in knowledge which can
inform the future research agenda on the topic, as discussed
at the end of the paper.

The next two sections cover related work in complexity of
planning and the necessary background. After that, we for-
mally define the width computation problem and introduce
useful new definitions. We then introduce the optimisation
complexity framework and use it to prove width complexity
membership and hardness. We end by drawing conclusions
and possible future directions.

Related Work

The notion of “width” defined in (Freuder 1982) has been
applied to factored planning (Amir and Engelhardt 2003;
Brafman and Domshlak 2006) as a measurement of domain
variables’ interaction in the underlying CSP graph and it
mainly focuses on tree decomposition. However this notion
is different from the notion of “width” in classical planning.

In classical planning, Chen and Giménez (2007) have
defined the notion of width as the Hamming distance be-
tween the initial state and a goal state. They have shown
that instance with its width bounded by a constant can be
solved in polynomial time. Lipovetzky and Geffner (2012)
have introduced a new version of planning width as the
minimum tuple size in tuple graphs which contain optimal
paths to goal states. Bonet and Geffner (2024) have de-
fined width equivalently, but via the concept of admissible
sets. Specifically, if b is the maximum branching factor and
n is the number of atoms, Lipovetzky and Geffner (2012)
and Bonet and Geffner (2024) have shown that if a plan-
ning instance’s width is w, it can be solved optimally in
time and space upper bounded by O(bn?¥~1) and O(bn™)
respectively. Let d be the domain size, Junyent, Gémez,
and Jonsson (2021) have also derived a tighter bound of
Siol(",) (d = 1)),

Although Bonet and Geffner (2024) have proved that the
planning width is unbounded in the general case, Lipovetzky
and Geffner (2012) have proved that if the goals only contain

a single atom, the instance’s width is upper bounded by 2 for
problems in some domains, such as Blocks-World, Logistics
and n-Puzzles.

While width reveals the hardness of planning problems, to
the best of our knowledge, there is no formal analysis of the
complexity of finding width for classical planning instances.
This is what our work aims to address.

Background and Problem Definitions

We provide a brief overview of classical planning and the
notion of planning width, as a proxy metric for the compu-
tational difficulty of planning instances.

Classical Planning

A classical planning instance in the STRIPS lan-
guage (Fikes and Nilsson 1971) is P = (F, A, Z,G), where
F is a set of Boolean variables (atoms), A is a set of ac-
tions, Z is the set of atoms that are true initially and G are
the atoms that must be true in the goal. Each action a is
(pre(a),post(a)): pre(a) C F and represents the set of
atoms that need to be true for a to be applied; post(a) =
(add(a),del(a)) where add(a) is the set of atoms that be-
come true after applying a and del(a) is the set of atoms that
become false after the action.

A planning instance denotes, succinctly, a state model
(S, A, s0,Sa, f) (Bonet and Geffner 2001), where S is a
set of states, A is a set of actions, sg € S is the initial state,
Se C S is the set of goal states and f : S x A — S is the
(partial) transition function. We denote the set of actions that
are applicable to a state s as As, i.e., the system can transi-
tion from s to s’ by an action a if a € A and s’ = f(s,a).

Each state s can be viewed as the set of atoms that are
conjunctively true in it. Therefore, if a € A,, we have
pre(a) C sand f(s,a) = (s \ del(a)) U add(a). We also
have Z = sg and G C s forall s € Sg.

A state s € S is said to be reachable from a state s € S
if there exists a, possibly empty, finite sequence of actions
© = (a1,...,a,), thatinduces atrace (s, s1, . .., S,), such
that so = s, 8; = f(si—1,0a;), foralli € {1,...,n}, and
sn = s’. We call such a sequence a valid action sequence
from s to s’. If no shorter sequence of actions can reach s’
from s, we then say that s’ is reached optimally from s by
plan 7. If s’ = sq, the empty plan () optimally reaches s’.

Finally, if s’ € S¢ and is reachable by the sequence of
actions 7 from sy, we say that « is a (valid) plan for the
planning problem P. The length of 7 is the number of ac-
tions in it. If there exists no plan with shorter length than
m, we call 7 an optimal plan. Trivially, given a planning in-
stance P, if all goal atoms are true in the initial state, the
empty plan () is optimal with length 0.

Planning Width

The notion of “planning width” analysed in this work first
appeared in (Lipovetzky and Geffner 2012) and was defined
via the idea of “tuple graphs”. However, in this paper, we
adopt an equivalent definition through the concept of “ad-
missible sets” as in (Bonet and Geffner 2024) since it is more
convenient for our purposes.

Atomic conjunction. Given a planning instance P, we
call a set of atoms t an atomic conjunction.' If all atoms
in t are true in a state s, we denote it as ¢ C s.

Given two atomic conjunctions t,¢, we say that ¢ is
reachable from t' if there exist two states s, s’ such that
t C s,t' C s’ and s is reachable from s’ by a valid action se-
quence. Consider a valid action sequence 7 which reaches ¢
from ¢/, if no shorter valid action sequence can reach ¢ from
t’', we say that t is reached optimally from ¢’ via .

We say t is reachable (without mentioning the start) if it
can be reached from an atomic conjunction ¢’ C Z. Given a
valid action sequence 7 to t from at’ C Z, if no shorter valid
action sequence to ¢ from any atomic conjunction which is
true in Z, we call 7 an optimal plan to t.

Admissible set, atomic size and width. A set of atomic
conjunctions is called an atomic set. We now define admis-
sible sets.

Definition 1 (Admissible set). (Bonet and Geffner 2024)
Given a planning instance P, an atomic set T is an admis-
sible set if all of the following hold:

e Eacht € T is reachable;

o There exists a tuple t € T such thatt C sg;

 For any optimal action sequence T to an atomic conjunc-
tiont € T, if is not an optimal plan for the instance P,
we can extend it by adding one single action a to reach
another atomic conjunction t' € T optimally.

Let Admissible’® (P) be the set of all admissible sets of P.

Note that the only atomic conjunctions in an admissible set
T that cannot be extended are the ones with their optimal
plans being optimal plans for the instance P.

Let T" be a set of atomic conjunctions (not necessary ad-
missible), we define its atomic size as below.

Definition 2 (Atomic size). (Bonet and Geffner 2024)

* For an atomic conjunction t, its atomic size |t| is the num-
ber of atoms in t.

* For an atomic set T, its atomic size is the maximum
atomic size of t € T, i.e., size(T) = maxcr |t].

Next, we define the width of a planning instance P. If no
plan exists for P, we define its width as n + 1 where n is
the number of atoms. If all goal atoms are true in the initial
state or all goal atoms can be reached in only one action
from the initial state, we define its width as 0. Otherwise,
the width is defined as the minimum atomic size ranging
over all admissible sets.

Definition 3 (Width). (Bonet and Geffner 2024) Given a
planning instance P with n atoms, its width w(P) is
e n+ 1, if P is unsolvable;
0, if all goal atoms are true initially or P can be solved
by one action;

* Otherwise, w(P) £ mingcgmissipies(py size(T).
We use an example to illustrate the above definitions.
'In (Lipovetzky and Geffner 2012; Bonet and Geffner 2024), ¢

is called an “atomic tuple”. As the order of atoms in ¢ is not used
in deriving any results, we use “atomic conjunction” instead

Example 1. Consider an instance in Blocks-World domain
with 3 blocks: A, B and C. Initially, A is directly on B, B is
on C and C' is on table. The goal is to have C on A directly,
ie, T = {clear(A),on(A, B),on(B,C),onTable(C)}
and G = {on(C, A)}.

One admissible set is T = {tg, t1,t2,t3,t4,ts5,ts}, where

to = {clear(A)}, t1 = {hold(A)}, to = {onTable(A)},
ts = {hold(B)}, ty = {onTable(B)},
ts = {hold(c), clear(A)}, te = {on(C, A)}

However, if we replace ts with ty = {hold(C)}, T
is no longer admissible. This is because an optimal ac-
tion sequence to ti may not be extended to reach an-
other atomic conjunction in T'. One such optimal action se-
quence is (unstack(A, B), putdown(A), unstack(B,C),
stack(B, A), pickup(C)).

The Width Computation Problem

In this paper, we aim to analyse the computational com-
plexity of finding the width of a classical planning instance
which is polynomially bounded, i.e., the lengths of its opti-
mal plans (if there exist plans) are bounded polynomials of
a fixed degree in terms of the number of atoms. We denote
the set of such planning instances as Ppoty.

The width computation problem is defined below.

Problem: Find-Width

Input: a planning instance P € Pyory with size L

Output: the width w(P)

For the width computation problems, the input is P,
which includes the set of atoms F, the set of actions A and
some other elements such as the initial and goal sets. Let L
be the size of a planning instance, which is in O(n + m),
where n and m are the number of atoms and actions, resp.

Challenges and Key Insight

The definition of width makes its difficult to design an ef-
ficient algorithm for computing width. In fact, it is unclear
how to even efficiently determine if a given atomic set 7' is
admissible or not. This is because 7' is defined to be admis-
sible if every optimal sequence of actions (not an optimal
plan for the instance) to every atomic conjunction ¢t € T
is extendable by one action to form an optimal sequence of
actions to another ¢ € T'. Since there are potentially an ex-
ponential number of optimal plans and possible extensions
to atomic conjunctions, efficiently checking admissiblity is
already challenging.

Our key insight is that not all atomic conjunctions in an
admissible set are equally “useful”. Intuitively, the useful
ones are those that serve as intermediate “stepping stones”
which can be extended optimally towards the goal. More-
over, we only need one such sequence of stepping stones
in each admissible set. We will formalise this intuition and
show that every admissible set induces a sequence of step-
ping stones for the instance, which in turn induces an opti-
mal plan for the problem (Proposition 2). Thus, in order to
build a single sequence of stepping stones, we only consider
the useful atomic conjunctions in an admissible set that are
part of the same sequence of well-arranged stepping stones.

We define these well-arranged sequences as admissible
sequences in Definition 5. It can be seen that an admissible
sequence contains only “useful” atomic conjunctions com-
patible with optimal plans as shown in Definition 5.

In order to use admissible sequences to compute width,
we need to ensure that every admissible set 7' can induce
an admissible sequence whose atomic size is no greater than
the atomic size of T'. This claim is formally proved in Propo-
sition 2. Then we show that width can be computed via ad-
missible sequences as shown in Equation (1).

Properties of Width

We begin by defining the conjunction optimal position of an
atomic conjunction.

Definition 4 (Conjunction optimal position). Given a plan-
ning instance P € Py, the conjunction optimal position
pos(t) of an atomic conjunction t is the length of an optimal
plan to t. If t is unreachable, then pos(t) = p(n) + 1, where
n is the number of atoms and p(-) is a polynomial bound on
plan length.

Definition 5 (Admissible sequence). Given a planning in-
stance P, a sequence of atomic conjunctions (to,t1, ..., tm)
is called an atomic sequence, and is said to be admissible if
it satisfies each of the following:

e tq is true in the initial state;
* foreachi € {0,1,...,m — 2},
— For each optimal plan for t;, there exists an action a
that extends it to an optimal plan for t;;;
e for each optimal plan for t,, _1 there exists an action that
extends it to an optimal plan for t.,, U G.

Let Admissible’(P) denote the set of all admissible se-
quences of P.

Note that if () is an optimal plan for P, then (¢y) is an
admissible sequence if ¢ is true initially.

We define the atomic size of an atomic sequence (not nec-
essary admissible) 7 = (¢1,to, . . ., t,,) as the atomic size of
the atomic set {¢1, ¢, ..., ¢y} and denote it as size(T).

Definition 5 implies that the set of atomic conjunctions in
an admissible sequence is an admissible set and each ¢; in
this sequence can be reached optimally by exactly ¢ actions.

Proposition 1. Given a planning instance P and an ad-
missible sequence (to,t1,...,tn,), the atomic set T =
{to,t1,...,tm} is admissible.

From Definition 5 and Proposition 1, we know that if
viewing admissible sequences as sets of atomic conjunc-
tions, the set of all admissible sequences is a subset of the set
of all admissible sets, i.e., Admissible’? C Admissible’®.

As explained above, admissible sequences are easier to
verify than admissible sets as they are “ordered” by an
optimal plan and include no unnecessary atomic conjunc-
tions (i.e., no unnecessary “non-stepping stones”). To rely
on those sequences, though, we need to ensure that each ad-
missible set induces an admissible sequence.

The following proposition shows that every admissible set
can induce an admissible sequence, which is the key to com-
pute width from admissible sequences.

Proposition 2. Given a planning instance P and an admis-
sible set T, the following claims hold.

1. There exists an atomic conjunction t € T such that any
optimal plan to t is also an optimal plan for P.

2. There exists an admissible sequence T = (to,t1,...,tm)
withm > 0andt; € T forall0 < i < m.

In order to prove the first claim of Proposition 2, we con-
struct an acyclic sequence of atomic conjunctions (no atomic
conjunction appears more than once in this sequence). From
Definition 1 and the finity of the given admissible set, we
show that the optimal plan to the last atomic conjunction via
each conjunction in this sequence is an optimal plan for the
planning instance. We then prove that any optimal plan to
this last atomic conjunction is an optimal plan for the plan-
ning instance by contradiction. In order to prove the sec-
ond claim, we adopt similar idea as above and construct a
sequence of atomic conjunction which satisfy the require-
ments of admissible sequence. We leave the detailed proof
in the supplementary material.

It is easy to see that the size of an induced sequence
7 cannot be larger than that of the admissible set 7', that
is, size(7) < maxer |t| = size(T). In addition, since
width is defined as the minimum atomic size among all ad-
missible sets, we have the following equation: (Recall that
Admissible’ (P) and Admissible®*d(P) are the sets of all ad-
missible sets and sequences for P, respectively.)
size(7). (1)

w(P) 2 min size(T) = min
T EAdmissibleSd(P)

T €AdmissibleSe' (P)

We define Find-ConjunctionPos (FCP), an auxil-
iary problem which decides if a pair of conjunctions is part
of an admissible sequence. The input to FCP is a tuple
(P,t,t"), where P is a planning instance and ¢, t' are two
atomic conjunctions. The output is {pos(t), d) where pos(t)
is the conjunction optimal position of ¢ and d = 1 represents
that all optimal plans to ¢ can be extended by one action to
be an optimal plan to ¢’, otherwise d = 0.

Problem: FCP

Input: a planning instance P € Pyoy with size L,

two atomic conjunctions ¢ and ¢’
Output: (pos(t),d) where d = 0 or 1.

The Optimisation Complexity Framework

As the width computation problem can be viewed as an op-
timisation problem, we analyse it using the framework of
optimisation complexity due to (Krentel 1988).

We begin by formally defining minimisation problems.
Intuitively, an instance of a minimisation problem is asso-
ciated with a set of feasible solutions and each solution has
a value. The computational problem is to find the smallest
value among the feasible solutions.

Formally, Let N§ denote the set of k-tuples with each el-
ement being a non-negative integer and let (R, <) be a to-
tally ordered subset of N&.2 A minimisation problem con-
sists of a function f : ¥* — 2% that maps each string

2Every element in R is a k-tuple a = (a1, az,...,ax) with a;
being a non-negative integer for all <. For any a, b € R, either a <
bor b < a. The binary relation < is reflexive (a < a), transitive

Optimisation Complexity

Number of calls to a TM

Find-Width upper bound

in OptP[O(log L)]” (Theorem 3)

O(log L)-NP F¢?

Find-Width lower bound OptP[O(loglog L)]-hard (Theorem 4)

Q(loglog L)-NP

FCP OptP[O(log L)]-complete (Theorem 7)

©(log L)-NP

Table 1: Summary of Complexity Results: L is the input size. Recall that an optimisation problem in OptP[O(z(L))] can be
solved by at most O(z(L)) calls to an NP Turing machine to conduct binary search over the thresholds in the decision version.

x over an alphabet ¥ to f(z), a subset of R.> We denote
the minimum value (based on the order <) of min f(x) as
min f(z) £ min{r : 7 € f(x)}. The corresponding compu-
tational problem f,,;;, is to compute the value of min f(z).

The above motivated (Krentel 1988) to define a variant
of non-deterministic Turing machines called Metric Turing
Machines. We use the same definition and also allow the
machine to be equipped with an oracle.

Definition 6 (Optimal Turing Machine). An Optimal Tur-
ing Machine (OTM), M, is a non-deterministic polyno-
mially time bounded Turing machine such that each non-
deterministic computation path writes a value in binary and
accepts. The minimum of all these values is opt y(().

Let A be a function on ¥.*. We denote by M the resulting
machine obtained by equipping an OTM M with oracle ac-
cess to A, i.e., the machine can compute A(y) for anyy € ¥*
in time equal to the length of the binary representation of y
and A(y).

A minimisation problem f is then said to be computable
by OTM M if opt p((x) = min f(x) for every input z.

The power of an OTM is characterised by the number of
output bits it uses. Observe that an OTM that, for some func-
tion z, is restricted to z(L) bits of output on inputs of length
L can be simulated using z(L) queries to an NP oracle by
conducting binary search over the thresholds. (Krentel 1988)
showed that the reverse is also true. Consequently, the dif-
ficulty of an optimisation problem can also be characterised
by the number of output bits required by any OTM that com-
putes it. This motivates the following family of complexity
classes parameterised by the number of output bits.

Definition 7 (OptP[z(L)]). Let z : Ny — Ny be a poly-
time computable function. A minimisation problem f., is
in the class of OptP[z(L)] if there exists an OTM M with
optpm(x) = min f(x) and the length of min f(z) in binary
is upper bounded by z(L) for every input x of size L.

If the problem is computable by M*, the problem is in the
complexity class OptP[z(L)]A.

In our paper, we focus on OptP[O(log L)] and
OptP[O(loglog L)].
Finally, we need to define reductions to prove hardness.

Definition 8 (Metric reduction). A metric reduction from a
minimisation problem f.;,, to another minimisation problem
Emin I8 a pair of functions (T, Ts) that can be computed in

((a = b)AN (b =<¢c) = a = c¢) and anti-symmetric ((¢ =
b)A(b=<a) = a=0b).

3Think of x as an instance of the problem and f(z) as the set
of values of its feasible solutions.

polynomial time such that Ty : X* — 3%, Ty : 3% x N}g —
N}, and min f(z) = Ty(x, min g(Ty(z))) for all x € $*.

Definition 9 (Hardness and Completeness). If every opti-
misation problem in OptP[z(L)] can be metrically reduced
to an optimisation problem fyin, then fui, is said to be
OptP[z(L)]-hard. Additionally, if fun is in OptP[z(L)], it
is OptP[z(L)]-complete.

Max—-SAT and BIN-Packing are examples of prob-
lems that are OptP[O(log(L))]-complete, and belong
to OptP[O(loglog L)], respectively (Krentel 1988). In
Max—SAT, the input is a Boolean formula in conjunctive
normal form, and the goal is to find the maximum number
of clauses that can be satisfied by an assignment of truth val-
ues to the variables in the formula. In BIN-Packing, the
input is a set of items and their sizes, and bins with equal
capacity, and the goal is to find the fewest number of bins
that can hold all items.

Complexity of Width Computation

In this section, we prove upper and lower bounds on the
computational complexity of Find-Width (Theorems 3
and 4, respectively). Theorem 4 is arguably the most impor-
tant result of this paper. The main results in this paper are
summarised in Table 1.

We now describe the intuition behind our upper bound
proof. At a high level, given a planning problem P, we con-
struct an OTM that guesses atomic sequences and relies on
the returned results from the FCP problem. In particular,
each computation path is an atomic sequence 7. The results
from FCP problem help verify if 7 is admissible and writes
size(T) if so. The computational complexity of FCP is anal-
ysed in the next section.

Let L represent the size of the planning instance P €
Ppoty Which is the input to the Find-Width problem, m
be the number of actions and n be the number of atoms of
P. We also let p(n) be the polynomial which bounds the
optimal plan length if a plan exists. For meaningful repre-
sentations of P, we have n +m < L.

Theorem 3. Find-Wwidth is in OptP[O(log L)]*.

Proof. Given a planning instance P € Ppoly, let tg denote
the atomic conjunction formed by all atoms in G.
We execute the following steps:

1: Step 1: obtain (K, —) from the FCP problem on input
<P g, tg>;
if K > p(n) then
write n + 1 and end computation;
if K <1 then
write 0 and end computation;

6: Otherwise, K is the length of the optimal plans;

7: Step 2: guess an atomic sequence 7 = (tg,t1,...,tK)
and a sequence of actions (a1, ag, ..., aK);
8: if ¢g is not contained in the initial state sy then
9: write n + 1 and end computation;
10: for0 << K —1do
11: obtain (pos(t;),d)
(Pti,tig1);
12: if pos(t;) # ¢ or d = 0 then
13: write n 4+ 1 and end computation;
14: record the state s;1 reached from s; by a;11;
15: if ;1 is not contained in s;4; then
16: write n + 1 and end computation;
17: end for
18: if G Z sk then
19: write n + 1 and end computation;
20: compute size(7), write it and end computation;

First of all, the above computation takes no more than
polynomial-time of L to execute since there are K actions
and K atomic conjunctions in 7 with K < p(n), and each
state and atomic conjunction contain no more than n atoms.

Second, based on Definition 5 and the computation prob-
lem FCP, we know that if size(7) < n, it is an admissible
atomic sequence. More specifically, we know that for all i,
all optimal plans to ¢; can be extended by one action to ¢,
optimally.

Third, let r be the minimum value among all written num-
bers, which can be computed by the OTM. If r = n + 1, we
have w(P) = n + 1 as there is no plan for P. If r < n + 1,
we know that it is the minimum size among all admissible
sequences of P and thus r = w(P) as shown in Equation 1.

Finally, the minimum length of r in binary is no greater
than log(n+1) < log(L). From Definition 7, Find-Width
is in the complexity class of OptP[O(log L)]A. O

from FCP with input

What follows is arguably the main result of the paper: a
lower-bound complexity for width computation.

Theorem 4. Find-width is OptP[O(loglog L)]-hard.

Proof. The proof idea is illustrated in Figure 1.

We reduce any Optimal Turing machine and its input to
an instance of Find-Width. Our reduction is an adap-
tation and extension of that by (Bylander 1994) for non-
deterministic Turing machines.

Let the OTM M = <Q7 Fa 2, 67 q0, QFa D>’ where Q isa
set of states, I' is a tape alphabet which contains all symbols
that can be written on the tape, > C T is the input alphabet,
O ¢ X is the blank symbol and O € T, ¢y is the initial state,
Qr C @ is the set of final accepting states, § : Q@ x I' —
2@xIx{LeftRight} 5 the transition function. Finally, if n is
the size of the input, let g1 (n) be the polynomial bounding
the execution time of M, and g2(n) € O(loglogn) be the
strict bound (non-equal) of the number of binary digits of
the optimal value computed by M. W.L.O.G., we assume
no transition is enabled in final accepting states.

Now, given an input x on the tape of M, we shall build be-
low a planning instance P4, such that its width is closely

related to the minimum value computed from M when run
on x, or more specifically, from the width of P4, 4), we can
obtain the minimum value in polynomially bounded time. A
trace of P(uq,,) Will first encode an execution branch of M
on z, and then perform a kind of “enumeration” of states that
yields an admissible atomic sequence whose width is related
to the number written by M in the corresponding branch.

Let G—1 £ g;(|x|) be the maximum time M may run on
input x, and of course, G will be the the maximum number
of tape positions used. Let H = 2[log G| and we denote
[n] = {1,2,...,n}.

We let K = (292(17]) — 1) denote the decimal value of the
binary number 111...11 .Ifacomputational branch in-

g2(|z|) copies of 1’s

tends to write a number greater than K, then our planning
instance will just “write” K instead and K is upper bounded
by log(|z).

We now define the instance Py ,) = (F, A, Z,G).

K
Atoms. F = F; UF, U U {outputy} U {goal} where:
k=1

o F1 = {in(j, x), at(y, q)}qu7w€[‘,je[G], as in (Bylander
1994) to capture all M’s workings: in(i,) means that
the symbol z is in position 4. at(i,q) means that M is
currently in state ¢, reading the content in position ¢, and
is ready to perform the transition according to 4.

* Fa = {d;, pi }ie[r K] atoms used to represent and imple-
ment counting of binary numbers in order to construct an
atomic sequence with a given atomic size. Atom d; rep-
resents the i-th least significant digit of a binary number
(1 if true), while p; states that we are adding one to the
1-th least significant digit.

* Atom outputy (with k € [K]) signals that machine M
branch left k (in binary) on the tape, and that the counting
process should commence.

* Atom goal will be used as dummy goal.

Since K is upper bounded by O(log|z|) and H =
[log G, there are at most (|Q|G + |[T'|G+2HK + K + 1)
atoms, which is polynomial in terms of the size of the de-
scription of M and its input x.

Initial and goal states. The initial state describes the input
T = T1,...,T|y in the tape with the rest of the cells on the
tape blank, and the OTM M ’s initial configuration.

T = {in(1,21),in(2,22), ..., in(|z], z|y))} U
{in(,0) | i € {0,|z| + 1,...,G}} U{at(1,q0)}.

The goal of the planning task is to reach a state where
distinguished atom goal holds true, that is, G = {goal}.

Actions. The set of actions is built from three different
“components”.

First, we have actions dedicated to modelling the dy-
namics of the OTM M. This is basically as in (Bylan-
der 1994) except that we use one single action to model
the Turing machine transition rather than three. Concretely,
for every i € [G] (representing the position in the tape),

_ 1

An OTM

T2 | Ty | T4

M= <Q7 F7 2161 qo; D>

with input
r = T1T2x3...2p,

write @ binary number 11, which is 3 in denary

0y = outpuls
TM writes 2

A planning instance
P c Ppay e

.

) . . -
Initial state {_
. - . .

% o03,d; —> o3,dy | — o03,dy,d; —>

o3 = outputs TM writes 3
N S

x ondi > ondy T oy dydy

write a binary number 10, which is 2 in denary
~NLFIC F@AUCHION + - v e

Atomic size = 2H
Plan length is between
22H 11 and ¢ + 22 1 1

{dom, doH-1,- -+ dy, 02}
— goal
Atomic size = 3H

N Plan length is between
\ SH d 3H
o) 2°7 41 and G 4 2°" + 1

{dam, garr 1+~ -, d1, 03}
J

-
Simulate the run of the TM
with at most G actions

T
If k is printed
then generate all enumerations of{d1,ds, ...,diz} H = 2[logG]

Figure 1: Metric reduction to a planning problem for hardness proof in Theorem 4.

and every transition (¢, x,q’,y,d) € 0, the planning in-
stance includes the action a(i,q,x,q’,y,d) with precondi-
tion {at (s, q),in(i, z)} and post-conditions:

* {at(i?1,q'), ~at(i, q), in(i,y), —in(i, x)}, if © # y; or
o {at(i?1,q"), nat(i,q)}, if x = y.

where ? = + if d = Right and ? = — if d = Left.

Once the OTM M reaches an accepting state, and thus
leaves a binary number (say, k£ in decimal) on the tape—
the minimum across all execution branches—a special ac-
tion will “read” such binary number and set corresponding
atom outputy representing it (in decimal). Concretely, for
every final accepting state ¢ € Qp, tape position i € [G],
and potential decimal number left on the tape k¥ < K (en-
coded via atoms in(-, -)), the planning instance includes an
action read;, with precondition at(i, q) plus the correspond-
ing set of atoms in(-,-) encoding the binary representation
of number k; its post-condition is {outputy, p1 }.

Now, when an atom output becomes true, the next phase
is enabled and a set of (“counting”) actions implementing a
sequential “counting” of binary numbers from 1 up to the
binary representation of 27 —1 (i.e., 111...11)become

———

H k copies of 1’s
applicable. Intuitively, this counting process will force the
planning trace to have an atomic sequence whose size is di-
rectly related to k.

Technically, the counting process is realised with the fol-
lowing actions, for each (digit index) ¢ € [HK]: (Recall,
atom d; is true if the ¢-th least significant digit is 1 and p;
states we are processing the -th least significant digit.)

* Action inc; increments the i-th least significant digit
when it is 0, thus completing the current increment.
Its precondition is {—d;,p;} and its post-condition is
{d;, —pi, 1} (p1 signals the start of a new increment).

* Action carry; propagates the “carry” at the i-th least sig-
nificant digit to the next digit. Its precondition is {d;, p; },
while its post-condition is {—d;, —p;, piy1} if i < HK;
and {—d;, —p; } if i = HK (i.e., the last digit).

Finally, P\ includes a set of final actions that com-
plete the counting process when number 2% — 1 number
(in binary) has been enumerated (that is, we have “counted”
to k). Concretely, for every k € [K], there is an action
finishy, whose precondition is UIH:kl{dl} U {output } and
post-condition is {goal }.

Size of encoding. There are at most 2G|Q|?|T'|? actions
a(i,q,z,q,y,d), KG|Q| actions read:, HK actions inc;,
HK actions carry; and K actions finishyg, so the total
number of actions is polynomial in terms of the size of the
description of M and its input .

With the above (polynomial) encoding at hand, we first
prove that the reduced instance P(uq,,) iS a planning in-
stance in Ppoly, 1.€., the lengths of its valid plans are bounded
polynomially in terms of the number of atoms.

From above analysis, it can be seen that the lengths
of valid plans for this planning instance P(aq,) are up-
per bounded by G + 2HK as it takes at most G steps to
reach the atom output;, and at most 277X counting steps to
reach the goal from there. Recall that H = 2[log G| and
K = (292017 — 1), so we have that

G + 2]_[[(S 210gG2+1 . 2292(\T\) _ 2G2 . 2292(\00\).

Since g2(n) € O(loglogn), we know that the lengths of
valid plans are upper bounded polynomially in terms of the
size of the description of M and its input x. Moreover, the
number of atoms are upper bounded polynomially in terms
of the size of the description of M and its input z, therefore,
there must exist a fixed degree polynomial in terms of the

number of atoms which upper bounds the lengths of valid
plans, and thus, P(M,z) € Proly-

Finally, we are to prove that from the width of the plan-
ning instance, we are able to easily reconstruct the minimum
value computed by M on . To that end, note that for every
number & written in a computational branch of M, there ex-
ists an atomic sequence with size Hk + 1 reaching the goal.
More concretely, the latter part of this sequence is

{outputy, di }, {outputy, ds}, {outputy, da, d; },
{outputy,ds}, {outputy,ds,di },. ..,
{outputy,dpr,dgg—1,--.,d1}, {goal}.

Thus & can be obtained by subtracting 1 from its atomic size
and then dividing H.

Now consider two atomic sequences of the planning in-
stance P ,): one has atomic size ¢ and the other has
atomic size j, where 1 < ¢ < j. We assume that it takes len;
and [en; actions to reach output; and output; respectively,
thus the lengths of the two sequences will be len; + 27 and
len; + 257 Since 0 < len,, len; < G and H = 2[log G|,
we have

< 2Mi < len; + 217,

Therefore, an atomic sequence which has the smallest
atomic size Hi7 will be the trace of the optimal plan for
P(M,z)» and according to the definition of width, we there-
fore conclude that the width of P v4 ;) is indeed Hi. We can
then derive the minimum value computed by M on x by just
subtracting 1 from the width and then dividing it by H.

Putting it all together, we have found a polynomial met-
ric reduction from M on z to the Find-Width problem.
According to Definition 9, we know that Find-Width is
OptP[log log L]-hard with L as the input size. O

Complexity of the FCP Problem

We consider the computational complexity of the problem
FCP. More specifically, given a planning instance P € Ppoly
and two atomic conjunctions ¢, t’, it computes the conjunc-
tion optimal position of ¢ and checks if all optimal plans to ¢
can be extended to ¢’ optimally by one action.

First we show the membership (upper bound) of the prob-
lem FCP.

Lemma 5. The problem FCP is in the complexity class of
OptP[O(log L)].

We show the proof sketch below and include the detailed
proof in supplementary material.

Proof sketch. In order to prove the upper bound, we con-
struct an algorithm which can be run by an OTM M in
polynomial time and then we show that on input (¢,t', d),
it can return the desired result (pos(t), d), where pos(t) is
the conjunction optimal position of ¢ and d is an indicator.
The value d being 1 represents that every optimal plan to ¢
can be extended by one single action to reach ¢’ optimally.
In this algorithm, an action sequence 71 for ¢ and an action
sequence 7o for ¢’ are guessed, then we check if they can

reach ¢t and ' respectively. If yes, we denote the shortest
lengths to reach ¢ and ¢’ by these two sequences as [; and Is.
If 7, can reach ¢, we then check if it can be extended by one
action to ¢’ (if yes, let r = 1), otherwise » = 0. For each
guess, the algorithm writes a 3-tuple (1, s, 7).

The OTM M computes the minimum value of the 3-tuple
based on lexicographical order and obtains (I,1’, d). It can
be shown that | = pos(t) and I = pos(t’), which are the
lengths of optimal plans to ¢ and ¢’ respectively. If | +1 = [/,
we consider the value d. Since d is the minimum of the third
element in the 3-tuple under the condition that [y = [and
[+ 1 =1, we know that if d = 0, there exists an optimal
plan to ¢ which cannot be extended to ¢’ optimally by one
action.

The final step is to inspect (I, ', d). If I+1 =" and d = 1,
the algorithm returns (/, 1), otherwise it returns ([, 0).

It can be seen that the size of the returned value is upper
bounded by O(log L) and the computation time is polyno-
mially bounded. O

Lemma 6. The problem of FCP is OptP[O(log L)]-hard.

The proof of the hardness (lower bound) of FCP bears the
same idea as in the proof for Theorem 4. The detailed proof
is in supplementary material due to the limitation of space.

From Lemma 5 and Lemma 6, we have the following
completeness result for FCP.

Theorem 7. FCP is OptP[O(log L)]-complete.

Given that we have just shown FCP to be complete in
OptP[O(log L)], it follows from Theorem 3, that width
computation is in OptP[O(log L)]CPtPLOUos L)],

Conclusion

In this paper, we have applied the optimisation complexity
framework to analyse the computational complexity of find-
ing the width of classical planning problems. We focused on
polynomially-bounded planning—instances that admit poly-
nomially long solution plans—and shown that the problem
of width computation is in OptP[O(log L)]°PtP[©Uoe L)] and
in OptP[O(loglog L)]-hard (L being the size of the plan-
ning instance). The FCP problem used in the upper bound
computes the conjunction-optimal position of a pair of tu-
ples, and checks if they can be part of an admissible se-
quence. This problem is OptP[O(log L)]-complete.

The polynomial bound constraint allows us to derive a
stronger result on the lower bound (hardness) than the gen-
eral case. As the lower bound is the most significant re-
sult in this paper, we think it is justifiable to impose this
constraint. We conjecture that the complexity class will be
“OptPSPACE?” for the problems without constraints. How-
ever, since this complexity class has not been defined yet, it
may require additional work on the computational complex-
ity itself and we leave it as our future work.

There are planning algorithms that are able to exploit the
width of problems. However, no technique to compute the
exact width of planning instances exist and, until now, it is
not even known how difficult that calculation is. The results

obtained in this work, particularly the hardness one, indi-
cate that indeed finding the width of a planning task is com-
putationally difficult (e.g., as hard as Bin Packing (Krentel
1988)). This is significant in that it can inform future re-
search agenda on how to exploit the width notion.

One possibility is to develop algorithms that can approx-
imate the width. As with delete-relaxation (Bylander 1994),
which is also hard in its optimal version, approximate width
values would turn out to be very useful in practice, for exam-
ple, to indicate what versions of width-based planners one
needs to (not) use. According to (Krentel 1988), the analysis
of optimisation complexity can give insights on the prob-
lem’s approximation properties. For example, if an optimi-
sation problem is OptP[O(loglog n)]-complete, there is a
lower bound on how closely it can be approximated. We
would like to further develop this insight and gain a better
understanding on the possible approximation of width com-
putation in classical planning.

Another avenue worth exploring is the development of a
framework that can allow us to generalise the width value
across planning instances within the same domain. Thus,
even if we pay the high cost of computing the width once,
it can later be exploited in subsequent planning tasks with
different goals or initial states.

Finally, as done by Bylander (1994), it is worth exploring
syntactic restrictions that can lead to islands of tractability
in the width computation.

Acknowledgments

This research was partially funded by the Australian
Government through the Australian Research Council
DP240101353, Australian Research Council Industrial
Transformation Training Centre in Optimisation Technolo-
gies, Integrated Methodologies, and Applications (OP-
TIMA), Project ID 1C200100009.

The first author is supported by the Australian Govern-
ment Research Training Program Scholarship and by the
University of Melbourne Faculty of Engineering and Infor-
mation Technology Ingenium Scholarship Award.

References

Amir, E.; and Engelhardt, B. 2003. Factored Planning. In
Proc. of IJCAI, 929-935.

Backstrom, C.; and Klein, I. 1991. Parallel Non-Binary
Planning in Polynomial Time. In Proc. of IJCAI, 268-273.

Béckstrom, C.; and Nebel, B. 1993. Complexity Results for
SAS+ Planning. In Proc. of AAAI, 1430-1435.

Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1-2): 5-33.

Bonet, B.; and Geftner, H. 2024. General Policies, Subgoal
Structure, and Planning Width. Journal of Artificial Intelli-
gence Research (JAIR), 80: 475-516.

Brafman, R. I.; and Domshlak, C. 2006. Factored plan-
ning: how, when, and when not. In Proceedings of the 21st

National Conference on Artificial Intelligence - Volume 1,
809-814. AAAI Press.

Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence,
69(1-2): 165-204.

Chen, H.; and Giménez, O. 2007. Act Local, Think Global:
Width Notions for Tractable Planning. In Proc. of ICAPS,
73-80.

Corréa, A. B.; and Seipp, J. 2022. Best-First Width Search
for Lifted Classical Planning. In Proc. of ICAPS, 11-15.

Dechter, R. 2003. Constraint processing. Elsevier Morgan
Kaufmann.

Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995.
Complexity, Decidability and Undecidability Results for
Domain-Independent Planning. Artificial Intelligence, 76(1-
2): 75-88.

Ferrer-Mestres, J. 2018. Combined task and motion plan-
ning as classical Al planning. Ph.D. thesis, Pompeu Fabra
University, Spain.

Fikes, R.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. In Proc. of IJCAI, 608-620.

Freuder, E. 1982. A Sufficient Condition for Backtrack Free
Search. Journal of the ACM, 29(1): 24-32.

Hu, G.; Miller, T.; and Lipovetzky, N. 2019. What you get
is what you see: Decomposing Epistemic Planning using
Functional STRIPS. CoRR, abs/1903.11777.

Junyent, M.; Gémez, V.; and Jonsson, A. 2021. Hierarchical
Width-Based Planning and Learning. In Proc. of ICAPS,
519-527.

Krentel, M. W. 1988. The Complexity of Optimization Prob-
lems. Journal of Computer and System Sciences, 36(3):
490-509.

Krentel, M. W. 1992. Generalizations of Opt P to the Poly-
nomial Hierarchy. Theoretical Computer Science, 97(2):
183-198.

Lipovetzky, N.; and Geffner, H. 2012. Width and Serial-
ization of Classical Planning Problems. In Proc. of ECAI,
540-545.

Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In Proc. of AAAI, 3590-3596.

Mao, J.; Lozano-Pérez, T.; Tenenbaum, J. B.; and Kaelbling,
L. P. 2023. What Planning Problems Can A Relational Neu-
ral Network Solve? In Proc. NeurIPS.

O’Toole, S.; Lipovetzky, N.; Ramirez, M.; and Pearce, A. R.
2021. Width-based Lookaheads with Learnt Base Policies
and Heuristics Over the Atari-2600 Benchmark. In Proc.
NeurlIPS, volume 34, 26536-26547.

Ramirez, M.; Papasimeon, M.; Lipovetzky, N.; Benke, L.;
Miller, T.; Pearce, A. R.; Scala, E.; and Zamani, M. 2018. In-
tegrated Hybrid Planning and Programmed Control for Real
Time UAV Maneuvering. In Proc. of AAMAS, 1318-1326.

Ray, K.; and Ginsberg, M. L. 2008. The Complexity of Op-
timal Planning and a More Efficient Method for Finding So-
lutions. In Proc. of ICAPS, 280-287.

